
HEPSCORE integration for WLCG accounting

Integrace HEPSCORE pro WLCG accounting

Bc. Leona Žůrková

Diploma Thesis

Supervisor: Ing. Lukáš Vojáček, Ph.D.

Ostrava, 2023

Ref. no.VSB/22/078951

Diploma Thesis Assignment

Student: Bc. Leona Žůrková
Study Programme: N2647 Information and Communication Technology

Study Branch: 2612T025 Computer Science and Technology

Title: HEPSCORE Integration for WLCG Accounting
Integrace HEPSCORE pro WLCG Accounting

The thesis language: English

Description:

The thesis discusses work carried out in CERN Information Technology department, in a group that is
responsible for the CERN compute infrastructure, including the accounting system which tracks the usage
of compute resources for all the CERN communities, and reports to the World-wide LHC Computing Grid
(WLCG) management.
The main topic of the thesis is about changing the workflow for the CERN compute accounting data
processing and aggregation, as the new HEPSCORE hardware benchmark will replace the current
HEPSPEC06 benchmark.
The main goal is to propose and implement the changes needed in the CERN compute accounting system to
accommodate a different data format provided by the new benchmark.
The student will learn fundamentals of the existing CERN and WLCG accounting system, the HTCondor
configuration, the batch share management tool and the way the benchmarking meta-data is propagated
through the system. The student will gain a knowledge of how accounting workflow works, and how the
hardware benchmarking tool is used. If successful, the thesis will be a significant contribution to CERN.

1. Analyze the current environment and technology used. Understand what benchmarking is, and how it is
used in the WLCG accounting workflow.
2. Understand what the score returned by HEPSCORE represents. Learn about the structure of data
provided by the new benchmark.
3. Suggest an approach to allow for sensible labeling of features in the benchmark data structure.
4. Update the Batch accounting system to accept the suggested data format.
5. Evaluate and compare the results.

References:

[1] C++: Step by step Beginners Guide in Mastering C++, Liam Damien, November 26, 2019, ASIN:
B0822PN19S
[2] Modern Computer Architecture and Organization: Learn x86, ARM, and RISC-V architectures and the
design of smartphones, PCs, and cloud servers, 2nd Edition 2nd ed. Edition; Jim Ledin, Dave Farley; Packt
Publishing; 2nd ed. edition (May 4, 2022), ISBN-10:1803234512
[3] Linux for Beginners: A Practical and Comprehensive Guide to Learn Linux Operating System and
Master Linux Command Line. Contains Self-Evaluation Tests to Verify Your Learning Level. Ethem
Mining, Independently published (December 3, 2019), ISBN-10: 1671228081.

email: studijni.fei@vsb.cz
www.fei.vsb.cz

17. listopadu 2172/15
708 00 Ostrava-Poruba
Czech Republic

IČ: 61989100
DIČ: CZ61989100

spojovatelka: +420 597 321 111
epodatelna: epodatelna@vsb.cz
ID datové schránky: d3kj88v

Extent and terms of a thesis are specified in directions for its elaboration that are opened to the public on
the web sites of the faculty.

Supervisor: Ing. Lukáš Vojáček, Ph.D.

Consultant: Dr. Gavin McCance

Mgr. Jaroslava Schovancová, Ph.D.

Date of issue: 01.09.2022

Date of submission: 30.04.2023

Fields of study guarantor: prof. RNDr. Václav Snášel, CSc.

In IS EDISON assigned: 07.11.2022 11:59:22

email: studijni.fei@vsb.cz
www.fei.vsb.cz

17. listopadu 2172/15
708 00 Ostrava-Poruba
Czech Republic

IČ: 61989100
DIČ: CZ61989100

spojovatelka: +420 597 321 111
epodatelna: epodatelna@vsb.cz
ID datové schránky: d3kj88v

Abstrakt

Tato diplomová práce se zabývá optimalizací procesu účtování výpočetních prostředků (CPU ac-
counting) v rámci Worldwide LHC Computing Grid (WLCG) na CERNu. Studie se zaměřuje na
analýzu stávajícího prostředí, porozumění metrikám benchmarkingu, jako je HEPSCORE, a navr-
hování integrovaného přístupu pro začleňování nových benchmarků. Výzkum zdůrazňuje nutnost
aktualizace kódu Spark jobs pro zahrnutí hodnot HEPSCORE a efektivní plánování a reportování
do externí služby APEL. Díky spolupráci s kolegy a využití námi vytvořeného testovacího pro-
středí je dosaženo úspěšné integrace. Výsledky práce poukazují na důležitost dokumentace a sdílení
znalostí pro udržitelné zlepšování v komplexních technických prostředích.

Klíčová slova

CPU accounting, benchmarking, WLCG, alokace prostředků, Spark jobs, HEPSCORE, integrace,
efektivita plánování, dokumentace

Abstract

This thesis investigates the enhancement of the CPU accounting workflow in the Worldwide LHC
Computing Grid (WLCG) at CERN. The study focuses on analyzing the existing environment,
understanding benchmarking metrics like HEPSCORE, and proposing an integrated approach for
incorporating new benchmarks. The research highlights the need for updating Spark jobs code
to include HEPSCORE values and streamline reporting to the third-party service, APEL. By col-
laborating with colleagues and utilizing a dedicated testing environment, successful integration is
achieved. The findings emphasize the importance of documentation and knowledge sharing for
sustained improvements in complex technical environments.

Keywords

CPU accounting, benchmarking, WLCG, resource allocation, Spark jobs, HEPSCORE, integration,
efficiency, documentation

Acknowledgement

I would like to express my sincere gratitude to my colleagues at CERN, who provided valuable sup-
port and guidance throughout my journey. Their expertise and willingness to share their knowledge
helped me understand the intricacies of the work environment and contributed significantly to the
successful completion of this thesis. My biggest thanks belongs to Gavin McCance, who provided
me the initial insights, and Maria Alandes Pradillo, who helped me in more hands-on tasks.
I would also like to extend my heartfelt thanks to my family in Czechia and flatmates in France for
their unwavering support, encouragement, and understanding during this challenging phase. Their
constant belief in me and their patience in accommodating my demanding schedule played a crucial
role in my ability to focus and excel in my studies.
Additionally, I would like to acknowledge the support and guidance provided by my thesis advisor,
Lukáš Vojáček, whose expertise and feedback were instrumental in shaping the direction of this
research.
Finally, I am grateful to all the individuals who have contributed to my academic journey in various
ways, whether through their insightful discussions, feedback on drafts, or general encouragement.
Your contributions have enriched my understanding and have been invaluable to the completion of
this thesis.
Thank you all for your indispensable support, both personally and professionally. Your belief in me
and your willingness to help have made this endeavor possible.

Contents

List of symbols and abbreviations 8

List of Figures 10

List of Tables 11

1 Introduction 13
1.1 Motivation . 14
1.2 CERN . 14
1.3 Datacentre . 17
1.4 Grid computing . 18
1.5 WLCG . 19

2 Background 20
2.1 WLCG history . 20
2.2 Pledge . 20
2.3 Accounting . 21
2.4 Benchmarking . 22
2.5 Technologies . 24

3 Analysis 28
3.1 Batch Accounting . 28
3.2 The process of benchmarking a processor . 29
3.3 Environment . 35
3.4 Analysis summary . 40

4 Changes 44
4.1 ATF decisions . 44
4.2 APEL messaging update . 45
4.3 My decision . 45

6

5 Integrating 46
5.1 Buckets and reports . 46
5.2 Testing environment . 50
5.3 Spark jobs changes . 51
5.4 Summary . 54

6 Conclusion 56
6.1 Overview . 56
6.2 Challenges and solutions . 57
6.3 Contributions and results . 57

Appendices 60

A Figures 61

B Tables 64

C Listings 69

7

List of symbols and abbreviations

IT – Information Technology

WWW – World Wide Web

YAML – Yet Another Markup Language

HTC – High Throughput Computing

CPU – Central Processing Unit

GPU – Graphics Processing Unit

HEP – High Energy Physics

CERN – Conseil Européen pour la Recherche Nucléaire

LHC – Large Hadron Collider

HL-LHC – High-Luminosity Large Hadron Collider

ALICE – A Large Ion Collider Experiment

ATLAS – A Toroidal LHC Apparatus

CMS – Compact Muon Solenoid

LHCb – LHC Beauty

WLCG – World LHC Computing Grid

VM – Virtual Machine

CVMFS – CernVM File System

SPEC – Standard Perfomance Evalutation Corporation

CINT – CPU INTeger

SI2K – SPEC CINT2000

HS06 – HEP-SPEC 2006

HS23 – HEPSCORE 2023

WL – workload

8

GEN – generation

SIM – simulation

DIGI – digitalisation

RECO – reconstruction

9

List of Figures

1.1 The CERN’s accelerator complex [4] . 17

2.1 CPU used vs. requested in 2022, in wallclock HS06 hours [7] 23

3.1 Job pattern used at Batch Service from [19] . 38
3.2 Benchmarking data workflow for WLCG Batch . 41
3.3 My position in WLCG Accounting Black Box usecase of benchmarking a new CPU . 42
3.4 Accounting data workflow from HTCondor cluster to APEL 43
3.5 Visualization of Spark job chronological data exchange with S3 storage 43

A.1 The tiers of WLCG [20] . 62
A.2 Pledge usage for 2022 . 63
A.3 Requested usage for 2022 . 63

10

List of Tables

B.1 CERN and Czech sites CPU pledges for 2022 and 2023 [21] 65
B.2 VO CPU Pledge and Requirement list for 2022 [22] 66
B.3 HEP workloads running time in minutes. Times are geometrical mean of three runs

on reference machine. 67
B.4 Intel(R) processors performace comparison in units of the new HEPSCORE benchmark 68

11

Listings

3.1 hep.yaml - My example of configuration file to run hep-score 31
3.2 Bash script to run hep-score . 32
3.3 Console output after running hep-score locally . 32
3.4 hep.sub - Submission file for HTCondor . 35
3.5 my-hep.sh - Bash script to run hep-score as a job in HTCondor 35
5.1 Example of a shortened file in the REPORTBUCKET in thooki directory for a specific

day (1st April 2023) . 48
5.2 Example of a shortened file in the REPORTBUCKET in monthly directory for a

specific month (April 2023) . 48
5.3 Example of a shortened file in the TESTING-REPORTBUCKET in monthly direc-

tory for a specific month (May 2023) . 53
C.1 JSON output after running hep-score locally . 69
C.2 HTCondor output . 72
C.3 APEL job record message format v0.2 . 73
C.4 APEL job record v0.4 . 73
C.5 APEL summary job record message format v0.3 . 74
C.6 APEL normalised summary record v0.4 . 74
C.7 APEL summary job record v0.4 . 75
C.8 Example of a formatted and ommited line from a file in the DATABUCKET 76
C.9 mock.py file to mock the bucket data after you download the original data 77
C.10 mock-day.sh file download original data, call mock.py, and upload mocked data to S3

a testing bucket . 78
C.11 mock-month.sh file to call mock-day.sh several times 79
C.12 Ommited _generate_daily_report method from condor.py file from accounting-

jobs project . 80

12

Chapter 1

Introduction

The pace of technological advancement has been accelerating at an unprecedented rate in recent
years. The impact of new technologies on our daily lives and society as a whole is profound. Digital
Darwinism is unkind to those who wait. It’s crucial to understand to the importance of adaptabil-
ity and collaboration in the face of change and uncertainty. This is the idea behind Darwin’s book
The Origin of Species[1], promoting the gravity of evolution, and the ideas can be also applied to
technology.
This project focuses on the update of the CPU accounting workflow for WLCG. The way that
computing resources are allocated and managed has a profound impact on the performance and
efficiency of computer systems. As the demands placed on computer systems continue to grow, it
is becoming increasingly important to optimize the allocation of resources. A concrete example of
this is CERN’s construction of a new datacentre at the Prevessin site, intended to accommodate
the anticipated data loads from the planned High-Luminosity LHC and later Future Circular Col-
lider, which is projected to be 4 times larger than the LHC to achieve better conditions for bigger
discoveries. As the scale of resources expands, the imperative to ensure precise CPU accounting
and effective resource handling becomes all the more crucial.
The goal of this project is to provide a comprehensive overview of the current state of the WLCG
accounting workflow at CERN and describe integrating a new benchmarking unit to optimize the
allocation of computing resources, and to make WLCG more efficient, effective, and adaptable.
Important part of this work is the accounting workflow analysis as well, as a part of all the infor-
mation about it are fragmented in different information channels, and there is no central source of
knowledge for it. A big part of the knowledge used to be in the heads of my colleagues, until I came
to discover and capture it on this paper.
First in the Introduction and Background section you’ll read about CERN, WLCG, Pledge, Ac-
counting, Benchmarking, or general tools used in grid computing and CPU accounting to understand
how this project fits into the real world. Later in Analysis chapter, you’ll learn more about CERN-
specific tools and environment. Then I’ll introduce you to the decisions and changes made by higher

13

authorities, and I’ll finish this thesis by writing about my decisions and the implementation.

1.1 Motivation

The HEP-SPEC2006 (HS06) benchmark has been a reliable estimate of CPU performance for many
years, and is currently used by the WLCG for accounting and pledges. However, HS06 is based on the
SPEC2006 benchmark that is no longer supported. Further, it uses applications that do not reflect
those used by the HEP community.1. One specific case is that HS06 has bad scaling properties
with the LHCb applications, in particular with the simulation (CPU-bound) application.[2] I’ll
share a few nice sentences with you from a book called The art of computer systems performance
analysis[3] to summarize the reasons why do we aim for the accounting to be as precise as possible:

• “Performance is a key criterion in the design, procurement, and use of computer systems [...]
to get the highest performance for a given cost.”

• “The types of applications of computers are so numerous that it is not possible to have
a standard measure of performance [...] for all cases.”

• “The first step in performance evaluation is to select the right measures of performance, the
right measurement environments, and the right techniques.”

1.2 CERN

The European Organization for Nuclear Research, is one of the world’s largest and most respected
centers for scientific research. Located near Geneva, Switzerland, CERN is home to the Large
Hadron Collider (LHC), the world’s largest particle accelerator, and several other cutting-edge ex-
periments in particle physics.
Scientists at CERN conduct research on the fundamental particles and forces that make up our uni-
verse, using particle accelerators to study the behavior of these particles under extreme conditions.
They investigate questions such as how particles acquire mass, the nature of dark matter, and the
possibility of extra dimensions.
CERN is also a center for international collaboration, with thousands of scientists from around the
world working together on experiments and sharing knowledge and expertise. The organization is
committed to promoting scientific education and outreach, with programs designed to inspire the
next generation of scientists and increase public understanding of the role of science in our world.
The CERN main missions are to

• Conduct research in physics and search for new discoveries.
• Operate advanced particle accelerators and develop new technologies.
1That would take a long time to explain. If you’re interested, check out the Mr. Giordano’s great presentation on

https://indico.in2p3.fr/event/20020/contributions/76823/attachments/56495/74936/LCG-France-12-12-2019-
giordano.pdf

14

• Encourage international collaboration in science and knowledge exchange.
• Train students and researchers from around the world.
• Educate and inspire the public about science.
• Use science and technology for peaceful purposes and sustainable development.

1.2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest and most powerful particle accelerator ever built. It
is an engineering marvel, with a length of 27 kilometers (16.8 miles), making it the largest machine
ever built by humankind.
Construction of the LHC began in 1998, and it took nearly a decade to complete. The first proton-
proton collisions were observed in 2010, and since then, the LHC has been at the forefront of particle
physics research. The LHC is used to accelerate beams of protons or heavy ions to nearly the speed of
light before smashing them into each other at four points along the ring. These collisions produce
a shower of particles that can be detected by massive detectors like ATLAS, CMS, LHCb, and
ALICE (see Fig. 1.1 on page 17).
The LHC operates at an energy of 13 TeV (tera-electronvolts) for proton-proton collisions and up
to 5.5 TeV per nucleon for heavy-ion collisions, making it the highest energy particle accelerator
ever built. To achieve these energies, the LHC uses over 1,600 superconducting magnets, each
weighing over 27 tonnes, to guide the particle beams around the ring. These magnets are cooled to
a temperature of -271.3°C (-456.3°F, or 1.9K, which is colder than the 2.7K of outer space) using
over 120 tonnes of liquid helium, making the LHC the largest cryogenic installation in the world.
In addition to its impressive size and energy, the LHC also generates an enormous amount of data.
When two beams collide, the detectors at the collision points produce terabytes of data every second,
requiring a massive computing infrastructure to store and analyze the data. The LHC Computing
Grid, a worldwide network of computing centers, provides the computing power needed to process
the data, with over 170 computing centers in 42 countries.
Since its inception, the LHC has made numerous groundbreaking discoveries, including the discovery
of the Higgs boson in 2012, a particle that gives mass to other particles. The discovery confirmed
the existence of the Higgs field, a fundamental component of the Standard Model of particle physics.
The LHC has also been used to search for evidence of supersymmetry, extra dimensions, and other
theories that go beyond the Standard Model.
In conclusion, the LHC is an incredible feat of engineering and a testament to the ingenuity and
dedication of scientists and engineers around the world. Its impressive size, energy, and capabilities
have revolutionized particle physics research and have led to groundbreaking discoveries that have
expanded our understanding of the universe.

15

Alice

ALICE (A Large Ion Collider Experiment) studies the properties of quark-gluon plasma, which is
a state of matter that is believed to have existed shortly after the Big Bang. By colliding lead ions
together at high energies, ALICE can recreate the conditions that existed in the early universe and
study the properties of this plasma.

Atlas

ATLAS (A Toroidal LHC ApparatuS) is a general-purpose detector designed to search for a wide
range of new particles and phenomena beyond the Standard Model of particle physics. It has
a complex and highly segmented design that enables it to detect and measure the properties of
particles produced in high-energy collisions, including the Higgs boson, top quarks, and hypothetical
particles like supersymmetric particles and extra dimensions.

CMS

CMS (Compact Muon Solenoid) is also a general-purpose detector designed to explore a wide range
of physics phenomena. However, it has a more compact and streamlined design compared to ATLAS,
which allows it to detect particles more efficiently in certain regions of the detector. CMS has made
important contributions to the discovery of the Higgs boson and searches for new particles and
forces, and it also studies the behavior of particles containing the beauty quark to investigate the
dominance of matter over antimatter in the universe.

LHCb

LHCb (Large Hadron Collider beauty) is designed to study the properties of particles that contain
the "beauty" or "bottom" quark. By studying the behavior of these particles, LHCb can search
for evidence of new physics beyond the Standard Model, such as the existence of new particles or
interactions.
Overall, each of these experiments is designed to complement the others and provide a more complete
picture of the fundamental particles and forces that make up our universe.

Computing

During the design phase of the computing system for LHC data analysis in 1999, it became apparent
that the necessary computing capacity surpassed the funding capacity available at CERN. However,
several laboratories and universities that were collaborating on the LHC project had access to
regional or national computing resources. This led to the question of whether these facilities could
be combined to form a single LHC computing service. The advancements in wide-area networking,

16

increased capacity and bandwidth, and lower costs made this integration possible. Subsequently,
this led to the development of the Worldwide LHC Computing Grid.

Figure 1.1: The CERN’s accelerator complex [4]

1.3 Datacentre

The CERN Data Centre is the heart of CERN’s entire scientific, administrative, and computing
infrastructure. All services, including email, scientific data management and videoconferencing use
equipment based here.
More than 450 000 processor cores and 10 000 servers run 24/7. Over 90% of the resources for
computing in the Data Centre are provided through a private cloud based on OpenStack, an open-

17

source project to deliver a massively scalable cloud operating system.2

The CERN Data Centre currently holds over 300 petabytes (PB) of data, with plans to expand this
capacity to several exabytes (EB) in the coming years. In 2023, CERN is planning to open newly
built datacentre building in the Prevessin, France. The new datacentre is born to handle all the
new data from planned High-Luminosity LHC (HL-LHC) which comes online in 2029.
It’s computing and storage infrastructure is essential to the success of CERN’s scientific program,
enabling researchers from around the world to analyze and process the vast amounts of data gen-
erated by experiments at the LHC. With the continued growth of data volumes and the increasing
complexity of analyses, the data centre’s capabilities will become even more critical in the years to
come.

1.4 Grid computing

Grid computing is a distributed computing model that allows multiple organizations to share com-
puting resources over a network, such as the internet. This approach enables large-scale computing
tasks to be performed more efficiently and cost-effectively than would be possible with a single
centralized system. Grid computing is used in many fields, such as medical research, computer
graphics, weather forecasting. But for the purpose of this thesis, we’ll focus on its usage in the
scientific research. Grid computing provides several advantages for scientific research, including

• scalability: Grid computing allows researchers to scale their computing resources to meet their
needs, without having to invest in expensive hardware or infrastructure.

• collaboration: Grid computing enables researchers to collaborate across institutions, countries,
and even continents, sharing data and computing resources to achieve common research goals.

• efficiency: By sharing resources and avoiding duplication of effort, grid computing can reduce
costs and improve the efficiency of scientific research.

• accessibility: Grid computing makes advanced computational resources available to researchers
who might not have access to such resources otherwise, democratizing scientific research and
allowing more researchers to participate in cutting-edge projects.

To understand why a grid infrastructure was chosen, we must consider several factors that had
an important impact on the design of the LHC computing environment. Primarily, the volume of
data generated by the experiments is estimated at some 15 PB per year. These data are generated
at a significant rate: some 300–400 megabyte (MB) per second by the two largest experiments,
ATLAS and CMS. During the period when the LHC accelerates heavy ions, this data rate increases
to around 2 gigabyte (GB) per second for ALICE, the dedicated heavy ion experiment. The fourth
experiment, LHCb, generates data at the lower rate of <100 MB/s. Thus, during most of the

2CERN. The CERN Data Centre [online]. 2023. [visited on 2023-04-11]. Available from: https:
//home.web.cern.ch/science/computing/data-centre

18

LHC running, the total data rate is around 1 GB/s and this rises to close to 3 GB/s during heavy
ion running. These data are archived at CERN and a second copy is distributed between 11 re-
gional (Tier 1) centers in real time, together with an equal amount of data resulting from their initial
processing. Thus, the distribution system must be capable of supporting these rates continuously.[5]

1.5 WLCG

The mission of the Worldwide LHC Computing Grid (WLCG) is to provide global computing re-
sources for the storage, distribution and analysis of the data generated by the LHC. WLCG combines
about 1.4 million computer cores and 1.5 exabytes of storage from over 170 sites in 42 countries.
This massive distributed computing infrastructure provides more than 12 000 physicists around the
world with near real-time access to LHC data, and the power to process it.
It runs over 2 million tasks per day and, at the end of the LHC’s LS2 (Long Shutdown phase), global
transfer rates exceeded 260 GB/s. These numbers will increase as time goes on and as computing
resources and new technologies become ever more available across the world. CERN provides about
20% of the resources of WLCG.3

The WLCG operates using a hierarchical model (see Fig. A.1 on page 62), with Tier-0 sites at
CERN receiving raw data from the LHC and processing it into "derived data," which is then dis-
tributed to Tier-1 sites located around the world. These Tier-1 sites store and distribute the data
to Tier-2 sites, which provide computing resources for data processing and analysis by individual
researchers and teams. The main responsibilities of the different tiers of the WLCG computing
model are as follows[6]:

• Tier0 (CERN): safe keeping of RAW data (first copy); first pass reconstruction, distribution of
RAW data and reconstruction output (Event Summary Data or ESD) to Tier1; reprocessing
of data during LHC down-times;

• Tier1: safe keeping of a proportional share of RAW and reconstructed data; large scale repro-
cessing and safe keeping of corresponding output; distribution of data products to Tier2s and
safe keeping of a share of simulated data produced at these Tier2s;

• Tier2: Handling analysis requirements and proportional share of simulated event production
and reconstruction.

3CERN. The Worldwide LHC Computing Grid (WLCG) [online]. 2023. [visited on 2023-04-11]. Available from:
https://home.cern/science/computing/grid

19

Chapter 2

Background

2.1 WLCG history

In 2002, the WLCG was established as a collaboration between CERN and dozens of other computer
centers around the world. The goal of the WLCG was to provide a distributed computing infras-
tructure that could scale to meet the computing and data storage needs of the LHC experiments.
Over the years, the WLCG has evolved to meet the changing needs of the LHC experiments. In the
early years, the focus was on building a distributed computing infrastructure that could process and
store the vast amounts of data produced by the LHC experiments. This required the development of
new software tools and technologies to manage the distributed computing resources of the WLCG.
As the LHC experiments continued and the data processing and storage needs grew, the WLCG
evolved to incorporate new computing technologies, such as cloud computing and grid computing.
The WLCG also expanded its membership to include new computer centers around the world, and
developed new mechanisms for managing and allocating computing resources, such as the concept
of pledges.
Today, the WLCG is a global collaboration of dozens of computer centers and thousands of re-
searchers, working together to manage and analyze the data produced by the LHC experiments.
Even you can help by donating you idle computer time, check out the LHC@home project. The
WLCG continues to evolve and adapt to meet the ongoing challenges presented by the LHC exper-
iments, and to support the scientific goals of the global particle physics community.

2.2 Pledge

One of the mechanisms used by the WLCG to manage and allocate computing resources is the
concept of pledges. Pledges are commitments made by participating centers to provide a certain
amount of computing resources to the WLCG for a specific period of time, usually a year. These
commitments are based on the capabilities and capacity of the center, and are intended to ensure

20

that the WLCG has access to sufficient resources to support its data processing and analysis needs.
Pledges are typically defined in terms of three main components: CPU, storage, and network. Pledg-
ing is an important aspect of resource management in the WLCG because it allows experiments to
plan and allocate resources more effectively. By knowing in advance the amount of resources that
will be available, experiments can better estimate their computing needs and adjust their workflows
accordingly. Pledges are made by individual computing centers, such as universities or research
institutions, and are typically based on the center’s available resources and capacity. Once a pledge
is made, the resource provider is expected to honor the commitment and provide the pledged re-
sources to the grid.
Pledges are reviewed regularly to ensure that they continue to accurately reflect the capabilities
and resources of each participating center. Overall, pledges are an important mechanism for coor-
dinating and managing the distributed computing resources of the WLCG, and for ensuring that
the collaboration has access to the resources it needs to support its scientific goals.
Overall, pledges are a key component of the WLCG’s resource management system and help en-
sure that computing resources are available to support the analysis of data from the Large Hadron
Collider experiments.

Pledges in 2022

To have some idea how does it work, let’s see CPU pledges from CERN and Czech sites (see
Tab. B.1), and then CPU pledges and requirements (see Tab. B.2) from the LHC experiments.
The pledge is a promise from a site, how much computing power can they provide. It’s defined as
amount of CPUs in HS06 units. On the other side, requirements number is the amount of computing
power being used by the site’s users. As we can see in the table B.2, CMS experiment could in 2022
provide 540000 HS06, and it consumed a total of 540000 HS06. This means that CMS has fulfilled
100% of it’s pledge when it comes to Tier-0 pledges. (Although it does not neccessarily mean that
all the computations stayed on-site.) But in Tier-1 pledges, CMS pledged 17% more units than
required, which means it’s resources probably contributed to other sites which required more than
pledged (for example LHCb).

2.3 Accounting

Grid accounting serves the purpose of monitoring the usage of computing resources by individual
users, experiments, and sites within the WLCG ecosystem. To achieve this, the WLCG employs
a sophisticated accounting system that systematically collects crucial information such as CPU
time consumption, data processing, and storage utilization. By aggregating this information and
processing it, reports are generated to provide insights into the pattern of resource usage and

21

utilization across the entire grid network.
In order to support the scientific experiments conducted at CERN, a specific amount of computing
resources must be provided each year, sourced from funding agencies and various sites. To assess the
efficiency of these resources, resource review boards analyze the actual resource utilization compared
to the initial resource request. To maximize performance and cost-effectiveness, the procurement
team purchases new hardware based on careful evaluations of efficiency and cost-effectiveness. These
measures are essential in ensuring efficient resource management, avoiding unnecessary waste of both
resources and funding.
Current role of WLCG accounting team at CERN

• collects data from batch and HPC services in order to provide information for resource usage
by experiments, departments and services

• collects data for all resources known to OpenStack
• compares the usage of the resources versus the promised quota to the experiments
• creates daily reports for APEL
• provides API for mapping users to their charge group
• visualisation of all these information on dashboards (Grafana) 1

As an example what accounting is good for, let’s see Fig 2.1 on page 23. We can see, that all VO’s
CPU usage together (colorful columns) resulted in using more than they asked for (blue line with
white dots). For the following years, each VO needs to reconsider asking for more resources and try
to guess their CPU usage better accordingly to their planned changes.

2.4 Benchmarking

CPU benchmarking is a method used to evaluate the performance of a computer’s CPU. This pro-
cess involves running a series of standardized tests that simulate real-world workloads to determine
the CPU’s ability to handle different types of tasks.
There are several types of benchmarks, but generally we can divide them into 2 groups: Synthetic
and real-world. When looking for a quick, general comparison between CPUs, synthetic benchmark
should be a good choice. A range of tasks such as 3D rendering, file compression, web browsing,
and floating-point calculations are simulated in synthetic tests. The performance of the CPU is
measured for each task, and the results are then combined and evaluated to obtain a single score.
However, there are also real-world, so-called application-based benchmarks that focus on measuring
the performance of CPUs in real-world scenarios such as video editing, gaming, or scientific sim-
ulations. These benchmarks can provide a more accurate representation of a CPU’s performance
under real-world conditions.
To benchmark a CPU in CERN, the HEPSPEC benchmark derived from synthetic SPEC CPU 2006

1CERN. Accounting Ops - Introduction [online]. 2023. [visited on 2023-04-24]. Available from:
https://accountingops.web.cern.ch/

22

Figure 2.1: CPU used vs. requested in 2022, in wallclock HS06 hours [7]

benchmark is used in 2022. And I’m here to help with the transition to a new application-based
benchmark called HEPScore 2023.

HEPSPEC 2006

HEP-SPEC2006 (HS06) is a suite of 7 C++ applications - subset of SPEC CPU 2006 benchmark.
The Standard Performance Evaluation Corporation (SPEC), founded in 1988, is an American orga-
nization aims to establish, maintain and endorse a standardized set of performance benchmarks for
computers. [...] The SPEC benchmarks are written in a platform neutral programming language,
and the interested parties may compile the code using whatever compiler they prefer for their plat-
form, but may not change the code. In order to use a benchmark, a license has to be purchased
from SPEC. The costs vary from test to test with a typical range from several hundred to several
thousand dollars. [8]

23

HEPscore 2023

HEPscore is the new HEP-specific CPU benchmark for WLCG. The workloads are created to
suit CERN’s needs. More about it in Analysis chapter, see 3.2.2 HEPscore (on page 30) and it’s
Workloads (section 3.2.1 on page 29).

2.5 Technologies

2.5.1 Containerization

A container can be considered a tiny and isolated virtual environment, which includes a set of
specific dependencies needed to run a specific application. This makes it easier to run the software
in same conditions on different environments to get appropriate results. The HEP workloads for
CERN were containerized and fully validated in the spring of 2021. [9]

Docker and Apptainer (Singularity)

Several containerization platforms exist for the purpose of managing containers. In CERN we use
Docker and Apptainer (previously known as Singularity), where Docker is designed for creating
and deploying applications in a variety of environments, whereas Singularity is primarily intended
for scientific computing and HPC workloads. That’s why Singularity is more commonly used on
WLCG.
When it comes to security, Docker is primarily intended to run untrusted third-party applications
in a secure environment, so it includes features like isolated filesystems and network interfaces[10].
Singularity on the other hand is designed to run trusted applications in a shared environment, so
it has less security overhead[11].

2.5.2 Batch systems

For any High-Performance Computing (HPC) system, it is essential to have a fair allocation of
computational resources among users. This can be achieved through the use of batch queuing
systems, which are responsible for scheduling and prioritizing jobs in a shared environment. Batch
systems are equipped with a job scheduler that allocates resources such as CPUs to jobs and
prioritizes them based on user-defined parameters. In addition, these systems have one or more
queues to which jobs are submitted, and each queue can be configured to handle specific types of
jobs, such as serial or parallel jobs, long or short jobs, or those with high memory requirements.
Job schedulers normally operate only with dedicated machines. Often termed worker nodes, these
dedicated machines are typically owned by one group and dedicated to the sole purpose of running
compute jobs. [12] There are several batch systems that are used for WLCG purposes. For this
project we’ll work only with HTCondor, but I’ll describe some others to compare.

24

Torque

Torque is a workload manager and job scheduler that allows users to submit and manage jobs on
a cluster of computers. It is often used in HPC environments, where large-scale simulations or data
processing tasks are performed. Torque provides a framework for submitting, tracking, and manag-
ing jobs across a distributed network of computers, and includes features such as job prioritization,
scheduling, and resource allocation. It is often used in combination with other software, such as
Maui or Moab, to provide HPC environment to manage resources and schedule jobs on a large scale.
In contrast to other mentioned schedulers, Torque with Maui/Moab are more standardized and may
be easier to set up and use, but may not provide the same level of customization.

SLURM

SLURM (Simple Linux Utility for Resource Management) is an open-source job scheduler and
resource management system used in HPC environments. It provides a framework for scheduling
and managing the allocation of computing resources, such as CPUs, memory, and GPUs, across
a cluster of interconnected nodes. It is designed to be highly scalable, supporting large-scale systems
with tens of thousands of nodes and millions of tasks. It offers a variety of scheduling policies and
advanced features, including backfill scheduling[13], job prioritization, job arrays, job dependencies,
and checkpoint/restart capabilities.

LSF

IBM Spectrum LSF is a powerful workload management platform for demanding, distributed HPC
environments. It provides a comprehensive set of intelligent, policy-driven scheduling features that
enables full utilization of your compute infrastructure resources and ensure optimal application per-
formance.[14] This technology was used at Batch accounting before CERN migrated to HTCondor.

HTCondor

HTCondor (High-Throughput Computing Condor) is a specialized workload management system
designed to manage large amounts of computational tasks across a pool of distributed computing
resources such as clusters, grids, and clouds. It is a free and open-source software developed by the
Center for High Throughput Computing at the University of Wisconsin-Madison.
It is another job scheduler and resource manager commonly used in scientific computing environ-
ments. HTCondor operates differently from Torque in that it uses a "matchmaking" system to match
jobs to available resources based on various criteria such as job requirements, resource availability,
and job priorities.
HTCondor can schedule jobs on dedicated machines, but unlike traditional batch systems, HT-
Condor is also designed to run jobs on machines shared and used by other systems or people. By

25

running on these shared resources, scheudler can effectively harness all machines throughout a cam-
pus. This is important because often an organization has more latent, idle computers than any
single department or group otherwise has access to.[12]
You’ll learn more about HTCondor in the CERN environment, in chapter 3.3.2 HTCondor cluster
on page 37.

2.5.3 S3 Ceph storage

S3 is a storage API for various object storages. Amazon, Ceph, Google Cloud, Azure... are support-
ing these object storages, and the objects (files/data) within are stored in a bucket (directory/place-
holder). To access S3 storage, an access_key_id and secret_access_key is needed, usually users
can just generate them through the service’s frontend application in their browser.
Red Hat Ceph is a kind of open-source software that has been developed to enable the easy storage
of files, blocks, and other data types in a single, integrated system. This software uses its own file
system, called CephFS, and can handle problems without any manual intervention, making it a
very powerful storage solution. Moreover, it has the ability to detect and fix failures on its own,
while also continually striving to minimize the cost of system administration.
Red Hat Ceph Object Gateway supports a RESTful API that is compatible with the basic data
access model of the Amazon S3 API.[15] Thanks to this, we can install s3cmd tool on our Linux
distro (in my case Ubuntu 22.04.2 LTS) and manage the storage easily with familiar arguments
like "ls" or "get". S3cmd is written in Python, and it’s an open source project available under GNU
Public License v2 (GPLv2) and is free for both commercial and private use.[16]

2.5.4 BOINC

BOINC is a platform for distributed high throughput computing, i.e. large numbers of independent
compute-intensive jobs, where there performance goal is high rate of job completion rather than low
turnaround time of individual jobs. It also offers low-level mechanisms for distributed data storage.
BOINC has a client/server architecture: the server distributes jobs, while the client runs on worker
nodes, which execute jobs.
Here at CERN, we use BOINC in volunteer computing, where the worker nodes are consumer de-
vices (desktop and laptop computers, tablets, smartphones) volunteered by their owners. BOINC
addresses the various challenges inherent in this environment (heterogenity, host churn and unrelia-
bility, scale, security, and so on). Except CERN’s LHC@home, there are other volunteer-computing
projects using this platform, like Einstein@home or World Community Grid.
BOINC can run all existing HTC applications, including those that use GPUs and/or multiple
CPU cores. It can use virtual machines to run existing Linux applications on Windows and Mac
worker nodes. BOINC is distributed under the LGPL v3 open-source license. It can be used for

26

any purpose (academic, commercial, or private) and can be used with applications that are not
open-source.[17]

2.5.5 Puppet

Puppet is a widely adopted configuration management tool in IT infrastructure automation. It
enables system administrators to define and enforce the desired state of computer systems using
a declarative language. By specifying configuration settings, packages, services, and files, Puppet
automates the implementation and maintenance of these configurations across multiple systems.
This centralized approach simplifies the management of complex environments and reduces manual
effort by automating repetitive tasks. With its scalability and efficiency, Puppet ensures consistency
and facilitates streamlined management of a large number of servers, making it a valuable asset in
modern IT operations.
I particularly valued the utilization of Git for storing configurations. Examining previous commits
and branches provided valuable insights into the evolution of managing internal tools, ultimately
enhancing my understanding of these tools and their functionality.

2.5.6 APEL and EGI

APEL (Accounting Processor for Event Logs) is a software system used for collecting and processing
accounting information in high-performance computing environments. It is specifically designed to
handle accounting data generated by grid and cloud computing infrastructures. APEL collects data
from various sources, including batch systems like HTCondor, and processes it to generate accurate
and consistent usage records. Here at CERN, APEL plays a vital role in collecting accounting data
related to CPU usage, wall time, and other resource consumption metrics from HTCondor-based
computing clusters in WLCG.
EGI refers to the European Grid Infrastructure, which is a distributed computing infrastructure that
connects and coordinates computing resources across different research institutions and countries.
It ensures that accounting data from diverse sources, including APEL, are effectively gathered,
combined, and accessible for analysis and reporting purposes. By serving as a framework, EGI
promotes consistency in accounting practices, ensuring that resource usage is tracked and reported
uniformly across the entire EGI infrastructure.

27

Chapter 3

Analysis

In this chapter, we’ll see how the benchmarking data are created, used, and reported to third party
services like EGI. First of all, let’s make clear some terms when it comes to the WLCG accounting:

• job is a discrete unit of work, an executable with some optional arguments
• HEP workload is a single workload (job, executable) created by specialists from each exper-

iment at CERN. It’s purpose is to juice the CPU out so we can make some omelettes in the
server room.

• hep-workloads is a repository, that runs a single HEP workload
• hep-score benchmark runs several HEP workloads using hep-workloads repostory, and aver-

ages/combines individual scores to give a single benchmark number for the machine
• hep-benchmark-suite can run several benchmarks (HS23 - HEPSCORE, HS06 - HEPSPEC,

SI2K - SPEC INT 2000, ...) to collect their score, and is used by a procurement team when
benchmarking a new piece of hardware

• I refer to a hep-score as a piece of code, while HEPSCORE, hepscore, hs23, HS23 stands for
the new type of benchmark in general

3.1 Batch Accounting

Batch accounting is about collecting, processing and publishing accounting data from the HTCondor
batch system. It’s the main topic of this thesis - after understanding how does it work, the main
task is to update of the batch accounting workflow by adding a new metric to compare CPUs. Batch
Accounting is a part of IT-CD-CC section at CERN, and it’s related to terms like computing centre,
Tier-0, WLCG, Batch systems (HTCondor), benchmarking, resource coordination, and support.

28

3.2 The process of benchmarking a processor

Here at CERN, benchmarking is done by the Procurement team right before a new processor is
going to be a new part of the production. The team uses an internal tool called Benchmark Suite,
which can use several benchmarks to get a benchmark number for the CPU.
In this section, we’ll see how to benchmark HEPScore23 manually, without the Benchmark Suite
implementation, just to see how it’s done, and what score will we get. First by using HEPSCORE
locally, then on HTCondor to see how HTCondor works from the user’s point of view. To start
using hep-score, we need to select a workload(s), so let’s have a look at them.

3.2.1 Workloads

In general, a workload is a measure of the amount of computing resources (such as CPU or memory)
required to perform a specific task or set of tasks. In the context of benchmarking, workloads are
typically used to evaluate the performance of computer systems or components.
For CERN experiments, the workloads can be quite complex and demanding. High Energy Physics
(HEP) experiments generate vast amounts of data, and processing this data requires significant
computing resources. The workloads for CERN experiments are typically characterized by large
amounts of data that need to be processed with complex algorithms.
One example of a HEP workload is the simulation of particle collisions using Monte Carlo techniques.
This involves generating large numbers of simulated events and analyzing them to test various
theories and hypotheses. Another example is the reconstruction of data from the detectors, which
involves processing enormous amounts of raw data to extract useful information about particle
interactions.
To evaluate the performance of computing resources for these workloads, benchmarks such as SPEC
and HEP-SPEC are used. These benchmarks simulate the types of workloads that are common and
provide a way to compare the performance of different systems. By measuring the performance of
these workloads, researchers can determine which computing resources are best suited for their needs
and make more informed decisions about how to allocate computing resources for their experiments.
I had the privilege of participating in a few meetings where we looked into the complex matter
of selecting workloads for the HEPScore benchmarking process. In 2021-2022, experts created
∼30 standalone containers of HEP workloads. With a total of 11 candidates submitted by various
experiments, the goal was to choose a subset that would be feasible to run in a less time-consuming
way (all 11 of them run for ∼15 hours). After much analysis, in February 2023 it was determined
that a handful of workloads did not display a high correlation1 with each other and thus were
selected for inclusion. Although different weighting methods were considered, ultimately it was
concluded that weighting the workloads equally was the simplest and most comparable option. As it

1See Mr. Sullivan’s presentation from HEPscore Workshop 2022 on HEPscore candidates for more details:
https://indico.cern.ch/event/1170924/

29

stands, we anticipate that workloads LHCb_gen_sim, ATLAS_gen_sherpa, CMS_gen_sim, CMS_reco,
ATLAS_reco, and Belle2_gen_sim_reco (see Table B.3 on page 67 for run times) will be the
chosen few to represent the HEPScore benchmark, for now defined in hepscore_beta.yaml, default
configuration for running hep-score. To better understand some of the workload names, let’s describe
just two of them - to imagine why do the physicists need so much resources to run their jobs:

• SIM stands for simulation
Simulation programs are complex code systems that simulate the collisions between elementary
particles at the foreseen experimental conditions, and then “transport” the particles generated
during the reaction through the matter of the detector. [...] Simulation is mostly a “CPU
bound” activity, where the input data are limited to small configuration files and the output
is similar to the output of the detector. [18]

• RECO stands for reconstruction
The output of a detector is a set of electric signals generated by the passage of particles
through matter. These are the so-called “raw data” or simply “raw”. The “reconstruction”
process aims at processing these signals to determine the features of the particles generating
them, i.e. their mass, charge, energy and direction. [..] Depending on the complexity of the
algorithms deployed, reconstruction can be an “I/O bound” or a “CPU bound” activity, where
the input are the raw data and the output the ESD files. [18]

3.2.2 hep-score

hep-score is a benchmarking software, created by CERN engineers to benchmark machines on
WLCG, able to run several workloads (created by CERN experts from each experiment). Usually
it runs the workload 3 times to get the geometric mean of results, but all sort of things (including
the number of runs) can be edited in .yaml file, where the configuration is defined.
The most important of hep-score, same as any other CPU benchmarking tool, is the resulting
relative number to a reference machine. This number indicates, how much better/worse the bench-
marked CPU is in running the workloads than the reference machine.

Configuration

The whole yaml file is a "hepscore_benchmark" dictionary, and contains two other dictionaries:
"benchmarks" and "settings", both required. In the "benchmarks" section we define all the workloads
we want to run, in our case it’s just atlas-gen-bmk, because it’s the shortest workload I could find
that time, but more of them can be defined (see 3.2.1 Workloads section on page 29). Referential
scores, or ref_scores is a list of sub-scores to collect from the benchmark container output JSON,
with reference scores from the specified "reference_machine". Each sub-score is divided by its
reference score, and the geometric mean is taken from the results to compute a final score for the
benchmark container.

30

After we define the name of results file and ref_scores, we may update the weight, but it has
a very small effect on the result, and does not make sense updating it on just one workload. Specific
workloads may have arguments, in our case the arguments are needed to define a number of events
and threads. (This workload can be ran in parallel, so number of threads would decrease the time
run significantly.)
In the "settings" the most important thing to define is "reference_machine". In our case the reference
machine is Intel Xeon E5-2630, so the resulting number is relative to this machine with 8 cores and
16 threads, in 64 bit version. Another things to define are the method (agreed to be geometric mean)
and repetitions (that’s what we’re doing the geometric mean from). The HEPscore23 benchmarking
software can run both Docker or Singularity containers, but most of workloads are prepared only
in Singularity. (The new name for Singularity is officially Apptainer, and I may refer to it by both
names depending on the context.)

hepscore_benchmark:

benchmarks:

atlas-gen-bmk:

results_file: atlas-gen_summary.json

ref_scores:

gen: 384

weight: 1.0

version: v2.1

args:

threads: 1

events: 5

settings:

name: TestBenchmark

reference_machine: "CPU Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz"

registry: docker://gitlab-registry.cern.ch/hep-benchmarks/hep-workloads

method: geometric_mean

repetitions: 3

scaling: 355

container_exec: singularity

Listing 3.1: hep.yaml - My example of configuration file to run hep-score

Running locally

After defining the benchmark(s) in the configuration yaml, I can test our CPU with it. I chose the
example configuration with atlas-gen-bmk, because it takes ∼10 minutes, so for 3 runs it takes

31

about half an hour. To get the hep-score program, we just need to pip install it from a git repository
into a python virtual environment. And to get the desired result, we simply need to run it. In our
case, we’ll use -f option to define our own configuration file (as in Fig. 3.1 on page 31), and -m to
specify our container platform as Singularity (even though Singularity is default, it’s nice to be
aware of that we’re using it). This can be summarized as script 3.2 on page 32.

#!/bin/bash

source /eos/user/l/lzurkova/myvenv/bin/activate

mkdir testdir

pip install --user git+https://gitlab.cern.ch/hep-benchmarks/hep-score.git

hep-score -m singularity -f hep.yaml testdir/

Listing 3.2: Bash script to run hep-score

For the next half an hour we can see how the jobs are executed. Check Listing 3.3 on page 32 to see
the output of hep-score run. After the run we get the geometric mean of the 3 runs, which is in this
case 46.221. And except the console output, we got more detailed logs and results in the testdir

directory, which we created for this purpose. A new directory called HEPscore_29Mar2023_130241

is created inside, containing subdirectory for each benchmark (only atlas-gen-bmk in our case),
and two files sharing the name of the benchmark, as defined in the configuration file (in our case
(TestBenchmark.log and TestBenchmark.json). The benchmark directory contains more detailed
information about each run with severeal logs and jsons, but for our purpose they’re unnecessar-
ily detailed. The TestBenchmark.log file contains more detailed information about run, and the
TestBenchmark.json file contains the results of each run, summary, and environment configuration
- see an example in Listing C.1 on page 69). This file was used for an analysis of different configura-
tions by the CERN engineers to select carefully the right set of workloads to get an effective score.
After we’ve benchmarked CPU on my laptop and saw how it works, we’re ready to benchmark
a worker node from the Datacentre.

2023-03-29 13:02:41 hepscore [INFO] TestBenchmark Benchmark

2023-03-29 13:02:41 hepscore [INFO] Config Hash:

cc648ef17e4bed772c3db48ddc86e3783a57342f4fba59eb672c358256fedd2d

2023-03-29 13:02:41 hepscore [INFO] HEPscore version: 1.5.0

2023-03-29 13:02:41 hepscore [INFO] System: Linux lzurkova-x1 5.19.0-38-

generic #39~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Mar 17 21:16:15 UTC 2

x86_64

2023-03-29 13:02:41 hepscore [INFO] Container Execution: singularity

2023-03-29 13:02:41 hepscore [INFO] Implementation: singularity

2023-03-29 13:02:41 hepscore [INFO] Registry: docker://gitlab-registry.cern.

ch/hep-benchmarks/hep-workloads

32

2023-03-29 13:02:41 hepscore [INFO] Output: /home/lzurkova/Code/hep-test/

testdir/HEPscore_29Mar2023_130241

2023-03-29 13:02:41 hepscore [INFO] Date: Wed Mar 29 13:02:41 2023

2023-03-29 13:02:41 hepscore [INFO] Executing 3 runs of atlas-gen-bmk [v2.1]

2023-03-29 13:02:41 hepscore [INFO] Starting run0

2023-03-29 13:15:34 hepscore [INFO] Starting run1

2023-03-29 13:26:02 hepscore [INFO] Starting run2

2023-03-29 13:36:30 hepscore [INFO]

2023-03-29 13:36:30 hepscore [INFO] Final result: 46.221

Listing 3.3: Console output after running hep-score locally

Running on HTCondor

The output was just the same, except the scores. Where my Thinkpad with Intel(R) Core(TM)
i5-10310U CPU @ 1.70GHz got score 46.221 for the atlas event generations (see the listing C.1), the
CERN’s node Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz got 206.5529. I created a table B.4 on
page 68 to compare those CPUs and the reference machine on the atlas-gen-bmk workload, and the
set of 7 chosen workloads mentioned in the 3.2.1 Workloads section on page 29. The table is not
occupied by scores everywhere, because to run the whole set of workloads on my laptop, it would
take quite amount of time. And reference machine has just the score for hepscore-beta, because
I do not posses this type of CPU to test it for only atlas-gen-bmk workload. But what can we read
from the table is that my Thinkpad has circa 4 times worse CPU than the WLCG node, and the
node is ∼ 2 times better than the reference machine.
To get the number of the CPU in the WLCG, I needed to submit the hep-score run as a job, inside
the Singularity container. To do that, I need to know something about environment (see following
section 3.3 Environment on page 35), but to keep "running hepscore" parts together in this text, I’ll
describe it here.
First I define submission file for the batch system, where I set the details necessary for HTCondor
to schedule the job’s run, you can see an example in the listing 3.4 on page 35. My job is an easy
one, I don’t need any in-run arguments, or run several jobs in series, or any other kind of special
treatment. That’s why I define my universe in which the job runs as vanilla - just a fancier
way to say default. Then I need to tell what do I want to run, usually by mentioning the bash
script which actually runs the job. After this there are log files defined, and we can even specify
requirements to set the node specifications we’re expecting. I defined the machine name, but
others requirements can be specified like operating system or how many cores are we looking for, so
HTCondor can match it as we desire. Then we need to import our own hep-score configuration file,
which I named my_hep.yaml, and define that we want to tranfer the output file TestBenchmark.json

33

back to LXPLUS (where I’m submitting the job from) on both successful or unsuccesful exit.
The +JobFlavour defines the maximum runtime of the job in a creative way, where espresso stands
for 20 minutes, microcentury is 1 hour, longlunch is 2 hours, and several others up to "nextweek"
which stands for 7 days. We could define just the same thing with +MaxRuntime by defining the
number of seconds, but "microcentury" sounds better. Note that this submission file is for running
the atlas-gen-bmk workload only, because for the 3 repetitions of 7 workloads, a microcentury would
be enough and the job would be killed.
The last line in the file is for queuing the job. To run it once, the key word queue is just enough,
but we can define the number of runs too. It’s possible to use variables in this file, for example
instead of defining the executable file, we can set it to $(filename), and then on the last line we
can write something line queue filename matching files *.sh to run all the bash files in our
directory. But it’s not a good idea for benchmarking a node, because we want the CPU to use 100%
of work for our benchmark to get the right score.
Now let’s have a look on the bash script in the listing I created to run the hep-score job in HTCondor.
First we need to make the my-hep.sh executable, so we need to run chmod u+x my-hep.sh so
HTCondor can run it. As you can see in the file (Listing 3.5 on page 35), I’m using existing virtual
environment I already created. First I made it in a wrong place, to be more precise I used AFS
storage, because that’s where you end up when you log to LXPLUS. Then I had hard time figuring
out why does it not work. I was examining the HTCondor logs and trying to find a reason why is
my job on-hold and not running, but the logs did not mention anything related to the cause. After
some reading about LXPLUS storages (see section 3.3.1 on page 36) I found out that AFS is not
supposed to be used like that, so the permissions didn’t allow me to run the virtual environment in
AFS from my EOS directory.
Back to the script, when I created the venv in the right place. Second line mentions creating
"testdir" where we will expect the output of the hepscore, and that’s where the HTCondor will
find the TestBenchmark.json file which we want to transfer back to the LXPLUS to see the results.
Then I pip install the hep-score from CERN’s GitLab repository, and finally I run the hep-score
itself, defining singularity as a type of container, hep.yaml as my configuration file (which I needed
to define in the hep.sub to transfer there), and the testdir where I expect the HTCondor to find the
output after a successful run.
After creating the hep.sub and my-hep.sh files and setting the right permissions, we can submit the
job to HTCondor by running a command condor_submit hep.sub on LXPLUS. Once it’s running,
we can check the state of job(s) by typing condor_q, and see something like Listing C.2 on page 72.
The first condor_q command shows the state of my job when I tried to use the virtual environment
from the AFS (wrong) storage. Then I could get more details about held job(s) condor_q -hold (or
with condor_q -better-analyze 1234567.0. After I found out the reason and fixed it, I removed
the old job using condor_q rm 1234567.0 command and submitted a new one.

34

universe = vanilla

executable = my-hep.sh

arguments = $(ClusterId)$(ProcId)

output = output_htc/hep.$(ClusterId).$(ProcId).out

error = output_htc/hep.$(ClusterId).$(ProcId).err

log = output_htc/hep.$(ClusterId).log

requirements = (machine=?="node123.cern.ch")

transfer_input_files = my_hep.yaml

should_transfer_files = YES

when_to_transfer_output = ON_EXIT_OR_EVICT

transfer_output_file = TestBenchmark.json

+JobFlavour = "microcentury"

queue

Listing 3.4: hep.sub - Submission file for HTCondor

#!/bin/bash

source /eos/user/l/lzurkova/myvenv/bin/activate

mkdir testdir

pip install --user git+https://gitlab.cern.ch/hep-benchmarks/hep-score.git

hep-score -m singularity -f hep.yaml testdir/

Listing 3.5: my-hep.sh - Bash script to run hep-score as a job in HTCondor

3.3 Environment

In case you did not read the 2 Background section yet, I recommend to go back and get familiar
with the general tools first. In this section, I’ll introduce and describe tools and software used in
CERN-specific cases and configurations. I’m trying to keep it short, so except basic info (like dates
or abbrevations explanation) I’m trying to explain only the parts I needed to understand to do my
job here.

35

3.3.1 LXPLUS

Lxplus stands for "Linux Public Login User Service" and it is a Linux cluster at CERN, which
provides a centralized computing service for the High Energy Physics community. Users can log in
remotely to lxplus from anywhere with an internet connection and can submit jobs to the HTCondor
batch system for distributed computing.
The PLUS service (Public Logon User Service) is the interactive logon service to Linux for all
CERN users. The cluster LXPLUS consists of public machines provided by the IT Department for
interactive work2, including batch submission like HTCondor or SLURM. LXPLUS also provides
access to distributed storage resources like EOS and CERNBox.

Operating systems support

Scientific Linux CERN 6 was released in 2010 and was until at least Decembrer 2020. In 2015,
CERN began migrating away from the Scientific Linux collaboration to provide the next version
(RHEL 7 rebuild).
CERN CentOS 7 was released in 2014 and will be supported until July 2024. CentOS 8 at CERN
was initially introduced 12.12.2019. The operating system was supported by CERN IT as the next
production linux distribution of CERN, as of April 2020.

Filesystems and storage

When you log in to LXPLUS, you can access the AFS and EOS file systems and view the CVMFS
read-only filesystem for experiment software. In the batch system, worker nodes have similar priv-
ileges, enabling them to access input files from and write output files to your user directories.
The AFS (Andrew File System) Service provides networked file storage for CERN users, in particular
home directories, work spaces and project spaces. The AFS Service is based on OpenAFS, an open-
source distributed filesystem which provides a client-server architecture for location-independent,
scalable, and secure file sharing. AFS uses Kerberos for authentication and provides access control
lists (ACLs) to control permissions.
EOS is a disk-based, low-latency storage service, developed at CERN, and in principle the succes-
sor of AFS. EOS is primarily used for storing and accessing large-scale data, while AFS is used for
smaller files and personal user areas.
CernVM File System (CVMFS) provides a scalable, reliable and low-maintenance software distribu-
tion service. Files and directories are hosted on standard web servers and mounted in the universal
namespace /cvmfs. It was developed to assist High Energy Physics (HEP) collaborations to deploy

2CERN. LXPLUS (IT-CD-CC) [online]. 2023. [visited on 2023-04-19]. Available from: https://cern.service-
now.com/service-portal?id=functional_element&name=LXPLUS

36

software on the worldwide-distributed computing infrastructure used to run data processing appli-
cations.
CERNBox is the "cloud storage solution from CERN", providing a service similar to Google Drive,
Dropbox, etc. It is built on top of EOS and the open-source ownCloud file-sync software.

3.3.2 HTCondor cluster

In the CERN’s HTCondor cluster, there are several components that work together to manage the
resources of an HTCondor system and execute jobs in an efficient and coordinated manner.

• CONDOR SCHEDD - The scheduler is responsible for accepting jobs and assigning them to
worker nodes based on available resources, priorities, and other criteria.

• CONDOR CE - The compute element is an extension that communicates with the scheduler
and manages the worker nodes. It provides information about available resources and can also
submit jobs to the scheduler. It allows jobs to be executed on local resources, while providing
a uniform interface to the grid-based systems.

• CONDOR CM - The central manager is the main control point for the HTCondor system,
managing the scheduler and compute elements. It is responsible for keeping track of the state
of the system, monitoring job progress, and enforcing policies.

• CONDOR WN - Worker nodes are the machines that actually execute the jobs. They commu-
nicate with the scheduler and central manager to receive jobs and report their status. They
may also communicate with the compute element to provide information about available re-
sources.

To visualize the environment around HTCondor cluster (service), see Fig. 3.3.2 on page 37,
where LXPLUS and HTCondor acts as an intermediary between the user and worker node executing
the job. The part I want to hightlight for the purpose of this work, is the fact that after a job is
submitted through lxplus, condor scheduler queues it, and after the job is done, the scheduler logs
details (see section 3.3.2 ClassAds) to a history file. Once a day, the current history file is flipped
to a history file for that day, and later rsynced to another dedicated (Thooki) node.
An option -spool can be used when submitting a job, which causes the output files not be generated
right after the job finishes, but only when requested by user after the job is over (user has 10 days
before the finished job removal). This causes the history files to not contain all the jobs in the right
order, but sometimes a job ends up in the different day’s history file. For this, an internal CERN
Accounting tool called Thooki exists. (You can read more about 3.3.3 Thooki on page 39.)

37

Figure 3.1: Job pattern used at Batch Service from [19]

ClassAds

In the context of HTCondor, ClassAds play a crucial role in the matchmaking and management
of resources. They essentially consist of attribute-value pairs that describe the characteristics of
resources and job requirements. These ClassAds are used to match jobs with suitable resources
based on their attributes, allowing for efficient resource allocation and dynamic matchmaking. By
leveraging ClassAds, HTCondor allows us an effective resource management within the WLCG.
Part of it is propagating the machines’ benchmarking data, as we can add our own ClassAds for
specific jobs or machines. Cloud team as already passing the machine’s HEP-SPEC score to us, so
we’ll use the same way to propagate our new HEP-SCORE benchmarking results. Now let’s look
at some specific ClassAds:
Items with prefix match_ are used for matching the job’s requirements and machine’s resources.
They contain information about the available resources and their characteristics. HTCondor uses
these ClassAds to find the best machines that meet a job’s requirements. By comparing the job’s
needs with the attributes of available machines, HTCondor decides which ones are a good fit. For
example if a machine has an attribute match_cpu = 8, and we submit a job which requires 8 CPUs,
HTCondor would identify this machine as a potential match.
RemoteWallClockTime refers to the elapsed time, in seconds, that a job has spent running on
a remote worker node. It represents the actual time taken by the job to complete its execution,
regardless of any suspensions or pauses that may have occurred during its execution. RemoteWall-
ClockTime is a useful metric for understanding the total time a job has utilized on the remote
resources and can be used for monitoring and analyzing job performance and resource utilization.
For example, if a job has this ClassAd with value 92015, it means that the job occupied the machine
for ∼15.5 hours.

38

3.3.3 Thooki cluster

The Thooki cluster consist of a "master" and 3 "minion" nodes. Master node mounts the Ceph
volume /accounting/incoming, allows the schedulers to rsync the history files every hour, and cleans
history files older than 4 weeks. Minions run the Thooki service (internal CERN tool), and check
on new unsync history files from all schedulers. The history files are divided between the 3 minions.
Several processes are going on:

• copying unsynced history files from /accounting/incoming/scheduler to
/acounting/thooki/raw/scheduler/[...]/history.gz

• encoding condor_history -file; history_file -json to
/accounting/thooki/processed/scheduler/[...]/history.json - let’s consider these as "working-
on" files, which stays there for ∼ 10 days for updating the right days (because of the -spool

option).
• parse history file and create a json for each new date
• merge files in scheduler.json and mark files as history[...].json.sync, (puts right jobs in right

/accounting/thooki/processed/scheduler/[...].json file for that date)
• zips all merged scheduler files for affected dates to /accounting/thooki/zip/[...]/scheduler.json.gz

and deletes all merged files
• after that, Thooki updates a database which keeps track about clear/dirty day reports and

copies the .gz file to s3://DATABUCKET

3.3.4 Ceph S3 storage

For basic description of S3 and Ceph S3 see 2.5.3 on page 26. For this project, we’ll be working
with an instance of Ceph S3 stroage, and we’ll be using two different bucket, to which I’ll be
referring as s3://DATABUCKET and s3://REPORTBUCKET. As mentioned in the paragraph
above, s3://DATABUCKET is for storing raw data from HTCondor’s hisotry files in JSON format.
s3://REPORTBUCKET is a place filled by Spark jobs. To read more about these buckets and files
inside them, see 5 Integrating on page 46.

3.3.5 Accounting (Spark) jobs

Accounting jobs is a piece of code which takes care of creating reports, updating data in Ceph S3,
and pushing data to APEL Accounting. On a dedicated machine in CERN network, crontab is
taking care of repeatedly summarizing data from previous day, month, or year in different reports.
The application can do several things, depending on one of following argumets

• cloud-summaries –start ’DD-MM-YYYY’ –end ’DD-MM-YYYY’

• condor-summaries –start ’DD-MM-YYYY’ –end ’DD-MM-YYYY’

• services-summaries –start ’DD-MM-YYYY’ –end ’DD-MM-YYYY’

• monthly-summary –day D –month M –year YYYY

39

• website-table –month M –year YYYY

• apel –month M –year YYYY

• hardware –date ’DD-MM-YYYY’

• email –date ’DD-MM-YYYY’

where DD, MM and YYYY should be replaced by numeric values indicating day, month and year.
For my project, we’ll dive more into functionality of accounting-jobs with condor-summaries,
monthly-summaries, and apel arguments later in section 5 Integrating on page 46. The code
of the jobs is structured into directories by type of work. For our purpose, we’ll take a closer look
at the accounting-jobs/bin, accounting-jobs/daily and accounting-jobs/monthly directories. Root di-
rectory contains files like requiremets.txt, setup.py, accounting-jobs.spec, Dockerfile, Makefile, some
README... but we don’t need to know the details of those right now.
Our journey starts with accounting-jobs directory, where in accountingjob.py a function process_jobs()

is called. This function is using parsed arguments to append imported jobs into an array and launch
them accordingly with pyspark and its SparkContext().

3.3.6 APEL

As was already mentioned on page 27 in the 2.5.6 section, APEL is a place to public the WLCG
resources. To send the data there, CERN has it’s own tool called accounting-jobs, which sends SSM
messages to the APEL Publisher. SSM is a text file containing a header, and records in key:value
form. To see an example of SSM message, you can take a look at Listings C.5-C.4 on pages 74-73.
The APEL Publisher now accepts new messages because of this project, see 4.2 on page 45.

3.4 Analysis summary

To get the "big picture" of things, you can see 3.2 on page 3.2.The WLCG, together with OSG
and few other world wide computing grids are publishing it’s data to APEL, which provides the
gateway for data to (not only) visualize on EGI. (The WLCG is specifically designed to support
the computing needs of the LHC experiments, while Open Science Grid is a broader distributed
computing infrastructure that supports a wide range of scientific research projects across various
disciplines.) From EGI, CERN is taking data back to CRIC, where it mixes with internal usage of
grid from experiments, and uses it in MONIT Grafana to create nice plots for understanding how
effectively CERN manages the resources. Now, we can "zoom in" on the part, which I’m calling
"WABB", or WLCG Accounting Black Box, because it really was. You can find more details about
WABB in the Fig. 3.3 on page 42. Upon exploring the workflow, I realized that the initial phase
is outside the scope of my role in the IT-CD-CC section. First, the procurement team benchmarks
a new CPU with a dedicated software tool called Benchmarking Suite, which already can run
benchmarks like HEPSCORE, HEPSPEC, or SI2K. After that, the Cloud team propagate these

40

Figure 3.2: Benchmarking data workflow for WLCG Batch

values (through more layers) to OpenStack project metadata, from where my colleague can get the
data and let it flow to HTCondor logs with his Puppet configuration mastery.

From the HTCondor I can get the data and send it to APEL after it goes through Thooki, S3
buckets and Spark Jobs (see Fig. 3.4 on page 43). The nice thing is that Thooki is written just
to reorganize the data from logs, so all the data (including our new hepscore values) goes into the
DATABUCKET in S3 Ceph. From there my task is to upgrade Spark Jobs code to send the values
to APEL in a new message version (refer to section 4.2 APEL messaging update on page 45 for
further details, and see Fig. 3.5 on page 43 to enjoy the visualization).

41

Figure 3.3: My position in WLCG Accounting Black Box usecase of benchmarking a new CPU

42

Figure 3.4: Accounting data workflow from HTCondor cluster to APEL

Figure 3.5: Visualization of Spark job chronological data exchange with S3 storage

43

Chapter 4

Changes

In my initial research project for my diploma thesis, I was tasked with proposing an alternative
method to assign meaningful labels to features in the benchmark data structure. However, the deci-
sion was subsequently made by higher-level decision-makers to maintain the usage of only the score
component. This decision was driven by the consideration of workload and the optimal utilization
of potential additional labels. As a result, I will not be suggesting any new labeling for benchmark
features, and we will rely solely on a single numerical value. Nonetheless, there are still numerous
modifications to be implemented for the new benchmark, particularly in the accounting workflow
of the WLCG system.

4.1 ATF decisions

A group called Accounting Task Force has been created in order to manage this transition. I person-
ally was not part of it, but I need to be updated in case they make any more decisions. This group
did meet several times before the practical integration started, and they made following decisions1:

• Sites won’t have to re-benchmark existing resources with HEPscore
• New resource purchased by the sites will be benchmarked with HEPscore
• HEPscore will be normalized to HS06 with factor 1

These decisions leads to smoother transition and less workarounds on both places CERN and APEL.
The fact that it’s not necessary to re-benchmark old CPUs with new benchmark is very practical,
but we still want to do that for some CPUs from newest batches, so we can compare the old and
new way of accounting those nodes.

1Decided on the WLCG Workshop 2022 in Lancester, you can check the presentation materials on
https://indico.cern.ch/event/1162261/

44

4.2 APEL messaging update

As a crucial component of my project, APEL has introduced a revised message format through their
API. Their project specifically focuses on working with the Secure STOMP (Simple Text Oriented
Messaging Protocol) Messenger, known as SSM messaging format. In the previous versions v0.2 or
v0.3 (which were updated to v0.4 in April 2023), two key attributes were included for benchmark-
ing results: ServiceLevelType to denote the benchmark name, and ServiceLevel to indicate the
corresponding score. This meant that a single message could only publish one benchmark type and
it’s associated score at a time.
However, considering the introduction of the new hepscore benchmark and the need for comprehen-
sive analytics, we aim to incorporate accounting details in both hepspec (old) and hepscore (new)
metrics. This requires adapting the existing message format to accommodate multiple benchmark
types and their respective scores, enabling us to gather and analyze a wider range of performance
data.
There are several types of message, which APEL gathers: individual job records, summary records,
and normalised messages. As SSM format is human-readable in form of "key: value" lines, you
can compare the changes yourself (see Listings C.3-C.7 on pages 73-75), but let’s summarize most
important changes:

• key ServiceLevelType indicating a name of the benchmark is deprecated in v0.4
• key Servicelevel, NormalisedWallDuration and NormalisedCpuDuration is a float number

in v0.3 indicating just a value for HS06, but for v0.4 it’s associative array (dictionary) with
names of benchmarks and their scores / wall durations / cpu durations

Individual job message

In addition to this change, APEL admitted there was a conflict between naming and versioning
in previous versions, so instead of summary-job-message v0.3 (Listing C.5) containing keys "Nor-
malisedWallDuration" and "NormalisedCpuDuration" we’ll use a normalised-summary-message v0.4
(Listing C.6), and not summary-job-message v0.4 (Listing C.7).

4.3 My decision

Since APEL can accept a dictionary of benchmarks, I made a decision to make our Spark jobs
component dynamic as well. This decision ensures that if there is a new benchmark added to
the Benchmarking Suite and subsequently propagated to the HTCondor logs, it will be simpler to
extend its propagation to APEL or any other reporting/archiving systems. By implementing this
dynamic approach, we enhance the flexibility and adaptability of our system to accommodate future
benchmarks seamlessly.

45

Chapter 5

Integrating

This chapter talks about more specific technical analysis of internal tool(s), to be able to implement
the proposed changes. I need to check how the buckets are used, create a testing environment,
implement code changes, test them in our environment, and finally deploy to production and wait
for the first new batch of CPU to see if it works in production.
Unfortunately, by the time of this thesis submission, I won’t get past the testing environment,
because of two things: the IT department restructuring during 2022, where not all the information
details were transferred about projects and internal tools. In other words, during implementation,
me and my colleague Maria were discovering the technical aspects of this projects on-the-fly. Second
reason is the lengthy delays of a big multinational company included in the procurement of a new
batch of servers.

5.1 Buckets and reports

First, let’s take a look at the S3 Ceph buckets I’ll be working with and describe the data flow between
them. The main data resource for Spark jobs are buckets in S3 Ceph, which I can manually manage
through s3cmd tool on my Ubuntu, or use boto Python interface for Azure web services to manage
buckets from the Spark jobs code. For our task, we’ll need 2 buckets:

• DATABUCKET is a bucket, which is filled by Thooki. The structure of this bucket includes
directory for each year, month, day, and contains compressed json for each machine.
The json file itself contains data from HTCondor history files, where one line is
one json containing ClassAds from one job. For example a path to get a file can look like
"s3://DATABUCKET/[...]/condor_thooki/2023/05/01/node123.cern.ch.json.gz", and the first
line formatted can look something like in listing C.8 on page 76 (the file is missing most lines,
and I replaced sensitive data).

46

• REPORTBUCKET is filled by Spark jobs. We’ll have a look at several directories: condor_thooki,
monthly, and apel.

– condor_thooki directory has similar structure as in DATABUCKET, but directory for
each day contains 2 files named "results". One as JSON, second as CSV. The path to a
json file can look like "s3://REPORTBUCKET/[...]/condor_thooki/2023/05/01/results.json".
The files itself contains summarized data for each day, including cpu, qfan, hepspec_cpu,

hepspec_wall, infrastructure, numcores, numjobs, vo and wall (see listing 5.1
on page 48). (These data are not secret anymore, you can find them by applying the
right filter on the EGI web application for 1st April 2023. I’ll leave this exercise on
a reader.)

– monthly contains data of all the machines in results.json and results.csv files in directories
of years and months. Example of reaching a csv file can be
"s3://REPORTBUCKET/[...]/monthly/2023/05/results.csv", and the file can look like
Lst. 5.2 on page 48.

– apel directory contains a summary file in SSM (Secure STOMP Messenger) format for
each day. This file looks like a text file with a header and several messages separated by
%%. Example of filepath concerning this file can be
"s3://REPORTBUCKET/[...]/apel/2023/05/01/summary.ssm".

First, the Thooki tool fills bucket called DATABUCKET with the data from HTCondor .history
files. Then Spark jobs are taking this data to create condor summaries, then monthly summaries,
and finally APEL messages.
Let’s see the format of data in the DATABUCKET: The file described in listing C.8 on page 76
contains the data from .history files straight from HTCondor. Featuring mosthly key-value pairs
containing details about configuration and machine-matching done by batch system. (Notice how
keys with prefixes "match_exp" and "match" matches? That’s an example of successfull matching
by the HTCondor.)
Now, when accounting-jobs are called with argument condor-summaries, it creates the content of
thooki directory in REPORTBUCKET as in the listing 5.1 on page 48. Featured numbers are
not secret, because those are Atlas’s usage of grid which we include in reports. But other can be
local which we do not report to a third-party services. This day report is summarizing all the jobs
submitted by Atlas to the HTCondor batch system, which were finished on 1st April 2023.
After this report is created for every day in a month, the monthly summary can be generated by
calling Spark jobs with argument monthly-summary, and REPORTBUCKET’s directory monthly
is filled with a "results" file (see listing 5.2 on page 48. This file contains monthly records for each
VO, including normalised CPU and wall durations. After monthly reports are done, we can send
data to APEL. Again, Spark jobs grabs previously generated report (the monthly one this time)
and generates the SSM message for APEL as in APEL-summary-job-message: v0.3 (see Listing C.5
on page 74), including the normalised wall/cpu duration again.

47

[

{

"cpu": 663537996,

"fqan": "atlas, grid pilot",

"hepspec_cpu": 8196551140,

"hepspec_wall": 8451537072,

"infrastructure": "grid",

"numcores": 1,

"numjobs": 26437,

"vo": "atlas",

"wall": 683610865

},

#[...]

]

Listing 5.1: Example of a shortened file in the REPORTBUCKET in thooki directory for a specific
day (1st April 2023)

{

"facts" : {

"hepspec_factor" : 30.8629694951544,

"numcores" : 1.96600017200688

},

"records" : [

#[...]

{

"AverageDailyWallDuration" : "6411.00",

"Chargeback" : true,

"CpuDuration (d)" : "163775.30",

"Infrastructure" : "grid",

"Month" : 4,

"NormalisedCpuDuration (hs06d)" : "2106232.17",

"NormalisedWallDuration (hs06d)" : "2482476.22",

"Notes" : "",

"NumberOfCores" : 1,

"NumberOfJobs" : 796746,

"Resource" : "condor",

"Site" : "CERN-PROD",

48

"VO" : "alice",

"VORole" : "public, grid sgm",

"WallDuration (d)" : "192329.94",

"Year" : 2023

},

#[...]

]

]

Listing 5.2: Example of a shortened file in the REPORTBUCKET in monthly directory for a specific
month (April 2023)

Now you know all the buckets and file formats we’ll be working with in "my part" of changing
the workflow to add HEPSCORE to reports. But to get the initial data from DATABUCKET
filled by Thooki, which is luckily dynamic and adds everything from the HTCondor history files,
we need to get the hepscore to the history file. Even though it’s not "my part", it’s still very
interesting how many people and processes must be involved to get it done. First, the procurement
team needs to dedicate a machine to run our new benchmark, and write a new script for their
machine-adding procedure, which includes "cleaning" the new CPU. This new script will now include
instructions to run our new benchmark on the dedicated machine, and propagate the score to
IRONIC (which is a tool similar to OpenStack, but for physical machines). The score is then
propagated to OpenStack project metadata by the Cloud team, and from there, my colleague Ben
will propagate it to HTCondor logs.
From the .history files I can grab the data and update our workflow to propagate it to APEL. But
before I can do it, I need to ask Luca and Nikos (procurement team), José (cloud team) and Ben
(batch team) to get the data there.

5.1.1 Mocking data

Before a new machine will be purchased for our batch system, and a new workflow applied (including
hepscore benchmarking), it takes some time. For June 2023, no new machines are planned to join
the production in the near future. The testing buckets are ready, prepared in the same structure
as production, but empty now. That’s why I want to mock the data in our new TESTING-
DATABUCKET, because I would need to wait too long before testing my code. For this purpose,
I created a script (see Listing C.9 on page 77) that adds the new hepscore ClassAds into a file from
DATABUCKET. I didn’t want to waste much time on that script, because it’ll be only run few
times, and only for my purpose to mock the data before the new production data will be available,
so please, pardon my "French" code. There are things which could have been written in a better
way, use more arguments instead of variables etc, but for my purpose I decided to invest my energy
in other parts of this project. To think about memory usage a little bit, I created the script to run

49

it day by day, so we won’t need several GBs of free space on my computer, no matter date interval
do we want to mock.
In reality, I created 3 scripts: C.9 mock.py, C.10 mock-day.sh, and C.11 mock-month.sh (the mock-
month.py can mock any length, but the initial idea was to mock a month to be able to create the
monthly and APEL summary), see pages 77 - 79.
The first python script takes care of locally mocking a directory in a specific format. I will not
include the arguments parsing parts, because it’s not important for this thesis. So when you look at
listing C.9 on page 77, remember the variables day, month and year represents a day, a month and
a year. And variable dir represent absolute path of a directory we’re working in. You can run this
script by calling python3 mock.py –date 2023-05-01, and it’ll inform you about the progress by
printing a line after a directory was mocked. But for the script to work, you already need to have
your directory(ies) original-XX filled with original data.
And because I didn’t want to spend more time on getting the data, and then syncing it to S3,
I created the mock-day.sh script (see listing C.10 on page 78). To run this script, you need to have
s3 configuration files for both production and testing environment. You can run the script calling
./mock-day.sh -y 2023 -m 05 -d 01 after allowing the script to be ran with chmod tool. For
this thesis, I edited just the bucket paths in this script.
Now, I don’t want to spend time by running this script once every hour or so, so I created another
script, which allows me to enter an interval to mock. (I do not enjoy long scripts, that’s why I rather
created a new one to call my mock-day, instead of editing the old one.) Check out the listing C.11
on page 79 to get the idea.

5.2 Testing environment

As we need to implement everything carefully to not destroy the accounting data, first we need to
plan the changes needed to do the upgrade. In practice that means to prepare a testing environment
to try the code changes and to discuss it further with colleagues. In my analysis I found out that
the only piece of software which needs changes is the Spark jobs (accounting-jobs) tool, ran by
a crontab on a dedicated node. So together with my colleague Maria we created and configured
a testing node.

5.2.1 APEL testing environment

There are two ways to send an SSM message to APEL: using AMS (Argo Messaging System) token,
or using a DN (Distinguished Name). Spark jobs are using the DN to send a message in production,
so to test our new message format on the testing node, we’ll use it as well. This means adding our
new testing DN to CERN’s GOCDB gLite-sql service, and then reaching people from APEL to let
them know about our new DN. The other option is to ask for an AMS token, which is the included

50

in the request’s metadata.
A test repository from APEL has been set up. To send records, we have chosen the DN that has
a corresponding gLite-APEL service in GOCDB and informed the APEL team of the DN, and
configured the SSM with AMS protocol, defined the right host, ams_project and destination.

5.2.2 Testing node

Of course we encountered some challenges when trying to make the testing node work. First we
made our testing node using QA branch configuration of the Puppet for Spark Jobs. After deploying
my new version of code (see section 5.3 Spark job changes on page 51), the APEL sending part
still did not work. We started getting pip error, which was traced back to invalid syntax in certifi
package core for Python 2.7. After checking logs and searching on the internet, I found out it’s
a versioning problem for a requests package. After some more digging in the code, I discovered that
requirements (packages to install) for pip package manager were defined, but without versions, and
together with QA’s puppet configuration we were using another different-version in-system tools
like ssmsend, which is used to send the SSM to APEL. This is something I - as a person with some
web applications developing experience - considered as a bad practice.
Maria was so kind to reinstall our testing node with a Puppet configuration for production, changing
just the details concerning the production environment, for example keys and secrets to access S3
storage. And guess what, it worked like a charm.

5.3 Spark jobs changes

In this section, I’ll describe the workflow and changes of the accounting-jobs (Spark jobs) tool
I worked on. The order of steps is not chronological to the way I was figuring it out, but it follows
the order of executing the commands, because they need to be ran one after another. First, to get
to know the code I tried to modify parts of it in Jupyter notebook on SWAN using Spark cluster.
I mocked the input instead of reaching S3 buckets from this environment, and just printed outputs
instead of saving/sending reports. This approach worked for monthly-summary and apel parts, but
for condor-summaries there is a lot of filtering and grabbing data from different directories, which
would probably take me longer to mock the input data then wait for my testing node working with
S3 storage.

5.3.1 Creating condor-summaries report

Basically the changes were only in two files. In the config.py file, consisting of defined variables,
I just added new items into a variable with "hepscore" prefix. The new CSV_FIELDS array is now de-
fined as [’vo’, ’fqan’, ’infrastructure’, ’numcores’, ’wall’, ’cpu’, ’hepspec_wall’,

’hepspec_cpu’, ’hepscore_wall’, ’hepscore_cpu’, ’numjobs’]. That was easy, right?

51

The second part in the condor.py file needs a little bit more understanding of the code. I will not
describe the whole code of accounting-jobs project, but I’ll try to summarize all the parts we need
to do this change. Let’s start with the function spark_job(self, start, end, fields=None) .
This method is the entrypoint for the CondorTK class - it’s responsible for the acquisition of data
from S3, and generating correlated reports. Parameters start and end are dates to be used when
reading data from S3.
After spark_job() filters out incomplete data, it calls _upload_report(self, data_frame, fields,

upload), which calls _resolve_daily_reports(self, df_aux, fields), which calls
_generate_daily_report(self, df_aux, fields). Here in the generating method we encounter
the first "hepspec" mentions.
The function generating daily report is responsible for aggregation of the data frame data into the
desired columns, and accepts two parameters: df_aux is the Spark dataFrame to extract the data
frame, and fields are the fields to be used to output the data frame columns (in our case, the
function is called with the fields defined in the config.py, which I mentioned in the paragraph above.
First, the data in the variable gets filtered out according to pre-defined blacklist, so we only get
data which we want in the condor summaries. After that, a new dataframe is created using the
filtered df_aux variable using the pyspark’s withColumn dataframe method. See Listing C.12 on
page 80 to see what does it look like. For this part, I just duplicated the parts with "hepspec" and
renamed it to "hepscore", and the new code produces very similar output as the original one on
listing 5.1 on page 48, just with new keys "hepscore_cpu" and "hepscore_wall". Easy one, right?

5.3.2 Creating monthly-summary report

First thing I did was to rename a variable defining keys for normalised CPU and wall durations,
which had a "hs06d" unit in the name to just "d" as days, because the value of this key-value pair
will now be a dictionary with all the benchmark names and their score.
Original monthly summary record output features two items in the json file: one under the key
"facts" which gives us a short monthly summary, and "records" which gives us mothly summaries
for each VO in the context if their role (for example VO Alice can have several roles, but only the
public grid is published to APEL, so the "Chargeback" is true). To make this dynamic, I had to
analyze the code and fill the normalised durations with all the benchmarks.
First, I changed the "calculate_hs06" method which is used for the monthly report to generate the
factors (the first item in the report, see 5.2 on page 48). Old method just took sum of all the
"hepspec_wall" values, and divided it by the sum of "wall" values. But my new method will need
to return scores for all the benchmarks. So first I prepared a dictionary variable "result_factors" to
fill and return, and then I got benchmark names from the whole month (I created a method which
goes through the whole month and returns unique benchmark names for the whole batch). Then
for each benchmark I summed their wall values and divided it by the summed "wall" value as in

52

the original version. A problem I had to handle here, is missing benchmarks - not all records from
the batch have been tested with all the benchmarks. So for every record I checked again, if it has
a value for the specific benchmark, and only then I added the values to the sums.
Then I did several very similar changes in other parts of the code, for example in the method which
adds "Notes" to records, one of the use-cases is when CPU usage exceeds wall duration - this I did
dynamic for each benchmark name, as it handles one-by-one report in the batch and adds notes.
Few other finalising touches were done, like dividing the durations by seconds of the day, or format-
ting it to 2 decimal places, and the report is good to go. You can check the new version of monthly
report in listing 5.3 on page 53 and compare it with the old one (see Listing 5.2 on page 48).

{

"facts" : {

"hepscore" : 39.5656119750508,

"hepspec" : 32.972658617077,

"numcores" : 1.83018047022626

},

"records" : [

#[...]

{

"AverageDailyWallDuration" : "6070.24",

"Chargeback" : true,

"CpuDuration (d)" : "153204.47",

"Infrastructure" : "grid",

"Month" : 5,

"NormalisedCpuDuration (d)" : {

"hepscore23" : "2337104.01",

"hepspec" : "1947586.23"

},

"NormalisedWallDuration (d)" : {

"hepscore23" : "2856599.13",

"hepspec" : "2380499.23"

},

"Notes" : "",

"NumberOfCores" : 1,

"NumberOfJobs" : 1124548,

"Resource" : "condor",

"Site" : "CERN-PROD",

"VO" : "alice",

"VORole" : "public, grid sgm",

53

"WallDuration (d)" : "188177.50",

"Year" : 2023

},

#[...]

]

}

Listing 5.3: Example of a shortened file in the TESTING-REPORTBUCKET in monthly directory
for a specific month (May 2023)

5.3.3 Creating apel report

As mentioned in section 4.2 Apel messaging update on page 45, there was a conflict between naming
and versioning, so my first code change was to change the header of the message from "APEL-
summary-job-message: v0.3" to "APEL-normalised-summary-message: v0.4". Then, in a part where
the metrics are normalised (divided by the number of cores), I again made a change to make it
dynamic - the method accepts the record and returs a modified record, so instead of getting the
normalised durations as a number, the method gets there a dictionary. I just made a loop through
the dictionary and returned it the whole record modified with values divided by the number of CPUs.
Another method connected with the new dictinary was needed, and I called it "convert_dict_units"
to call it on the dictionary just before creating the SSM message. It just takes Normalised durations
(for both CPU and wall), and divide it by the number of cores.

5.4 Summary

When I now compare the master branch and my branch in the GitLab project, the statistics says
that 13 files changed with 289 additions and 268 deletions, from which 46 additions and 189 dele-
tions are related to a configuration of gitlab pipeline and makefile for testing and fixing the proccess
of creating an RPM package to install on the node. As a result, I added or replaced 164 lines of
code. That does not seem much, as I like to keep my code expressive and easy for understanding,
but in the context that this small change was made possible by an analysis of the entire system and
workflow, it has a great value.
During the project, I conducted an analysis of the existing infrastructure and tools utilized in the
WLCG accounting workflow. This examination allowed me to identify the strengths and weak-
nesses in the current system. Additionally, I acquired a comprehensive understanding of running
the HEPSCORE benchmark both locally and within the batch system, gaining insights into the
meaning behind the provided numerical values.
To integrate the updates proposed by a third-party service, I implemented the necessary changes
in the code of an internal tool responsible for a part of accounting workflow. However, due to

54

the lengthy processes involved in adding CPUs within a multinational company, I was unable to
compare the results of the old (HEPSPEC) and new (HEPSCORE) benchmarks to assess the ef-
fectiveness of the accounting system on production data, so I worked with mocked data during my
analysis. Nonetheless, given the nature of accounting and planning, it will be possible to evaluate
the effectiveness of these benchmarks in the coming years.

55

Chapter 6

Conclusion

In this final chapter, I will provide a recap of the project objectives, highlighting the contributions
made by myself and my team. I will discuss the challenges we faced and the solutions we developed.
I will present the results and findings obtained from our work and share the lessons we learned
during my 10-month internship at CERN. Finally, I will conclude by summarizing the project’s
outcomes and proposing some future recommendations.

6.1 Overview

In this thesis, my main objectives were to:

• Take a close look at the existing environment and technology being utilized at CERN. I aimed
to gain a comprehensive understanding of the concept of benchmarking and its role in the
accounting workflow of the WLCG.

• Familiarize myself with the significance of the score generated by HEPSCORE. I delved into
the details of the data structure associated with the new benchmark, seeking to grasp its
underlying components.

• Propose a practical approach to effectively label the features within the benchmark data
structure, ensuring that they are meaningful and relevant. This proposition was made by
higher authority, and I followed their lead.

• Implement necessary updates to the Batch accounting system, enabling it to seamlessly ac-
commodate the suggested data format.

• Conduct a thorough evaluation and comparison of the obtained results, thereby assessing the
effectiveness and impact of the implemented changes.

56

6.2 Challenges and solutions

Starting a new project and living abroad for the first time can be tough, but it’s a great learning
experience. Both involve getting to know the new environment, understanding how things work,
and fitting in. In the beginning of my internship, end of 2022, I focused on analyzing my surround-
ings, meeting colleagues, and exploring internal environment and tools like hepscore code, lxplus,
HTCondor, and S3 Ceph storage. Prior to this, my background was in web application develop-
ment, so learning about batch systems and grid computing was an enlightening experience.
Afterwards, I investigated how benchmarking data flows through the WLCG Accounting systems,
which took a long time as there’s no centralized source of knowledge available. I needed to assemble
the broader picture together, just like solving a puzzle. Whenever I encountered a puzzle piece,
I would search the internet or CERN’s network to determine where it fits. In most cases, I was
successful, but when faced with bigger challenges, I sought assistance from my colleagues. Initially,
this was a challenging aspect for me because everyone had their own work to do. However, I realized
the importance of seeking information from them, documenting the knowledge and consolidating it
into a paper or document. It’s essential to ensure that valuable information isn’t stored in people’s
minds but is shared and accessible to others.
Once I understood the data flow, I realized that the only changes needed were in Spark jobs. I delved
deeper into CPU benchmarking to involve the right people and make the necessary adjustments to
include HEPSCORE values in WLCG Accounting. Since I needed data for testing before it was
available in production, I created a test environment and updated the Spark jobs code.
APEL provided a testing environment for submitting new message versions, but our Spark jobs
needed to handle different configurations. To ensure we didn’t affect production data, we set up
a test machine to send messages to the correct endpoint. I used the Swan tool to connect to CERN’s
Spark cluster and made changes to the Spark jobs code. By the time the test machine was ready,
my code was already updated in git, and it successfully generated reports from the test data, which
were sent to APEL.

6.3 Contributions and results

My main contribution to the WLCG Accounting project at CERN involved enhancing the Spark
jobs code to incorporate the reporting of new HEPSCORE values to a third-party service. Working
alongside Maria, we established a fully functional testing environment for Spark jobs, which includes
a dedicated node configured for testing and a separate S3 Ceph instance with testing buckets. This
environment allows us to work with test data before new batches of CPUs are measured using HEP-
SCORE. By implementing a dynamic approach to code changes, I ensured that adding additional
benchmarks in the future will be much simpler, without the need for extensive modifications to the
Spark jobs code.

57

The dynamic change and testing node ensures that any potential new benchmark or feature can be
easily tested and evaluated.
In terms of recommendations for future improvements, I suggest prioritizing proper code docu-
mentation and commenting within the internal tools. It is crucial to ensure that knowledge is
not dependent on the presence of specific individuals who possess it. In an environment where
knowledgeable individuals come and go more swiftly than expected, valuable insights can be lost if
adequate documentation practices are not implemented.

58

Bibliography

1. DARWIN, Charles. The Origin of Species. Ed. by APPLEMAN, Philip. New York: Norton,
1859.

2. CHARPENTIER, P. Benchmarking worker nodes using LHCb productions and comparing with
HEPSpec06. In: Journal of Physics Conference Series. 2017-10, vol. 898, p. 082011. Journal of
Physics Conference Series. Available from doi: 10.1088/1742-6596/898/8/082011.

3. JAIN, R. The art of computer systems performance analysis: techniques for experimental de-
sign, measurement, simulation, and modeling. Wiley New York, 1991.

4. CERN. The CERN accelerator complex, layout in 2022 [online]. 2023. [visited on 2023-06-29].
Available from: https://cds.cern.ch/record/2800984.

5. CRITCHLOW, T.; DAM, K.K. van. Data-Intensive Science. Taylor & Francis, 2013. Chapman
& Hall/CRC Computational Science. isbn 9781439881392. Available also from: https : / /

learning.oreilly.com/library/view/data-intensive-science/9781439881415/.

6. SHIERS, Jamie. The Worldwide LHC Computing Grid (worldwide LCG). Computer Physics
Communications. 2007, vol. 177, no. 1, pp. 219–223. issn 0010-4655. Available from doi: https:

//doi.org/10.1016/j.cpc.2007.02.021. Proceedings of the Conference on Computational
Physics 2006.

7. CERN. WLCG Accounting Reporting Portal CRIC [online]. 2023. [visited on 2023-06-29].
Available from: https://wlcg-cric.cern.ch/wlcg/reporting/tier1/report.

8. XIE, Gang; XIAO, Yong-Hao. How to Benchmark Supercomputers. In: 2015 14th International
Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES). 2015, pp. 364–367. Available from doi: 10.1109/DCABES.2015.98.

9. GIORDANO, Domenico. HEPiX Benchmarking WG update [online]. 2021. [visited on 2023-04-
13]. Available from: https://indico.cern.ch/event/1078853/contributions/4576275/

attachments/2334610/3979470/HEPiX-Workshop-Autumn-26-10-2021-giordano.pdf.

10. DOCKER INC. Networking overview [online]. 2023. [visited on 2023-04-17]. Available from:
https://docs.docker.com/network/.

59

https://doi.org/10.1088/1742-6596/898/8/082011
https://cds.cern.ch/record/2800984
https://learning.oreilly.com/library/view/data-intensive-science/9781439881415/
https://learning.oreilly.com/library/view/data-intensive-science/9781439881415/
https://doi.org/https://doi.org/10.1016/j.cpc.2007.02.021
https://doi.org/https://doi.org/10.1016/j.cpc.2007.02.021
https://wlcg-cric.cern.ch/wlcg/reporting/tier1/report
https://doi.org/10.1109/DCABES.2015.98
https://indico.cern.ch/event/1078853/contributions/4576275/attachments/2334610/3979470/HEPiX-Workshop-Autumn-26-10-2021-giordano.pdf
https://indico.cern.ch/event/1078853/contributions/4576275/attachments/2334610/3979470/HEPiX-Workshop-Autumn-26-10-2021-giordano.pdf
https://docs.docker.com/network/

11. SYLABS INC. Security in Apptainer [online]. 2022. [visited on 2023-04-17]. Available from:
https://apptainer.org/docs/user/main/security.html.

12. THAIN, Gregory. Welcome and Introduction to HTCondor [online]. 2023. [visited on 2023-
04-17]. Available from: https://htcondor.readthedocs.io/en/latest/users-manual/

welcome-to-htcondor.html.

13. SLURM TEAM. Scheduling Configuration Guide [online]. 2023. [visited on 2023-04-17]. Avail-
able from: https://slurm.schedmd.com/sched_config.html.

14. IBM. About IBM Spectrum LSF [online]. 2023. [visited on 2023-04-18]. Available from: https:

//www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=started-quick-start-guide.

15. REDHAT. Chapter 7. Object Gateway S3 API [online]. 2023. [visited on 2023-04-13]. Available
from: https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/1.3/

html/object_gateway_guide_for_red_hat_enterprise_linux/object_gateway_s3_api.

16. S3TOOLS.ORG. Amazon S3 Tools: Command Line S3 Client Software and S3 Backup [online].
2023. [visited on 2023-04-13]. Available from: https://s3tools.org/s3cmd.

17. UNIVERSITY OF CALIFORNIA. Boinc Overview [online]. 2023. [visited on 2023-04-13].
Available from: https://boinc.berkeley.edu/trac/wiki/BoincOverview.

18. BRUN, Rene; CARMINATI, Frederico; CARMINATI, Giuliana Galli (eds.). From the web to
the grid and beyond. 2012th ed. Berlin, Germany: Springer, 2012-01. The Frontiers Collection.

19. CERN. Overview - Batch Docs [online]. 2023. [visited on 2023-06-29]. Available from: https:

//batchdocs.web.cern.ch/concepts/index.html.

20. CERN. Tiers - Woldwide LHC Computing Grid [online]. 2023. [visited on 2023-06-29]. Avail-
able from: https://wlcg-public.web.cern.ch/tiers.

21. CERN. Regional Centers and pledges provided by VOs [online]. 2023. [visited on 2023-06-29].
Available from: https://wlcg-cric.cern.ch/core/pledge/list/.

22. CERN. VO Requiremet list [online]. 2023. [visited on 2023-06-29]. Available from: https :

//wlcg-rebus.cern.ch/core/vopledgereq/listcomp/.

60

https://apptainer.org/docs/user/main/security.html
https://htcondor.readthedocs.io/en/latest/users-manual/welcome-to-htcondor.html
https://htcondor.readthedocs.io/en/latest/users-manual/welcome-to-htcondor.html
https://slurm.schedmd.com/sched_config.html
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=started-quick-start-guide
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=started-quick-start-guide
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/1.3/html/object_gateway_guide_for_red_hat_enterprise_linux/object_gateway_s3_api
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/1.3/html/object_gateway_guide_for_red_hat_enterprise_linux/object_gateway_s3_api
https://s3tools.org/s3cmd
https://boinc.berkeley.edu/trac/wiki/BoincOverview
https://batchdocs.web.cern.ch/concepts/index.html
https://batchdocs.web.cern.ch/concepts/index.html
https://wlcg-public.web.cern.ch/tiers
https://wlcg-cric.cern.ch/core/pledge/list/
https://wlcg-rebus.cern.ch/core/vopledgereq/listcomp/
https://wlcg-rebus.cern.ch/core/vopledgereq/listcomp/

Appendix A

Figures

61

Figure A.1: The tiers of WLCG [20]

62

Figure A.2: Pledge usage for 2022

Figure A.3: Requested usage for 2022

63

Appendix B

Tables

64

Federation Tier VO Country Pledge for Pledge for
2022 (HS06) 2023 (HS23)

CH-CERN 0 ALICE Switzerland 471 000 541 000
CH-CERN 0 ATLAS Switzerland 550 000 740 000
CH-CERN 0 CMS Switzerland 540 000 720 000
CH-CERN 0 LHCb Switzerland 189 000 215 000
CZ-Prague-T2 2 ALICE Czechia 20 000 24 400
CZ-Prague-T2 2 ATLAS Czechia 30 000 35 000

Table B.1: CERN and Czech sites CPU pledges for 2022 and 2023 [21]

65

VO Tier Required Pledged Difference

0 471 000 471 000 0 %
ALICE 1 498 000 448 440 -10 %

2 515 000 516 611 0 %
0 550 000 550 000 0 %

ATLAS 1 1 300 000 1 383 650 +6 %
2 1 588 000 1 655 983 +4 %
0 540 000 540 000 0 %

CMS 1 730 000 851 910 +17 %
2 1 200 000 1 209 534 +1 %
0 189 000 189 000 0 %

LHCb 1 622 000 514 531 -17 %
2 345 000 332 640 -4 %

0 1 750 000 1 750 000 0 %
Summary 1 3 150 000 3 198 531 +2 %

2 3 648 000 3 714 768 +2 %

Table B.2: VO CPU Pledge and Requirement list for 2022 [22]

66

Workload Running Time (m) # of events # of threads beta-selected

atlas_gen_sherpa 31 200 1 yes
atlas_reco_mt 69 100 4 yes
atlas_sim_mt 156 5 4
cms_gen_sim 42 20 4 yes
cms_digi 31 50 4
cms_reco 51 50 4 yes
belle2_gen_sim_reco 25 50 1 yes
alice_gen_sim_reco∗ 194 3 4
lhcb_gen_sim 104 5 1 yes
juno_gen_sim_reco 67 50 1
Gravitational Wave 138 1 4
Total 908 (15+ hours)
Total beta-selected 322 (5+ hours)

∗ - Alice time is high due to technical problems with
reco workload. Reco is ∼50% of running time.

Table B.3: HEP workloads running time in minutes. Times are geometrical mean of three runs on
reference machine.

67

Machine Note Score for Score for
atlas-gen-bmk hepscore-beta set

Core(TM) i5-10310U CPU @ 1.70GHz my laptop 46.221 -
Xeon(R) CPU E5-2650 v4 @ 2.20GHz my WLCG node 206.5529 150.1573
Xeon(R) CPU E5-2630 v3 @ 2.40GHz reference machine - 80.0000

Table B.4: Intel(R) processors performace comparison in units of the new HEPSCORE benchmark

68

Appendix C

Listings

{
"app_info" : {

"config_hash" : "cc648ef17e4bed772c3db48ddc86e3783a57342f4fba59eb672c358256fedd2d",
"hepscore_ver" : "1.5.0"

},
"benchmarks" : {

"atlas-gen-bmk" : {
"app" : {

"bmk_checksum" : "48598ad84ee79d858700ecc86b4e7c9a",
"bmkdata_checksum" : "809f5a89604aab45e53d3f1f69d6c6f9",
"containment" : "singularity",
"cvmfs_checksum" : "1940e3491d437c6325aff2a2d5ab8fdd",
"description" : "ATLAS Event Generation based on athena version 19.2.5.5",
"version" : "v2.1"

},
"args" : {

"events" : 5,
"threads" : 1

},
"results_file" : "atlas-gen_summary.json",
"run0" : {

"duration" : 773,
"end_at" : "Wed Mar 29 13:15:34 2023",
"report" : {

"log" : "ok",
"wl-scores" : {

"gen" : 48.4736
},
"wl-stats" : {

69

"avg" : 6.0592,
"count" : 8,
"max" : 6.1614,
"median" : 6.0644,
"min" : 5.9488

}
},
"start_at" : "Wed Mar 29 13:02:41 2023"

},
"run1" : {

"duration" : 628,
"end_at" : "Wed Mar 29 13:26:02 2023",
"report" : {

"log" : "ok",
"wl-scores" : {

"gen" : 49.9976
},
"wl-stats" : {

"avg" : 6.2497,
"count" : 8,
"max" : 6.2893,
"median" : 6.2441,
"min" : 6.1805

}
},
"start_at" : "Wed Mar 29 13:15:34 2023"

},
"run2" : {

"duration" : 628,
"end_at" : "Wed Mar 29 13:36:30 2023",
"report" : {

"log" : "ok",
"wl-scores" : {

"gen" : 50.0597
},
"wl-stats" : {

"avg" : 6.2575,
"count" : 8,
"max" : 6.2972,
"median" : 6.2617,
"min" : 6.192

}
},

70

"start_at" : "Wed Mar 29 13:26:02 2023"
},
"run_info" : {

"copies" : 8,
"events_per_thread" : 5,
"threads_per_copy" : 1

},
"version" : "v2.1",
"weight" : 1

}
},
"environment" : {

"arch" : "x86_64",
"end_at" : "Wed Mar 29 13:36:30 2023",
"singularity_version" : "3.10.2",
"start_at" : "Wed Mar 29 13:02:41 2023",
"system" : "Linux lzurkova-x1 5.19.0-38-generic #39~22.04.1-Ubuntu SMP

PREEMPT_DYNAMIC Fri Mar 17 21:16:15 UTC 2 x86_64"
},
"score" : 46.221,
"settings" : {

"container_exec" : "singularity",
"method" : "geometric_mean",
"name" : "TestBenchmark",
"reference_machine" : "CPU Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz",
"registry" : "docker://gitlab-registry.cern.ch/hep-benchmarks/hep-workloads",
"repetitions" : 3,
"replay" : false,
"scaling" : 355

},
"status" : "success",
"wl-scores" : {

"atlas-gen-bmk" : {
"gen" : 49.9976,
"gen_ref" : 384

}
}

}

Listing C.1: JSON output after running hep-score locally

71

[
lz

ur
ko

va
:

~/
pu

bl
ic

/h
ep

-t
es

t/
he

ps
co

re
-d

p
]$

co
nd

or
_q

--
Sc

he
dd

:
sc

he
du

le
rn

od
e1

23
.c

er
n.

ch
:

<1
23

.3
45

.7
89

.0
12

:3
45

6?
..

.
@

03
/2

9/
23

15
:5

0:
15

OW
NE

R
BA

TC
H_

NA
ME

SU
BM

IT
TE

D
DO

NE
RU

N
ID

LE
HO

LD
TO

TA
L

JO
B_

ID
S

lz
ur

ko
va

ID
:

12
34

56
7

3/
29

15
:4

6
_

_
_

1
1

12
34

56
7.

0

To
ta

l
fo

r
qu

er
y:

1
jo

bs
;

0
co

mp
le

te
d,

0
re

mo
ve

d,
0

id
le

,
0

ru
nn

in
g,

1
he

ld
,

0
su

sp
en

de
d

To
ta

l
fo

r
lz

ur
ko

va
:

1
jo

bs
;

0
co

mp
le

te
d,

0
re

mo
ve

d,
0

id
le

,
0

ru
nn

in
g,

1
he

ld
,

0
su

sp
en

de
d

To
ta

l
fo

r
al

l
us

er
s:

37
97

jo
bs

;
93

4
co

mp
le

te
d,

0
re

mo
ve

d,
18

93
id

le
,

96
8

ru
nn

in
g,

2
he

ld
,

0
su

sp
en

de
d

[
lz

ur
ko

va
:

~/
pu

bl
ic

/h
ep

-t
es

t/
he

ps
co

re
-d

p
]$

co
nd

or
_q

-h
ol

d

--
Sc

he
dd

:
sc

he
du

le
rn

od
e1

23
.c

er
n.

ch
:

<1
23

.3
45

.7
89

.0
12

:3
45

6?
..

.
@

03
/2

9/
23

15
:5

1:
34

ID
OW

NE
R

HE
LD

_S
IN

CE
HO

LD
_R

EA
SO

N

12
34

56
7.

0
lz

ur
ko

va
3/

29
15

:4
7

Er
ro

r
fr

om
sl

ot
1_

21
@n

od
e1

23
.c

er
n.

ch
:

ST
AR

TE
R

at
66

6.
12

3.
45

6.
78

9:
01

23

fa
il

ed
to

se
nd

fi
le

(s
)

to
<1

88
.1

85
.1

21
.2

35
:9

61
8>

:
er

ro
r

re
ad

in
g

fr
om

/p
oo

l/
co

nd
or

/d
ir

_1
32

05
/T

es
tB

en
ch

ma
rk

.j
so

n:
(e

rr
no

2)
No

su
ch

fi
le

or
di

re
ct

or
y;

SH
AD

OW
fa

il
ed

to
re

ce
iv

e

fi
le

(s
)

fr
om

<6
66

.1
23

.4
56

.7
89

:0
12

3>

#[
..

.]

[
lz

ur
ko

va
:

~/
pu

bl
ic

/h
ep

-t
es

t/
he

ps
co

re
-d

p
]$

co
nd

or
_q

--
Sc

he
dd

:
sc

he
du

le
rn

od
e1

23
.c

er
n.

ch
:

<1
23

.3
45

.7
89

.0
12

:3
45

6?
..

.
@

03
/2

9/
23

17
:0

0:
07

OW
NE

R
BA

TC
H_

NA
ME

SU
BM

IT
TE

D
DO

NE
RU

N
ID

LE
TO

TA
L

JO
B_

ID
S

lz
ur

ko
va

ID
:

12
34

56
8

3/
29

16
:5

9
_

1
_

1
12

34
56

8.
0

To
ta

l
fo

r
qu

er
y:

1
jo

bs
;

0
co

mp
le

te
d,

0
re

mo
ve

d,
0

id
le

,
1

ru
nn

in
g,

0
he

ld
,

0
su

sp
en

de
d

To
ta

l
fo

r
lz

ur
ko

va
:

1
jo

bs
;

0
co

mp
le

te
d,

0
re

mo
ve

d,
0

id
le

,
1

ru
nn

in
g,

0
he

ld
,

0
su

sp
en

de
d

To
ta

l
fo

r
al

l
us

er
s:

82
66

jo
bs

;
93

4
co

mp
le

te
d,

0
re

mo
ve

d,
64

62
id

le
,

87
0

ru
nn

in
g,

0
he

ld
,

0
su

sp
en

de
d

Li
st

in
g

C
.2

:
H

T
C

on
do

r
ou

tp
ut

72

APEL-individual-job-message: v0.2
Site: RAL-LCG2
SubmitHost: ce01.ncg.ingrid.pt:2119/jobmanager-lcgsge-atlasgrid
LocalJobId: 31564872
LocalUserId: atlasprd019
GlobalUserName: /C=whatever/D=someDN
FQAN: /voname/Role=NULL/Capability=NULL
WallDuration: 234256
CpuDuration: 2345
Processors: 2
NodeCount: 2
StartTime: 1234567890
EndTime: 1234567899
MemoryReal: 1000
MemoryVirtual: 2000
ServiceLevelType: Si2k
ServiceLevel: 1000
%%
...another job record...

Listing C.3: APEL job record message format v0.2

APEL-individual-job-message: v0.4
Site: SOME-SITE
SubmitHost: host.ac.uk/cluster
LocalJobId: 9aef372d-e26f-42ce-7acb-5e1c479dc47f
LocalUserId: bob
GlobalUserName:/DC=ac/DC=uni/DC=/DC=vac
FQAN: /host.org/Role=NULL/Capability=NULL
WallDuration: 47248
CpuDuration: 46871
Processors: 1
InfrastructureDescription: APEL-CREAM-HTCONDOR
InfrastructureType: grid
StartTime: 1531869580
EndTime: 1623693622
ServiceLevel: {hepspec: 11.4, HEPscore23: 15.3}
%%
...another job record...

Listing C.4: APEL job record v0.4

73

APEL-summary-job-message: v0.3
Site: RAL-LCG2
Month: 3
Year: 2010
GlobalUserName: /C=whatever/D=someDN
VO: atlas
VOGroup: /atlas
VORole: Role=production
SubmitHost: test06.ral.ac.uk:8443/cream-pbs-GRID_ops
Infrastructure: grid
Processors: 1
NodeCount: 1
EarliestEndTime: 1267527463
LatestEndTime: 1269773863
WallDuration: 23425
CpuDuration: 2345
NormalisedWallDuration: 244435
NormalisedCpuDuration: 2500
NumberOfJobs: 100
%%
...another summary job record...

Listing C.5: APEL summary job record message format v0.3

APEL-normalised-summary-message: v0.4
Site: SOME-SITE
SubmitHost: host.ac.uk/cluster
Month: 9
Year: 2022
GlobalUserName:/DC=ac/DC=uni/DC=/DC=vac
WallDuration: 47248
CpuDuration: 46871
NormalisedWallDuration: {hepspec: 519728, hepscore23: 708720}
NormalisedCpuDuration: {hepspec: 515581, hepscore23: 703065}
Processors: 1
NumberofJobs: 3
InfrastructureType: grid
EarliestStartTime: 1531869580
LatestEndTime: 1623693622
%%
...another normalised summary record...

Listing C.6: APEL normalised summary record v0.4

74

APEL-summary-job-message: v0.4

Site: SOME-SITE

SubmitHost: host.ac.uk/cluster

Month: 9

Year: 2022

GlobalUserName:/DC=ac/DC=uni/DC=/DC=vac

WallDuration: 47248

CpuDuration: 46871

Processors: 1

NumberofJobs: 3

InfrastructureType: grid

EarliestStartTime: 1531869580

LatestEndTime: 1623693622

ServiceLevel: {hepspec: 11.4, HEPscore23: 15.3}

%%

...another summary job record...

Listing C.7: APEL summary job record v0.4

75

{

"accountinggroup" : "<VO_group>.<user>",

"args" : "<arguments>",

#[...]

"clusterid" : <cluster id>,

"cmd" : "<command to run the job>",

"err" : "<path to file to log errors>",

"globaljobid" : "node123.cern.ch#<job id>",

#[...]

"match_cpus" : 1,

"match_datacentre" : "meyrin",

"match_exp_cpus" : "1",

"match_exp_datacentre" : "meyrin",

"match_exp_hepspec" : "377",

"match_exp_hostlogicalcores" : "56.0",

"match_exp_job_hepspec" : "6.732142857142857E+00",

"match_hepspec" : 377,

"match_totalcpus" : 56,

#[...]

"out" : "<path to file to log output>",

"owner" : "<user>",

#[...]

}

Listing C.8: Example of a formatted and ommited line from a file in the DATABUCKET

76

import os, gzip, json, copy, argparse

from datetime import datetime, timedelta

[...] # I’m skipping the parsing part, but imagine something like

dir day month year = ’/home/lzurkova/s3fun-test/mocking/’ 01 04 2023

dir_original = (’{}/original-{}’).format(dir, day) # directory with original data

dir_mocked = (’{}/{}’).format(dir, day) # directory with output (mocked) data

for filename in os.listdir(dir_original): # for each day from original data

f = os.path.join(dir_original, filename)

if os.path.isfile(f):

with gzip.open(f,’rb’) as f_gz_original:

with gzip.open(os.path.join(dir_mocked, filename),’wt’) as f_gz_mocked:

for line in f_gz_original:

json_line = json.loads(line)

new_json_line = copy.deepcopy(json_line)

copy all the lines with "hep" prefix

for key in json_line.keys():

if ’hep’ in key:

value = json_line[key]

is_str = isinstance(value, str)

is_num = isinstance(value,(int, float, complex))

try:

mock numerical values by multiplying

new_value = value*1.2 if is_num else float(value)*1.2

except ValueError:

mock string values by replacing HEPSPEC by HEPSCORE

[...]

add the new key-value pair

new_json_line[key.replace(’hepspec’,’hepscore’)] =

new_value if not is_str else str(new_value)

write the new line

f_gz_mocked.write(json.dumps(new_json_line))

f_gz_mocked.write("\n")

print(("{} created").format(f_gz_mocked.name))

Listing C.9: mock.py file to mock the bucket data after you download the original data

77

#!/bin/bash

while getopts m:y:d: flag

do

case "${flag}" in

m) month=${OPTARG:=04};;

y) year=${OPTARG:=2023};;

d) day=${OPTARG:=01};;

esac

done

mkdir $day original-$day &&

echo "Getting data for $year-$month-$day" &&

s3cmd -c ~/.s3cfg get s3://REPORTSBUCKET/[...]/thooki/$year/$month/$day/* original

-$day &&

echo "Generating data for $year-$month-$day" &&

python3 mock.py --date $year-$month-$day &&

echo "Deleting temporary original data for $year-$month-$day from localhost" &&

rm -rf original-$day &&

echo "Uploading data for $year-$month-$day" &&

s3cmd -c ~/.s3cfg-test sync $day s3://TESTING-REPORTSBUCKET/[...]/thooki/$year/

$month/ &&

echo "Deleting generated data for $year-$month-$day from localhost" &&

rm -rf $day &&

echo "Data mocked for date $year-$month-$day"

Listing C.10: mock-day.sh file download original data, call mock.py, and upload mocked data to S3
a testing bucket

78

#!/bin/bash

while getopts s:e: flag

do

case "${flag}" in

s) start=${OPTARG:=2023-04-01};;

e) end=${OPTARG:=2023-04-30};;

esac

done

startdate=$(date -I -d "$start") || exit -1

enddate=$(date -I -d "$end") || exit -1

d="$startdate"

while ["$d" != "$enddate"]; do

read Y M D <<< ${d//[-]/ }

./mock-day.sh -m $M -d $D -y $Y

d=$(date -I -d "$d + 1 day")

done

last day

read Y M D <<< ${d//[-]/ }

./mock-day.sh -m $M -d $D -y $Y

Listing C.11: mock-month.sh file to call mock-day.sh several times

79

#[...]
df_aux = spark_utils.read_s3_data(self, start, end, bucket_path=self.condor_path)
df = (df_aux.withColumn(’Date’, Date(df_aux.completiondate, df_aux.enteredcurrentstatus))

#[...]
.withColumn(’hepspec_cpu’,

hepspec_cpu(sum([df_aux.remoteusercpu,
df_aux.remotesyscpu]),

df_aux.match_hepspec,
df_aux.match_totalcpus))

.withColumn(’hepspec_wall’,
hepspec_wall(df_aux.remotewallclocktime,

df_aux.match_hepspec,
df_aux.match_totalcpus,
f.col(’numcores’)))

#[...]
)

#[...]
df = df.select(fields)
df = df.groupby(

’Date’,
#[...]
’numcores’,
’fqan’).agg(

#[...]
f.sum(’hepspec_cpu’).alias(’hs_cpu’),
f.sum(’hepspec_wall’).alias(’hs_wall’),
#[...]

)
grouped_values = {}
for i in data[’Date’].unique():

grouped_values[i] = [
{ #[...]

’hepspec_cpu’: data[’hs_cpu’][j],
’hepspec_wall’: data[’hs_wall’][j],
’numcores’: data[’numcores’][j],
#[...]

}
for j in data[data[’Date’] == i].index]

return grouped_values

Listing C.12: Ommited _generate_daily_report method from condor.py file from accounting-jobs
project

80

	List of symbols and abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	CERN
	Datacentre
	Grid computing
	WLCG

	Background
	WLCG history
	Pledge
	Accounting
	Benchmarking
	Technologies

	Analysis
	Batch Accounting
	The process of benchmarking a processor
	Environment
	Analysis summary

	Changes
	ATF decisions
	APEL messaging update
	My decision

	Integrating
	Buckets and reports
	Testing environment
	Spark jobs changes
	Summary

	Conclusion
	Overview
	Challenges and solutions
	Contributions and results

	Appendices
	Figures
	Tables
	Listings

