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Abstrakt a přínos práce

Srdeční arytmie jsou ve vyspělém světě rozšířeným onemocněním, zejména u starší populace,
a hlavní příčinou úmrtí. Jejich původ je velmi složitý a těžko předvídatelný. Příčiny tohoto
onemocnění jsou různé. K nepravidelnému šíření řídících signálů v srdeční tkáni může dojít v
důsledku zjizvení srdeční tkáně po infarktu, ucpání tepen v srdci, infekce COVID-19 atd. V
této práci jsou analyzovány dynamické vlastnosti srdeční elektrofyziologie a jejich změny při
patofyziologickém šíření elektrických signálů v srdci. Nelineární analýzou matematických mo-
delů srdečních buněk jsou nalezeny kombinace stimulačních frekvencí a amplitud, při kterých
dochází k chaotických odpovědím srdeční elektrofyziologie. Dále jsou prezentovány možnosti
využití umělé inteligence k detekci nebezpečných míst na základě prostorového uspořádání
jizev v srdci.
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Abstract and Contributions

Cardiac arrhythmias are a widespread disease in the developed world, especially in the elderly
population, and a leading cause of death. Their origin is very complex and difficult to predict.
The causes of this disease are various. Irregular propagation of control signals in heart tissue
can occur due to scarring of heart tissue after a heart attack, clogging of arteries in the
heart, infection with COVID-19, etc. This work analyses the dynamic properties of cardiac
electrophysiology and their changes during the pathophysiological propagation of electrical
signals in the heart. Using nonlinear analysis of mathematical models of heart cells are found
combinations of stimulation frequencies and amplitudes, at which chaotic responses of cardiac
electrophysiology occur. Furthermore, the possibilities of using artificial intelligence to detect
dangerous sites based on the spatial arrangement of scars in the heart are presented.
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Chapter 1

Introduction

Cardiac arrhythmias are a collective term for heart rhythm disorders. These disorders in-
clude, for example, slowed or accelerated heart rhythm (bradycardia and tachycardia resp.)
or disordered electrical activity in the tissue (fibrillation). The onset of arrhythmia is com-
plex and difficult to anticipate. Although the function and dysfunction of the heart have
been extensively studied, the sheer complexity of the spatiotemporal dynamics underlying
its electrical signalling process leaves much still poorly understood. This is particularly true
when complicating factors are present, such as cardiac fibrosis.

Due to the physiological nature of this problem, research in silico is an important part of
its solution. The beginnings of this research can be dated to 1952, when Alan Hodgkin and
Andrew Huxley created a mathematical model explaining the ionic mechanisms underlying
the initiation and propagation of action potential (AP) in the squid giant axon. Since then,
many mathematical models have been developed describing this ion mechanism in cardiac
cells. These models mainly aim to understand complex physiological phenomena and as
patient-specific models for streamlining therapy.

In this work, the influence of pathology on the dynamic properties of cardiac electrophys-
iology is analyzed. The main findings presented here can be divided into two parts.

In the first part, dangerous parameters of the stimulation current are found, during which
chaotic responses of heart cells occur. For this purpose, several mathematical models paced
with varying stimulation frequency and amplitude combinations are used. The Fourier spectra
and bifurcation diagrams were used to detect the irregular character of AP changes in cell. In
addition, the chaotic behaviour of action potential was confirmed by the 0–1 test for chaos.

Finally, the possibilities of using artificial intelligence to detect potentially dangerous sites
in the heart tissue are demonstrated. These sites are searched by analyzing the tissue’s spatial
arrangement of fibrosis (scarring). Fibrotic tissue is caused by pathological conditions in the
heart (such as congestive heart failure, cardiomyopathy, etc.) or simply by ageing. Fibrotic

13



cells can separate myocytes, resulting in tortuous paths of activation that increase the risk of
signalling malfunctions.

The main findings presented in this work are summarized in three published journal re-
search papers (WoS) and two indexed conference papers.

The outline of this work is following. In the Chapter 2 the nonlinear analysis methods
used in this work are summarized. Specifically, a basic summary of recurrence quantification
analysis (RQA) in Section 2.2 and the 0-1 test for chaos in Section 2.3 is given here. Further-
more, entropy calculation options in Section 2.4. The use of these methods is demonstrated
using the Hénon map (see Section 2.1). Chapter 3 summarizes the main research contribu-
tions achieved in this work. The results achieved in the field of heart cell dynamics (Section
3.1) and section 3.2 describes the results attained in the field of using artificial intelligence
to detect dangerous proarrhythmogenic sites in heart tissue. Published full papers related to
presented work are listed in Chapter 4. Chapter 5 concludes the achieved results and list of
all the author’s published papers is then given in the appendix.
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Chapter 2

Nonlinear analysis methods

After the discovery of the butterfly effect by Edward Lorenz, thanks to the increase in com-
puting power of computers and the attractiveness of chaos theory, the development of new
methods of analyzing dynamical systems took place. In this work, a combination of classical
and modern techniques for the study of dynamic systems is used. This set of different mathe-
matical methods for dynamic system analysis ensures a robust analysis of time series dynamic
behaviour. Each method examines a slightly different aspect of dynamic motion. For complex
analysis, it is necessary to use a set of methods thanks to which more detailed information
about the system’s behaviour can be obtained. The use of those methods is demonstrated
through the analysis of the Hénon map.

2.1 Hénon map

This map was introduced by Michel Hénon [1] as a simplified model of the Poincaré section
of the Lorenz equations. The Hénon map is a real two-dimensional discrete-time dynamical
system (see Equation (2.1)). In this work, only the variable x is investigated using the
presented methods (due to the shape of Equation (2.1), this analysis is sufficient).

{︄
xn+1 = 1 − ax2

n + yn

yn+1 = bxn

(2.1)

This map consists of two parameters, a and b. In this paper, the initial condition x0 =
0.63135448, y0 = 0.18940634 with parameter b = 0.3 are used. These values are identical
to the parameters published in [1]). The parameter a is changed from a = 1 to a = 1.4
with step 0.005. In this range, Hénon maps show both regular and chaotic behaviour (see
Figure 2.1, and Figure 2.2). For the parameter a computed in this range, the chaotic motions
are concentrated in three regions a ∈ {[1.06, 1.225] ∪ [1.27, 1.295] ∪ [1.31, 1.4]}.
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Figure 2.1: Example of a Hénon map showing regular behaviour for a = 1.035 (left column).
The solution for this parameter value shows a periodic orbit (8 cyclus). This solution can be
seen in the time series of the variable x (upper left) and the phase portrait (bottom left), in
which only eight values can be seen. For parameter a = 1.4, the solution for Equation (2.1)
is chaotic motion. An irregular movement can be seen in the time series of the variable x
(upper right). The phase portrait of this solution (bottom right) depicts a strange attractor.
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Figure 2.2: Bifurcation diagram of variable x for parameters a ∈ [1, 1.4]. The parameter a is
marked on the horizontal axis. All values of the variable x computed with parameter a are
depicted on the vertical axis. In the case of regular motions of the Hénon map, only isolated
points can be seen in the diagram for a given a since the variable x cyclically reaches the same
values. The chaotic behaviour does not manifest periodicity. Therefore, the line is visible for
the given a, which denotes many unique values of the variable x.
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Figure 2.3: Examples of computed recurrence plots for the regular motion (left) of the Hénon
map (a = 1.035) and for the parameter a = 1.4 in which the Hénon map is in a chaotic regime
(the original time series are shown in Figure 2.1). Long uninterrupted lines characterize the
regular motion of a dynamic system. There is no periodic behaviour in the chaotic regime.
The short diagonal lines appear due to the introduction of the threshold ϵ in Equation (2.2).

2.2 Recurrence Quantification Analysis

Recurrence quantification analysis (RQA) [2, 3] is a nonlinear dynamic system analysis method.
This method analyzes the recurrence of a dynamic system (the return of a dynamic system
to the same position in phase space) displayed using a recurrence plot (RP). RP is a two-
dimensional array consisting only of ones and zeros. The time is marked on both of its axes.
The value of RP at position (i, j) depicts whether the examined dynamic system at time ti

and tj recur (R(i,j) = 1) or not (R(i,j) = 0). The RP is calculated using Equation (2.2).

Ri,j = θ(ϵ − ||xi − xj ||), xi ∈ Rm, i, j = 1 . . . N (2.2)

Here xi denotes the values of the system’s m dependent variables at the moment of its
i-th snapshot, with N the total number of snapshots. The Heaviside function θ specifies
that recurrence occurs when the difference, under some choice of norm ∥ · ∥, falls under the
threshold ϵ. During regular behaviour, a dynamical system visits the exact location in phase
space at regular intervals. Thanks to this, the recurrence plot created from regular movement
manifests long uninterrupted lines. However, in the case of chaotic behaviour, the dynamical
system does not reach the same place in phase space. In these cases, the recurrence is detected
due to the threshold ϵ in Equation (2.2), and patterns (short diagonal lines, rectangles, etc.)
appear in the RP (examples of RP calculated from regular and chaotic behaviour of the Hénon
map are depicted in Figure 2.3).

RP can be analysed using RQA, which quantifies this two-dimensional matrix utilising
a number of measures. These measures examine the quantity and spatial arrangements of
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Table 2.1: Description of RQA measures used in this work.

Equation Description
REC = 1

N2
∑︁N

i,j=1 R(i, j) Percentage of recurrence points in a recurrence plot

DET =
∑︁N

ℓ=ℓmin
ℓP (ℓ)∑︁N

ℓ=1 ℓP (ℓ)
Percentage of recurrence points that form diagonal
lines

RATIO = N2
∑︁N

l−lmin
lP (l)(︁∑︁N

l=1 lP (l)
)︁2 Ratio between DET and REC

Lmax = max ({li; i = 1, . . . , Nl}) Length of the longest diagonal string of recurrence
points

Lmean =
∑︁N

ℓ=ℓmin
ℓP (ℓ)∑︁N

ℓ=ℓmin
P (ℓ)

Mean length of the diagonal lines

DIV = 1
Lmax

The inverse of Lmax

ENTR = −
∑︁N

ℓ=ℓmin p(ℓ) ln p(ℓ) The Shannon entropy of the diagonal line lengths dis-
tribution

LAM =
∑︁N

v=vmin
vP (v)∑︁N

v=1 vP (v)
Percentage of recurrence points that form vertical lines

Vmax = max ({vi; i = 1, . . . , Nv}) Length of the longest vertical line

Vmean =
∑︁N

v=vmin
vP (v)∑︁N

v=vmin
P (v)

Mean length of vertical lines

ones in RP. The equations and description of the RQA measures used in this work is given in
Table 2.1.

In Figure 2.4, the RQA measure DET and REC values are shown depending on the
parameter a in Equation (2.1). Periodic motion manifests as value 1 for the DET measure
because RP only forms diagonal lines. As the complexity of the time series increases, the
DET decreases as other patterns and isolated points appear in the RP. Likewise, measure
REC also decreases with the higher complexity of the time series. In the case of regular
movement of a dynamic system, this measure also reflects the length of the period, as the
individual diagonal lines are further apart.

2.3 The 0-1 test for chaos

The 0-1 test for chaos is a method introduced by Gottwald and Melbourne [4] (see also [5]).
This method is used for qualitative analysis of time series. The resulting values of this test
close to 0 indicate regular time series. If the result is close to 1, it marks the examined
series as chaotic. In the case of other resulting values, it is not possible to decide whether
it is a regular or chaotic time series. Although this method does not serve to quantify the
complexity of a time series (in comparison with RQA or entropy), its advantage lies in the
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Figure 2.4: RQA results for measures DET (left) and REC (right) depending on the pa-
rameter a. In the case of irregular movement in the time series, the observed RQA measure
decreases.

possibility of applying it directly to the investigated time series, without the need to calculate
the embedding dimension or time lag. This test can also be used for noisy data.

The calculation procedure of this correlation method is as follows. For a given set of
observations ϕ(j) for j ∈ {1, 2, . . . , N} are computed translation variables for suitable choice
of b ∈ (0, 2π).

pb(n) =
N∑︂

j=1
ϕ(j) cos(jb) = 1,

qb(n) =
N∑︂

j=1
ϕ(j) sin(jb) = 1,

then the mean square displacement is computed using the following equation

Mb(n) = lim
N→∞

1
N

N∑︂
j=1

[pb(j + n) − pb(j)]2 + [qb(j + n) − qb(j)]2

here n ≤ ncut where ncut ≪ N . The next step is to estimate modified mean square displace-
ment using the following formula

Db(n) = Mb(n) −
(︃

lim
N→∞

1
N

N∑︂
j=1

ϕ(j)
)︃2 1 − cos(nb)

1 − cos(b) .

Finally, the output of the 0-1 test is computed as correlation coefficient of ξ and ∆ for fixed
parameter b

Kb = corr(ξ, ∆)

where ξ = (1, 2, . . . , ncut) and ∆ = (Dc(1), Dc2, . . . , Dc(ncut)). Hence, Kb is dependent on the
choice of c. To get K as the output of the 0-1 test, as limiting value of all Kb, the result value
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Figure 2.5: Results of the 0-1 test for chaos depending on the parameter a. The results of
test classified the regular motion (test01(x) < 0.05) in the time series x for the values of
the parameter a ∈ [1, 1.055] ∪ [1.23, 1.265] ∪ [1, 3, 1.305]. For the values of parameter a ∈
[1.06, 1.075] ∪ [1.23, 1.265] ∪ [1, 3, 1.305] ∪ 1.27, it is not possible to decide according to the
0-1 test for chaos whether the investigated time series is chaotic or regular. In the remaining
analyzed cases, a chaotic movement was detected.

is taken as
K = median(Kb).

The results of the 0-1 test for chaos for parameter a of Hénon map is depicted in Figure
2.5. This test very well found the regions of the a parameter where regular and chaotic Hénon
map responses occur. Regular behavior (classified as a test result less than 0.05) is detected
for regions a ∈ [1, 1.055] ∪ [1.23, 1.265] ∪ [1, 3, 1.305]. Chaotic motions in the time series are
classified when the result of the 0-1 test for chaos is greater than 0.95. In other cases, the
dynamics cannot be decided (a ∈ [1.06, 1.075] ∪ [1.23, 1.265] ∪ [1, 3, 1.305] ∪ 1.27).

2.4 Entropy

Entropy is a dynamic systems theory concept that tries to express the amount of systems’
complexity. There are many different kinds of entropy. This work uses approximate entropy
(ApEnt) and sample entropy (SampEnt). ApEnt (see Equation (2.3)) as developed by Pin-
cus et al. [6] as a method to overcome the requirement of large amounts of data and noise
sensitivity. ApEnt is based on searching for similar subsequences in the analyzed time series.
To avoid the occurrence of natural logarithms of zero in the ApEnt calculation, the algorithm
counts each sequence as identical to itself, although this also introduces a bias [7]. Richman
and Moorman [7] proposed sample entropy (see Equation (2.4)) that removes this bias, is
independent of the length of the data and requires fewer computational operations for its
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calculation [8]. More information about the computation and usage of these metrics can be
found in the paper by Delgado-Bonal and Marshak [9].

ApEnt(x, m, r) =

= 1
N − m + 1

[︄
N−m+1∑︂

i=1
log

(︃ |ji|
N − m + 1

)︃]︄
− 1

N − m

[︄
N−m∑︂
i=1

log
(︃ |ki|

N − m

)︃]︄
,

(2.3)

where

ji = {ξ | ∥yi − yξ∥ ≤ r ∧ ξ ∈ ⟨1, N − m + 1⟩}

ki = {ξ | ∥zi − zξ∥ ≤ r ∧ ξ ∈ ⟨1, N − m⟩}

yi = [xi, xi+1, . . . , xi+m−1] , zi = [xi, xi+1, . . . , xi+m] , N = |x|.

SampEnt(x, m, r) = log
(︄∑︁N−m+1

i=1 |bi|∑︁N−m
i=1 |ai|

)︄
(2.4)

where
bi = {ξ | ∥yi − yξ∥ ≤ r ∧ ξ ∈ ⟨1, N − m + 1⟩\i} ,

ai = {ξ | ∥zi − zξ∥ ≤ r ∧ ξ ∈ ⟨1, N − m⟩\i} ,

yi = [xi, xi+1, . . . , xi+m−1] , zi = [xi, xi+1, . . . , xi+m] , N = |x|.

In Figure 2.6 the ApEn measure for Hénon map with respect to parameter a is shown.
ApEn is low, and as complexity increases, the ApEn increase as well. This figure shows that
the ApEn corresponds well with the results of RQA and the 0-1 test for chaos. However,
slight differences can be seen in certain areas. For example, in the examined region of the
parameter a ∈ [1.04, 1.055], it can be seen that the 0-1 test for chaos (see Figure 2.5) classifies
these time series as regular. However, there is already an increase in ApEn. It is because
each method analyses a different aspect of the time series. In addition, it is possible that
the resulting values are distorted due to inappropriately chosen parameters of the algorithm.
These results show that an increased value of ApEn does not necessarily mean a chaotic time
series. Therefore, it is necessary not to rely solely on one mathematical method but investigate
time series using multiple methods and analyse results about their dynamics concerning each
of them.
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Figure 2.6: Dependence of the approximate entropy of the variable x Hénon map on the
parameter a. The ApEn of the regular movement reaches a value close to 0. With the
increase in complexity, the ApEn value also increases.
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Chapter 3

Summary of author’s contributions

This section contains a summary of all scientific results achieved by the author. The author’s
contributions are divided into two sections. In Section 3.1, the dynamic behavior of the
heart cell depending on its stimulation is described and in the second Section 3.2, the results
achieved in the application of neural networks for searching for dangerous sites in tissue are
described. In these sections, the results achieved by the author himself or based on author’s
collaboration with other scientists are presented. The presented results were written in the
form of scientific papers and published in impact journals. For a complete description of
presented results, please see the full papers included in Chapter 4.

3.1 Dynamic behavior of the human heart cell

The dynamic behavior of the heart cell was analyzed using several mathematical models. This
work summarizes the main results achieved using two models. The first one is the Fenton-
Karma (FK) [10] model. It is a dimensionless model that has 3 degrees of freedom (AP and
two gating variables v and w). Complete results are published as journal research paper (see
[TR.1.3]). Another model whose analysis is summarized in this work is Beeler-Reuter (BR)
[11]. This model has 8 degrees of freedom (AP, intracellular Ca2+ concentration and 6 gating
variables). Complete results can be found in published research paper (see [TR.1.2]).

These models were stimulated with regular stimulation current with different combination
of amplitude and stimulation period (sum of stimulation delay c and stimulation pulse dura-
tion). The stimulation function is composed of the positive half of the sine function and the
zero function (see Figure 3.1).

Regular and irregular responses were found for individual stimulation amplitude and fre-
quency combinations. These time series were detected using frequency spectrum analysis (see
Figure 3.2) and bifurcation diagrams (see Figure 3.3).
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Figure 3.1: Example of stimulation current for amplitude A = 80 µA/cm2, and simulation
delay c = 20 ms. Parameter c is labeled by red color.
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Figure 3.2: Time series showing regular AP motions (row a, AP is depicted by red color,
and gating variables v (green), and w (blue)). The FK model was stimulated with a periodic
signal with stimulation period 80 ms and amplitude 0.48 (left). On the right is depicted the
frequency power spectrum of AP. The regular movement of the AP is manifested by discrete
peaks in the frequency spectrum. If the model is in a chaotic mode (row b, stimulation
period 105 ms and amplitude 0.48), the irregular movement of the AP manifests itself in the
frequency spectrum as a continuous spectrum.
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Figure 3.3: Bifurcation diagram of AP computed using BR model for A = 80 µA/cm2. AP
snapshots are depicted in the bifurcation diagram, which is scanned at a rate equal to the
stimulation period. In the case of the AP regular movement computed for the parameter c (see
Figure 3.1), only isolated points are visible in the bifurcation diagram. Due to the irregular
movement, the AP scanned at regular intervals always has a different value. For this reason,
it is manifested In the diagram as a vertical line.

Chaotic responses of used models were confirmed using the 0-1 test for chaos. (see Fig-
ure 3.4). This figure shows the dependence of the action potential dynamic motion on the
frequency and amplitude of the pacing current.
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Figure 3.4: Results of the 0–1 test for chaos for AP, computed using the BR model, for all
simulated amplitudes and frequencies of stimulation current. Values close to 0 (blue) indicate
a regular time series. Results close to 1 (red) mark chaotic responses. If the results are not
close to either of these values, the nature of the dynamic movement cannot be decided. In the
figure, you can see dynamic motion’s dependence on the stimulation’s period and amplitude.
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Figure 3.5: Pro-arrhythmic (left) and non-arrhythmogenic (right) fibrotic structure. Green
arrows display the directions of successful AP propagation and the red flat arrowheads demon-
strating conduction block.

3.2 Detection of potentially dangerous scars with neural networks

Researchers have proved the connection between scarring and arrhythmia in previous years.
However, thanks to the complexity of the dynamics of cardiac electrical signalling, the ef-
fect of different arrangements of blockage on various arrhythmic consequences remain poorly
understood.

In the following study (for detailed result description, please see paper [TR.1.1] which is
enclosed in Chapter 4), the AP propagation impacted by fibrotic changes with various degrees
was simulated. By simulations analysis, the percentage level of tissue affected by fibrosis was
found, with the highest risk of emerging pathological re-entrant activation. A new set of
simulations was then subsequently calculated, in which the tissue was always affected by
fibrotic changes to the extent that re-entrant activation is most likely to occur. The sites
initiating re-entrant activations patterns were found in the new data set. More precisely, the
structures that selectively stop conduction by permitting conduction in one direction but not
the other (unidirectional block) were detected. Figure 3.5 shows an example of this structure.

Then, the dataset of fibrotic structures that do and do not initiate re-entries was created
by extracting the fibrotic structures around unidirectional blocks and non-blocking tissue.
This dataset was used to train a neural network to classify whether the fibrotic structure
causes a unidirectional block or not. This classification was performed for different sizes of
fibrotic structures to determine to what extent re-entry initiation is predictable and over what
spatial scale conduction heterogeneities appear to act to produce this effect. The classification
accuracy is depicted in Figure 3.6. The results suggest that structural information within
approximately 0.5mm (in the simulations, this spatial dimension is represented by a 9 × 9
grid) is sufficient to predict structures producing unidirectional blocks with more than 90%
accuracy.
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Figure 3.7: Example of saliency maps computed for larger (the first two from the left) and
smaller fibrotic structures (last two from the left). The element’s brightness indicates the site’s
overall importance for the classifier to decide whether this structure causes a unidirectional
block. In the larger structure, it can be seen that the essential elements for the overall
decision-making process are concentrated in the centre of the fibrotic structure. In the case
of a small fibrotic structure, the total importance is evenly distributed.

Figure 3.6: Graph of resulting accuracy dependence on structure size for two hidden layers
and 1000 neurons.

The fact that these proarrhythmic phenomena take place on small spatial dimensions was
also confirmed using saliency maps. These maps show the respective levels of contribution
of the individual elements of a structure towards the resulting classification output by a NN.
Saliency maps created for the classification of larger fibrotic structures showed a tendency to
concentrate importance on a small central subsection of the larger micropatterns (Figure 3.7).
This provides further evidence towards the conclusion that selective and unidirectional block
events are governed by structure over only a small length scale.
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Abstract
The main aim of this paper is to study the evolution of the transmembrane potential
on the cardiac cell under different rates and amplitudes of stimulation. For model-
ing this potential, the modification of the Fenton-Karma model was applied. It is
a phenomenological model with three degrees of freedom that corresponds to non-
dimensional transmembrane potential and gating variables for regulation of inward
and outward ion currents which can better reproduce the shape of the transmem-
brane potential than the original Fenton-Karma model. The model was newly forced
by stimulus with the shape of the half-sine period. As the main goal of the paper is
to show that this model is showing regular as well as irregular motion; periodic as
well as chaotic patterns are detected using bifurcation diagrams, the Fourier spectra,
Poincaré sections, and 0-1 test for chaos.
KEYWORDS:
cardiac cell model, bifurcation, Fourier spectra, 0-1 test for chaos

1 INTRODUCTION

The cardiac electrophysiology is the result of complex processes occurring on the heart cell membranes, which aim to ensure
the proper progression of cardiac action potential inherent in the heart muscle. The stability of the propagation of the action
potential in the heart tissue is often examined parameter1,2,3. The ordered propagation of the action potential is essential for the
proper functioning of the heart, and a life-threatening condition, such as ventricular fibrillation, may occur when the propagation
is not correct. To understand the dynamic properties of propagation of the action potential, it is important to examine not only
the entire tissue but also the dynamic properties of the individual cells from which it is created.
The three variable Fenton-Karma (FK3V) model is commonly used to describe heart electrophysiology. Studies that use

this model can be generally divided into several groups. Studies dealing with the determination of model parameters to better
replicate the outputs obtained by using physiological models or experimental data, studies that uses the FK3V model to study
the electrophysiology of the heart, and studies that examine the characteristics of the FK3V model itself.
The first group can include, for example, the study published by Oliver and Krassowska4, which describes a procedure for

finding such parameters of the FK3Vmodel to its restitution characteristics corresponding to the restitution characteristics of the
Courtemanche-Ramirez Nattel model of atrial tissue. Lombardo et al.5 edited the parameters of the detailed model and FK3V
to fit for five clinical data of patients undergoing ablation therapy.
Another possible field of study is termination of fibrillation6. Objective of this paper is to numerically validate the experi-

mental techniques for terminating fibrillation presented in Pak et al.7 In his work, they found that the synchronized defibrillation
can create a low-energy alternative to the traditional defibrillation. Allexandre and Otani1 studied the electrophysiological and
dynamic mechanism of spiral wave break up. The authors found several alternans unstable modes with different growth rates,

0Abbreviations: FK3V, Three variable Fenton-Karma
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frequencies and spatial structures. In another study8, the authors examined the behavior of fibers in the computing FK3V
monodomain anisotropic model of re-entrant ventricular fibrillation.
Another topic, which is often targeted in individual work dealing with the FK3V model, is the description of properties of the

model itself. One of these studies examines the steady state of the system2. Linear stability of these points and their response to
external stimulation were examined.
In this work an improvement of the FK3V model is introduced to obtain a better shape of action potential. The dynamical

properties of this improved FK3V model are analyzed in dependence on the stimulation frequencies and amplitudes. It is shown
that for suitable choices of the system parameters the system is chaotic (irregular patterns are visible) as well as periodic (regular).
For this purpose, the 0-1 test for chaos was applied. The 0-1 test for chaos, a newly established test9,10, gives a binary char-

acteristic of motion’s behavior. More precisely, this test returns 0 for regular (periodic) and 1 for irregular (chaotic) patterns.
The mathematical background can be found in the article by Gottwald and Melbourne11, Bernardini and Litak12 or in the lat-
est review13. This test is applicable on discrete dynamical systems14, continuous dynamical systems15 as well as on a real data
represented as time series16. This test has been successfully used in many applications, for example, in distinguishing between
chaos and randomness from a noisy data17, exploration of mechanical system’s dynamic properties consisting of a ball jumping
between a movable baseplate and a fixed upper stop18. This test was also used for analysis of the nonlinear floating potential
fluctuations from a glow discharge plasma19, for tracing the presence of nonlinearity and chaos in wireless network traffic20, for
chaos detection of the partial discharge patterns21, or traffic flows22 .
The paper is organized as follows. In Section 2, the original FK3V model and its parameters are presented. Section 3 is

dedicated to the model modification. In Section 4, the main results of this work are summarized. In particular, they include the
phase portraits, Fourier spectra, and Poincaré section of the model results for various stimulation frequencies in Subsection 4.2,
and test for chaos 0-1 for various stimulation frequencies and amplitudes in Subsection 4.3. The paper is closed by conclusions
in Section 5.

2 FK3V MODEL

The FK3V model is a dimensionless ionic model of cardiac action potential, which is based on the Luo-Rudy-I model. For
reproducing action potential it uses three variables u, v, andw. Variable u represents the transmembrane potential (so that u = 0
and u = 1 are the rest and peak voltages, respectively). The transmembrane potential changes depending on ionic currents
according to the following equation:

u̇ = Jstim − Jfi − Jso − Jsi (1)
where Jfi (accountable for depolarization of the membrane), Jso (accountable for repolarization of the membrane), and Jsi
(balances Jso during the plateau phase) are cross-membrane currents named fast inward (fi), slow outward (so), and slow inward
(si) that roughly corresponds to sodium, potassium, and calcium ion currents, respectively. But because they do not represent
the quantitatively measured currents but only their activation, inactivation, and reactivation, it is preferred to call these currents
as fast and slow inward, and slow outward, rather than Na, Ca, and K as a reminder of these simplification. Jstim indicates the
externally applied current. In this study, the external current composition of pulses is created by the first half period of sine
function followed by zero function. Jstim is therefore defined by the following equation:

Jstim =
{
A sin(t − n(c + 1)) t ∈ [n(c + 1), n(c + 1) + 1] n ∈ ℕ ∪ {0},
0 t ∉ [n(c + 1), n(c + 1) + 1] n ∈ ℕ ∪ {0}, (2)

where c denotes the length of time interval between pulses and A stands for the amplitude. In Equation 1 u̇ denotes the first
derivative of u with respect to time. The cross membrane currents are given by

Jfi(u; v) = Θ(u − uc)(1 − u)(u − uc)
−v
�d
,

Jso(u) = Θ(uc − u)
u
�0
+ Θ(u − uc)

1
�r
, (3)

Jsi(u;w) =
−w(1 + tanh(k(u − usic )))

2�si
,
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where Θ(x) is the Heaviside function.
Another two variables v and w used in the model are gating variables which regulate inactivation of Jfi, and Jso takes the
following form:

v̇ = Θ(uc − u)(1 − v)
1

�−v (u)
− Θ(u − uc)v

1
�+v
, (4)

ẇ = Θ(uc − u)(1 −w)
1
�−w
− Θ(u − uc)w

1
�+w
, (5)

�v(u) is a function for defining the time constants for two voltage ranges (uv < u < uc and u < uv) and is introduced for proper
reproducing CV restitution curve. It controls reactivation of Jfi and is given by equation

�−v (u) = Θ(u − uv)�
−
v1
+ Θ(uv − u)�−v2

The model contains several constants, which are used for fitting the output curves into the requested shape, time constants �r,
�si, �0, threshold potentials uc , usic , and uv.The original paper3 describes four different sets of parameters to fit for different dataset.

• BR: obtained by stimuli of the Beeler-Reuter model with standard parameter values.
• MBR: obtained by stimuli of modified the Beeler-Reuter model with accelerated up calcium kinetic.
• MLBR-I: stimuli of Luo-Rudy-I model with speeded up calcium kinetic.
• GP: experimental data from measuring the membrane potentials on the epicardial surface of the left Ventricle of a guinea
pig.

TABLE 1 Original published parameters of the FK3V model3 for BR parametric set, k = 10
Parameter Description unit value
�d setting influence Jfi for u > uc ms 0.25
�r setting influence Jso for u > uc ms 33
�si setting influence Jsi on u̇ ms 30
�0 setting decrease u to 0 for u < uc ms 12.5
�+v setting decrease v to 0 for u > uc ms 3.33
�−v1 setting value for �−v (u) for u > uv ms 1250
�−v2 setting value for �−v (u) for u < uv ms 19.6
�+w setting decrease w to 0 for u > uc ms 870
�−w setting increase w to 1 for u < uc ms 41
uc depolarization threshold - 0.13
uv threshold for activation �−v1 or �−v2 - 0.04
usic threshold for opening Jsi - 0.85

3 MODEL MODIFICATION

Since the shape of FK3Vmodel is not realistic, the modification of this model is proposed. Themodification consists of replacing
constant �r in Equation 3 by the following function

�r(u) = Θ(u�r − u)�r + Θ(u − u�r)
(�r(1 + tanh(k2(1 − u)))

4
+
�r
2

)
. (6)

This equation divides �r(u) into two potential ranges. From 0 to u�r where �r(u) remains constant and from u�r above, where udecreases from �r to �r∕2. Another parameter introduced in Equation 6 is k2 which sets the speed of decrease of �r(u). In this
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work u�r = 0.85 and k2 = 20. Another change from the original model is redefining usic to value usic = 0.7. The rest of the
parameters stay the same as in the original BR parameters set (see Table 1 ).
In Figure 1 , the difference in the shape of the transmembrane potential of the original FK3V model as well as the modified

model can be seen.
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FIGURE 1 Time responses of u (red), v (green) andw (blue) of the original model (left) and improvedmodel (right) for c = 700
ms and A = 0.48.

4 MAIN RESULTS

In individual simulations, the heart cell was stimulated with the half-sine shaped current pulses with an amplitude fromA = 0.16
toA = 0.96with step of 0.04 and duration 1ms. The individual stimulation pulses were separated by the delay c (see Equation 2).
The computations were performed for the stimulation delays from 10 to 300 ms with step of 5 ms. Each simulation was done
for the time from 0 to 5 × 105 ms. From the results, a phase diagram, amplitude frequency spectrum, and Poincaré section for
each simulated frequency was computed. From the data was also created bifurcation diagram for the entire simulated frequency
spectrum and the 0-1 test for chaos was computed.

4.1 Phase portraits, the Fourier spectra, and Poincaré section
The Fourier spectra and phase portraits were computed forA = 0.48 (twice as needed to cause stimulation). Chaotic behavior of
the model was observed on stimulation delays ranging from 30 to 50 ms and 105 ms. Regular behavior was observed elsewhere.
Cases with regular behavior can be divided into five groups (RG1 – RG5). Each of these groups corresponds to the different

biological response of the cell to the stimulatory pulses and corresponding representatives are shown in (Figure 2 – Figure 6 );
in all of these cases the Fourier spectra is formed by a number of harmonic frequencies, hence the frequency of the periodic
trajectory is computable. Periodic motions of trajectories are also visible in Poincaré sections.
The irregular (chaotic) case is shown in Figure 7 , the IRG case. In this case, the Fourier spectra is formed by a number

of harmonic components having the basic, super-harmonic, sub-harmonic, and combination frequencies on which there are
superposed further motions with frequencies forming the sided bands of the dominant frequencies. Their mutual ratio indicates
the irregularity of the motion. The character of this motion’s case is underlined by the Poincaré section.

RG1 This case is represented in Figure 2 ) for stimulation delay 20 ms. The amplitude of u does not reach the full range (0 to
1), but changes only between 0 and 0.34. The action potential shape (variable u) also does not match with proper shape
of action potential (see Figure 1 for comparsion).

RG2 At stimulation delays from 75 ms to 100 ms, stimulation causes every third stimulus (two unsuccessful stimulation fol-
lowed by successful pacing). In the phase diagram, a closed loop with two spikes due to unsuccessful stimulation can be
seen. The representative case of the model with this behavior can be seen in Figure 3 .
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FIGURE 2 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 20 ms.
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FIGURE 3 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 80 ms.
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FIGURE 4 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 120 ms.

RG3 In Figure 4 , the typical model response for the delays ranging from 110 ms to 145 ms can be seen. The relevant stimu-
lation is caused by every second stimulation impulse, but every second successful stimulation comes to phase of relative
refracterity, therefore the action potential of this stimulation has shorter duration than the action potential of the previous
successful stimulation impulse. In the phase portrait, two spikes from unsuccessful stimulation and two curves from the
stimulation (one comes from the phase of relative refracterity and one comes from steady state) can be seen.

RG4 In Figure 5 , the representative case, every second stimulation impulse causes stimulation at delays from 150 ms to 185
ms. The action potential duration is about 200 ms.

RG5 Finally, in Figure 6 , the representative is shown where every stimulation impulse causes stimulation; this is observable
for delays from 190 ms and above.

IRG The behavior of motions observed on delays from 30 ms to 50 ms and 105 ms is irregular, the representative can be seen
in Figure 7 . In this case, the mutual ratio of stimulation impulse and stimulation indicates the irregularity of the motion.
Moreover, these cases are chaotic due to the output of the 0-1 test for chaos performed in 4.3 Section.
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FIGURE 5 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 160 ms.
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FIGURE 6 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 250 ms.
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FIGURE 7 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section the modified FK3V model for c = 105 ms.

4.2 Bifurcation diagram
Next work was to plot bifurcation diagrams of modified FK3V model. Values for diagrams was collected witch period of stim-
ulation frequency. Diagrams can be seen in Figure 8 . In diagrams can be seen, that stimulation delays from 30 to 50 ms and
105 ms are chaotic, at the other delays are regular responses. This coincides with time series exploration.

4.3 The 0-1 test for chaos
Next, the 0-1 test for chaos was performed9,10. This test is used to distinguish regular and chaotic dynamics. It works with the
time series and does not need any phase space reconstruction. The resulting value of this test can only be 0 (regular behavior)
or 1 (chaos). This correlation method works as follows. For a given set of observations �(j) for j ∈ {1, 2,… , N} are computed
translation variables for suitable choice of b ∈ (0, 2�).

pb(n) =
N∑
j=1

�(j) cos(jb) = 1,
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FIGURE 8 Bifurcation diagram for variable u (left), v (middle), and w (right).
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FIGURE 9 Results of the 0-1 test for chaos forA = 0.48 and c from 10 ms to 300 ms. Variable u (left), v (middle) andw (right).

qb(n) =
N∑
j=1

�(j) sin(jb) = 1,

then the mean square displacement is computed using the following equation

Mb(n) = lim
N→∞

1
N

N∑
j=1
[pb(j + n) − pb(j)]2 + [qb(j + n) − qb(j)]2

here n ≤ ncut where ncut ≪ N . Then, the estimate of the modified mean square displacement is computed using the next equation

Db(n) =Mb(n) −
(
lim
N→∞

1
N

N∑
j=1

�(j)
)2 1 − cos(nb)

1 − cos(b)
.

Finally, the output of the 0-1 test is obtained as correlation coefficient of � and Δ for fixed parameter b
Kb = corr(�,Δ)

where � = (1, 2,… , ncut) and Δ = (Dc(1), Dc2,… , Dc(ncut)). Hence,Kb is dependent on the choice of c. To getK as the output
of the 0-1 test, as limiting value of all Kb, the result value is taken as

K = median(Kb).

The results of this test can bee seen in Figure 9 . At delays up to 25 ms, the behavior of variable u is regular, but for variables
v and w , it cannot be decided if the behavior is chaotic or regular. Chaotic behavior of the model was observed on stimulation
delays from 30 to 50 ms and 105 ms. There are also several cases of stimulation delays with the output of the 0-1 test for chaos
in the range (0.1,0.9); in this cases it cannot be decided if it is chaotic or regular behavior, e.g. at the stimulation delay of 70 ms.
Notice, that results of this test coincides with time series and bifurcation diagram.
But because of that, the stimulation of heart cell is dependent not only on the stimulation frequency but also on the amplitude

of stimulation, the test for chaos 0-1 was computed also for the amplitude range from 0.16 to 0.96 in step 0.04. But since the
results of the test for chaos 0-1 for A = 0.48 was the regular behavior for c > 105 ms (see Figure 9 ), the tests were computed
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FIGURE 10 Results of the test for chaos 0-1 for various stimulation delays and amplitudes for variable (from the left) u, v, w
and color bar (right).

for the stimulation delays from c = 20 ms to c = 200 ms in 5 ms increments. The results of this test can be seen in Figure 10 .
From this figure can be seen that chaotic behavior is focused into three regions.
The first and biggest region of the chaotic behavior is at amplitudes from 0.24 above and stimulation delays from approximately

30 ms to 55 ms. Another area of section of chaotic behavior is at amplitudes from 0.8 and above and stimulation delay 80 ms.
And the last region of chaotic behavior is at stimulation delay around c = 105 ms and amplitudes from A = 0.24.

5 CONCLUSIONS

In this paper, the Fenton-Karma model of cardiac cell was improved and its dynamics was analyzed in detail with respect to
the amplitude A and stimulation delays c. The model (1, 4, 5) was forced by stimulus with the shape of half-sine period. The
equations of potentials were solved numerically using the Runge-Kutta method of the fourth order implemented as ode45 solver
in Matlab. It was observed that the model is showing regular (see, e.g., Figures 3 and 6 ) as well as irregular patterns (see
Figure 7 ) for different range of stimulation delay and amplitude. For detection of this movements character, the Fourier spectra,
Poincaré sections, and bifurcation diagrams (Figure 8 ) were used. Chaotic behavior of variables u, v, and w were confirmed
by the 0-1 test for chaos (Figures 10 ), for suitable choices of stimulation delays and amplitudes.
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ABSTRACT
The Beeler–Reuter model is one of the oldest models of the cardiac ven-
tricular cell. This model is used in many scientific studies that investigate
the propagation of the action potential. In this paper, dynamical properties
of Beeler–Reutermodel with respect to the frequency and amplitude of the
stimulus pulsewith the shapeof the half-sine period are being investigated.
For this purpose bifurcation diagrams, the Fourier spectra, and the 0–1 test
for chaos was applied.
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1. Introduction

One of the most dangerous conditions in which the human heart may be present is ventricular fib-
rillation. This state corresponds to spatiotemporal chaos [16] and can result in sudden death. This
paper provides an insight into the dynamical properties of the human heart cell trough investigating
Beeler–Reuter model (BR) of the cardiac ventricular cell. It is shown that even in the single cardiac
cell can periodic pacing results in chaoticmotions of action potential such as in ventricular fibrillation
and the resulting motion dependent not only to pacing frequency but also to its amplitude.

BR is a well-established model that has been used since its publication in many scientific studies
to elucidate the function of the ventricular cardiac cell and propagation of an action potential (AP).
As an example of such a study [6–8,10,12,13] can be mentioned. In [6], responses of the BR model
to sinusoidal stimulation are studied. The authors found the periodic as well as chaotic responses of
the model to sinus stimulation. For detection of chaotic behaviour, Fast Fourier transform, and Lya-
punov exponents were used. In paper [8], simulation of the effects of periodic stimulation on a strand
of ventricular muscle is provided. Authors used one dimensional BR and by computing the Lyapunov
exponent, bifurcation diagram, the returnmap, and cobwebdiagram found chaotic, aswell as periodic
motions. In article [7], electrical excitation in a ring of cells described by the Noble, Beeler–Reuter,
Luo–Rudy I, and third-order simplified mathematical models are studied. The researchers who used
shortening the ring length managed the transition from steady-state circulation to quasiperiodicity.
After that, restitution curve of the action potential duration (APD) becomes a double-valued function
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University of Ostrava, Ostrava, Czech Republic; IT4Innovations, VŠB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33
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placed under the APD restitution curve of an isolated cell. Investigation of origin of quasiperiodicity
which opens the way to fibrillation (as a form of spatiotemporal chaos) by studying reentrant exci-
tation in a ring of cardiac cells described by BR can be found in study [10]. Paper [13] provides a
control scheme for preventing oscillatory instability arising from electrical waves circulating around
a hurdle in cardiac tissue. In article [12], Beeler–Reuter and Luo–Rudy model are used for the study
of cardiac tissue anisotropy and its role in the breakup of vortex filaments.

Despite the fact that this model was published more than 40 years ago, it is still being used today.
Use of this model in recent years is demonstrated in [2,3,14]. In paper [14] the authors analysed
the statistical mechanical properties of sustained ventricular fibrillation. For this purpose, the two-
dimensional Beeler–Reuter–Drouhard–Roberge model was used. Researchers in the article [2] used
the monodomain formulation of the Beeler–Reuter cell model on insulated tissue fibres for study-
ing spatiotemporal effects of a space-fractional model in cardiac electrophysiology. Study [3] deals
with finding individualized parameters for complex electrophysiological models. The authors placed
a population of models approach within a statistical framework and created an algorithm based on
sequential Monte Carlo. The algorithm has been compared with Latin hypercube sampling. For this
comparison, the authors used the Beeler–Reuter cardiac electrophysiological model in the presence
of a drug block.

This paper is organized as follows. In Section 2, the Beeler–Reuter model and its parameters are
introduced. In Section 3, the main results of this work are summarized. In particular, they include
the time series, phase portraits, and Fourier spectra of BR for various stimulation frequencies in
Section 3.1, the bifurcation diagram in Section 3.2, and the 0–1 test for chaos in Section 3.3. The
paper is closed by the conclusions in Section 4.

2. Beeler–Reuter model

The Beeler–Reuter model of the cardiac cell proposed by Beeler and Reuter in 1977 [1] is estab-
lished by eight equations (see Equations (1)) defining the time derivatives of transmembrane potential
Vm in mV, intracellular Ca2+ concentration [Ca]i in mole/l, and six dimensionless gating variables
x1,m, h, j, d, and f. Gating variables are in Equations (1)modelled as variable y (difference in equations
for gating variables is given by constants defined in Appendix 1 in Table A3).

dVm

dt
= iext − ik1 − ix1 − iNa − iCa

Cm
,

d[Ca]i
dt

= −10−7is + 0.07(10−7 − [Ca]i),

dy
dt

= y∞ − y
τy

.

(1)

Times t and τ are in ms. Parameter Cm defines membrane capacitance in µF/cm2 (in this study
Cm = 1). Ionic currents are described in Appendix 1 in Table A1. All currents are in the units of
µA/cm2. Definition of this currents are given by Equations (2).

ik1 = 0.35

(
4

e0.04(Vm+85) − 1
e0.08(Vm+53) + e0.04(Vm+53) + 0.2

Vm + 23
1 − e−0.04(Vm+23)

)

ix1 = x10.8
e0.04(Vm+77) − 1
e0.04(Vm+35)

iNa = (gNam3 h j + gNaC)(Vm − ENa)

is = gs d f (Vm − Es).

(2)
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Figure 1. (Color online) Stimulation function iext for A = 80µA/cm2, and c = 20ms. Parameter c is labelled by red colour.

In these equations, parameter E defines voltages and g expresses conductances. The definition of
these parameters used in this study is given in Appendix 1 in Table A2. Variable Es is defined by the
following equation:

Es = −82.3 − 13.0287ln[Ca]i.

Parameters τy and y∞ used in Equations (1) are given by:

τy = 1
αy + βy

,

y∞ = αy

αy + βy
.

(3)

Rate constants αy and βy used in Equations (3) are given by:

αy,βy = C1eC2(Vm+C3) + C4(Vm + C5)

eC6(Vm+C3) + C7
. (4)

The constants used in this equation are summarized in Appendix 1 in Table A3.
In this study, the externally applied current iext are impulses with a duration of 1ms created by the

first half period of the sine function followed by the zero function. Variable iext is therefore defined
by the following equation:

iext =
{
A sin(π(t − n(c + 1))), t ∈ [n(c + 1), n(c + 1) + 1], n ∈ N ∪ {0},
0, t /∈ [n(c + 1), n(c + 1) + 1], n ∈ N ∪ {0}. (5)

The graphical representation of Equation (5) can be seen in Figure 1.

3. Main results

In individual simulations, the heart cell was paced by stimulation current with an amplitude A from
36 to 130µA/cm2 with the step of 2µA/cm2 and duration 1ms. The individual stimulation pulses
were separated by delay c (see Equation (5) and Figure 1)). The computations were performed for
the stimulation delays c from 10 to 365ms with the step of 5ms. Each simulation was done for the
time from 0 to 5 × 105 ms. From the results, a variable named normalized model output (NMO)
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was created. This output was computed by calculating the module from the resulting variables that
have been modified to have zero mean and unit variance (see Equation (6)). This variable is used to
investigate the behaviour of the model as a whole.

NMO =

√√√√√(Vm − E(Vm)√
var(Vm)

)2
+
(
[Ca]i − E([Ca]i)√

var([Ca]i)

)2
+

6∑
j=1

(
yj − E(yj)√

var(yj)

)2

. (6)

From these values and also from the AP (variable Vm), amplitude frequency spectrum using Fast
Fourier transform (FFT) for amplitudeA = 80µA/cm2 and each simulated frequencywas computed
as well as the phase diagram was created. Since BR has 8 state variables, for the purpose of creating
phase portrait gating variables x1,m, h, j, d, and f was mapped into R using the following equation:

NGO = x1 + m + h + j + d + f − E(x1 + m + h + j + d + f )√
var(x1 + m + h + j + d + f )

.

Next, the bifurcation diagram for the entire simulated frequency spectrum was created and the 0–1
test for chaos was computed for the entire simulated frequency and amplitude spectrum.

3.1. Phase portraits and the Fourier spectra

Chaotic behaviour of the model was observed on stimulation delays c ∈ {45} ∪ [65, 70] ∪ [90, 95] ∪
[130, 140]. Regular behaviour was observed elsewhere. The cases with regular behaviour can be
divided into five groups (RG1–RG5). Each of these groups corresponds to the different biological
response of the cell to the stimulation pulses and corresponding representatives are shown in Fig-
ures 2–6. In all of these cases, the Fourier spectra are formed by a number of harmonic frequencies,
hence the frequency of the periodic trajectory is computable.

The irregular (chaotic) case is shown in Figure 7, the IRG case. In this case, the Fourier spectra are
formed by a number of harmonic components having the basic, super-harmonic, sub-harmonic, and
combination frequencies on which superposed further motions with frequencies forming the sided
bands of the dominant frequencies are. Their mutual ratio indicates the irregularity of the motion.

RG1 This case can be seen for stimulation delays c ∈ [10, 20] ∪ {35} ms. BR adapts to the stimula-
tion delay (parameter c), and the output is a saw-shaped signal with insufficient amplitude. An
example of this behaviour is depicted in Figure 2.

RG2 For c ∈ [25, 30]ms stimulation occurs, but the action potential is superimposed on a saw-signal
with the frequency corresponding to pacing frequency. These two signals can be seen in the
phase portrait. These results can be seen in Figure 3.

Figure 2. BR responses for A = 80µA/cm2 and c = 15ms. (a) Time responses of AP (up) and NMO (below). (b) FFT of AP (up) and
NMO (below). (c) Phase diagram of BR.
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Figure 3. BR responses for A = 80µA/cm2 and c = 25ms. (a) Time responses of AP (up) and NMO (below). (b) FFT of AP (up) and
NMO (below). (c) Phase diagram of BR.

Figure 4. BR responses for A = 80µA/cm2 and c = 115ms. (a) Time responses of AP (up) and NMO (below). (b) FFT of AP (up) and
NMO (below). (c) Phase diagram of BR.

Figure 5. BR responses for A = 80µA/cm2 and c = 150ms. (a) Time responses of AP (up) and NMO (below). (b) FFT of AP (up) and
NMO (below). (c) Phase diagram of BR.

Figure 6. BR responses for A = 80µA/cm2 and c = 310ms. (a) Time responses of AP (up) and NMO (below). (b) FFT of AP (up) and
NMO (below). (c) Phase diagram of BR.
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Figure 7. BR responses for A = 80µA/cm2 and c = 135ms. (a) Time responses of AP (up) and NMO (below). (b) FFT of AP (up) and
NMO (below). (c) Phase diagram of BR.

RG3 For stimulation delay c ∈ {40, 60} ∪ [75, 80] ∪ [105, 125] ∪ {145} ∪ [155, 275] successful stim-
ulation with spikes caused by unsuccessful stimulation pulse can be seen. The number of
unsuccessful stimulus pulses is dependent on c. The representative of this behaviour is shown
in Figure 4.

RG4 In Figure 5, the typical model response for delay c ∈ [50, 55] ∪ {85, 100, 150} ms can be seen.
The cell stimulation in these cases comes from the relative refractory period and also from
the steady state. The action potential that came from a relative refractory period has a shorter
duration and smaller amplitude than the AP from steady state. In the phase portrait, two curves
can be seen (one comes from the phase of the relative refractory period and one comes from
steady state).

RG5 For stimulation delay c ∈ [280, 365] every pacing impulse cause stimulation that comes from
the steady state. This behaviour can be seen in Figure 6.

IRG Irregular motion of BR can be seen for c ∈ {45} ∪ [65, 70] ∪ [90, 95] ∪ [130, 140]. The repre-
sentative is shown in Figure 7. In this case, the aperiodic motion of time responses together
with continuous frequencies distribution indicates the irregularity of the motion. Moreover,
these cases are chaotic due to the output of the 0-1 test for chaos performed in Section 3.3.

3.2. Bifurcation diagram

Next, bifurcation diagrams of BR were plotted. The bifurcation diagram was created by making a
‘stroboscopic plot’ from the continuous function. A snapshot of the continuous function is taken
once each stimulation cycle, at the same point in the cycle. This sequence of the snapshots was then
plotted vertically. This operation is done for every simulated parameter c. The diagrams can be seen in
Figure 8. In the diagrams, it can be seen that for c ∈ [25, 30] ∪ {45} ∪ [65, 70] ∪ [90, 100] ∪ [130, 140]
are responses either chaotic or with a much longer period than the data collection period for this
diagram. At the other delays, there are regular responses. This coincides with time series exploration.

3.3. The 0–1 test for chaos

To distinguished between regular and irregular patterns, the 0–1 test for chaos was performed. This
test, introduced in [4] (see also [5]), is used to distinguish regular and chaotic dynamics. It works
with the time series and does not need any phase space reconstruction. The resulting value of this
test can only be 0 (regular behaviour) or 1 (chaos). The details about the 0-1 test for chaos are given
in Appendix 2.

For these simulations, a free software environment R [15] was used including key package devel-
oped byMartinovič [9]. The results of this test can bee seen in Figure 9. From the results it can be seen
that chaotic motions for action potential were detected for c ∈ {45} ∪ [90, 95]. For stimulation delays
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Figure 8. Bifurcation diagram of BR for A = 80µA/cm2: for AP (left) and NMO (right).

Figure 9. Results of the 0–1 test for chaos for A = 80µA/cm2: for AP (left) and NMO (right).

c ∈ [65, 70] ∪ [130, 140] cannot be decided if it is chaotic or regular behaviour. Regular responses
were detected elsewhere.

For variable NMO results of the 0–1 test for chaos reports chaotic behaviour for c ∈ {45} ∪
[65, 70] ∪ [90, 95] ∪ [130, 140]. For stimulation delay c= 30 cannot be decided about the nature of
motion. Regular responses were detected elsewhere.

However, since the stimulation of the heart cell is dependent not only on the stimulation frequency
but also on the amplitude of stimulation, the 0–1 test for chaos was computed also for the amplitude
rangeA from 36 to 130µA/cm2 with increments of 2µA/cm2. The results of this test for stimulation
delay up to 160ms can be seen in Figure 10 (above this delay are all responses regular, hence they are
not depicted in the figure).

In Figure 10, it can be seen that chaotic regions are mainly concentrated into three regions. The
first region is at stimulations delays about 30–70ms . The second region is about c = 90ms and the
last region is on stimulation delays about 130ms to 140ms.

The results of this test for action potential contains a number of states, in which the character of
motion cannot be decided about. These states are mainly concentrated on larger amplitudes. Never-
theless, when the model results are being investigated as a whole (in form of variable NMO ) the vast
majority of these indecisive states will disappear.
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Figure 10. Results of the 0–1 test for chaos for all simulated range of c and A: for AP (left) and NMO (right).

4. Conclusions

In this paper, the dynamics of the Beeler–Reuter cardiac cell model was analysed in detail with respect
to the amplitude A and stimulation delay c. The model (1) was forced by the stimulus with the shape
of the half-sine period. The equations were solved numerically using the variable order solver based
on the numerical differentiation formulas implemented as ode15s solver in Matlab. It was observed
that the model is showing regular (see, e.g. Figure 2) as well as irregular patterns (see Figure 7)
for different range of stimulation delays and amplitudes. For detection of this movements character,
the Fourier spectra and bifurcation diagrams (see Figure 8) were used. Chaotic behaviour of action
potential and normalized model output (NMO) were confirmed by the 0–1 test for chaos (Figures 9
and 10), for suitable choices of stimulation delays and amplitudes. However, in some cases, it cannot
be decided if there is chaotic or regular behaviour. From the results can be seen, that the dynamical
properties of the BR model are dependent not only to the frequency of stimulation but also to its
amplitude.

The achieved results can be compared with paper [11], where dynamical properties of modified
Fenton–Karma model of the heart cell were investigated. By this comparison, it can be seen that
changes between regular and chaotic motions are much more rapid with the BRmodel. In particular,
the dynamic properties of the BR model are much more dependent on the amplitude of the stimulus
pulse.
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Appendices

Appendix 1. Definition of BRmodel parameters
Table A1. Ionic currents in BR model.

Current Description

ik1 time-dependent outward potassium current
ix1 time-activated outward current
iNa inward sodium current
iCa the slow inward current carried mainly by calcium ions
iext externally applied current

Table A2. Parameters E and g of BR model.

Parameter Value Units

gNa 4 µmmho/cm2

gNaC 0.003 µmmho/cm2

gs 0.09 µmmho/cm2

ENa 50 mV
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Table A3. Parameters for calculation of constants αy (ms−1) and βy (ms−1) [1].

Constant C1 C2 C3 C4 C5 C6 C7

αx1 0.0005 0.083 50 0 0 0.057 1
βx1 0.0013 −0.06 20 0 0 −0.04 1
αm 0 0 47 −1 47 −0.1 −1
βm 40 −0.056 72 0 0 0 0
αh 0.126 −0.25 77 0 0 0 0
βh 1.7 0 22.5 0 0 −0.082 1
αj 0.055 −0.25 78 0 0 −0.2 1
βj 0.3 0 32 0 0 −0.1 1
αd 0.095 −0.01 −5 0 0 −0.072 1
βd 0.07 −0.017 44 0 0 0.05 1
αf 0.012 −0.008 28 0 0 0.15 1
βf 0.0065 −0.02 30 0 0 −0.2 1

Appendix 2. Description of the 0–1 test for chaos
This correlation method works as follows. For a given set of observations φ(j) for j ∈ {1, 2, . . . ,N} translation variables
for suitable choice of b ∈ (0, 2π) are computed:

pb(n) =
N∑
j=1

φ(j) cos(jb), qb(n) =
N∑
j=1

φ(j) sin(jb),

then the mean square displacement is computed using the following equation

Mb(n) = lim
N→∞

1
N

N∑
j=1

[pb(j + n) − pb(j)]2 + [qb(j + n) − qb(j)]2

here n ≤ ncut where ncut � N. Then, the estimate of the modified mean square displacement is computed using the
next equation

Db(n) = Mb(n) −
⎛
⎝ lim

N→∞
1
N

N∑
j=1

φ(j)

⎞
⎠

2
1 − cos(nb)
1 − cos(b)

.

Finally, the output of the 0–1 test is obtained as a correlation coefficient of ξ and � for fixed parameter b

Kb = corr(ξ ,�),

where ξ = (1, 2, . . . , ncut) and � = (Db(1),Db(2), . . . ,Db(ncut)). Hence, Kb depends on the choice of b. To get K as
the output of the 0–1 test, as limiting value of all Kb, the result value is taken as

K = median(Kb).
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Cardiac fibrosis and other scarring of the heart, arising from conditions ranging from

myocardial infarction to ageing, promotes dangerous arrhythmias by blocking the healthy

propagation of cardiac excitation. Owing to the complexity of the dynamics of electrical

signalling in the heart, however, the connection between different arrangements of

blockage and various arrhythmic consequences remains poorly understood. Where a

mechanism defies traditional understanding, machine learning can be invaluable for

enabling accurate prediction of quantities of interest (measures of arrhythmic risk) in

terms of predictor variables (such as the arrangement or pattern of obstructive scarring).

In this study, we simulate the propagation of the action potential (AP) in tissue affected

by fibrotic changes and hence detect sites that initiate re-entrant activation patterns.

By separately considering multiple different stimulus regimes, we directly observe and

quantify the sensitivity of re-entry formation to activation sequence in the fibrotic region.

Then, by extracting the fibrotic structures around locations that both do and do not

initiate re-entries, we use neural networks to determine to what extent re-entry initiation

is predictable, and over what spatial scale conduction heterogeneities appear to act to

produce this effect. We find that structural information within about 0.5mm of a given

point is sufficient to predict structures that initiate re-entry with more than 90% accuracy.

Keywords: machine learning, neural networks, fibrosis, cardiac electrophysiology, arrhythmia, monodomain

model, re-entry, unidirectional block

1. INTRODUCTION

According to the WHO, in 2016, 17.9 million people worldwide died of cardiovascular diseases
(31% of all deaths). These diseases are the most common cause of death in the world. Although
the function and dysfunction of the heart have been extensively studied, the sheer complexity of
the spatiotemporal dynamics underlying its electrical signalling process leaves much still poorly
understood. This is particularly true when complicating factors are present, such as cardiac fibrosis.

Cardiac fibrosis, the over-activity of fibroblasts in the heart, poses significant health
risks (Hinderer and Schenke-Layland, 2019). Fibroblasts deposit extracellular matrix proteins that
can separate myocytes, resulting in tortuous paths of activation that increase the risk of signalling
malfunctions. This risk depends critically on the extent and arrangement of afflicted tissue, but
this dependency is intricate and very difficult to quantify. Efforts have been made to classify
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different types of fibrotic patterning with the suggestion that
might help stratify risk (de Jong et al., 2011) but with little
attempt to explain why or how these different types of pattern
present different levels of risk. A separate approach focuses on
small-scale structures that produce key behaviours underlying
re-entry and arrhythmia. The pro-arrhythmic mechanisms of
fibrosis are well understood (Nguyen et al., 2014), but the
precise patterns that do or do not trigger those mechanisms are
not well understood. The computational simulation presents a
powerful tool for investigating these structures mechanistically,
and machine learning (ML) provides the opportunity to
automate identification.

In this study, we consider the risk of re-entry posed by
many different fundamental structures of fibrosis. The specific
pattern of fibrosis plays two important roles in the promotion
of re-entry or micro-re-entry: through re-entrant paths within
the damaged region that are long enough to accommodate the
wavelength of the propagating action potential (AP) and by
the presence of structures that facilitate one-way block of AP
propagation. We concentrate on the latter, that is, structures that
selectively block conduction, for example, permitting conduction
in one direction but not the other. This phenomenon of a
unidirectional block is a critical precursor to re-entry (Quan and
Rudy, 1990).

Computational studies have successfully reproduced re-
entries from fibrosis for different types of diseases, such as
atrial fibrillation (Alonso et al., 2016; Vigmond et al., 2016),
myocardial infarction (Sachetto Oliveira et al., 2018a), and
many other pathologies related, for instance, to hypoxia and
fibrosis including hypertrophic cardiomyopathy, hypertensive
heart disease, recurrent myocardial infarction, obstructive
pulmonary disease, obstructive sleep apnoea, and cystic
fibrosis (Sachetto Oliveira et al., 2018b). However, as we do
not know which kind of patterns within the fibrotic substrate
are pro-arrhythmic, these studies depend on the generation
of hundreds of thousands of fibrosis patterns, followed by
Monte Carlo simulations and statistical analysis. These studies
have investigated, for example, the probability of re-entry as a
function of the fraction of damaged tissue. Nevertheless, the
kind of patterns that facilitate unidirectional blocks and how
often these patterns are present in damaged tissues are important
open questions.

Machine learning (ML), as with most fields, has begun to see
a considerable application to cardiac electrophysiology. These
include automated extraction of subtle information from the
electrogram (Yang et al., 2018; Mincholé et al., 2019) and
the identification of promising targets or success rates for
ablation (Zahid et al., 2016; Muffoletto et al., 2019, 2021; Shade
et al., 2020). In this study, we generate a large number of
different realisations of fibrotic arrangement corresponding to
significantly damaged tissue and then apply a single stimulus
originating frommany different points. This creates a rich dataset
of structures that give rise to re-entry. We then isolate regions
of selective block and train a classifier model that identifies
with high accuracy whether a given pattern of fibrosis generates
this pro-arrhythmic behaviour. Importantly, this successful
classification is a first step to address fundamental questions

relating anatomical heterogeneity to re-entry risk, and over what
spatial scale these effects manifest.

2. MATERIALS AND METHODS

2.1. Simulation of Cardiac Activity
We simulate cardiac activity inside the regions afflicted
with fibrosis, examining the patternings of obstacles to
conduction that initiate re-entries sustained inside these fibrotic
regions. These micro-re-entries cause fibrotic regions to act
potentially as ectopic pacemakers that drive tachycardia or
other arrhythmia (Hansen et al., 2015). As our focus is on the
initiation and immediate sustainment of re-entry, we do not
simulate how waves of activation produced by a fibrotic region
interact with healthy surrounding tissue, nor do we consider
scenarios such as fast pacing that indicate the existence of prior
signalling dysfunction.

Cardiac electrophysiological dynamics were simulated using
the monodomain formulation (Sundnes et al., 2006),

Cm
∂V

∂t
= ∇ ·

(

D∇V
)

− Iion, (1)

which treats cardiac cells as capacitive and hence describes the
change in their membrane potential in terms of the current
that flows diffusively to/from neighbouring cells through gap
junctions and by ion transport through the ion channels of
the cell membrane. We use a capacitance density of Cm =

1 µFm−2 and electrical conductivity D = 2.5× 10−4mS. Cell
APs were simulated using the Bueno-Orovio–Cherry–Fenton
(BOCF) model, a reduced model that nevertheless accurately
captures the most important electrophysiological dynamics of
ventricular myocytes (Bueno-Orovio et al., 2008). To represent
the effects of significant tissue damage on APs Shaw and Rudy
(1997); Sachetto Oliveira et al. (2018b), we modified model
parameters to shorten AP duration (APD) to approximately
50ms (see Figure 1A and Table 1). This results in a conduction
velocity of 23 cm s−1, reflecting the decreased gap junction
functionality in diseased tissue (Duffy, 2012; Nguyen et al., 2014).

Simulations were carried out in two-dimensional, 2 × 2 cm
slices of isotropically conductive cardiac tissue. We chose a
larger amount of tissue than the minimum needed to support
re-entry as reported for these types of conditions (0.7 ×

0.7 cm; Sachetto Oliveira et al., 2018b), so as to increase the
number of re-entries present in our generated data. The effect
of fibrosis on conduction was represented by the presence of
non-conducting obstacles (for example collagen), a common
approach taken for both ventricular tissue (Ten Tusscher and
Panfilov, 2007; McDowell et al., 2011) and atrial tissue (Cherry
et al., 2007; McDowell et al., 2015), as well as highly-detailed
microscopicmodels of cardiac tissue where cells are disconnected
by barriers or dead cells (Jacquemet and Henriquez, 2009;
Hubbard and Henriquez, 2014; Gouvêa de Barros et al., 2015).
This approach is in contrast to approaches that represent fibrotic
obstacles indirectly through modifications to conductivity in
afflicted areas, often in response to imaging data informing
fibroblast density (Zahid et al., 2016; Roy et al., 2020).
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FIGURE 1 | Graphical demonstration of some of the methods used in this study. (A) The action potential (AP) of the Bueno-Orovio-Cherry-Fenton (BOCF) model

modified to represent strongly fibrosis-afflicted tissue (parameters in Table 1), and the original BOCF model. Remodelled myocytes repolarise very rapidly with a

triangular-shaped AP. (B) An example fibrotic structure, visualised to highlight the ‘diagonal’ connectivity inherent to placing nodes on element vertices. (C) The

stimulus locations (yellow) used across separate simulations to generate wavefronts travelling in different directions and hence bolster identification of structures that

produce re-entry. (D) Re-entry vulnerability index (RVI) values observed for the structure pictured in (B), showing the identification (by significantly negative value) of

locations that demonstrate selective conduction block.

TABLE 1 | The parameters of the Bueno-Orovio-Cherry-Fenton (BOCF) model,

modified to represent cardiac tissue with significant fibrosis.

Parameter Value Parameter Value Parameter Value

Cm 1 τ+
v 1.4506 τs1 2.7342

uv 0.3 τ−

v1 60 τs2 16

u−v 0.006 τ−

v2 1150 τfi 0.11Cm

uw 0.13 τ+
w 200 τsi 2.8

u−w 0.03 τ−

w1 60 τso1 30.0181

uo 0.006 τ−

w2 15 τso2 0.9957

us 0.9087 τw∞
0.07 ks 2.0994

uso 0.4 τo1 400 k−w 65

uu 1.2 τo2 6 kso 2.0458

w∗
∞ 0.94

Parameter notation is that of Bueno-Orovio et al. (2008).

Obstacles were seeded randomly through the domain by
randomly replacing each grid element with a non-conductive
element with some fixed probability ρ, a typical approach used
for modelling diffuse fibrosis (Kazbanov et al., 2016). We did not
explicitly consider the other types of fibrotic microtexture (such
as compact or patchy fibrosis de Jong et al., 2011). However, by
choosing ρ ∼ 0.5 and simulating many different realisations,

we have considered a very broad range of patterns on the fine-
scale that we analyse in this study. It is worth noting that other
types of fibrotic patterning could be directly incorporated into
our machine learning workflow through recent techniques for
computer generation of large numbers of realisations of different
fibrotic patterns (Clayton, 2018; Jakes et al., 2019).

Equation (1) was discretised using a vertex-centred
control volume finite element method that integrates
bilinear interpolants over the square-shaped elements. This
generates a non-diagonal mass matrix and significantly
reduces discretisation error in this sharp-fronted wavefront
setting (Pathmanathan et al., 2012). For a vertex-centred
mesh where nodes are at element vertices, excitation can
still propagate through the “crack” between diagonally
opposed obstructions, owing to a node being there. As
such, to make our visualisations of fibrotic structures
more intuitive, we display fibrotic obstructions such that
these diagonal connections are respected (Figure 1B).
Timestepping used the second-order generalisation of the
Rush–Larsen method put forward by Perego and Veneziani
(2009), with 1t = 0.05ms. Simulations continued until
all cardiac activity died out, or t = 2 s was reached. These
simulations were carried out on the Barbora supercomputer
(Czech Republic).
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2.2. Re-entries and Conduction Block
Our study concentrates solely on the effect of structure on
the initiation of re-entrant patterns of activation. As such,
each individual simulation used only one stimulus pulse so
as to preclude other conflating factors such as repolarisation
heterogeneity in scarred tissue (Gough et al., 1985). However, to
maximise the opportunity to identify pro-arrhythmic structures,
we increased robustness to specific propagation directions
and patterns of activation by separately using 13 different
stimulus sites for each fibrotic realisation (Figure 1C). To
obtain sufficient data featuring re-entry, a sweep through values
0.4 ≤ ρ ≤ 0.6 was first used to determine those extents of
fibrosis prone to re-entry. For each density value considered,
50 different realisations of fibrosis were created. Re-entry was
detected by the activation of any boundary nodes more than
one time (Figure 2), capturing ectopic waves that successfully
escape the fibrotic region being simulated. A realisation of
fibrotic structure that generated a re-entry for any of the
possible stimulus sites was then labelled as a substrate for re-
entry.

Following initial observations, our high-throughput
simulation protocol concentrated on the range ρ ∈ [0.46, 0.50]
as the values most prone to re-entry. For each ρ value in this
range (in increments of 0.01), an additional 800 fibrotic patterns
were created, and the same simulation protocol as above then

applied to each. Table 2 summarises the size, and basic qualities,
of the resulting data.

To detect specific micro-structures that promote re-entry,
we used the re-entry vulnerability index (RVI) (Orini et al.,
2017; Orini et al., 2019). This index calculates the difference
in activation time for a node and the repolarisation time
of its neighbours, and hence indicates potential for re-entry
formation (Figure 1D). In particular negative values occur when
a neighbouring node has already activated and repolarised when a
node first activates, allowing the node to spread its activation back
to that neighbour and potentially much more of the tissue. This
scenario arises when conduction blocks despite the existence of
waiting excitable tissue, for example, due to excessive electrotonic
loss (Nguyen et al., 2014). An example of conduction dying
out due to source-sink mismatch, only for wave propagation to
succeed in travelling through the same structure from a different
direction, is provided in Figure 3.

Significantly negative RVI values further indicate a likelihood
that surrounding tissue will also be ready to excite, increasing the
risk that a re-entrant event develops into an ectopic wavefront
significant enough to escape and hence trigger extrasystole. We,
therefore, find all locations that exhibited RVI values below a
threshold RVI ≤ −50. When multiple locations were detected
together as a contiguous group, these were simplified to a single
location. Around each detected site, the patterning of fibrosis

FIGURE 2 | A re-entry formed in fibrotic tissue (red arrow indicates the direction of AP propagation), and its detection. An AP initialised on the left border propagates

through the tissue, failing to conduct through the bottom passage. Then, when the excitation turns around (about 250ms), it transmits through this bottom passage

and successfully re-emerges into the remainder of tissue, forming a re-entry (about 375ms). Only re-entries that might escape back into the tissue surrounding the

afflicted region are counted, as detected by nodes sitting on the boundary of the domain being activated more than one time (marked with a red asterisk on

the boundaries).
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(as an array of binary values) was extracted, and labelled as
a “discriminative” structure, reflecting its inconsistent passing
along the excitation dependent on wavefront direction or other

TABLE 2 | Summary of the simulations performed, and the resulting data used for

machine learning (ML) (using one structure size as an example).

65,650 Total simulations

3,902 Simulations featuring a re-entry (that reached the boundary)

5,050 Unique arrangements of fibrosis

1,907 Fibrotic arrangements that generated re-entry

228,659 11×11 binary patterns exhibiting selective block

228,571 11×11 binary patterns not exhibiting selective block

conditions. To complete the dataset, this set of structures was
complemented by a set of ‘indiscriminate’ structures of the same
size, selected by finding locations that satisfied two conditions.
First, indiscriminate structures have to be activated (at least 40%
of their constituent excitable tissue), so that their effects on
wavefront propagation had been tested by the simulation they
came from. Second, indiscriminate structures could not contain
any locations identified by RVI values under the threshold
as discriminative.

2.3. Pattern Classification
To explore how much information regarding re-entry risk
is contained in the patterning of fibrosis, we considered the
ability of neural networks (NN) to successfully classify different

FIGURE 3 | Snapshots of AP propagation demonstrating an event of the unidirectional block. Visualised is one section of the full fibrotic region, detected by our

RVI-based approach. The brightness of colour indicates level of activation, and the red arrows indicate the overall direction of propagation. (A) The wave propagates

from the bottom-right to the bottom-left corner of the section, attempting also to propagate through the central passage but failing due to an imbalance between

excited and excitable tissue. (B) When the wavefront later propagates through the top portion of this structure, it is able to successfully propagate downwards through

the central passage, re-entering into the tissue in the bottom portion.

FIGURE 4 | Re-entry formation depends critically on the amount of fibrotic obstructions. Only a specific range of values of ρ, the probability that any individual mesh

element is obstructed, permits re-entry formation. Shown are the probabilities that a given fibrotic realisation produced a re-entry for (A) at least one stimulus scenario

and (B) for an individual stimulus scenario. A comparison of these two histograms highlights the importance of considering multiple stimulus locations when evaluating

a structure for potential as an arrhythmic substrate.
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structures as discriminative about excitation transfer or not.
The datasets were made balanced by detecting and adding
indiscriminate structures until these were the same in number as
the discriminative structures. As each structure is a binary mask,
they can simply be converted to a vector of 0 and 1 values to serve
as input to an NN. The NN then outputs a single value indicating
a category to which structure belongs (discriminative or not).

A variety of NN architectures were considered, using densely
interconnected layers and zero to four hidden layers. Layer
size varied from 100 to 1,200 neurons. All NN training and
evaluation used the Keras application programming interface
(API) (Chollet, Francois et al., 2015), a popular Python library
for machine learning. We used the Adam optimiser with a binary
cross-entropy loss function to optimise the neural network. The
rectified linear activation function (ReLU) activation function
was used in the inner layers and a sigmoid activation function in
the outer layer. To explore the spatial scale on which patterning
acts to create selective block of conduction and hence re-entry, we
also considered the ability to identify selectively blocking patterns
when working with structures of various sizes. In particular
we take the element identified via RVI as the centre of a
square binary pattern, with side lengths varying from 5 elements
(0.5mm) to 23 elements (2.3mm).

3. RESULTS

3.1. Preliminary Results
As brieflymentioned inMethods, re-entries were found to appear
only within a rather selective range of ρ values (Figure 4),
matching observations of previous studies considering micro re-
entry in untextured fibrosis (Sachetto Oliveira et al., 2018a,b).
This effect is caused by the requirement for both a sufficient
amount of obstruction to create the structures that produce a
source-sink mismatch, and a sufficiently conductive structure for
any resulting re-entrant event to successfully reach the domain
boundary and hence produce an ectopic beat. This balance is
strongly related to the percolation threshold, and we note that
the critical range of 0.45 ≤ ρ ≤ 0.52 for re-entry is here
larger than in the previous studies, as vertex-centred meshes are
naturally more conductive. Figure 4 also compares the chance
of re-entry for any individual simulation (one stimulus site),
with the chance per pattern realisation (for at least one re-entry
across all stimulus sites). Even given that a structure can produce
re-entries that escape the fibrotic region, only very few choices
of stimulus location result in this behaviour, demonstrating a
significant sensitivity to activation pattern.

Figure 5 compares the frequency with which selectively
blocking micropatterns were identified across the large-scale
fibrotic realisations (4 cm2) that did or did not result in re-entry.
The cases exhibiting re-entry showed on average more than two
times as many selectively blocking sites than those that did not.
This confirms the intuition that the presence of microstructures
that may initiate re-entry correlates significantly with the overall
risk posed by a fibrotic region. However, even those realisations
that did not produce re-entry under any stimulus scenario still
produced many individual events of unidirectional or other
selective block of conduction. This shows that the mutual spatial

arrangement of these initiator patterns, and the larger-scale
structure more generally, is also critical to the formation of
re-entries that persist and escape into the surrounding tissue.
Notably, there exists a positive feedback effect when it comes to
simply counting detected discriminative microstructures, and as
once a re-entry has successfully formed, there is an additional
opportunity for repolarisation heterogeneity to produce further
block events in vulnerable microstructures.

Individual examples of micropatterns capable or incapable of
initiating re-entry, as detected by our methods, are presented
in Figure 6. As shown by the arrows indicating the direction
of AP propagation (or block), the pro-arrhythmic patterns (left
side) all result in unidirectional block. Examining the fine-scale
structures that produce this effect reveals broad correspondence
to the AP emerging from thin passages into larger regions
of open tissue. This is the classical example of structural
heterogeneity producing unidirectional block through source-
sink mismatch (Ciaccio et al., 2018). However, the rich diversity
of patterning in these structures and the presence of visually
similar arrangements in the structures observed to permit normal
conduction (right side of figure) highlight the difficulty of
differentiating by eye alone patterns that may or may not
initiate re-entry. This motivates the use of machine learning
as a more accurate, and automated, means of carrying out
this classification.

3.2. Classification of Micropatterns That
Can Initiate Re-entry
The micropatterns that do or do not exhibit selective
(unidirectional, or inconsistent) conduction block were
learned by training a NN classifier, as described in Methods.
Depending on the NN architecture and micropattern size, the
overall accuracy of the classifier (as evaluated using unseen test

FIGURE 5 | Boxplots showing the frequency of microstructures that

selectively block condution (as detected by significant negative RVI) occurring

in large-scale fibrotic realisations that did or did not exhibit re-entry. The higher

the number of such discriminative structures found, the more likely a re-entrant

AP will survive and then escape into the surrounding tissue.
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FIGURE 6 | Examples of pro-arrhythmic (A–D) and non-arrhythmogenic (E–H) micropatterns (23×23 elements), and a close-up view of the structure at their centre.

Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block.

data) ranged from approximately 75 to 91%. Specificity and

sensitivity ranged from 74 to 91%, and the area under the receiver

operating characteristic curve (ROC) curve ranged from 0.82 to

0.95. The dependence of performance on network architecture,
for a fixed micropattern size, is summarised in Table 3, where
it can be seen that maximal classification accuracy of 91% was
obtained by using two hidden layers of 1,000 neurons each.
This architecture strikes the balance between including enough
neurons to capture the high complexity of the classification
problem, and the risks of training difficulties or overfitting
posed by a network with too many neurons. The classification
problems using other micropattern sizes showed very similar
relationships between accuracy and network architecture.
In Table 4 is shown the confusion matrix of the NN for
micropatterns of size 23 × 23, and 9 × 9. These results confirm

that NN performance is balanced, that is, the NN can detect
pro-arrhythmic as well as non pro-arrhythmic structures with
the same accuracy.

The classifier models with appropriate architectures obtain
very good accuracy, considering they are attempting to identify
a complex phenomenon such as unidirectional or otherwise
selective block only from binary micropattern data. On one hand,
we have considered many different patterns of activation (by
using different choices of stimulus site) to generate these data,
and so structures identified as pro-arrhythmic might still exist
safely in a scar region if they never experiencedwaves travelling in
the necessary direction to trigger the initial re-entry. On the other
hand, structures identified as non-arrhythmogenic will have
been subjected to multiple different AP propagation scenarios.
This suggests that microstructures identified as indiscriminate
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TABLE 3 | The resulting accuracy/area under the curve (AUC) of the neural network (NN) for the size of the micropattern 9.

Hidden layers

0 1 2 3 4

Neurons in layer

100 0.758/0.837 0.791/0.871 0.804/0.881 0.809/0.887 0.817/0.891

200 0.778/0.855 0.844/0.91 0.864/0.925 0.865/0.925 0.866/0.925

400 0.81/0.884 0.893/0.937 0.886/0.938 0.895/0.941 0.882/0.933

600 0.833/0.898 0.899/0.943 0.901/0.945 0.901/0.946 0.9/0.946

800 0.848/0.907 0.894/0.938 0.9/0.945 0.904/0.947 0.894/0.938

1000 0.855/0.915 0.904/0.946 0.911/0.952 0.909/0.951 0.903/0.948

1200 0.856/0.915 0.908/0.947 0.91/0.95 0.905/0.946 0.897/0.947

TABLE 4 | (A) The confusion matrix of the NN for 23×23 micropatterns, with four

hidden layers and 800 neurons in each layer.

True state

Pro-arrhythmic Not pro-arrhythmic

(A)

Prediction
Pro-arrhythmic 17,179 4,611

Not pro-arrhythmic 4,616 17,174

(B)

Prediction
Pro-arrhythmic 20911 2,090

Not pro-arrhythmic 2,094 20,915

(B) The confusion matrix of the NN for 9×9 micropatterns, using three hidden layers and

1,000 neurons in each layer.

could potentially be considered safe independent of the factor of
wavefront direction.

Classifier accuracy also allows us to consider the information
necessary in order to identify pro-arrhythmic micropatterns of
obstruction. In this study, we have varied the size of these
micropatterns, and thus can gain some understanding regarding
the spatial scale on which the dynamics of unidirectional
or selective block truly acts. On one hand, if the structures
considered are too small to correctly identify the relevant source-
sink interactions, accuracy will suffer due to this lack of requisite
information. On the other hand, when redundant information
is included by using a too large micropattern size, this only
increases the dimensionality of the learning problem without
supplying anything useful, and accuracy suffers due to the
negatively shifted the balance between dimension and amount of
training data.

Figure 7 shows how changes to micropattern size impact the
accuracy of the resulting classifier models. Accuracy peaks for
patterns of size 9×9, suggesting that the balance of source-
sink mismatch for a wavefront is meaningfully controlled by
the surrounding structure on a length scale of about 0.4–1mm.
The larger end of this range arises from the observation that
with increased amounts of training data, higher-dimensional
datasets may have exhibited even higher classification accuracy.
Saliency maps, which show the respective levels of contribution
of the individual elements of a structure towards the resulting
classification output by a NN, also showed a tendency to

FIGURE 7 | Graph of resulting accuracy dependence on micropattern size for

two hidden layers and 1,000 neurons.

concentrate importance on a small central subsection of the
larger micropatterns (Figure 8). This provides further evidence
towards the conclusion that selective and unidrectional block
events are governed by structure over only a small length scale.

3.3. Generalisation to New Data
In discussing classifier model accuracy, we have been referring
to the performance of the model in classifying micropatterns not
seen by it during the training process, but still sourcing from the
same overall batch of simulations from which the training data
were taken.

In this study, we test the classifier model in a more demanding
fashion by evaluating its performance on a new batch of
simulations designed to more directly examine events of the
selective block. These simulations were carried out on smaller
fibrotic domains (46×46 elements total), with single stimuli
triggered separately on all four edges of the domain to increase
the chance of observing unidirectional block where it might
arise. The best-performing classifier model was then used to try
to identify which microstructures in these new realisations of
fibrosis would or would not show this type of block.

Figure 9 shows a range of example patterns, including those
(both susceptible and not susceptible to unidirectional block)
that the classifier model successfully identified, and some of the
pro-arrhythmic structures that the model failed to detect. The
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FIGURE 8 | Example saliency maps for a selection of 21×21 (A–D) patterns classified by a neural network with zero hidden layers and 1,200 neurons in one layer and

9×9 patterns (E–H) with two hidden layers and 1,000 neurons in one layer. The lightness of grid sites indicates their level of contribution towards the decision of the

classifier for the different micropatterns tested. In the case of the larger patterns (A–D), site importance is concentrated around the centre of the pattern, whereas

smaller patterns more consistently use sites throughout the pattern to evaluate a structure for selective conduction block. This supports the conclusion that the vast

majority of these proarrhythmic phenomena take place on smaller spatial scales.

same archetypal structure of channels connecting to open regions
to produce unidirectional block is observed, although again
identification by eye is significantly challenging. For example,
structures exhibiting omnidirectional block (Figures 9D,E) do
not seem to be immediately separable from those exhibiting
unidirectional block (Figures 9A–C,G–I), but only the latter
structures are able to initiate a re-entry. Our classifier model
allows for the identification of this property beyond a simple
human search for the obvious, qualitative patterns.

However, some patterns that show unidirectional block when
simulated were not detected by the NN classifier, despite its high
accuracy on the data originally used to test its performance.
There could be several reasons for this. The unidirectional block
events observed in false-negative cases often occur very close
to the micropattern boundary (Figures 9H,I). In such cases,
there is insufficient information about the structure around the
wavefront at the critical location of the block, and so the classifier
model struggles to predict it. Additionally, in these smaller-
scale simulations, many more of the micropatterns evaluated
for testing will fall closer to the domain boundaries, where the
balance of source and sink can be affected by the initial stimulus
and the inability of travelling wavefronts to form their full ‘tail’
of activated cells that provide an additional electrotonic sources
of depolarisation. This is likely due to the fact that the structure
responsible for conduction block (unidirectional or otherwise)
will not precisely coincide with the location where the wavefront
dies out. We discuss this further in Conclusions.

4. CONCLUSIONS

We have used high-throughput simulation to approach an
exhaustive exploration of the issue of re-entry initiation in

fibrosis-afflicted tissue, a key precursor to arrhythmia (Hansen
et al., 2015; Sachetto Oliveira et al., 2018a). It is known, at least
for randomly placed obstructions as considered here, that the
probability a site is obstructed is a critical determinant of re-
entry formation (Vigmond et al., 2016; Sachetto Oliveira et al.,
2018b). This finding was recapitulated in this study, for a different
type of computational mesh and was extended by also exploring
how different patterns of activation interact with these regions of
afflicted tissue. In particular, we have demonstrated that for the
most risk-associated extents of fibrosis (ρ ∼ 0.49), a majority
of fibrotic realisations were in fact capable of initiating re-entry
from a single stimulus but only for waves sourcing from a select
few pattern-specific locations. This suggests that lower rates of
initiation previously reported (Sachetto Oliveira et al., 2018b)
are largely a function of only a single stimulus pattern being
considered in that study. This additionally sheds light on one
role of ectopic beats in arrhythmia initiation; if one of the
stimulus scenarios is said to correspond to a healthy sinus rhythm
activation pattern, then the other stimulus scenarios are related
to events such as premature contractions and can often initiate
re-entry even when the typical activation sequence does not.

Although we observed activation sequence to be similarly as
important as structure in terms of producing re-entrant waves
that escape the scar region, the fine-scale events of selective block
required to initiate any re-entrant activity were not expected
to be overly dependent on activation sequence. This intuition
was seen to hold, with a NN classifier model trained only
using binary arrays of fibrosis occupancy (no activation pattern
information) obtaining very good accuracy (up to 91% for
this very challenging learning problem). We also used classifier
accuracy to suggest the important length scale for identifying the
unidirectional block in these fibrotic micropatterns, observing
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FIGURE 9 | Conduction patterns in completely unseen structures from new simulations, and the corresponding predictions of the classifier model. Shown are

examples of correctly identified pro-arrhythmic (A–C) and non-arrhythmogenic (D–F) micropatterns, and undetected pro-arrhythmic (G–I) micropatterns. All are of

size 9×9 elements. Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block. Notably, the classifier model can

successfully identify structures that result in a complete block from all directions (D,E) but could not successfully identify all pro-arrhythmic structures, particularly

those where block occurs near the micropattern boundary (H,I).

9×9 patterns to best balance information content and learning
problem dimensionality for the NNs. This suggests the effective
length scale for individual events of unidirectional (or other
selective) conduction block to be∼ 0.5mm or a little larger.

When the classifier was tested on completely new data (new
simulations not used for training, validation, or testing), it
remained able to detect the key structures involved in generating
unidirectional block events. Impressively, completely-blocking
structures (i.e., blocking from all directions) could be correctly
classified. This more challenging test of the classifier model did
expose some of the limitations of the approach used in this
study, however. First, our RVI-based detection method picks
out the locations where activation dies out, but this does not
always perfectly correspond to the structure most responsible
for the failure to propagate. For example, a wavefront emerging

from a thin channel into a bay of excitable tissue may die out a
little way into the bay, even though the structure surrounding
where the channel ends is the most important. One potential
direction forward is improving the block detection algorithm, so
it better localises the structure responsible for the unidirectional
block instead of wave die-out points. Another direction is to
move away from detecting specific sites of unidirectional block
altogether, and instead attempt to classify micropatterns using
data generated by simulating AP propagation across the micro
patterns themselves.

As the focus of this study was purely on how much
fibrotic structure itself can inform the risk of re-entry, we have
not considered the importance of specific electrophysiological
conditions for the initiation and sustainment of re-entrant
activation patterns. Some examination of the effects of parameter
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variability in this context has already been carried out (Lawson
et al., 2020), but it is a limitation of this study that we
have not explicitly considered how different electrophysiological
conditions impact the importance of structure vs. activation
sequence or the ability to predict structures that selectively block.
We suspect that if the conductivity of unobstructed tissue was
adjusted, or a different cell model (or parameter values for the
BOCF model) was used, the general conclusions we have drawn
here would remain valid, but of course classifier models would
need to be retrained. Anisotropic conduction, in particular, might
also have a pronounced effect on our observations here, especially
considering that different ‘textures’ of fibrosis meaningfully act
to change the effective anisotropy of afflicted tissue (Nezlobinsky
et al., 2020).

We have used a generously sized region of afflicted
tissue for data generation in this study, larger than the
minimal size required to support re-entry in similar
simulations (Sachetto Oliveira et al., 2018b) and larger than
micro-re-entrant paths observed in explanted hearts (Hansen
et al., 2015). Domain size certainly effects the probability of
observing a sustained re-entry, but the observation that the
direction of the initial wavefront is critical for re-entry initiation
should be robust to the domain size. We have demonstrated that
the individual micro-structures that do or do not exhibit selective
or unidirecitonal block act on a length scale of about ∼0.5mm,
much smaller than the size of the full simulation domain. A
bigger limitation of our choice of domain is its two-dimensional
nature, a necessity for carrying out the number of simulations
performed here. In three-dimensions, critical length scales and
fibrotic extents of highest risk would be expected to change,
owing to the differences in source/sink balance (Xie et al., 2010;
Sachetto Oliveira et al., 2018b).

In summary, a new pipeline was implemented to generate
two datasets for pro-arrhythmic and non-arrhythmic fibrotic
patterns. The pipeline involves simulations of re-entries within
fibrotic substrates augmented by stimulations coming from
multiple sites and the automatic identification of unidirectional
blocks via the RVI method. These datasets were used to
train and test a neural network that was able to successfully
classify (accuracy up to 91%) micropatterns by only taking
as input their structures. Therefore, our results suggest that

machine learning provides tools that can be further exploited to
address fundamental questions such as the relationship between
anatomical heterogeneity and re-entry risk, and over what spatial
scale this heterogeneity should be considered.
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Characterization of cardiac cell
electrophysiology model using recurrence plots

Radek Halfar

Abstract The main aim of this paper is to analyse the evolution of cardiac cell
transmembrane potential forced by periodic pacing. For this purpose, the Beeler-
Reuter model of ventricular cardiac cell is used. The Beeler-Reuter model is a well
stated mathematical model of a cardiac ventricular cell. Many papers dealing with
heart electrophysiology using this model for its great properties. In this paper, the
model is forced by pacing stimulus with the shape of the half-sine period followed
by zero function. The computed model motions are investigated using the recurrence
plots, recurrence quantification analysis, and approximate entropy with respect to
the pacing period.

1 Introduction

Since heart diseases are the most common cause of death in the world [19, 5] it is
very important to understand the proper heart work. The mechanical heart work is
governed by electrical impulses generated by the heart itself. These impulses prop-
agate through the heart and make the heart pump blood into the body. Therefore on
the proper propagation of these impulses depends on each individual’s life.

In this paper, the recurrence plots and recurrence quantification analysis (RQA)
are used for investigation of dynamic of the Beeler-Reuter cardiac cell model of
transmembrane potential and the influence of the pacing period to this dynamic.

Since its introduction in 1987 by Eckmann et al. [7] recurrence plot (RP) became
an important tool for the investigation of the dynamical system. Since then, RPs
were successfully used for authentication in the Internet of Things [2], automatic
Parkinsons disease identification [1], investigation of heart rate variability [16] and
many others.

IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava,
Czech Republic, e-mail: radek.halfar@vsb.cz
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2 Beeler-Reuter model

The Beeler-Reuter model of the cardiac cell proposed by Beeler and Reuter in 1977
[3]. Model is established by eight Equations (1) defining the time derivatives of
transmembrane potential Vm in mV, intracellular Ca2+ concentration [Ca]i in mole/l,
and six dimensionless gating variables x1,m,h, j,d, and f . Gating variables are in
Equations (1) modelled as variable y (difference in equations for the particular gat-
ing variables is given by constants).

dVm

dt
=

iext − ik1 − ix1 − iNa− iCa

Cm
,

d[Ca]i
dt

=−10−7is +0.07(10−7− [Ca]i),

dy
dt

=
y∞− y

τy
.

(1)

Times t and τ are in ms. Parameter Cm defines membrane capacitance in µF/cm2 (in
this study Cm = 1). Detailed information about the Beeler-Reuter model can be seen
in [3]. Typical ventricular transmembrane potential computed using Beeler-Reuter
model can be seen in Fig. 1.

Fig. 1 Transmembrane poten-
tial (variable Vm) of stimulated
ventricular cardiac cell com-
puted using Beeler-Reuter
model.
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In this paper, the externally applied current iext are impulses with a duration of
1 ms and amplitude of 80 µA/cm2 created by the first half period of the sine function
followed by the zero function. Variable iext is therefore defined by the following
equation:

iext =

{
80sin(π(t−n(c+1))) t ∈ [n(c+1),n(c+1)+1],
0 t /∈ [n(c+1),n(c+1)+1].

The graphical representation of variable iext can be seen in Fig. 2.
The model equations were solved numerically using the variable order solver

based on the numerical differentiation formulas implemented as an ode15s solver
in MATLAB [17]. The computations were performed for the stimulation delays c
from 10 to 365 ms with a step of 5 ms. Each simulation was done for the time from 0
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Fig. 2 Stimulation function iext for A = 80 µA/cm2, and c = 20 ms. Parameter c is labeled by red
color.

to 105 ms. Subsequent analysis of resulting transmembrane potential using RP was
performed in R [18] designed by R Core Team using packages nonlinearTseries [8]
and fractal package [6].

3 Main results

In order to exclude transient phenomena, the only transmembrane potential (variable
Vm) from 90× 103 to 105 ms were analyzed. From this time period, the values for
subsequent analysis were selected with 1 ms time step. The investigated time series
is thus a length of 10001 data points.

3.1 Recurrence plots

From this time series, the time delay was firstly estimated. This estimation was
computed using fractal package [6] by the first zero crossing of the autocorrelation
function. Next, the number of embedding dimension was estimated by the algorithm
suggested by L. Cao [4] and calculated using nonlinearTseries package [8]. The
threshold for defining to states as a recurrence was selected as a 3% of phase space
diameter.

Next, the recurrence plots were computed using nonlinearTseries package. Re-
sulting RPs can be divided into two groups. One group consists of RP made by
long and uninterrupted diagonal lines (c ∈ [10,25]∪ [35,40]∪ [55,60]∪ [75,85]∪
[105,125]∪ [145,365]). Example of this RP is shown in Fig. 3. In this figure, the
periodic motion of the calculated transmembrane potential is revealed. The period
of the oscillation corresponds to the vertical distance between lines in RP.

In Fig. 4 is depicted graph of given pacing impulses needed for one recurrence
of the model.
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Fig. 3 Resulting reccurence plot (left) and transmembrane potential (right) for c = 55 ms.
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Fig. 4 Graph of given stimulus per one stimulation.

In this figure can be seen, that for stimulation delays c ∈ [10,20]∪{35} ms is
only one stimulation needed for model recurrence. With respect to the short stim-
ulation period it can be derived, that the model did not enter the rest phase and
the transmembrane potential changes within a short range of voltage (see Fig. 5).
For the stimulation delay c = 25 ms can be seen, that for one recurrence is more
than 40 stimulation. For this delay, a triangular signal generated by rapid pacing
of the model is superimposed on the proper transmembrane potential (see Fig. 1
and Fig. 5). For c ≥ 40 are unsuccessful pacing pulses superimposed on the trans-
membrane potential and the number of the stimulation impulses per recurrence is
dropping (with exception of c = {55,150}).

In the second case, the diagonals are interrupted (c ∈ {30}∪ [45,50]∪ [65,70]∪
[130,140]). Examples of these RPs can be seen in Fig. 6 and 7. These lines repre-
sent time intervals, where the trajectory in the phase space runs parallel to another
sequence of this trajectory (dynamics is similar). In RPs can also be seen certain
vertical distances, but these distances are not as regular as in the previous case. In
several cases in this group can be seen a small rectangular patch which rather looks
like the RP of the periodic motion (see Fig. 7). This structure reveals an unstable
periodic orbit.
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Fig. 6 Resulting reccurence plot (left) and transmembrane potential (right) for c = 45 ms.

time (ms)

ti
m

e
 (

m
s
)

2000

4000

6000

8000

2000 4000 6000 8000
90000 90500 91000 91500 92000

−
8

0
−

4
0

0
4

0

time (ms)

V
m

 (
m

V
)

Fig. 7 Resulting reccurence plot (Left) and transmembrane potential (right) for c = 100 ms.

3.2 Recurrence quantification analysis

Next, the recurrence quantification analysis (RQA) was computed. RQA is a method
that belongs to nonlinear data analysis. This technique quantifies the number and
duration of recurrences of a dynamical system in state space. Details about RQA can
be founded in [15]. These calculation were performed in R using nonlinearTseries
package [8]. The resulting RPs were analyzed using several measures. The best
results were achieved by calculating the length of the longest diagonal line (Lmax)
and the ratio between the percentage of diagonal lines in the RP DET , and density
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of recurrence points in a recurrence plot RR. Results of RQA can be seen in Fig. 8.
In this figure can be seen that the length of the longest diagonal line can be divided
into two groups. One group consist of RPs with Lmax ≤ 8000. This RPs can be seen
for c ∈ {25,30,45,50,65,70}∪ [90,100]∪ [130,140], and the RP with Lmax > 8000
which was observed elsewhere. The measure ratio divides the RP into two groups as
well. For the RP with ratio≥ 500 for the stimulation delays c∈{25,45,50,65,70}∪
[90,100]∪{130,135} and for ratio < 500 observed elsewhere. Notice, that results
of RQA correspond to the observations made using RPs.
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Fig. 8 Results of RQA for Lmax (left) and ratio (right).

3.3 Approximate entropy

Next, the approximate entropy (ApEn) was computed. This technique allows com-
paring the complexity of the system with different parameters setting. Another ad-
vantage of this method is that it can be calculated in a short time series. For more
details about approximate entropy see [14, 13].

The calculations of this technique were performed in R using the TSEntropies
package. Neighborhood threshold r was defined as a 10% of phase space diameter.
The ApEn of Beeler-Reuter model can be seen in Fig. 9. In this figure can be seen an
increase of complexity around stimulation delay 30, 45, 70, 90, and 135 ms. Local
extrema on similar values of c can be seen also in Fig. 8. In this figure can be seen
that results of RQA (Fig. 8) and ApEn (Fig. 9) coincide for most values of parameter
c.

4 Conclusions

In this paper, the transmembrane potential calculated using the Beeler-Reuter model
was analyzed with respect to the stimulation period. The model (1) was paced by
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Fig. 9 Results of the approximate entropy.

the stimulus with the shape of the half-sine period. For the solving model equations,
variable order solver based on the numerical differentiation formulas implemented
as an ode15s solver in MATLAB was used.

It was observed, that with periodical forcing the model shows periodic as well as
non-periodic motions and the complexity of data vary with stimulation period. For
the evaluation of motion, the recurrence plots, recurrence quantification analysis
(see Fig. 8), and approximate entropy (see Fig. 9) were used.

The achieved results can be compared to the investigation of the Beeler-Reuter
model using the 0-1 test for chaos published in [11]. This test was designed to distin-
guish regular and chaotic dynamics. The resulting value of this test close to 0 shows
regular behaviour, and result close to 1 shows chaotic motion. For more detailed
description of this test see [9, 10].
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Fig. 10 Results of the 0-1 test for chaos.

Comparing Fig. 8 and 10 can be seen, that the result of RQA and the 0-1 test for
chaos coincide in most values. The difference (the 0-1 test for chaos indicates regu-
lar motion and the ratio≥ 500 or Lmax ≤ 8000 and vise versa) in these figures can be
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found for c∈{25,30,50,100} for RQA measure Lmax, and for c∈{25,50,100,140}
for RQA measure ratio. The achieved results can be also compared with paper [12],
where dynamical properties of modified Fenton-Karma model of the heart cell was
investigated.
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Abstract. One of the many processes in the human body on which our lives depend is the
proper propagation of the electrical signal in the heart tissue. This propagation is dependent
on the work of each heart cell, and even small variations in the synchronous work of these cells
can lead to life-threatening conditions. A proper understanding of cardiac electrophysiology
is therefore essential to understanding heart function and treating heart disease. In this work,
cardiac electrophysiology is investigated using a mathematical model of a human ventricular cell
(Bueno-Orovio-Cherry-Fenton model). This model is paced by regular stimulation impulses,
and its responses to this stimulation are analyzed in terms of their dynamic properties, and
the dependence of its dynamic parameters for the frequency and amplitude of stimulation. For
this analysis, classical and modern tools from the field of dynamic systems theory (e.g. entropy
measures, Fourier spectra, the 0-1 test for chaos) are used.

1. Introduction
The heart is a very complex organ on which work each person’s life depends. It is controlled
by electrical signals that determine our heart rate. With an improperly given electrical signal,
the heart can enter a state of ventricular fibrillation that is incompatible with life. From the
dynamic systems point of view, ventricular fibrillation is spatiotemporal chaos [1]. The dynamic
properties of cardiac tissue are therefore examined in detail and many papers are dealing with
this topic [2, 3, 4, 5]. Among such studies, we can mention, for example, works in which
parameters are sought in which chaotic and regular responses of cardiac cell models occur [2, 3]
or describes the transitions between the different types of the dynamic behavior of these models
[5]. Researchers are also describing the behavior of ventricular fibrillation [4], and designing a
control scheme to prevent instability in cardiac tissue [6].

In this work, the dynamic properties of the Bueno-Orovio-Cherry-Fenton model [7] are
investigated. This model is paced by different amplitude and frequency settings. The responses
of this model are then examined in terms of their regularity and complexity.

The paper is organized as follows. In Section 2, the Bueno-Orovio-Cherry-Fenton model is
introduced. In Section 3, the main findings of this study are summarized. These main findings
include time and frequency domain signal analysis in Subsection 3.1. Then using the 0-1 test for
chaos for detection of chaotic and regular data in Subsection 3.2. The results of the complexity
analysis of the obtained time series by entropy measure can be found in Subsection 3.3. Section
4 summarizes the main results of this study.
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Figure 1. Stimulation function iext for A = 80 µA/cm2, and c = 20 ms. Parameter c is labeled
by red color.

2. Bueno-Orovio-Cherry-Fenton model
The Bueno-Orovio-Cherry-Fenton model of human ventricular cell [7] was designed in 2008 and
is defined by 4 differential equations (see Equation (1)). With this model, 5 different sets of
parameters are defined (see table 1) approximating the behavior of the epicardial, endocardial,
and midmyocardial cells, as well as two other ionic models of human ventricular cells (Priebe-
Beuckelmann and Ten Tusscher et al. models). In this work, a parameter set describing the
epicardial cell is used.

∂tu =Jstim − (Jfi + Jso + Jsi)

∂tv = (1−H (u− θv)) (v∞ − v) /τ−v −H (u− θv) v/τ+v

∂tw = (1−H (u− θw)) (w∞ − w) /τ−w −H (u− θw)w/τ+w
∂ts = ((1 + tanh (ks (u− us))) /2− s) /τs

(1)

The equation describing the time derivation of the transmembrane potential ∂tu is
described by ionic currents Jfi (defining membrane depolarization), Jso (defining membrane
repolarization), and Jsi (balances the current Jso during the plateau phase). The definitions of
these curents can be seen in Equation (2).

Jfi = −vH (u− θv) (u− θv) (uu − u) /τfi

Jso = (u− uo) (1−H (u− θw)) /τo +H (u− θw) /τso

Jsi = −H (u− θw)ws/τsi

(2)

Jstim describes the current that is applied to the cell externally. In this work, this current is
formed by the composition of the zero function of length c and the first half of the period of a
sinusoidal function with amplitude A. A graphical representation of this current can be seen in
Figure 1. The equation of this current can be found in Equation (3).

iext =

{
A sin(π(t− n(c+ 1))), t ∈ [n(c+ 1), n(c+ 1) + 1], n ∈ N ∪ {0},
0, t /∈ [n(c+ 1), n(c+ 1) + 1], n ∈ N ∪ {0}. (3)

In these equations, there are several time parameters described as a function of the
transmembrane potential u. These functions are defined as follows:

τ−v =
(
1−H

(
u− θ−v

))
τ−v1 +H

(
u− θ−v

)
τ−v2

τ−w = τ−w1 +
(
τ−w2 − τ−w1

) (
1 + tanh

(
k−w
(
u− u−w

)))
/2

τso = τs01 + (τs02 − τs01) (1 + tanh (kso (u− uso))) /2
τs = (1−H (u− θw)) τs1 +H (u− θw) τs2

τ0 = (1−H (u− θ0)) τ01 +H (u− θ0) τ02.

(4)
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Table 1. Model parameters [7].
Parameter EPI ENDO M PB TNNP
uo 0 0 0 0 0
uu 1.55 1.56 1.61 1.45 1.58
θv 0.3 0.3 0.3 0.35 0.3
θw 0.13 0.13 0.13 0.13 0.015
θ−v 0.006 0.2 0.1 0.175 0.015
θo 0.006 0.006 0.005 0.006 0.006
τ−v1 60 75 80 10 60
τ−v2 1150 10 1.4506 1150 1150
τ+v 1.4506 1.4506 1.4506 1.4506 1.4506
τ−w1 60 6 70 140 70
τ−w2 15 140 8 6.25 20
k−w 65 200 200 65 65
u−w 0.03 0.016 0.016 0.015 0.03
τ+w 200 280 280 326 280
τfi 0.11 0.1 0.078 0.105 0.11
τo1 400 470 410 400 6
τo2 6 6 7 6 6
τso1 30.0181 40 91 30.0181 43
τso2 0.9957 1.2 0.8 0.9957 0.2
kso 2.0458 2 2.1 2.0458 2
uso 0.65 0.65 0.6 0.65 0.65
τs1 2.7342 2.7342 2.7342 2.7342 2.7342
τs2 16 2 4 16 3
ks 2.0994 2.0994 2.0994 2.0994 2.0994
us 0.9087 0.9087 0.9087 0.9087 0.9087
τsi 1.8875 2.9013 3.3849 1.8875 2.8723
τw∞ 0.07 0.0273 0.01 0.175 0.07
w∗∞ 0.94 0.78 0.5 0.9 0.94

The values v∞ and w∞ are defined as

v∞ =

{
1, u < θ−v
0, u ≥ 0−v

(5)

w∞ = (1−H (u− θo)) (1− u/τw∞) +H (u− θo)w∗∞.
In these equations H(x) stands for standard Heaviside function.

3. Main results
In this work, the Bueno-Orovio-Cherry-Fenton model was paced using a stimulation current
defined by Equation (3), and the influence of the amplitude and frequency of the stimulation
current (parameter A and c) was investigated. The amplitude of the stimulation was varied
from 0.45 to 1.00 in 0.025 steps. The c parameter was examined in the range of 30 to 117.5
ms with a step of 2.5 ms. Each simulation was numerically calculated in the time range from
0 to 500 s using the explicit Runge-Kutta (4,5) formula as a ode45 solver in MATLAB. Due to
the elimination of transients, the responses of the model in times from 0 to 250 s were removed.
The time series thus obtained were subsampled using the stimulation frequency (1 sample was
left in each stimulation period for future analysis).
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Figure 2. Results for A = 0.45, and c = 110 ms.Left figure: modeled action potential (blue)
with depicted points, that are analyzed (red); middle figure: analyzed time series (red); right
figure: Fourier spectrum of analyzed time series.
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Figure 3. Results for A = 0.65, and c = 30 ms.Left figure: modeled action potential (blue)
with depicted points, that are analyzed (red); middle figure: analyzed time series (red); right
figure: Fourier spectrum of analyzed time series.

3.1. Time series, Fourier spectra, and bifurcation analysis
The responses of the examined model can be divided into 4 categories.

• In the first category, the stimulus current was not strong enough to create an action potential
(mainly simulations where A < 0.5). Only the triangular signal generated by insufficient
cell stimulation can be seen in the simulated transmembrane potential. The frequency
spectrum consists only of discrete spikes, which imply the regular motion of a dynamic
system in phase space. Examples of these time series can be seen in Figures 2 and 3.

• The second group is also formed by a current that insufficiently stimulates the heart cell
(mostly A < 0.5). In these cases, however, the frequency spectrum is continuous, which
indicates the irregular movement of the dynamic system. This case is shown in Figure 4.

• An action potential has already been created in this category and the responses of the model
form a regular motion represented by a discrete frequency spectrum. These time series can
be found mainly for A < 0.5 a c ≥ 60 (see Figure 5).

• The action potential is formed by an irregular motion that forms a continuous frequency
spectrum. These responses are typical for pacing delay c < 60 and pacing amplitude
A > 0.5. An example of this time series can be found in Figure 6.

Next, bifurcation diagrams were plotted for 3 stimulation amplitudes A = 0.55, 0.85, 1 (see
Figure 7). It can be seen from these diagrams that the irregular movement of the action potential
is concentrated at higher stimulation frequencies and the regular movement is detected at higher
values of the stimulation delay c (the bifurcation diagram is formed by individual points for these
values of c). This corresponds to time series exploration.
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Figure 4. Results for A = 0.475, and c = 87.5 ms. Left figure: modeled action potential (blue)
with depicted points, that are analyzed (red); middle figure: analyzed time series (red); right
figure: Fourier spectrum of analyzed time series.
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Figure 5. Results for A = 0.75, and c = 110 ms.Left figure: modeled action potential (blue)
with depicted points, that are analyzed (red); middle figure: analyzed time series (red); right
figure: Fourier spectrum of analyzed time series.
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Figure 6. Results for A = 0.75, and c = 55 ms.Left figure: modeled action potential (blue)
with depicted points, that are analyzed (red); middle figure: analyzed time series (red); right
figure: Fourier spectrum of analyzed time series.

3.2. The 0–1 test for chaos
The 0-1 test for chaos was performed to detect chaotic movements in the investigated time series.
This test was introduced in 2004 in the article [8] (see also [9]). One of the advantages of this
test is that it works directly with the time series and therefore it is not necessary to reconstruct
the motion of the dynamic system in phase space. The output value of this test is between 0
and 1. In the case of the resulting values approaching 0, we consider the examined time series
to be regular. For a final value approaching 1, we consider the time series to be chaotic. If the
final value of this test is not close to 0 or 1((0.05, 0.95)) it is not possible to decide whether it is
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Figure 7. Bifurcation diagram of analyzed time series for A = 0.55 (left), A = 0.85 (middle),
and A = 1 (right).

a chaotic or regular movement.
This test has been used in many different studies to detect chaotic motion in data. An

example is [10], where the author investigated the motion of a double pendulum forced by
biharmonic excitation or paper [11] where is used to find chaotic and regular motions of atomic
force microscopy in tapping mode.

The 0-1 test for chaos is calculated in the following way. For a given set of observations
φ(j) for j ∈ {1, 2, . . . , N} the translation variables pb(n) =

∑N
j=1 φ(j) cos(jb), and qb(n) =∑N

j=1 φ(j) sin(jb) are calculated for a suitable set of values in b ∈ (0, 2π). Subsequently, the
mean square displacement is calculated using the following equation.

Mb(n) = lim
N→∞

1

N

N∑

j=1

[pb(j + n)− pb(j)]2 + [qb(j + n)− qb(j)]2

here n ≤ ncut where ncut � N . Next, the modified mean square displacement is estimated.

Db(n) = Mb(n)−
(

lim
N→∞

1

N

N∑

j=1

φ(j)

)2 1− cos(nb)

1− cos(b)
.

Next, the correlation coefficients of ξ and ∆ for the fixed parameter b are calculated.

Kb = corr(ξ,∆)

where ξ = (1, 2, . . . , ncut) and ∆ = (Db(1), Db(2), . . . , Db(ncut)). Finally, the resulting value of
the 0-1 test for chaos is obtained as the median of Kb.

K = median(Kb).

The resulting values of the 0-1 chaos test can be found in Figure 8. In this figure, it can be
seen that chaotic movements occur mainly at low values of stimulation amplitudes (A ≤ 0.5) or
very fast stimulation frequencies (c ≤ 57.5 ms). An example of these time series can be found
in Figure 4, and 6. This chaotic area is disturbed by the regular movement detected especially
at the stimulation delay c = 50 and c = 52.5 ms. Furthermore, a larger amount of regular
behavior can be observed at the lowest investigated amplitude A = 0.45 (see Figure 2). Next,
it can be noticed that the vast majority of regular behavior is concentrated in the region with a
higher stimulation period and higher amplitude. An example of this time series can be found in
Figure 5. In the figure, it can be also noticed several examples where it is not possible to decide
on the regularity or chaos of the movement (points that are not drawn in red or blue). These
time series occur mainly during transitions between regular and chaotic motion.
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Figure 8. Results of the 0-1 test for chaos.

3.3. Entropy
Entropy calculations do not focus on the detection of regular and chaotic data but assess the
overall complexity of the investigated time series. Therefore, using this method, it is not possible
to decide whether it is a chaotic or regular movement of a dynamic system. The larger the value
of entropy, the greater the complexity of the investigated time series. There are several types
of entropies. For example can be mentioned are topological entropy [12], Kolmogorov-Sinai
entropy [13], approximate entropy [14] and sample entropy [15]. Sample entropy (SampEn) is
a modification of approximate entropy (ApEn) developed by Steve M. Pincus [14]. The main
difference between a sample and approximate entropy is that SampEn does not include self-
similar patterns as ApEn does. The definitions of ApEn and SampEn can be found in [16].
Sample and approximate entropy are used in this work for the analysis of the investigated time
series.

The results of these tests can be found in Figure 9. In this figure can be seen that the results
obtained with SampEn and ApEn are very similar. The highest complexity of the analyzed time
series is concentrated in two areas of higher stimulation frequencies. One area is the amplitude of
less than 0.65 (A < 0.65) and has a stimulation delay of less than 35 ms (c < 35). Another area
can be found for A ≥ 0.65 and c < 50. Higher data complexity can also be seen for stimulation
amplitudes at which no cell stimulation occurs (A < 0.5). By comparing the results of the 0-1
test for chaos (see Figure 8) and entropy (see Figure 9) it can be noticed that the parameters
where the higher entropy (data complexity) was measured are also parameters that the 0-1 test
for chaos evaluated as chaotic.

4. Conclusions
In this study, the dynamic properties of the Bueno-Orovio-Cherry-Fenton model depending on
the pacing amplitude and stimulation frequency were investigated. It has been shown that for
regular stimulation, the model shows both regular as well as chaotic responses. These chaotic
responses were detected using the 0-1 test for chaos. Furthermore, the complexity of the modeled
action potential was investigated by calculating the approximate and sample entropy. It was
found, that the modeled action potential reaches the highest complexity at high stimulation
frequencies. By comparing the results of the 0-1 test for chaos and entropy was proved that
time series with high signal complexity is also chaotic.

By comparing the results of this work with the dynamic properties of the improved Fenton-
Karma model [2] and Beeler-Reuter model [3] it can be seen that the responses of the investigated
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Figure 9. Results of the approximate entropy (left), and the sample entropy (right).

model are more chaotic at low stimulation amplitudes. Furthermore, it can be noted that the
action potential of the Bueno-Orovio-Cherry-Fenton model is not chaotic for the stimulation
delay of c ≥ 60 (unlike other models). These differences in dynamic parameters can have several
causes. These may be the properties of parametric sets examined in these works. Furthermore,
this phenomenon can be caused by the way of evaluating the dynamic properties of a given
model, or it can be the properties of the modeled equations.
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Chapter 5

Conclusion

In this work, the dynamic of cardiac electrophysiology is analyzed. Dynamic behaviour is
investigated from the level of cardiac cells to the propagation of electrical signals in cardiac
tissue. Furthermore, the work investigates the effect of pathological tissue scarring and de-
tecting dangerous fibrotic structures that create proarrhythmic phenomena in cardiac tissue.

The presented results were published in impact research journals (WoS Q1-Q2). A list
of all published papers (including two conference proceedings) that are thesis-related can be
found in Appendix A. In addition, Appendix B is given a list of the author’s thesis unrelated
published results.

In this work, the chaotic properties of cardiac cell models were demonstrated. These
properties were confirmed using classical and modern methods of dynamic systems, such as
frequency analysis, bifurcation diagrams and the 0-1 test for chaos and the dependence of
dynamic behaviour on stimulation parameters (amplitude and frequency) was shown. Since
each model is built with a different level of abstraction, these dynamic behaviour changes also
depend on the model used. These results were published as two research papers (see [TR.1.2]
and [TR.1.3]) and two proceeding journals (see [TR.2.1] and [TR.2.2]).

The last part of this work is dedicated to the effect of pathological fibrosis spatial distribu-
tion on the appearance of proarrhythmic phenomena called unidirectional blocks (structures
selectively blocking AP propagation from a specific direction). The results of this work were
published in a research journal (see Paper [TR.1.1]). In work, the level of fibrotic changes
at which the re-entrant propagation of the action potential is most likely to occur is found.
This information was used to simulate a large number of pathological re-entrant propagations.
Sites promoting re-entry were found in this data using the re-entry vulnerability index. By
extracting the fibrotic pattern around these sites and patterns that do not manifest these
phenomena, a dataset of ’save’ structures and structures in which these proarrhythmic phe-
nomena appear was created. A neural network was then trained to detect these proarrhythmic
structures with more than 90% accuracy. These results provided evidence that using the spa-
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tial distribution of fibrotic cells in the tissue can predict the emergence of these proarrhythmic
phenomena. Furthermore, physical dimensions in which unidirectional block takes place were
estimated using saliency maps.

In future work, further use of artificial intelligence (possibly in combination with features
calculated using dynamic system methods) is planned. Further exploration of the possibilities
of using artificial intelligence in combination with the implementation of real data can bring
progress in diagnosing and treating heart diseases. By implementing RQA analysis, it is
possible to more accurately detect the sites for targeting cardiac ablation (scaring the tissue
to restore a healthy heartbeat). Moreover, by classifying fibrotic tissue, diagnosis can be
made more efficient, and potentially dangerous cardiac scars that can lead to life-threatening
pathologies can be detected. There is still a long way to go to achieve these goals, but the
results presented in this work indicate that it is possible to get there and opens the way to
new possibilities for computational electrophysiology research.
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