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Abstract: Modern solutions for precise fault localisation in Low Voltage (LV) Distribution Networks
(DNs) often rely on costly tools such as the micro-Phasor Measurement Unit (µPMU), which is
potentially impractical for the large number of nodes in LVDNs. This paper introduces a novel
fault detection technique using a distribution network digital twin without the use of µPMUs. The
Digital Twin (DT) integrates data from Smart Meters (SMs) and network topology to create an
accurate replica. In using SM voltage-magnitude readings, the pre-built twin compiles a database of
fault scenarios and matches them with their unique voltage fingerprints. However, this SM-based
voltage-only approach shows only a 70.7% accuracy in classifying fault type and location. Therefore,
this research suggests using the cables’ Currents Symmetrical Component (CSC). Since SMs do
not provide direct current data, a Machine Learning (ML)-based regression method is proposed to
estimate the cables’ currents in the DT. Validation is performed on a 41-node LV distribution feeder
in the Scottish network provided by the industry partner Scottish Power Energy Networks (SPEN).
The results show that the current estimation regressor significantly improves fault localisation and
identification accuracy to 95.77%. This validates the crucial role of a DT in distribution networks, thus
enabling highly accurate fault detection when using SM voltage-only data, with further refinements
being conducted through estimations of CSC. The proposed DT offers automated fault detection,
thus enhancing customer connectivity and maintenance team dispatch efficiency without the need
for additional expensive µPMU on a densely-noded distribution network.

Keywords: active distribution network; low-voltage distribution network; digital twin; smart meters;
fault location; fault classification

1. Introduction

The Distribution Network (DN), as the last stage in the electricity supply chain, plays
a crucial role in delivering electricity to homes, businesses, and industries. It ensures a
reliable supply for our modern lifestyles, where any disruption can cause inconveniences,
financial losses, and safety hazards. Distribution Network Operators (DNOs) utilise a
reactive approach to continuously handle variations in voltage and power quality, thus
ensuring that they remain within the bounds stipulated by regulations and that they
guarantee continuous electricity supply. For European networks, the BS EN 50160 standard
sets the requirements for voltage characteristics in public low-voltage networks [1]. When
taking into account that LV networks constitute the lateral and most dense part of electrical
power grids, then it is clear that they remain more susceptible to disruptions stemming
from numerous origins. These include, but are not limited to, aging components or cables,
incorrect connection configurations following maintenance procedures, or construction
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works that might interfere with electrical infrastructure [2,3]. Regardless of the fault origin,
these occurrences have a negative impact on system reliability, thereby resulting in costly
repairs and power loss for customers, which significantly impacts the DNO because of the
Customer Minutes Lost (CML) penalties. Due to the unforeseeable nature of faults, it is
imperative that, when a fault arises, swift identification and isolation within distribution
systems be executed as quickly as possible to mitigate their consequences.

The current status of fault identification and location methods can be split into two gen-
eral categories, traditional techniques and advanced data-driven techniques. The traditional
techniques are reactive in nature, meaning that they are used after a fault has already oc-
curred. These include impedance-based, travelling-wave-based, and knowledge/experience-
based techniques. Impedance-based methods use voltage and current measurements to
determine the type of fault, which is then estimated on the fault location based on the
apparent impedance [4,5]. Although the impedance-based method is one of the oldest
techniques, it is still used due to its simplicity. Recent impedance-based literature [6–8]
extend the impedance-based method to increase its accuracy by taking into account extra
parameters such as time-varying load profiles, unbalanced networks, and high-impedance
shunt faults. However, as impedance-based methods are single-ended measurements at
the substation, they are prone to the errors arising from the variability of cable impedance
and the non-linearities and harmonics introduced by emerging load types. Travelling-wave
techniques use the propagation time of the generated step/ramp voltage wave, which
caused by the fault, to then translate this time to the fault distance, and, thus, the loca-
tion [9]. Travelling-wave technique accuracy is improved based on the way the recorded
wave is analysed, such as by using wavelet or artificial intelligence methods for wave
analysis [10,11]. This analysis requires a small measurement window (e.g., 100 microsec-
onds) for the time-domain features extraction [12]. While travelling-wave techniques for
fault location in DNs benefit from enhanced accuracy through advanced wave analysis,
a limitation arises from their requirement for a high-sampling device, thus limiting their
fault analysis to only where the device is installed. The knowledge or experience-based
fault location methods rely on the expertise of network operators. Operators can assess
the condition of various parts of the network through a combination of visual, smell, and
noise inspections, which are performed by experienced personnel who can often identify
potential fault locations by observing specific cues [13,14]. Possible visual signs include
physical damage, or they may rely on smell or noise to detect any unusual signs or sounds
that could indicate faulty equipment or electrical arcing, which might be aided with the
help of a sniffing dog [15]. However, the reliance on knowledge- or experience-based fault
location methods makes them highly dependent on the expertise of network operators.
This dependency on specific personnel and the need for effective knowledge transfer could
introduce variability and potential inaccuracies in fault identification, as it relies on the
subjective judgment and experience of individual operators. However, as mentioned earlier,
these traditional techniques are reactive fault localisation techniques, which means they are
deployed in case a fault has already occurred and where the cables are de-energised. In that
case, these techniques help pinpoint the exact fault location. Moreover, for high-impedance
shunt faults, the accuracy of these techniques suffers and might even go unnoticed due to
the relatively low fault currents that are usually below any protection device’s high-current
setting [16,17].

In most cases, the identification and location of faults in DNs can be further improved
through taking a more active approach by integrating data from end-user devices, such as
µPMUs and SMs, in what is known as data-driven fault localisation. The literature covers
numerous examples of using µPMUs for fault localisation. The authors of [18] developed a
µPMU-based fault detection technique for DNs, thereby utilising a combination of volt-
age deviation and power change indices for fault detection in multi-configured networks.
The researchers in [19] introduced an integrated fault detection, classification, and section
identification, one that utilises µPMUs precise synchronised measurements for the effective
pinpointing and categorising of various types of faults within a distribution grid. Another
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approach by [20] was to integrate the data from µPMUs with ML, thereby utilising the
magnitude and angle information of the measurements to enhance fault detection reliability.
Similarly, the authors in [21] utilised PMU data along with a deep learning technique for
short-term voltage stability. Ref. [22] provided a practical framework for decentralised
fault localisation with PMUs performing the fault detection at fault nodes, but this requires
computational capability at each PMU node, which can translate into extra costs. Gen-
erally, the utilisation of µPMUs in LVDNs is impractical due to the high cost related to
their installation. On the other hand, SMs are currently being deployed within national
energy grid upgrade initiatives [23]. However, the proper study of utilising SMs data
for fault identification is lacking, with existing studies often impractical in comparison
to realistic smart meter capabilities or due to the assuming of continuous measurements
post-de-energisation, which is not the case [24]. References [25,26] present an Artificial
Neural Network (ANN)-based fault location method for the IEEE-13 bus and IEEE-37 bus
systems, in which the data from Advanced Metering Infrastructure (AMI) was employed.
The proposed algorithm utilises both voltage magnitudes and currents from the SMs to ac-
curately determine fault locations. The authors in [27,28] used measurements from a feeder
terminal unit at each section to detect fault currents and to identify the faulted section again,
and this was achieved by relying on the accuracy of the current measurement devices.
Refs. [29,30] provided a theoretically validated fault-finding algorithm that relies solely on
voltage magnitudes and the bus admittance matrix, but the practicality of deploying such
an algorithm for LVDNs was not specified. However, most of these techniques assume
the availability of AMIs or SMs as high-sampling measurement devices with robust capa-
bilities for current and power measurements [31,32]. These assumptions can often prove
impractical given the actual capabilities of deployed SMs, which are typically only able to
capture voltage magnitudes at a half-hourly sampling rate [33,34]. Moreover, the limited
installation of SMs necessitates the integration of additional data sources for practical fault
identification and localisation.

While most of the research in the literature focuses on reactive fault identification ap-
proaches after the fault, this work distinguishes itself by prioritising pre-fault identification.
Specifically, it emphasises the detection of high-impedance shunt faults that have the po-
tential to develop into more serious faults. For example, the degradation of cable insulation
might start as a high-impedance shunt fault and develop into a serious short-circuit that
interrupts supply [35–37]. This proactive approach represents a significant departure from
the predominant reactive methods. By identifying and addressing faults at an earlier stage,
the proposed methodology aims to prevent potentially catastrophic outcomes, thus enhanc-
ing the overall reliability and safety of distribution networks. Moreover, it is important
to highlight that only limited number of techniques in the existing literature endorse the
deployment of µPMU for high-impedance shunt faults as a preventive pre-fault measure.
These techniques could potential attain high theoretical accuracies through their access
to full voltage and current waveforms [38,39]. In contrast, the proposed approach in this
paper stands out by exclusively relying on pre-installed smart meters with the practical
limitations of half-hourly voltage magnitude measurements only, thus presenting a cost-
effective and pragmatic alternative. To address this limitation, this manuscript introduces a
novel approach for detecting high-impedance shunt faults and open-conductor faults in DN
feeders. SM measurements, which are mainly voltage-magnitude readings, are augmented
by the virtual data generated within a DT. This DT serves as a digital replica of the physical
asset, in which it emulates its behavior and captures its real-time state with high fidelity.
The application of DTs has demonstrated success in various facets of power systems asset
management [40], including transformers [41], electrical machines [42], power electronics
devices [43,44], and renewable power generation units [45–47]. However, there have been
fewer attempts to use the DT concept for entire network management, all of the attempts
thus far have been within the scope of the transmission network [48–50]. However, from
the literature review, the DT potential within DN studies remains untapped. By seamlessly
integrating the DT paradigm with SM data, our objective is to significantly enhance the
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early detection and precise localisation of high-impedance shunt faults as they develop in
cables and before protection schemes disconnect the circuit.

The presented work leverages the capabilities of the DT in tandem with SM voltage-
magnitude readings. This enables the creation of a comprehensive database of fault sce-
narios, which are effectively matched with their distinctive voltage fingerprint. However,
it is important to note that relying solely on the SM-based voltage-only approach yielded
an accuracy of only 70.7% in fault type and location classification, as will be shown in
later sections. As a result, this research advocates for the integration of the line Currents
Symmetrical Component (CSC) to augment fault detection capabilities.

In view of the fact that SMs do not provide direct current data, this paper proposes
a ML-based regression method to estimate the line currents within the DT. This critical
step significantly improves fault localisation and identification accuracy, thereby achieving
a commendable 95.77% from the original 70.7%. These results affirm the pivotal role
of a DT in DN, thus enabling highly accurate fault detection through SM voltage-only
data, as well as enabling the estimation of line CSC through the DT. The proposed DT-
based fault detection and localisation presents an accurate SM-informed fault detection
solution, thereby enhancing customer connectivity and streamlining maintenance team
dispatch efficiency, all without the need for additional costly µPMUs on the densely-noded
distribution network.

The rest of the paper is organised as follows: Section 2 provides an overview of the
proposed digital twin, as well as explores the studied SPEN feeder. Additionally, this
section introduces the two-stage fault detection, identification, and localisation method-
ology. Moving to Section 3, the focus shifts towards simulation, data preparation, and
ML models training. This encompasses the design of fault scenarios, addressing both
high-impedance shunt fault scenarios and open conductor fault scenarios. Additionally,
this section covers simulations and the training dataset, as well as introduces machine
learning models. In Section 4, the paper presents the results and initiates a discussion
that specifically addresses the impact of partial SM coverage on fault localisation accuracy.
Finally, Section 5 encapsulates the conclusions, offering a summary of the research findings
and their implications.

2. Proposed Digital Twin-Assisted Fault Detection and Localisation Method
2.1. Overview of the Proposed Digital Twin

Considering that, by utilising the data from smart meters and attaining the knowledge
of the characteristics and topology of any distribution network, a precise DT of it can be
built. The DT encompasses all pertinent network information, including load demand,
distributed generation unit type and rating, cable characteristics, as well as the location of
protection and monitoring devices, such as fuses and smart meters, respectively.

As represented in Figure 1, the discussed DT concept can be partitioned into a digital
shadow and a digital model [51]. The digital shadow represents the real-time monitoring
of incoming data streams; these can be smart meter data feeds of voltage time-series,
substation monitor voltages, and the power time series that are being recorded at each
sampling time (e.g., half-hourly). The insights of this digital shadow, along with the
known topology and cable data, are used to synthesise and tune the digital model. The
digital model is then used to simulate the underlying network. It should be noted that
this DT partitioning ensures that the digital model is continuously updated to capture
the most recent network structure and characteristics. From there, the developed DT is
utilised to perform hundreds of what-if scenarios on the underlying network, and this is
performed without affecting its physical counterpart and while using and recording the
results to improve the planning, prevention of issues, and optimising the operation of the
network [52]. This DT has the capability to simulate network behaviour under different
scenarios, such as faults, and it can train ML algorithms for fault identification and location.
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Figure 1. Overview of the structure of the pre-built DT as part of the fault identification.

2.2. Scottish Power Energy Network-Based Digital Twin

To validate the proposed method’s practicality, a distribution feeder within the opera-
tion area of Scottish Power Energy Networks (SPEN), a Scottish DNO, was employed to
build the DT model. The depicted network, as outlined in Figure 2, comprises a low-voltage
LV feeder that derives its supply from a substation’s 11 kV/0.4 kV transformer. This feeder
system encompasses a total of 41 distinct nodes, and it is interconnected by 39 separate ca-
bles, all of which collectively serve a customer base of 19 households. In SPEN’s LV support
room [53], the SM data are visualised on a geographic map to help operators locate network
incidents, and this can be thought of as a version of the digital shadow discussed in the
previous section. However, for analysing different network study scenarios or simulating
different events, a digital model is required. Hence, as part of this research, the network
topology and intrinsic characteristics of this feeder were extracted from the databases of
SPEN, thereby allowing for establishing an accurate digital model as part of the DT in
DIgSILENT PowerFactory 2023 software package. In the PowerFactory Model, 19 loading
points were modelled as low-voltage single-phase loads that were distributed between
the three phases. In addition, in the created model, all customer (LV loads) voltages were
measured through SMs, which was achieved without measuring the power demand to
match the realistic operations since individual customers’ power demand was considered
confidential and was unavailable to the DNOs in the United Kingdom (UK), in accordance
with General Data Protection Regulation (GDPR). This lack of power measurement im-
posed an additional challenge for SPEN in fault localisation. In order to avoid using and
releasing any confidential and private data, four loading conditions were estimated to
mirror real-world scenarios. Loading conditions were estimated based on aggregate feeder
consumption. Additionally, SM readings were concurrently generated alongside the estab-
lished synthetic loads, further enhancing the model’s fidelity and practicality. Ultimately,
the resulting feeder model structure was delineated in the tree representation of the feeder’s
model, as illustrated in Figure 3. This representation encapsulates the interconnected nodes
(buses), branches (cables), and the associated loads, indicating their respective connections
within the distribution network.



Energies 2023, 16, 7850 6 of 24

Phase B Load
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Figure 2. Geographic overview of the studied network from SPEN.

Figure 3. A tree representation of the feeder nodes, cables, and loads.
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2.3. Proposed Two-Stage Fault Detection, Identification, and Location

The main assumption for the proposed fault detection method is that DNOs can
autonomously acquire voltage readings from SMs within a designated area if the voltage
violates a particular threshold, or, upon certain substation events, the voltage readings
and status reports can be polled from the connected SMs in the impacted feeder. This
also includes the added capability to request voltage readings at a higher sampling for
these affected SMs when necessary; this assumption is per the Smart Metering Equipment
Technical Specifications (SMETS) [33], which sets the specifications of all SMs in the UK.
The key contribution of the suggested technique is its capability to identify and locate
faults within LVDN when solely using SMs data, thus eliminating the need for extra
high-sampling devices such as µPMUs. However, due to SM’s relatively long sampling
period (usually 30 min) and the instantaneous nature of faults, a two-step fault detection
approach was adopted. In the initial stage, the conventional substation monitor captures
power/voltage disturbances, computes corresponding fault impedance, and triggers the
second data-driven stage. In the second step, SMs status and readings for the affected
feeder are polled using the highest sampling rate technically viable by the communication
infrastructure (typically 10: 30-s sampling [33]). This information is then employed as the
input for the proposed Distribution Network Digital Twin (DNDT)-based fault localisation
algorithm. As illustrated in Figure 4, the flow chart captures the high-level structure of
the proposed DNDT-based fault detection and localisation. The substation monitor keeps
track of voltage and current levels to detect faults and disturbances before they happen. If
a developing pre-fault condition is detected, an impedance-based method is used, along
with polling time-series voltages and alerts from SMs in the affected feeder. These polled
SMs voltages are then fed into the pre-trained fault type detection and localisation models.
This is a data-driven stage, where the SM voltages from the pre-fault incident are used
to estimate the network’s CSC. Then, the measured voltages and estimated currents are
set against a database of fault locations to estimate the matching type and location. The
implementation details of this data-driven stage are discussed in Section 2.4.

Figure 4. A detailed flow chart of the proposed DNDT-based fault detection and localisation.
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2.4. Fault Identification ML Features Engineering
2.4.1. Smart Meter Voltages and Cables’ Current Symmetrical Components

As unsymmetrical faults, particularly Single-Line to Ground Fault (SLGF), constitute
the majority of faults in a distribution network, the symmetrical components of cable
currents can be regarded as a reliable predictor of fault locations [54–56]. Figure 5 shows a
case of a fault occurring in an arbitrary fault location f at a distance per cent x from node
l. Assuming that the cable impedance is equally distributed through the cable, and that
a total cable impedance of zlm is between nodes l and m, the impedance between node m
and the fault point f can also be referred to as (1 − x) · zlm. From network analysis, the
fault current at point I f can be split into two equivalent injections at nodes l and m, as in
Equations (1) and (2), respectively.

I f l = (1 − x)LI f (1)

I f m = (x)LI f (2)

In the case of an unsymmetrical fault, such as a phase A to ground (A-G) fault, the
negative sequence current vector Ia2 at all network nodes exhibits a valuable feature that is
suitable for the identification of fault type and location. This feature can be shown by (3),
which dictates that, during a fault, the negative sequence currents Ia2 are zero-valued
for all network nodes, except for those pertaining to the fault location, where non-zero
values exist.

Ia2 = [0 0 . . . I f l . . . I f m . . . 0 0]T (3)

However, given the absence of current measurements—let alone the required phasor
measurement needed for analysing negative sequence components—in the LV cables
(where solely RMS voltage measurements are accessible through SMs readings with a
low sampling), a data-driven feature extraction methodology was proposed based on the
simulation capability of DNDT, as shown in Section 2.4.2

l mf

If IfmIfl

(1−x)•zlmx•zlm

Figure 5. A diagram of the equivalent negative sequence current I f at nodes l and m for a fault at
point f .

2.4.2. Data-Driven Feature Extraction

The general approach to attain symmetrical components from network voltages analyt-
ically can be laid off as follows (starting by attaining the voltage symmetrical components
in Equation (4)): Va

Vb
Vc

 =

 1 1 1
α2 α 1
α α2 1

Va1
Va2
Va0


VP = AVS

(4)

where VP represents the Root Mean Square (RMS) voltage readings, A is the transformation
matrix with the complex number operator α = ej120◦ , and VS is the calculated symmetrical
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components. Hence, the voltage symmetrical components can be attained through the
inverse operation in Equation (5),

VS = A−1VP (5)

Then, with knowledge of the network’s negative sequence impedance Z, the negative
sequence component of the currents can be attained as in Equation (6).

Va2 = Za2 Ia2

Generally, VS = ZIS
(6)

However, in the practical case, only the RMS voltage magnitudes were measured
by SM at a subset of the network nodes. This makes the previous analytical approach
impractical in the case of LV feeders. In addition, the prior analysis demonstrated that the
voltage readings VP can be deduced into the symmetrical current component vector IS
through transformation matrix A and network impedance Z. These parameters change as
per the fault type and location according to the network’s equivalent circuit of symmetric
components for that fault. Here, the advantage of having the proposed DNDT arises as the
ability to embed knowledge of these parameters and the estimation of unmetered node’s
voltages through fault scenarios simulations of theDT model, as well as the production
of a dataset constituted of all possible fault locations, types, and scenarios against the
metered voltages and symmetrical cable components. This simulation-generated database
can be inputted into a ML regression model to derive the symmetrical current components
from SM voltages during faults as a first step. The second step would be to utilise the
metered SM along with the predicted current symmetrical cable components to train a
classification model that would be able to determine the fault’s type and location. The
simulation, training, and operation stages of the proposed ML-based model are shown in
Figure 6.

Training

Operation

Training

Operation

Training

Operation

Simulations/ Scenarios

Figure 6. Concept for the proposed DT-based feature extraction and ML-based fault identification
and location approach.

From Figure 6, it can be seen that the DT’s model was used to simulate different fault
scenarios with different fault types and locations, and then the resulting RMS voltage
readings were captured from the SMs in the network. And because the digital model
was not limited by the actual network’s measurement limitations, additional information
about the coinciding symmetrical voltage and current components can be recorded for
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each simulation, thus creating a unique dataset of SM voltages and their corresponding
symmetrical components for this network. This dataset was then used to train a ML model
that acts as a transformation model to convert SM’s RMS voltages into the corresponding
cables’ symmetrical current components. The resulting symmetrical components were then
used in addition to the SM voltages in the fault identification, which was achieved through
ML-based classification modules to determine the type and location of the fault.

3. Simulation, Data Preparation, and ML Model Training

In this section, the outcomes of the proposed fault identification and location method-
ology are presented for the Scottish LV feeder. For the studied feeder, the substation
fuse would immediately blow for solidly high-current short-circuit faults. However, high-
impedance shunt faults or faults with open conductors are not usually detected as they
develop, even though they may cause customer interruptions and hugely impact power
quality [57]. These faults are more difficult to locate within the LV feeder using traditional
techniques [58,59]. Therefore, this study primarily focuses on high-impedance shunt faults
and open conductor faults.

3.1. Fault Scenario Design

To evaluate the performance of the proposed fault identification and localisation
methodology, a comprehensive set of fault scenarios was systematically designed. These
scenarios were generated by iteratively varying parameters to simulate a wide range of
possible fault conditions. The following variations were applied to each cable within
the network.

3.1.1. High-Impedance Shunt Fault Scenarios

For high-impedance shunt fault scenarios, the faulted cable, fault location percentage
of the total cable length, fault type, phase, fault resistance, and system loading level were
systematically varied as follows:

• Faulted cables: The study encompassed faults occurring in all 39 cables of the feeder,
with each cable subject to the following variations.

• Percentage of faulted cable length: Fault scenarios were generated with varying
percentages of the faulted cable length, ranging from 0% to 100% at 10% intervals.

• Fault types: Four distinct high-impedance shunt fault types, i.e., Line to Ground
(LG), Line to Line (LL), Line to Line to Ground (LLG), and Three-Phase (3Ph) faults
were considered.

• Faulted phases: Faults were induced in each of the three phases (A, B, and C) individ-
ually to account for the faults at different phases.

• Fault resistance (R f ): A range of fault resistances (in ohms) was employed to emulate
the different fault conditions, with values of (0.2, 0.3, 0.4, 0.5, 0.6, 1, 1.5, 2, 3, and 5) kΩ.
These values were chosen to emulate the case of high-impedance shunt fault values.

• System loading: Four different system loading conditions were considered, with
values of [0.5, 0.9, 1.5, and 2] kW. These represented different levels of network
utilisation for the given feeder. The implied range takes into account the yearly and
daily system loading variations.

3.1.2. Open Conductor Fault Scenarios

The open conductor faults can be considered a special case of the high-impedance
shunt fault, where supply to the rest of the network was cut; hence, it has similar variations
as follows:

• Faulted cables: Similarly, the open conductor analysis was performed on all of the
39 cables in the network.

• Percentage of faulted cable length: Unlike the case of high-impedance shunt faults,
the percentage of the cable at which the open conductor fault occurred did not have a
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significant impact on the readings; however, the results were augmented with varying
percentages of the faulted cable length, ranging from 0% to 100% at 10% intervals.

• Faulted phases: Open conductor fault scenarios covered all of the permutations of
a single-phase outage (A, B, and C) and of the phase combinations (AB, BC, AC,
and ABC).

• System loadings: The same four system loading conditions (0.5, 0.9, 1.5, and 2) kW
were utilised to capture the impact of varying network utilisation on fault identification
and location.

3.2. Simulations and Training Dataset

The aforementioned parameter variations and values were incorporated into a Python
script, thereby facilitating the automation of the DIgSILENT PowerFactory model for the
entire feeder. The Python script was structured as in Algorithm A1 in Appendix A, which
shows that it loops through the given range of fault parameters through the indented levels
of loops that, at the end, adds to the recorded relevant measurements, including SMs read-
ings and the cables’ CSCs into a dataset CSV file Results_Dataset.csv. The resulting dataset,
as visualised in Figure 7, had 217,932 rows (which corresponded to the permutations of
different fault scenarios) and 180 columns. The columns included the following:

• The first 6 columns were for defining the fault scenarios: fault type, phase, cable,
location percentage, fault resistance, and loading.

• The following 57 (3 × 19) columns were for the A, B, and C RMS voltage values for
each of the 19 loadings, where only the connected phase had a null value for the other
two phases.

• The remaining 117 (3 × 39) columns corresponded to the currents’ zero, positive, and
negative sequence components (i0, i1, i2) for each of the 39 cables.

,

Figure 7. Structure of the training dataset.

3.3. Machine Learning Models
3.3.1. Value of the Current Symmetrical Components’ Estimation Stages

The initial approach was to directly use a ML classification model to map between the
SM voltage-only readings into the corresponding fault type and location; however, when
using that approach, the accuracy plateaued at 70.7%. Figure 8 displays a fault located
at cable “L 28-29” on the feeder. The impedance-based method, when applied to this
scenario (as an impedance measured from the substation), resulted in multiple potential
fault locations due to the radial nature of the feeder. These estimations were further affected
by the high-impedance characteristics of the fault, thus causing an offset from the true fault
location. In contrast, when utilising the initial approach of the raw SM voltages only as
inputs for the ML classification model, the accuracy was notably low, and it misclassified the
fault location to cable “L 31-34”. The voltage-based model notably misclassified the faults
situated upstream or at a distance from the SM locations. This limitation prompted the
development of the proposed CSC-based method, which successfully located the studied
fault to the true location. The CSC-based accurately identified the location of faults, even
in cases where the traditional voltage-based method struggled and achieved an overall
accuracy of 95.77%. This enhancement not only showcases the efficacy of the CSC-based
approach, but it also underscores the crucial role of having a DT that is able to predict these
CSC on basis of the network’s model.
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In the subsequent subsections, the trained ML models were validated through thou-
sands of scenarios. A confusion matrix was employed to succinctly represent all cases, with
the actual locations (true class) delineated in the rows. For each true case, the corresponding
row provides a breakdown of how many validation scenarios were classified into each
category (predicted class). This visualisation aids in the comprehensive evaluation and
understanding of the classification accuracy and weakness.

Figure 8. Comparison between fault location estimation through an impedance-based method, ML-
based classification using SM voltages only, and ML-based classification when using SM and CSC.

3.3.2. Load Voltage/Cable Current Regression Model

As Section 2 outlines, the fault identification and location process relies on the cables’
CSCs. Given that SMs provide voltage magnitudes only, a regression model was imperative
to derive the zero, positive, and negative sequence currents of the network cables. It is
worth noting that this regression model is unique to each specific feeder, and it corresponds
to its respective impedance characteristics. For this study, a Random Forest Regressor was
trained on the 19 SM voltages of the loads as the input, and the cables CSCs as the output.
After training, the regression model was evaluated through a five-fold cross-validation
using the entire dataset to benchmark the regressor’s accuracy. The validation showed a
satisfactory Mean Squared Error (MSE) of 3.58 × 10−5, which presents the trained model’s
ability to accurately predict the entire network’s CSCs from the provided SM voltages.

3.3.3. Fault Location Classification Model

Considering the relatively short lengths of the sections/cables in the analysed LV
feeder (as shown in Table 1), predicting the fault cable alone can suffice in fully locating a
fault. To achieve this, a Decision Tree Classifier was trained on the voltages and the CSCs from
the simulation-generated dataset. Utilising a 25% holdout for verification, the classifier
demonstrated an accuracy of 95.77%, which is visualised by the confusion matrix in Figure 9.
This matrix was deemed acceptable given the cables’ close proximity and limited length.
For instance, the model exhibited a higher degree of confusion in distinguishing the faults
between cables “L 4-3” and “L 2-3”; however, Table 1, along with Figure 3, clarify that
this is attributed to the fact that cable “L 2-3” can be viewed as a mere 20 cm extension of
cable “L 4-3”. In Figure 9, the confusion matrix reveals an important observation: cables
near or surrounded by smart meters are more accurately located compared to cables that
are farther away. We can see this by examining the true positive (diagonal) numbers in
Figures 3 and 9. For instance, the nodes at the beginning of the cable, like L 4-3 and L 2-3,
had the highest confusion and lowest true positive values because they lacked nearby smart
meters. On the other hand, the cables that were surrounded by smart meter-measured
nodes, such as L 39-40 and L 14-15, had the highest true positive rates. This demonstrates
the impact of smart meter locations on the accuracy of fault cable detection.
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Figure 9. The confusion matrix for the fault location classifier.

Table 1. The studied feeder’s cable data.

Index Cable Name Cable Length (m) From Node To Node

1 L 1-2 0.5 1 2
2 L 2-3 0.2 2 3
3 L 4-3 1.3 4 3
4 L 5-4 5.6 5 4
5 L 6-5 47.5 6 5
6 L 6-7 18.6 6 7
7 L 8-6 31.7 8 6
8 L 8-9 28.6 8 9
9 L 9-11 1.4 9 11
10 L 9-10 7.9 9 10
11 L 11-12 7.7 11 12
12 L 11-13 12.1 11 13
13 L 13-14 9.9 13 14
14 L 14-15 4.4 14 15
15 L 13-16 15.1 13 16
16 L 16-18 41.6 16 18
17 L 18-19 13.7 18 19
18 L 18-20 16.4 18 20
19 L 22-21 6.7 22 21
20 L 21-20 14.5 21 20
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Table 1. Cont.

Index Cable Name Cable Length (m) From Node To Node

21 L 20-24 19.8 20 24
22 L 26-25 6.4 26 25
23 L 25-24 14.5 25 24
24 L 24-28 3.0 24 28
25 L 16-17 11.3 16 17
26 L 27-29 10.5 27 29
27 L 28-29 15.4 28 29
28 L 29-30 2.7 29 30
29 L 30-31 5.3 30 31
30 L 31-32 32.8 31 32
31 L 31-34 15.6 31 34
32 L 28-23 19.9 28 23
33 L 32-33 6.9 32 33
34 L 36-35 6.6 36 35
35 L 35-34 14.4 35 34
36 L 34-37 2.6 34 37
37 L 37-38 29.2 37 38
38 L 37-39 19.9 37 39
39 L 39-40 5.1 39 40

3.3.4. Fault Type Identification Classification Model

A Decision Tree Classifier was employed to predict the fault type, an essential step for
fault identification. The original dataset was utilised in its training, thereby incorporating
all voltage and CSC, as outputted from the simulation into their raw form. However, for a
realistic validation, only the voltages of the 25% holdout set were employed. Subsequently,
when using the previously mentioned regression model, the corresponding CSCs were
predicted. These predicted CSC values, along with the actual measured voltages, were
used as inputs for validation. The results demonstrated an exceptional accuracy of 99.9%.
The confusion matrix for the fault type classifier validation is depicted in Figure 10.

Figure 10. The confusion matrix for the fault type classifier.



Energies 2023, 16, 7850 15 of 24

3.3.5. Detailed Overview of Machine Learning Models

(a) The Random Forest Regressor

As discussed in Section 3.3.2, the Random Forest Regressor, a powerful ensemble
learning technique, was employed to estimate the CSCs based on the measured SMs
voltages. A Random Forest Regressor is an ensemble learning method that leverages the
collective insight of multiple decision trees to make accurate predictions. It operates by
aggregating the predictions of numerous individual trees, each trained on different subsets
of the data. The key parameters considered for this model include the number of trees
in the forest (n_estimators), the quality metric for splitting nodes (criterion), and the
maximum depth of the trees (max_depth).

For the implementation, the Random Forest Regressor from the Sci-Kit Learn library [60]
was utilised. The specific parameter were carefully chosen to enable the model to effectively
handle fault identification and localisation tasks in real-time scenarios. The complete set of
the trained model’s parameters is outlined in Table A1 for reference.

(b) Decision Tree Classifier for Fault Type and Location

A Decision Tree Classifier is a machine learning algorithm that makes decisions by
splitting the dataset into subsets based on the value of the input features. It recursively
partitions the data until it reaches leaf nodes, which represent the final decisions or classifi-
cations. The Decision Tree Classifier was chosen for fault type and location classification
due to its inherent interpretability. This means that the model’s decision-making process
can be easily understood and visualised, which is crucial in critical applications like fault
diagnosis. The DecisionTreeClassifier class was used from the Sci-Kit Learn library [60]
with the parameters being configured as displayed in Table A2.

4. Results and Discussion

In order to estimate the holistic accuracy of the proposed approach, the original
DIgSILENT PowerFactory model was again used to simulate 100 test scenarios, whose
conditions from fault location, type, and resistance were randomised. Then, the SM voltages
were captured and inputted into the pre-trained ML models in order to attain a predicted
fault cable location and type. The test fault scenarios were designed to be more general than
the training scenarios. This demonstrated the machine learning capability to generalise
from the training data and to make predictions for fault locations that were not specifically
encountered during training. For the type classification, the model achieved an outstanding
accuracy of 100% in determining the fault type. On the other hand, for cable location,
an accuracy of 78% was found. However, this accuracy stands for the exact matches
between the correct cable and predicted cable, as displayed in Table 2, but it can also be
seen that even those miss-classified cables were geographically close to each other; hence,
an additional distance error was used to capture the distance between the predicted cable’s
midpoint and the correct cable’s midpoint to give an indication of the classification error
in terms of distance. The histogram displayed in Figure 11 shows clearly that, although
the spot-on accuracy was 78%, 87 of the 100 test cases had a distance error between 0 and
0.02 km, with only 6 cases that had a distance error between 0.02 to 0.04. In addition, only
6 cases had a distance error between 0.04 to 0.06. Out of the 100 cases, only 1 case had a
distance error above 0.06 km.

In the context of fault location within distribution networks, the achieved results
hold significant promise. Relying solely on SMs for fault identification and localisation
represents a shift towards the more efficient and cost-effective monitoring strategies that
were only enabled by the DT model. The exceptional fault type classification accuracy
of 100% underscores the robustness and added value of the proposed initial stage of the
CSC estimation from the SM voltages. Meanwhile, for fault location, 99% of the predicted
locations were at a relatively close geographic proximity to the actual fault location. This
makes the proposed methodology helpful in the automated detection of faults and their
types, and it helps with narrowing down the search area into a specific cable section. This,
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in turn, will lead to much less connectivity disruptions for customers and will improve the
efficacy of maintenance teams being dispatched to the fault location.

Table 2. A sample of the 100 randomised test scenarios to test the overall accuracy.

Index Correct Cable Predicted Cable Distance Error (km)

1 L 31-32 L 31-32 0.000000
2 L 37-38 L 37-38 0.000000
3 L 16-17 L 16-17 0.000000
4 L 35-34 L 35-34 0.000000
5 L 8-6 L 8-6 0.000000
6 L 26-25 L 26-25 0.000000
7 L 8-6 L 8-9 0.015661
8 L 5-4 L 5-4 0.000000
... ...

...
...

94 L 34-37 L 37-38 0.020891
95 L 13-14 L 14-15 0.000737
96 L 34-37 L 37-38 0.020891
97 L 6-5 L 6-5 0.000000
98 L 16-18 L 16-18 0.000000
99 L 16-17 L 16-17 0.000000
100 L 13-16 L 13-16 0.000000

Histogram for Distance Errors (n=100)

Distance Error (km)

F
re

q
u

en
cy

Figure 11. Histogram of the frequency of distance errors in the 100 randomised test scenarios.

4.1. Detection of Multiple Faults

While the proposed algorithm exhibits remarkable efficacy in identifying individual
faults, it is designed with real-time applications in mind. This ensures that, once a fault
or network topology change is recorded, the DT undergoes a prompt event-based update
process. This includes the retraining of classification models to accurately reflect the latest
network configuration, thereby incorporating any existing faults. This dynamic approach
allows for the system to operate with the most up-to-date information, as well as to identify
and record multiple faults as they occur sequentially. The other potential approach to
achieve multiple or simultaneous fault identification could be through the exhaustive
simulation of all the potential permutations of simultaneous faults in the initial training
dataset; however, this would be significantly computationally extensive, as the larger
network size may lead to higher confusion for the classification models.
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4.2. Impact of the Partial SM Coverage on Fault Localisation Accuracy

In this section, the 100 test case scenarios were re-simulated to understand how the
accuracy of the proposed method is affected by the partial coverage of SMs. These values
were based on the distribution of the partial smart meters, as shown in Figure 12. In the
initial case previously studied in Case 1, where 19 out of the 19 possibly available SMs were
connected (19/19), there were no crosses that indicated the SMs was unavailable. In Case 2,
4 unavailable SMs were found, which meant that measurements were collected from only
15 of the smart meters (15/19). In both Cases 3 and 4, only 13 connected SMs were featured,
the difference being that, for Case 4, the disconnected SMs were the lateral ones, which
caused less visibility for the voltages. Moreover, the low-coverage Cases 5 and 6 featured
only 9 and 6 SMs, respectively, which represented the low SM penetration scenarios.

In the previously studied cases, Case 1 demonstrated full connectivity with 19 out
of 19 SMs (19/19), as well as the highest classification accuracy of 93.6%. However, Case
2 enclosed 4 unavailable SMs, which resulted in a data collection from only 15 out of
19 m (15/19), thus leading to a slight drop in the classification accuracy to 93.4%, which is
comparable to the previously calculated in Section 3.3.3. Both Case 3 and Case 4 had 13
connected SMs, but, in Case 4, the disconnected meters were located on the laterals, thus
resulting in reduced visibility and, consequently, a slightly lower classification accuracy of
93.03% as opposed to 93.2% for Case 3. Furthermore, for low SMs coverage, Case 5 and
Case 6 represented scenarios with 9 and 6 smart meters, respectively, thus indicating low
smart meter penetration, as they exhibited a classification accuracy of 92.8% and 91.5%,
respectively. Figure 13 presents the classification accuracy, which was determined using
the training dataset for validation, as well as the practical test accuracy, which was assessed
by employing random real-world scenarios from the training dataset for testing in all of
the six cases. These results suggest the significant impact of the number and location of the
connected SMs on the fault localisation accuracy. Although the classification’s validation
accuracy remained above 90%, the realistic tests showed a significant drop in accuracy
with partial SMs coverage. In addition, the drop between Cases 3 and 4 were shown to be
much higher for the test scenarios, thus validating the importance of having SMs dispersed
through the lateral nodes of the network. This alludes to the recommendation of having a
minimum lateral node coverage of 70% to ensure reliable accuracies.

It is worth mentioning that the accuracies and values presented in this study are
directly tied to the specific characteristics of the analysed network, and they are limited to
the studied high-impedance pre-fault identification, which underscores the importance of
contextual considerations. Nonetheless, they serve as compelling evidence of the viability
and effectiveness of the proposed DT-based methodology for fault identification and
localisation. It is crucial to acknowledge that the performance metrics and model training
outcomes may vary depending on factors such as network size, the density of deployed
SM, and the prevailing operating conditions.
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Figure 12. The partial distribution of smart meters.
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Figure 13. Accuracy decrease with less SM connected.

5. Conclusions

This paper introduced a pioneering methodology for detecting high-impedance shunt
faults and open conductor faults in DN feeders. By integrating state-of-the-art DNDT tech-
nology with SM measurements only and without µPMUs, particularly voltage-magnitude
readings, fault detection capabilities for DNOs increased significantly. Initial attempts
relied solely on the SM-based voltage-only approach, which yielded an accuracy of 70.7%
in fault type and location classification. However, by incorporating the line CSC through a
machine learning-based regression method within the DT framework, fault localisation
and identification accuracy surged to an impressive 95.77%.

Through extensive DT simulations encompassing a spectrum of fault scenarios, the
trained ML models exhibited exceptional performance. Fault type classification achieved a
flawless 100% accuracy rate, thereby showcasing the robustness of the approach in distin-
guishing the various fault types. Additionally, the predicted fault locations demonstrated
remarkable proximity, whereby they deviated by less than 0.06 km from the actual fault
location in 99% of the tested cases. This remarkable precision substantially reduced the
area requiring investigation, thus enabling targeted dispatches of maintenance teams and
minimising customer disruptions.

These results represent an advancement in the fault detection within DN. The inte-
gration of the CSC estimation stage from the SM voltages signifies the value of building
a DNDT for attaining additional information, as well as for obtaining insights from raw
SM voltage-based DT simulations. In light of the analysis highlighting the crucial role of
accelerating the SM roll-out program, it becomes evident that expediting these efforts is
essential for maximising additional benefits and enhancing the efficiency of applications,
particularly in areas such as fault localisation.

In summary, the proposed methodology equips DNOs with a SM data-informed fault
detection, whereby there is high confidence in specifying the fault type and in providing
precise geographic areas for investigation.
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The DNDT research opens up new avenues for optimising the operation of active dis-
tribution networks. Having a DT in the network empowers broader operational capabilities
within diverse distribution network contexts, thus ultimately contributing to enhanced
reliability and resilience. Future investigations may focus on testing the methodology
with different feeders of diverse network configurations and operational environments.
Additionally, an extension of this work could involve pre-fault identification and locations
that use a partial coverage of SM, or a high integration of embedded generation.
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Appendix A

Algorithm A1 Simulations’ automation and dataset building script

Require: Predefined arrays of fault Lines, types, phases, percentages, Rfs,
loadings
for type in types do

for phase in phases do
for Line in Lines do

for percentage in percentages do
for Rf in Rfs do

for loading in loadings do
<PowerFactory Fault Event Simulation>
Add Fault parameters columns to row
Add SM voltages columns to row
Add lines CSC columns to row
add row to ’Results_Dataset.csv’

end for
end for

end for
end for

end for
end for

Table A1. Parameters for the trained Random Forest Regressor.

Parameter Value Description

n_estimators 10 Number of trees in the forest
criterion ‘mse’ Quality metric for splitting nodes
max_features ‘auto’ Number of features to consider at each split

min_samples_split 2 Minimum number of samples required to split an
internal node

min_samples_leaf 1 Minimum number of samples in newly created leaves

min_weight_fraction_leaf 0.0 Minimum weighted fraction of samples required to be at
a leaf node

bootstrap True Whether bootstrap samples are used

oob_score False Whether to use out-of-bag samples for estimating
generalisation error

n_jobs 1 Number of parallel jobs for fit and predict
verbose 0 Controls verbosity of tree building process
warm_start False Whether to reuse previous solution

Table A2. Default Parameters for Decision Tree Classifier.

Parameter Value Description

criterion ‘gini’ Measure of split quality, possible values: (‘gini’,
‘entropy’, ‘log_loss’)

splitter ‘best’ Strategy for choosing splits, possible values: (‘best’,
‘random’)

min_samples_split 2 Minimum samples required to split a node
min_samples_leaf 1 Minimum samples required in a leaf node
min_weight_fraction_leaf 0.0 Minimum weighted fraction for a leaf
min_impurity_decrease 0.0 Minimum impurity decrease for splitting

ccp_alpha 0.0 Complexity parameter for Minimal Cost-Complexity
Pruning
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