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ABSTRACT

We propose a stable algorithin for blind source separation (BSS)
combining multistage ICA (MSICA) and linear prediction. The
MSICA in which frequency-domain ICA (FDICA) for a rough
separation is followed by time-domain ICA (TDICA) to remove
residual crosstalk. For temporally correlated signals, we must use
TDICA with a nonholonomic constraint to avoid the decorrelation
effect from the holonomic constraint. However, the stability can-
not be guaranteed in the nonholonomic case. To solve the prob-
lem, the linear predictors estimated from the roughly separated
signals by FDICA are inserted before the holonomic TDICA as
a prewhitening processing, and the dewhitening is performed after
TDICA. The stability of the proposed algorithin can be guaranteed
by the holonomic constraint, and the pre/dewhitening processing
prevents the decorrelation.

1. INTRODUCTION

Blind source separation (BSS) is an approach for estimating orig-
inal source signals only from the information of the mixed sig-
nals observed in each input channel. This technique is applicable
to high-quality hand-free speech recognition systems. Many BSS
methods based on independent component analysis (ICA) [1] have
been proposed [2, 3] for the acoustic signal separation. However,
the performances of these methods degrade seriously, especially
under heavily reverberant conditions.

In order to improve the separation performance, we have pro-
posed multistage ICA (MSICA)[4], in which frequency-domain
ICA (FDICA) [3, 5] and time-domain ICA (TDICA) [2] are com-
bined. In this method, first, FDICA can find an approximate solu-
tion to separate the sources to a certain extent, and finally TDICA
canremove the residual crosstalk components from FDICA. There-
fore, the improvement of TDICA is a primary issue because the
quality of resultant separated signals is determined by TDICA. In
this paper, we discuss the stability of the TDICA algorithm, and
newly propose a stable algorithm combining MSICA and linear
prediction for temporally correlated signals, e.g., speech signals.
First, the following points are explicitly noted: (1) The stability
of learning in conventional TDICA with a holonomic constraint
(H-TDICA) [2] is highly acceptable. However, the method cannot
work well for speech signals due to the deconvolution property;
i.e., the separated speech is harmfully distorted by the whitening
process. (2) Todecrease the whitening effect, TDICA with a non-
holonomic constraint (NH-TDICA) has been proposed [6]. This
method, however, includes the inherent drawback that the stability
of leaming cannot be guaranteed. In order to solve both problems
simultaneously, we propose the novel approach in which the linear
predictors estimated from the roughly separated source signals by
FDICA are inserted before H-TDICA as a prewhitening processing
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Fig. 1. Blind source separation procedure performed in the origi-
nal MSICA [4].

(after TDICA, the dewhitening is also performed). The stability of
the learning in TDICA can be guaranteed by the holonomic con-
straint, and it is still possible to separate the temporally correlated
signals because the pre/dewhitening processing prevents the ICA
from performing the decorrelation.

2. SOUND MIXING MODEL

In general, the observed signals in which multiple source signals
are convoluted with room impulse responses are obtained by z(t)

= P ) a(r) s(t — 1), where x(t) = [z1(t), --- , zx(t)]T
is the observed signal vector and s(t) = [s1(t), --- , 50 ()]T is

the source signal vector (see Fig. 1) . K is the number of array
elements (microphones) and L is the number of multiple sound
sources. In this study, we deal with the case of K = L = 2. Also,
a(t) = [ai;(7))i5 ([]:; denotes the matrix in which 7j-th element
is [-]) is the mixing filter matrix. P is the length of the impulse
response.

3. CONVENTIONAL ICA AND PROBLEMS

3.1. BSS Algorithm Based on MSICA [4]

Figure 1 shows the procedure of the original MSICA. MSICA is
conducted in the following steps. First, we perforrn FDICA to
separate the source signals to some extent with the advantage of
high stability. Second, we regard the separated signals z(t) from
FDICA as the input signals for TDICA, and we can remove the
residual crosstalk components of FDICA by using TDICA. Fi-
nally, we regard the output signals from TDICA as the resultant
separated signals. The separated signals of MSICA can be given
as y(t) = 125 w(r) 2(t — 7), where y(t) = [ (t), -,
y(t)]" is the resultant separated signal vector of MSICA and z(t)
= [z1(t), -+, 21 (t)]T is the input signal vector for the TDICA
part in MSICA (i.e., the output signals from FDICA). Also, w(7)
= [wi;(7)];; is the separation filter matrix, and Q is the length of
the separation filter. In this procedure, we optimize w(7) so that
the separated signals are mutually independent.
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Fig. 2. Blind source separation procedure performed in the proposed algorithm combining MSICA and linear prediction.

The selection of TDICA is an important issue because the
quality of resultant separated signals is determined by TDICA. We
have two choices for TDICA algorithms; H-TDICA (2] and NH-
TDICA [6]. In the next section, detailed explanations for each
algorithm and their problems are described.

3.2. Conventional Holonomic TDICA

Amari proposed the TDICA algorithm which optimizes the separa-
tion filter by minimizing the Kullback-Leibler divergence (KLD)
between the joint probability density function and the marginal
probability density function of the separated signals [2]. The it-
erative equation of the separation filter w ) (7) to minimize the
KLD is given as (hereafter we designate the iterative equation as
“H-TDICA”):

Q-1
wil(r) = w(r)+a > {15 -d)
d=0

— (@Ot —7+ ) JwlP@,

where (-)¢ denotes the time-averaging operator, 4 is used to express
the value of the i-th step in the iterations, « is the step-size parame-
ter and T is the identity matrix. 6(7) is Dirac delta function, where
6(0) = 1and 6(n) = 0 (n # 0). Also, we define the nonlinear
vector function ¢ (y(t)) = tanh(y: (t)),- - , tanh(yz (t))] .

3.3. Conventional Nonholonomic TDICA

The H-TDICA forces the separated signals to have the character-
istic that their higher-order autocorrelation is §(7), i.e., the sig-
nals are temporally decorrelated. This performance might have a
negative influence on the source separation. In order to solve the
problem, Choi proposed a modified TDICA algorithm with a non-
holonomic constraint {6]. In this algorithm, the constraint for the
diagonal component of {-} part in Eq. (1), i.e., the higher-order
autocorrelation of separated signals, is set to be arbitrary. The iter-
ative equation of the separation filter w ™) (7) is given as (here-
after we designate the iterative equation as “NH-TDICA”):

wit' (1) = w{™(r)
Q-1
+a Y {dig((By)y(t - 7+ 7))
d=0

~(yyt -7+ JwMd). @)

We have also introduced Eq. (2) in the original MSICA [4] to sep-
arate the mixed speech which corresponds to the temporally cor-
related signal by utilizing the flexibility of the nonholonomic con-
straint.

3.4. Problems in Conventional TDICAs

The advantage and disadvantage of conventional TDICAs can be
summarized as follows. (1) The stability of learning in H-TDICA
is satisfactory. However, the method cannot work well for speech
signals due to the deconvolution property; i.e., the separated speech
is harmfully distorted by the whitening process. (2) On the other
hand, NH-TDICA possibly perforrns no deconvolution, i.e., NH-
TDICA is applicable to speech signals. This method, however,
includes the inherent drawback that the stability of learning can-
not be guaranteed as described in Sect. 5.2. Thus, the separation
of temporally correlated signals such as speech cannot be achieved
only using the conventional TDICAs.

4. PROPOSED ALGORITHM COMBINING MSICA AND
LINEAR PREDICTION

This section describes a new stable algorithm combining the lin-
ear prediction technique with an original MSICA (see Fig. 1). In
the proposed algorithm, the linear predictors estimated from the
roughly separated source signals by FDICA are inserted before H-
TDICA as a prewhitening processing (see Fig. 2). After TDICA,
the dewhitening is also performed. The stability of the learning in
TDICA can be guaranteed by the holonomic constraint, and it is
still possible to separate the temporally correlated signals because
the pre/dewliitening processing prevents the ICA from performing
the decorrelation. The detailed process using the proposed algo-
rithm is as follows.

[STEP 1. FDICA]

FDICA is performed to separate sound sources to some extent. For
example, the typical separation perfortnance in FDICA is 9.4 dB
under the condition that the reverberation time is 300 ms [4, S].
Also, the mel cepstral distortion between the observed signal with
the single source component at the microphone and the output sig-
nals from FDICA is about 2.5 dB. The separation filter of FDICA
has spectrally flat characteristics in the direction of each sound
source [S]. From this, we can estimate the approximate spectra of
the sources blindly.

[STEP 2. Prewhitening by Linear Prediction]

In the linear prediction, the auto-regressive model of the genera-
tion process of the output signals from FDICA is given as

N
a(t) ==Y pmat-n)+ea®) (=1,--,L), @3

n=1
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where p;(n) is a linear prediction coefficient for the I-th input sig-
nal, e;(t) is the input signal of this model, and N is the order of
the linear prediction coefficient. The linear prediction coefficient
is obtained by calculating the Yule-Walker’s simultaneous equa-
tions. The whitened signal e;(t) is obtained by convolving the lin-
ear prediction coefficient pi(n) with zi(t) as e;(t) En_o ni(n)
21(t —n), where p1(0) = 0.

[STEP 3. Holonomic TDICA]

H-TDICA is performed with whitened sngnals The output signals
of H-TDICA can be given as v(t) = ZS S w®(r) et —1),
where v(t) = [v1(t), -- -, v;,(t)]T is the separated signal vector
of H-TDICA, and e(t) = [ex(t), - - -, er(t)]" is the input signal
vector whitened by the linear predlctlon for the H-TDICA part in
MSICA. We optimize w(H)(T) by the following H-TDICA:

Q-1
wi(r) = wP(r)+a Z{Ié(r —d
d=0
— (@@t -7+ jwP@. @

[STEP 4. Dewhitening]

The dewhitening process is performed by using the linear predic-
tion coefficients p; (n) obtained in STEP 2. The resultant separated
signals y:(t) can be obtained by the following IIR filtering:

wi(t) = sz(n wt-n)+u() (=1--,L). (5

n=1

Note that the stability of the filtering is guaranteed because pi(n)
is calculated from Levinson-Durbun’s algorithm .

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup

A two-element array with the interelement spacing of 4 cm is as-
sumed. The speech signals are assumed to arrive from two direc-
tions, —30° and 40°. The distance between the microphone array
and the loudspeakers is 1.15 m. Two kinds of sentences, those spo-
ken by two male and two female speakers are used as the original
speech samples. The sampling frequency is 8 kHz and the length
of speech is limited to within 3 seconds. Using these sentences,
we obtain 12 combinations with respect to speakers and source
directions. In these experiments, we use the following signals as
the source signals: the original speech convolved with the impulse
responses specified by the reverberation times of 300 ms. The im-
pulse responses are recorded in a variable reverberation time room.
In order to evaluate the performance, we used the noise reduction
rate (NRR), defined as the output signal-to-noise ratio (SNR) in
dB minus input SNR in dB. Also, in order to compare the various
ICAs fairly, we perform postprocessing for the specwal compensa-
tion of the separated signals in H-TDICA. This processing is based
on the utilization of the inverse of the separation filter matrix for
the normalization of gain [3].

5.2. Experimental Results and Discussion

In this study, we compare the following MSICAs: MSICA1: FDICA
is followed by NH-TDICA, MSICA2: FDICA is followed by H-
TDICA,MSICA3: FDICA is followed by H-TDICA with spectral
compensation, and MSICA4: FDICA is followed by the proposed
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Fig. 3. Comparison of the noise reduction rates in (a) conventional
MSICALI, (b) conventional MSICA2, (c) conventional MSICA3,
and (d) proposed MSICA4.

method combining H- TDICA and linear redxcuon The length
of the separation filters, w™ (7) or w®™® (1), is 2048. In the
proposed algorithm, the order N in the linear predictor is 1024.

Figures 3(a)~(d) show the NRR results of MSICA1-MSICA4
for different iteration points. These values were averages of all of
the combinations with respect to speakers and source directions.
The step-size parameters are chosen independently for each of the
NH-TDICA, H-TDICA, and the proposed algorithm so that the
NRR scores at the early iterations are almost the same in Figs. 3(a)-
(d). From these results, the following are revealed. (1) In the con-
ventional MSICALI in which the NH-TDICA is used, the behavior
of the NRR is not monotonic and there are remarkably consistent
deteriorations, even when the step-size parameter is changed. (2)
In the proposed algorithm, MSICA4, there are no deteriorations
of NRRs. Therefore, the separation performances are almost com-
pletely retained during all of the iterations.
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Fig. 4. Comparison of the mel cepstral distortions between the ob-
served signal with the single source component at the microphone
and the output signals from (a) conventional MSICA2 or (b) pro-
posed MSICA4.

Regarding the separation performance of MSICA2 and MSICA3
in which the H-TDICA is used, the following are revealed. (1)
The separation performance of MSICAZ2 is obviously superior to
that of the proposed MSICA4. (2) However, its effective separa-
tion performance, i.e., the performance of MSICA3, is inferior to
that of MSICA4. We speculate that the specious performance in
MSICAZ2 is due to the exceeding emphasis of high-frequency com-
ponents by the whitening effect of H-TDICA. Figure 4 shows the
mel cepstral distortion between the observed signal with the single
source component at the microphone and the output signals from
(a) conventional MSICAZ2 or (b) proposed MSICA4. From these
results, we can confirm the spectral distortion in MSICAZ2. In gen-
eral, the separation in the high-frequency region is easier than that
in low-frequency region [7] because the reverberation is shorter as
the frequency increases. Thus, MSICA2 gains the improvement
of the NRR only in the high-frequency region, and consequently
we can conclude that MSICAZ2 is useless for separating the speech
signals from the practical viewpoint. On the other hand, the distor-
tions of the output signals from proposed MSICA4 is lower than
those of MSICA4.

In order to confirm the convergence of each MSICA learning,
we evaluate the frobenius norms of {-} parts on the right-hand
side in Egs. (2) and (4) . Figures 5(a) and (b) show FNMNH) of
the conventional MSICA1 and F'N™) of the proposed MSICAA4.
These scores correspond to the stability of the iterative learning;
it should be monotonically decreased. As shown in these figures,
the conventional ICA loses its stability under the nonholonomic
constraint. However, the proposed method can converge in every
situation and consequently, we can conclude that the proposed al-
gorithm is effective for improving the stability of the learning.

6. CONCLUSION

We newly proposed a stable algorithm for BSS combining MSICA
and linear prediction. In the proposed algorithm, the linear predic-
tors estimated from the roughly separated signals by FDICA are
inserted before the holonomic TDICA as a prewhitening process-
ing, and the dewhitening is performed after TDICA. The stability
of the proposed algorithm can be guaranteed by the holonomic
constraint, and the pre/dewhitening processing prevents the decor-
relation. The experimental results under a reverberant condition
revealed that the proposed algorithm results in the higher stabil-
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Fig. 5. Comparison of frobenius norms of {-} in iterative equation
of (a) NH-TDICA part in conventional MSICA1 and (b) H-TDICA
part in proposed MSICA4.

ity and higher separation performance, compared with the conven-
tional MSICA including H-TDICA or NH-TDICA.
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