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ABSTRACT 

In this paper， we describe new mobile consumer services 
based on speech technologies to support a new 
digitaVmobile era of ubiquitous communication. First， we 
report evaluation results of recognition modules for the 
noise robustness such as speech segmentation， microphone 
a汀ay techniques， and feature normalization modules. We 
us巴d free Continuous Speech Recognition (CSR) software 
Julius/Julian as a speech decoder. Second， we have 
developed an embedded version of the Julius continuous 
speech recognition software on generaトpurpose
microprocessors. We used T-Engine™ as a hardware 
platform. The technical problems to make Julius for 
embedded one are computing/process and memory 
reductions of Julius. We could realize about 2.00 of 
RTF(Real Time Factor) of speech recognition processing 
on the condition of 5000-word vocabulary. 

Categories and Subject Descriptors 
1.2.7 [Natural Language Processing]: Speech 
Recognition and Synthesis， H 1.2 [UserlMachine Systems] 

Human information processing， C.3 [Special-Purpose and 

Application Based Systems]: Microprocessor/micro
computer applications， Real-time and embedded systems 

General Terms 
Experimentation， Human Factors， Languages， Theory. 

Keywords 
Automatic Speech Recognition (ASR)， Continuous Speech 
Recognition (CSR)， Microphone Array， Feature 
Normalization， Julius/Julian: Free CSR Software， 
Embedded Julius， Hardware Platform: T-Engine， SuperH 
Microprocessor， GMS (Gaussian Mixture Selection)， 
HMMs (Hidden Markov Models)， HMIs (Human Machine 
lnterfaces) 
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1. INTRODUCTION 

Recently， the continuous speech recognition software [1] 

has been available and these software packages are used to 
various applications such as dictation software and 
transcription of news announcement reports. However， 
these software packages are running on PCs (Personal 
Computers) which have huge computing resources， both 
computing power and memories. 

Our goal is to develop embedded continuous speech 
recognition software which runs on small computing power 
and with small memories to extend ASR software to 
mobile environmental use. We envision mobile application 
environments， e.g. mobile information service systems 
such as car navigation systems and cellular phones where 
an embedded speech recognizer [2] is running on and 
which are connected to remote servers that support a 
variety of information-seeking tasks. 

Due to improvements in microprocessor performance， it 
has been possible to implement multimedia processing 
technologies using software on microprocessors and/or 
DSP (Digital Signal Processing) chips. This software， 
called middleware， is a kind of code library that connects 
hardware and end-user applications. Middleware enables 
developers and users to use various media processing 
technologies in different mobile applications， such as car 
navigation systems and hand-held PCs， using a single 
mlcroprocessor. 

ln this paper， we first report the evaluation results of 
recognition modules for the noise robustness such as 
speech segmentation， microphone a町ay techniques， and 
feature normalization modules [3]. We used Continuous 
Speech Recognition (CSR) software called Julius/Julian as 
a speech decoder [1]. Second， we report implementation 
results of the CSR software Julius on T-Engine consisting 
of a SuperH™ microprocessor [4). We called this 
embedded CSR software Julius the embedded Julius. The 
SuperH microprocessor has a very limited process power 



and therefor巴 huge computing process and memory 
reductions were needed to realize the embedded Julius on 
th巴 T-Engine board. For the implementation issues， we 
report a binary acoustic models and GMS (Gaussian 
Mixture Selection) computing reductions to realize real 
tlme processmg・ Finally， the evaluation experimental 
results are reported showing successful implementation of 
Julius on T-Engine 

2.CAR TELE九1ATICS SER VICE 

2.1 System Concept for Network Applications 

As information technology expands into the mobile 
environment to provide ubiquitous communication， 
intelligent interfaces will be a key element to enable 
mobile access to networked information. For mobile 
information access， HMIs (Human Machine Interfaces) 
using speech might be the most important and essential 
application， as speech interfaces are more effective for 
small， portable devices. Mobile terminals such as cellular 
phones， PDAs (Personal Digital Assistants) and Hand-held 
PCs (Personal Computers) are already connected to 
networks such as the Internet to access information from 
web services. For effective use of mobile information 
access， speech processing and image processing will be 
key technologies for intelligent mobile terminals 

Especially， Car Telematics refers to a new service 
concept where mobile terminals (e.g. car navigation 
systems， cellular phones) are us巴d to connect to networked 
information services. Figure 1 illustrates the total service 
system concept， which consists of three parts， e.g. 
TerminallClient， Network， and Centre/Server. For the 
Terminals， sophisticated HMIs are required to handle 
various inquiries and to deliver information from the 
Centre using speech and image input/output. The Network 

TERMINAL 

HMls: Human Machine Interfaces 

Figure 1: Service Syslem lmage(Terminal， Nellvork. and CenTre) 
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is typically the lnternet; and via the lnternet， the user"s requests 
are transfeπed to related Web servers at the Centre， and required 
information will be provided from the Centre to users via 
Networks and Terminals [5J. 

2.2 Voice Portal Architecture 

In the car， HMIs based on speech processing such as ASR 
and TTS are essential to provide a safe driving 
environment. Car Telematics using speech technology is 
thought of as one of the Voice Portal services. Figure 2 
shows the Voice Portal service concept based on the 
VoiceXML gateway. In the VoiceXML gateway， VXIs are 
implemented for the WWW to be accessed by voice. The 
VoiceXML is a W3C (WWW Consortium) standard to 
provide dialog functions to voice systems. The VoiceXML 
Gateway also incorporates ASR/TTS engines; sometimes， 
terminals such as car navigation systems also incorporate 
ASRlTTS engines. 

3.ASR 九10DULE E V  ALUA TION 

3.1 Free/Open CSR Software JULIUS/JULIAN 

Julius/Julian is free/open CSR software which has been 
developed by Japanese Universities and delivered by WEB 
[1]. Julius/Julian can recognize large vocabulary over 
20，000 words and running on Personal Computers (PCs) 
which have huge computing resources， meaning more than 
IGIPS CPU power and IGByte memory. Julius is an 
n-gram-based decoder and Julian is a network-based one. 
We evaluate many noise handling techniques (ASR 
modules) using a Julian decoder in automotive 
environments to make technical problems of speech 
processing modules clear [3] 
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3.2 Data Collection in Automotive Environments 

The recording was done in downtown Tokyo， where the 
car was forced to drive slowly with frequent stops due to 
the traffic jam. Therefore， a large part of the background 
noise was from the surrounding environment such as other 
cars， constructions， etc. The speaker was silting on the 
passenger seat， and there was a linear microphone array on 
the dashboard in front of the speaker. The a汀ay consists of 
7(seven) microphones， which are located at the interval of 
10cm， 5cm， 5cm， 5cm， 5cm， and 10cm. The array 
microphones were labeled as # 1 to #7 from the driver seat 
side to the window side， so the central microphone was #4. 
The speaker has a push button (PB) to activate the 
recognition program. The PB was used as a PTT (Press To 
Talk) bulton. After the PB was pushed， a prompt message 
and a beep sound were given to the speaker. The setup of 
data collection using automotive environments is shown in 
Figure 3. 
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Figure 3: Data Collection Setup il1 Car 

We have collected the speech data from 18 speakers ( 11 
male and 7 females， all in their early twenties). 3，620 
utterances for POIs (Point of Interests) were collected in 
total， and they were roughly segmented using a fixed time 
period from the beep. After segmentation， the length of the 
data was approximat巴Iy 7 hours in total. These utterances 
were then labeled by the POI names. Some utterances 
include wrong pronunciation and hesitation， but they are 
all labeled as long as the intention of the speaker can be 
inferred. In this process， we found that 28 (0.8%) 
utterances which could not be labeled as any POIs， and 
were categorized as OOV (out of vocabulary). The number 
of utterances per speaker ranged from 134 to 326， and the 
number of utterances per POI ranged from 10 to 48. These 
numbers are supporting the argument that the utterances 
were made spontaneously. 
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Table 1: Estimated SNR of Each Microphone Data 

mic.ID SNR (full band) dB SNR (400-5500Hz) dB 

ー0.5 9.3 

2 -2.8 12.1 

3 -3.4 8.6 

4 -3.0 9.2 

5 2.7 11.7 

6 3.8 8.5 

7 2.9 10.5 

cJose-taJk 56.7 83.2 

Next， we extracted the endpoint information using the 
close talking data and the POI label using Viterbi 
alignment， They were used as the “oracle" endpoint 
information for the noisy data. We then estimated the 
slgnaトto-noise ratio (SNR) by comparing the power of the 
speech and non-speech segments. Table 1 shows the 
estimated SNR for each microphone. Since the noise 
spectrum has a strong peak in the low-frequency range， we 
also calculated the SNR after applying a bandpass filter 
with the passing band of 400Hz to 5500Hz. It is interesting 
that the estimated SNR does not have any correlation with 
the distance between speakers and microphones， although 
the speech recognition has a correlation with the distance 
as mentioned later in this paper 

3.3 ASR Module Evaluation ResuIts 

(1) Baseline Experiments 

After collection and analyzing the data， we carried out 
evaluation experiments of 152 POI isolated word 
recognition using Julian decoder and our original decoder 
For Julian conditions， the sample acoustic model with 
PTM triphones， which is distributed with the source code， 
was used. Among various variations of Julian， the 
Julian-v3.4.2 grammar driven decoder with 12 MFCC and 
log power， plus their first-order time derivatives is used. 
The path of the silence models only was allowed， which is 
interpreted as rejection. All the data were originally 
sampled by 44.1 kHz， but down-sampled to 16kHz prior to 
the experiments. In the baseline experiments， fixed lenglh 
segmenls are used withoul any sophisticated endpointing， 
and cepsll叫mean normalization (CMN) was applied 

The results of the baseline experiments showed the 
recognition rate of distant-talk was 86.0% and that of 
close-Ialk was 93.4%. The rale of distant-talk was that of 
Ihe central microphone， #4. In the experimenls， the 
individual recognition rates ranged from about 60% 10 
97% 



(2) Evaluation of Various恥1odifications Baseline 86.0� 

We evaluated modifications in various 
modules of the speech recognition system. 
All results are summarized in Figure 4 

Oracle r匂eCllon 86.40/( 

Oracle endpointing 

First， the importance of rejection and 
endpointing are evaluated using oracle 
information. When we used the oracle 
information about OOV (by adding 
lexicons)， the 28 OOV utterances were 
automatically recognized correctly. 
Without oracle information about OOV， 
Julian recognized halves of the 28 OOV 

Enhanced speech (14dB) 

Enhanced speech (26dB) 

Vocabulary size 112 

Vocabulary size 114 

Delay-and sum 86.70/c 

ICA (time) 

utterances co汀ectly， and then the 
improvement by oracle inforrnation was 
0.4% absolute. When we used the oracle 

ICA (frequency) 86.0% 

86.2% 

information of the speech period， the 
recognition rate increased to 90.2% 
indicating very large improvements 

MVN 

HEQ 

DCN 

84.0% 

86.90/( 

Two more sets of oracle experiments 
were carried out to investigate how the 
recognition rate changes according to the 
SNR improvem巴nt and vocabulary size 
refinement. As for the SNR， the distant-talk 

Oracle endpointing + MVN 

Oracle endpointing + HEQ 

Oracle endpointing + DCN 

data were mixed with the close-talk data 
linearly in the time domain with a varying 

weight. Two typical points are plotted and the SNR was 
calculated after applying the bandpass filter. Figure 4 
shows 14dB and 26dB enhanced speech data results. Th巴
improvement from the baseline to 14dB is much larger 
than the improvement from 14dB to 26dB. The 
vocabulary size refinement was done simply by splitting 
the dictionary into two or four groups， and the one 
including the co汀ect word was used for recognition. 
Steady improvements were observed every time the 
vocabulary was reduced. 

Next， two typical microphone array techniques were 
evaluated. The delay-and-sum beamformer [6] was 
implemented in a simple manner using fixed delay between 
microphones. The signals of seven microphones are first 
upsampled to 64kHz， then added delays， summed each 
other， and downsampled to 16kHz again. ICA [7] was 
tested in the time and frequency domains， using the 
microphone #3 and #5， next to the central microphone #4 
on the both sides. The results show that the delay-and-sum 
beamformer provides small improvement (0.7% absolute)， 
but ICA does not improve the recognition rate at all. We 
also tried ICA using seven microphones， but we had even 
larger degradation. These results indicated that the 
m勾ority of the noise was non-directional， and some of 
them are correlated with each other due to reverberation 

80 82 84 86 88 90 92 94 96 98% 

Figure 4: Summary 01 EνaLuation Experiments 

In the feature domain (MFCC)， we tried three 
normalization techniques， Mean and Variance 
Normalization (MVN)， Histogram Equalization (HEQ) [8]， 
and Delta-Cepstrum Normalization (DCN) [9]. These 
techniques were tested with our original decod巴r which 
had equivalent ability to Julian. The results of these featur巴
normalization m巴thods did not show any improvements. 
However， when we applied these methods with the oracle 
endpointing information， we got high recognition rates. In 
particular， MVN showed excellent and the highest 
recognition accuracy with the oracle endpointing， and the 
recognition rate was 95.6%， which was 4.5% absolute 
better than CMN with the oracle endpointing. It indicates 
that the effectiveness of MVN is highly dependent on good 
estimation of the speech segment. Contrastingly， HEQ and 
DCN could not improve the recognition rate even with 
oracle endpointing. Since these techniqu巴s have more 
parameters to estimate， short utterances in th巴se
experiments would not be sufficient for them. 
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4.E九1BEDDED VERSION OF JULIUS 

4.1 T-Engine with SuperH Microprocessor 

T-Engine is a developmental hardware platform which has 
network security architecture and common Operating 
System (OS) called eTROM [10]. The T-Engine board 
consists of a CPU board， an LCD board， and a debugging 
board目Figur巴 5 shows a photo of T-Engine and Table 2 
shows T-Engine (MS775 1 RCO 1) specifications. In this 
work， we used Hitachi' s SuperH microprocessor called 
SH-4 which has 240 MHz CPU power on T-Engine. 

The SH-4 is a RISC processor which has 32bit floating 
point calculation， and cache access commands. The work 
memory has 64MBytes， but only 55MBytes can be used 
for embedded software implementation. To implement 
Julius software on T-Engine， hardware modification was 
done for 16kHz sampling frequency and analog noise 
reduction. 

4.2 Embedded CSR Implementation 

Julius is free/open continuous CSR software [ 11] which 
can recognize large vocabulary over 20，000 words， and 
running on PCs which have huge computing resources 
Table 3 shows specifications of the embedded version of 
Julius implemented on T-Engine. Two conditions were 

Figure 5: T-Engine Board 

Table 2: T-Engine Specifications 

CPU SUjJ_erHSH�4 f24Q!vlHz/430MIPS) 

Flash Memory 8 Mbyte 

Work Memory 64 Mbyte 

OS T-Kernel 

Input/Output USB(Host)， PCMCIA card， Serial， 

UF Headphone output， Microphone 

Input， LCD UF， Extended buss 

UF， 巴tc

LCD board TFT color monitor 240x320 

Siz巴 120 mm x 75 mm 
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checked to realize a real time processing. The first 
condition was a monophone type for acoustic models， and 
the second condition was a triphone type. For the language 
model， both conditions had bigram and trigram. The word 
accuracy rates on PCs were 86.05% and 90.65% for 
5，000-word vocabulary size， respectively. Pre-evaluation 
for implementation of this Julius PC software on T-Engine 
showed far beyond the real time processing. Especially the 
initialization of acoustic models and program calling 
process needed over 10 minutes for 5，000-word vocabulary 
recogmtlOn. 

Table 3: Embedded Julius Specifications 

Condition 1 Condition 2 

(CNDl) (CND2) 

Vocabulary size 5，000 ← 

Acoustic Models Monophone 
Triphone 

(PTM) 

Language Models 
bigram ← 
tngram 

Beam width 400 ← 

Word accuracy 
86.059も 90.65% 

(results on PC) 

4.3 Developmental Issues 

To realize the embedded version of Julius on T-Engine， the 
developmental issues are summarized as follows; 

(1) CPU computing burden reduction: 

The CPU power of T-Engine is restricted. Currently， the 
normal CPU power of PCs has been over 1.00Hz， 
however the T-Engine CPU power is around 200MHz 
Therefore， CPU burden reductions are necessary to realize 
real time processing on T-Engine 

(2) Memory burden reduction: 

Especially， limitation of memory capacity on T-Engine is a 
fatal issue comparing to PCs which have over 10-Byte 
memory size. Usually， 100M-Byte size is a maximum 
memory slze on 巴mbedded board environments. Therefore， 
memory reductions are needed for the embedded use 

4.4 Preliminary Computing Process Reduction 

(1) Compact Acoustic Models 

The Julius is using an HTK format. The HTK format for 
acoustic models is Ascii type resulting that the model 
memory size is 12MByte. The binary encoding from Ascii 
encoding of acoustic models could lead huge memory size 
reduction from 12MByte to 3MByte. 



(2) Addlog Table恥1emory Reduction 

The addlog calculation was done before recognition 
process using a logarithm table. By this table memory 
assignment modification， huge memory reduction was 
done from 2M Byte to 2k Byte and no recognition 
accuracy distortion occurred. 

(3)九1FCC Calculation Speed-up 

Speech parameter extraction of MFCC (Mel Frequency 
Cepstrum Coefficient) is reduced using cos. and sin. tables 

4.5 G恥IS Process Reduction 

(1) GMS Calculation Burden 

The GMS (Gaussian Mixture Selection) is a method to 
select Gaussian distributions by the HMM states using a 
hierarchical relationships between monophone models and 
triphone models [12]. This GMS method is introduced to 
reduce acoustic likelihood calculation， however the more 
process reduction is needed because the GMS calculation 
is almost half of the total process time 

Figure 6 shows a GMS procedure. For each frame of 
input vectors， Gaussian mixtures for all monophone HMM 
states are computed (Pre-selection) and then Gaussian 
mixtures of triphone models are calculated for the only 
k-best states of monophone HMM models. 

(2)Modifications on GMS 

We made two modifications on the GMS method as 
follows; 
(i) Computational Reduction on Pre-selection 
The pruning process of a speech recognition decoder is 
done by the hypotheses that if scores are below a beam 

M0nophollc 
IIMM 

InpUI、じじlor討
Pre-selec山口 j 

C01l1plllC mixtur山
f0r uII IIMMぉtulcs

Mixtllrピsclcl.:lion

k-bcst stutcs othcrs 

1ril叶]l)IlC
IIMM (I'TM) 

一一一_ Complltc ll11xturcs lor 
i ωrrωponding叫atcs

Score Scnrc 
frnl1l PTM from nwn叩hOllc

Figure 6: GMS (Gaussian Mixture Se/ection) 

threshold， the calculations in pruned HMM states are not 
necessary. The only HMM states in active nodes need to 
be calculated. 

In the conventional GMS， the scores of all monophone 
HMM states are calculated in a pre-selection stage. 
Knowing information of active nodes at the pre-selection 
stage， the only monophone HMM states linked to the 
active nodes can be calculated. Figure 7 shows an image 
of the modified strategy. Filled circles are designated 
HMM states whose hypotheses stay alive， and unfilled 
circles are designated HMM states whose hypotheses are 
pruned. Figure 7(a) shows the conventional GMS. The pdf 
scores of all states are calculated and k-best states from 
among them are selected (meshed area). Possibly some 
states of k-best states have no active hypothesis. It is 
useless to calculate a pdf score of pruned hypothesis. 
Figure 7(b) shows the monophone models for the 
proposed and modified GMS. The target of pdf 
calculation is restricted to HMM states whose hypotheses 
stay alive (within a bold circle). Applying the 
modification， the computational cost is reduced for the 
mixture selection of the GMS compared to the 
conventional GMS. Furthermore， since there is no fear of 
selecting the useless states whose hypothesis is pruned， a 
small number of k-best could be specified without any 
degradation of recognition accuracy. 

(ii) Gaussian Selection within HMM State 

The Gaussian Selection (GS) [I3J is based on the idea that 
"Score calculated by a Gaussian neighboring an input 
vector is dominant on score of HMM state." On the other 
hand， all Gaussians within HMM state are calculated in the 
original GMS， even though scores derived from Gaussians 
distant from input vectors are negligible 

For reducing calculations of scores on HMM states， we 
change calculation strategy: calculating only neighbor 

\ [ Öω立6I! 込\1M "'!lIlrれ、 、快叫為川h"山、�e h�吟与t和P仰"叫恥'民 ! 
.r禽智 亀訓油hれ‘電

ObJ({.(叶‘01，叫M包崎、
; \11 "fてI..IIMIII.III.

(J)じれ口1ばntional Ih) proposじd
10l-lMM認剖. ，.t!o.. "ypolh..ls 01..，.. alN. 
i HMM .:.1. tk回目均'lJothe-si:1 isロrul"\it'd

Figure 7: Modijìcation on Mixture Selection Stage 
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Gaussians of input vector， instead of calculating all 
Gaussians. Figure 8 shows details of our strategy. The gmax 
is Gaussian maximum mixture score in an HMM state of 
monophone HMM. It is plausible idea that neighbor 
Gaussians of input vector in HMM state of triphone HMM 
are close to g刷x' Based on this idea， only neighbors of gmax 
are calculated on HMM state， others， which are far from 
gmax> are omitted to calculate. By this procedure 
computation cost is much more reduced. 

Distances between Gaussians can be calculated and 
stored in hash tables in advance. 

Ncighbors 

of mixtllrc 
. �Hl.金、Ma\川�lIrc / 

丸山 //一 一一\戸 、 j
/ ( ，  '1 

4 ; ; (iJ ifり
( 'nrr(，sp<llulìng 

予It"t・p

Monophonc HMM 
(IC，-mixtu陀s)

PTM codcbook 
(C，.f mixlurcs) 

Figure 8: GS (Gaussian Seleclion) in HMM slale 

5. Evaluation Experiments 

5.1 Experimental Setup 

Table 4 shows experimental conditions for Julius software. 
The vocabulary size was 5，000 words and the triphone 
models had 3，000 stales and 64 mixtures. The monophone 
models had 129 states and 16 mixtures 

Table 4: Experimenlal selup for Julius 

5，000 words 
3，000 states， 64 mixture 

1 29state， 16 mixture 盟旦笠也旦

5.2 Evaluation Results 

(1) Preliminary Computing Process Reduction on 

T-Engine 

There is no approximated processing in this preliminary 
computing process reduction. This means no recognition 
rate distortioi1 occurs by this process reduction. However， 
the distortion by th巴board noise may occur， so we tested 
T-Engine performance evaluation first. For the T-Engine 
performance evaluation， we used line input from PC file 
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speech to avoid utterance varieties and environmental 
nOlse vanelles 

ln details， the following procedures are us巴d for the 
T-Engine board evaluation. First， the input speech is input 
10 T-Engine from PC using a line inpul， and lhen Ihe 
speech inpul is stored to Ihe nash memory attached 10 
T-Engine. This speech file is incorporated by the T-Engine 
internal noise. Utterances by 30 males and 30 female were 
used for Ihe evaluation. Table 5 shows board evaluation 
results. ln the table， the original shows results of file 
speech input meaning digitalized data by Pc. This means 
recognition results of original are top recognition rates 
Two conditions， monophone and triphone are set in the 
evaluation. The recognition rates of the condition 2 were 
89. 1 % for original and 85.9% for T-Engine showing 5% 
recognilion accuracy dislortion by the T-Engine board. 

Table 5: Evalualion Resulls( 1): word accuracy(ACC) 

CND 1: monophone CND2: triphone 

Orijl.inal T-Engine Original T-Engine 

Male 30 78.2% 72.7% 86.7% 83.7% 

Female 30 84.5<)も 79.7% 91.9% 88.2% 

Total 81.3% 76.2% 89.1% 85.9<)も

(2) GMS Process Reduction 

First， the recognition performance of the proposed GMS 
process reduction method was evalualed by the PC (Linux: 
Pentium4 2.8GHz) simulalion. Figure 9 shows lhe 
evaluation results. Evaluation data were 100 sentences for 
one male and one female from JNAS speech corpus. From 
the results， we found less k-neighbor value showed less 
word accuracy and the proposed GMS reduction melhod 
showed significant computing process time reduction (40% 
reduction) with small word accuracy loss (only 1 %). 

Next， the performance on the T-Engine (SH-4， 
240MHz/430MIPS) platform was evaluated. The 
evaluation data were sentence utterances from 30 males 
and 30 females. Th巴 no. of k-neighbor was 24目Table 6 
shows evaluation results on T-Engine. We found that 
requirement for the embedded Julius is less than 50MByte 
and that there was no big difference on word accuracy 
among no GMS， original GMS and the proposed GMS 
The RTF (Real Time Factor) shows process length 
normalized by the utterance length. Th巴 proposed GMS 
showed 2.23 of RTF resulting 79% of that of no GMS. By 
the simulation， the process reduction by the proposed GMS 
was 409も. This difference may be occurred form T-Engine 
architecture and usage of cache memory 
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Table 6: El'aluation Results(2) on T-Engil1e 

Memory size word ACC RTF 

no GMS 48.9MBytes 89.1% 2.8 1 

ongll】al GMS 49.8MBytes 89.3% 2.62 

proposed GMS 49.8MBytes 89.7% 2.23 

6. FUTURE WORK 

We will investigate more compact and more noise robust 
embedded version of Julius which has 20，000 word 
vocabulary sizes. The new CPU processor SH-4A 
(400MHz/700MIP) will be used to get fast processing 
time， For the noise robustness， we are developing a new 
noise reduction process module at the front-end. 

7.SU民fお1ARY

This paper describes two issues. First， we report huge 
evaluation results of recognition modules for the noise 
robustness. We found the Mean and Variance 
Normalization (MVN) showed excellent and the highest 
recognition accuracy with the oracle 巴ndpointing

Second， we have developed an embedded version of the 
Julius continuous speech recognition (CSR) software on 
generaトpurpose microprocessors. We used T-Engine™ as 
a hardware pJatform. We couJd realize about 2.00 of 

RTF(Real Time Factor) of CSR processing on the condition 
of 5000-word vocabuJary. 
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