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Abstract- To expand CSR (continuous speech recognition) 
software to the mobile environmental use， we have developed 
embedded version of Julius (embedded Juli凶). Julius is open 
source CSR software， and has been used by many researchers 
and developers in Japan as a standard decoder on PCs. In this 
paper， we describe an implementation of the embedded Julius 
on a SH-4A microprocessor. SH-4A is a high-end 32・bit MPU 
(720MIPS) with on-chip FPU. However， further computational 
reduction is nec凶sary for the embedded Julius to operate問al­
time. Applying some optimizations， the embedded Julius achieves 
real-time proc飴sing on the SH・4A. The experimental results show 
0.89 x RT(real-time)， resulting 4.0 times faster than baseline 
CSR. We also evaluated the embedded Julius on large vocabulary 
(20，000 words). It shows almost real-time proc回sing (1.25 x RT). 

1. INTRODUCTION 

We have developed embedded CSR software named “em­
bedded Julius" on a SH-4 microprocessor (Renesas Tech­
nology Corp.[2])[3]. Julius[4] is open source CSR software 
developed on PCs. It has been us巴d by many researchers 
and developers in Japan as a standard decoder. The largest 
advantage of using Julius is that Julius supports standard for­
mats of language/acoustic models. Developers are fr巴巴 to use 
acoustic/language models created by popular modeling tools 
(such as HTK[5]， CMU-Cambridge Toolkit[6]). ln previous 
work[3]， we reported processing speed of the embedded Julius 
was 2.23 x RT on the condition of 5，∞o words vocabulary. 
Our goal is to realize the embedded Julius operating at real­
tlme on a mlcroprocessor. 

Recently， some studies on CSR systems for portable d巴vlces
were reported. Ishikawa et. al. [7] developed 50，∞o words 
CSR on multi-core CPU (ARM9 core (150MHz) x 3). Gen­
erally speaking， multi-core CPU has high performance and 
enables to handle large vocabulary. On the other hand， coding 
of CSR deeply depends on CPU architecture. For single­
core processors， Huggins-Daines et. al.[8] released POCKET 
SPHINX， which op巴rates real-time on Sharp Zaurus (206MHz 
Strong ARM， 235MIPS). Because Strong ARM processor has 
no hardware support for ftoating point operations， vocabulary 
size was only 1 ，0∞words and word error rate was degraded to 
the baseline system by cost reduction schemes (ex. fixed point 
operations). Our target microprocessors are SH-4 series[2]， 
which are high-end processors of SH family. A SH-4 core 
includes a high-speed FPU. Restrictions on CPU perfo口nance
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釘e few in comparison with Strong ARMs. 
In this paper， we report a development of the embedded 

Julius for the SH-4A microprocessor， which is upper version 
of a SH-4. However operating frequency of the SH-4A is 1 .67 
times faster than the SH-4， further computational reduction 
is necessary for the embedded Julius to operate in real­
time. We also describe some optimizations to realize real-time 
processmg. 

11. SVSTEM OVERVIEW 

A. SH-4A microprocessor 

The SH-4A[2] is a RISC processor with operating frequency 
of 400MHz. The instruction set is fùlly SH-4 upward com­
patible. It realizes a processing performance of 720 MIPS. 
Furthermore， the SH-4A core includes an FPU that suppo口s
both single-precision and double-precision arithmetic opera­
tions. The four-way set-associative cache memory is divided 
into two 32-kbyte areas， one for instructions and one for data. 

B. Developmental hardware platform 

AT引】gine[9] board is a d巴velopmental hardware platform 
which has common operating system (OS) called eTRON. 
Table 1 shows specifications of the T-engine board. Fig. 1 and 
Fig. 2 show a photo and architecture of the T-engine board 
respectively. The T-engine platforrn consists of a CPU board， 
an LCD board. The CPU board has one microprocessor(SH-
4A)， 128MB of work memory and many interfaces. Program， 
dictionary， language models and acoustic models are stored 
in a CF (Compact Flash) card. Speech data is digitized at 

TABLE I 

SPECIFICATlON QF T-ENGINE BOARD 

CPU SH-4A(SH7780) (720 MIPS， 2.8 GFl..OPS) 

Operating Freq 
Internal: 4∞MHz 

External: IOO MHz 

User RAM 128MByte 

OS T-Kernel 

Audio CODEC (A/D) 16kHz，I6bit 

LDC TFf color， 240 x 320 

Size I Power 120 mm x 75 mm I DC 5.6V 

MMSP 2007 
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Fig. 1. T-engine Board 

Fig. 2. Architecture of T-engine Board 

16kHz/16bit samp1ing on Audio codec. Recognition result 
disp1ays on an LCD. 

C. Baseline CSR syslem 

Ju1ius[4] is a high-performance， two-pass 1arge vocabu1ary 
continuous speech recognition software. Ju1ius is distributed 
with open license together with source codes， and has be氾n
used by many researchers and deve10pers in Japan. M司jor
search techniques are fully inco中orated such as tree 1exicon， 
N-gram factoring， cross-word context dependency hand1ing， 
enve10ped beam search， Gaussian pruning， Gaussian se1ection， 
etc. Standard formats are supported to cope with a popu 
1ar mode1ing too1kit. Based on word trigram and context­
dependent HMM， it can perform a1most rea1-time decoding 
on most cuηent PCs in 20，0∞words dictation task. 

In order to distinguish Ju1ius from the embedded Ju1ius， we 
call the baseline CSR a conventiona1 Ju1ius. 

III. O P TIMAL IMPLEMENTATION 

Through a development tool-kit for the T-Engine， Porting 
Ju1ius to the SH-4A was done without much difficulty. Source 
codes of Ju1ius written in C 1anguage can be compi1ed without 
substantia1 modifications， excluding I10 depended modu1es 
(audio modu1es， touch pane1 modu1es， etc.). Most difficulty 
was computationa1 reduction. Processing speed of the conven­
tiona1 Julius was far from rea1-time on the SH-4A. In this 
section， we describe optimizations for rea1-time processing 

A. Avoid dala access from eXlernal device 

In previous version of the embedded Julius worked on SH-
4， Language mode1s were read from an extema1 device (CF 

card)， because the SH-4下engine has on1y 64MB RAM. I10 
speed of the CF card is much slower than that of RAM. For 
the SH-4A T-engine， which has enough user memory ( 1 28MB 
RAM)， Language mode1s are 10aded to RAM at start-up to 
avoid overhead of data access from extema1 device 

B. Reduce memory fragmenlalion 

In decoding proωss， a 10t of word hypotheses are generated 
and some of them are prun巴d. System functions (memory 
allocation / free) are frequent1y called at each time. Overhead 
of these system calls is negligib1e on PC， but these can not be 
ignored on T-engine. Memory fragmentation gets serious espe­
cially in case of recognizing 10ng utterance. To avoid memory 
fragmentation， memory management for word hypotheses was 
changed as follows. 

Memory area for hypotheses is secured in advance at initia1 
set-up. This memory area is partitioned at fixed interval which 
is equivalent to data size of each word hypothesis. Then， 
memory manager can reallocate a new hypothesis to the 
memory pointer where hypothesis was a1ready pruned. 

IV. GAUSSIAN MIXTURE SELECTION 

A m句or paロ of computationa1 cost for CSR is calcu1ation 
of pdf (probability density function). To realize CSR soft­
ware with 10w calcu1ation cost， computationa1 reduction for 
pdf calcu1ations is needed. The conventiona1 Julius a1ready 
introduces GMS (Gaussian Mixture Se1ection) a1gorithm[ 12]， 
which reduces the cost of pdf calcu1ations. GMS is e仔'ective
for reducing computationa1 cost of pdf calcu1ations， but a1most 
ha1f of the tota1 process time is still taken by pdf calcu1ations. 
Additiona1 process r巴duction is need巴d.

We have proposed a modified GMS method[3]. In this 
section， we describe a conventiona1 GMS briefly， and then 
exp1ain its modifications. 

A. Convenlional GMS 

The GMS method[ 1 2] is a procedure to se1ect Gaussian 
distributions by the HMM states using a hierarchica1 re1ation­
ship between monophone mode1s and triphone mode1s. Fig. 
3 shows a GMS procedure. For each frame， all Gaussians 
of monophon巴 HMM states are computed for preliminary 
eva1uation. On1y HMM states corresponding to k-best states 
on pre1iminary eva1uation are se1ected for computations of 
triphone models. Others are assigned to scores calculated on 
monophone models. 

B. Furlher cosl reduclion 

We proposed two modifications on GMS as follows[3]. 
1) Computational reduction on mixture selection stage: In 

the conventiona1 GMS method， all HMM states in monophone 
mode1s are calcu1ated for the mixture se1ection， since infor­
mation of active states is not avai1ab1e at that time. Knowing 
where hypotheses stay a1ive at time t - 1， on1y HMM states 
which these hypotheses may be visited are calcu1ated for the 
mixture se1ection stage at time t. App1ying this modification， 
computationa1 cost is reduced for the mixture se1ection com­
pared to the conventiona1 GMS method， which calcu1ates all 
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Fig. 3. Conventional Gaussian M.ixture Selection (GMS) 

states in monophone models. Furthermore， since there is no 
fear of selecting a useless state whose pdf score is not needed 
to calculate， a small number of k-best states could be specified 
without any degradation of recognition performance. 

2) Gaussian selection within HMM state: Gaussian selec­
tion (GS)[IO] is based on the idea “only Gaussians close to an 
input vector have dorninant effect on a pdf score of an HMM 
state". On the other hand， the conventional GMS method 
calculates all Gaussians within an HMM state， even though 
a pdf score derived from Gaussian distant from the input 
vector is negligible. For reducing pdf calculations on HMM 
states， the calculation strategy is changed: calculating only 
Gaussians neighboring the input vector， instead of calculating 
all Gaussians. By this procedure the computation cost is much 
more reduced. 

仁ξfficiency

ln previous work[3]， efficiency of the GMS method was 
evaluated on PC simulation. Fig. 4 shows computational cost 
of Julius measured on a Pc. Th巴 vertical axis is normalized 
CPU time calculated by Linux command "gprof". ln no GMS 
case， 73% of total computational cost was taken by pdf 
calculations. Adopting the conventional GMS method， the total 
computational cost was reduced to 74% of-no GMS in spite of 
additional costs for calculating monophone models. Modifying 
the GMS method (the proposed GMS)， the normalized CPU 
time for GMS was reduced 26% to 20%; the normalized CPU 
time of pdf calculations was reduced 24% to 1 6%. As a result， 
the total computational cost was reduced to 60% of no GMS. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. experimental setup 

We evaluated system performance of the embedded Julius 
on the SH-4A T-engine platform. Table II shows experimental 
conditions. The vocabulary size was 5，0∞words. Julius is a 
two-pass decoder using a bigram language model for the 1 st­
pass and a trigram language model for the 2nd-pass. Acoustic 
models were PTM[ 1 1 ] having 3，∞o states with 64 mixtures. 
Monophone models with 1 29 states and 16 mixtures/states 
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Fig. 4. Profile of Computational Cost Measured on i'(ご

were used for the GMS. Test-set speech was se1ected 60 sen­
tences (30 male， 30 female) from JNAS (Japanese Newspaper 
Article Sentences) corpus[ 1 3]. 

B. evaluation of optimizations 

Experimental results are shown in Tab1e ill. We eva1uated 
in three optimum conditions: ( 1 )  without optimization (Non)， 
(2) Avoid data access from CF card (CF)， (3) reduce memory 
fragm巴ntation (Frag.) and three GMS conditions: ( 1 )  without 
GMS (Non)， (2) Conventional GMS (Conv.)， (3) Modi自ed
GMS (Modify). 

Memory size consumed on the embedded Ju1ius was about 
50 MB. Adopting the GMS algorithm， additional memory 
space was n巴巴d巴d for monophone mode1s used on the mix­
ture se1ection. Word accuracies of 5 conditions were a1most 
the same. Optimizations of imp1ementation did not change 
word accuracies (condition # 1 -#3). The GMS method， which 
simplified pdf calcu1ations， a仔ected recognition performance 
slightly. This resu1t is in consistency with previous work[3] 
Regarding recognition speed， the embedded Julius on the 
condition # 1  (without optimizations， without GMS) operated 
3.57 x RT. By optimal implementation， recognition speed 
was reduced to 1 .2 1  x RT (condition #3). By combining 
the optimization and the modified GMS method (condition 
#5)， the embedded Julius finally achieved rea1-time processing 
(0.89 x RT). 

TABLE 11 

EXPERJM ENTAL CONDlTJONS 

Vocabulary size 5，α)() words 

A∞ustic models PTM (3，飢氾states， 64 mixtures) 

Monophone HMM 
129 states， 16 mixtures 

(used for GMS) 

Language models 
bigram (for 1 st pass) 

U1gr副n (for 2nd p晶s)

Test speech 60 sentences in JNAS corpus[ 13] 
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TABLE III 

PERFORMANCE ON VARIOUS OPTIMUM CONDITIONS 

Optimize GMS 
Memory Word 

x RT 
slze accuracy 

#1 Non Non 49.6MB 89.1% 3.57 

#2 CF Non 50.11、1B 89.1% 1.45 

#3 CF+Frag Non 50.1MB 89.1% 1.21 

#4 CF+Frag Conv 51.0MB 89.3% 1.11 

#5 CF+Frag Modify 51.0MB 89.7% 0.89 

TABLE IV 

PROFILE OF LANGUAGE MODELS 

C. evaluation on large vocabulary condition 

We also evaluated the embedded Julius on a large vocabu­
lary condition (20，000 words). In this experiment， a dictior】ary
size was expanded 5，∞o words to 20，000 words. Table IV 
shows a profil巴 of language models. Based on entropy criteria， 
trigram entries for 20k language model were compressed by 
1 0% ( 1 4). Acoustic models are same as 5，∞o words dictation 
task. Pruning parameter was set to appropriate value in order 
to vocabulary size. 

Experimental result is shown in TableV. Memory size was 
increased 5 1 .0MB to 94.山佃in propoロion to vocabulary 
size. Word accuracy in condition with the modified GMS was 
declined by 1 %， but it was not serious damage. Processing 
speed was 1 .60 x RT for no G勘1S and 1 .25 x RT for the 
modified GMS respectively. Applying the modified GMS， 
recognition speed was 1 .25 x RT， which was 1 .3 times faster 
than that of no GMS. 

D. Discussions 

In this section， we evaluated the embedded Julius on the 
SH-4A T-engine. Experimental results indicated that memory 
requirement for the embedded Julius was 51 MB on 5，000 
words dictation task and 94.1 MB on 20，∞o words dictation 
task. It isn't big problem for mobile applications， because 

TABLE V 

PERFORMANCE ON LARGE VOCABUALY TASK (20，000 WORDS) 

commercial PDAs have 64-256MB of work memory. Regard­
ing processing speed on vocabu凶y size of 5，0∞words， the 
embedded Julius achieved real-time processing (0.89 x RT) on 
the SH-4A (720MIPS). On the condition of large vocabulary 
(20，000 words)， the embedded Julius showed 1 .25 x RT. 

VI. CONCLUSIONS 

This paper describes embedded Julius on a SH-4A T-engine. 
The optimal implementation and the modified GMS method 
are applied for computational reduction. This approach does 
not change the structure of acoustic models in consistency with 
that used by the conventional Julius， and enable developers 
to use acoustic models created by popular modeling tools. 
The experimental result shows 0.89 times of RT， resulting 1 .4 
times faster than that of no GMS and 4.0 times faster than 
that without any optimizations. We also show almost reaト
time processing ( 1 .25 x RT) on large vocabulary task (20，000 
words). 

In future， we wiU investigate more compact and more 
noise robust. For the noise robustness， we are developing a 
noise reduction front-end. We will also develop an application 
prototype using the embedded Julius on a mobile platform 
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