Real-Time Continuous Speech Recognition System
on SH-4A Microprocessor

Hiroaki Kokubo*, Nobuo Hataoka*, Akinobu Lee!, Tatsuya Kawahara! and Kiyohiro Shikano®
*Central Research Laboratory, Hitachi Ltd, Tokyo, Japan.
Email: hiroaki.kokubo.dz@hitachi.com, hataoka@tohtech.ac.jp
TNagoya Institute of Technology, Nagoya, Japan. Email: ri@nitech.ac.jp
iKyoto University, Kyoto, Japan. Email: kawahara@i.kyoto-u.ac jp
8Nara Institute of Science and Technology, Nara, Japan. Email: sikano@is.naist.jp

Abstract—To expand CSR (continuous speech recognition)
software to the mobile environmental use, we have developed
embedded version of Julius (embedded Julius). Julius is open
source CSR software, and has been used by many researchers
and developers in Japan as a standard decoder on PCs. In this
paper, we describe an implementation of the embedded Julius
on a SH-4A microprocessor. SH-4A is a high-end 32-bit MPU
(720MIPS) with on-chip FPU. However, further computational
reduction is necessary for the embedded Julius to operate real-
time. Applying some optimizations, the embedded Julius achieves
real-time processing on the SH-4A. The experimental results show
0.89 x RT(real-time), resulting 4.0 times faster than baseline
CSR. We also evaluated the embedded Julius on large vocabulary
(20,000 words). It shows almost real-time processing (1.25 x RT).

I. INTRODUCTION

We have developed embedded CSR software named “‘em-
bedded Julius” on a SH-4 microprocessor (Renesas Tech-
nology Corp.[2]){3]. Julius[4] is open source CSR software
developed on PCs. It has been used by many researchers
and developers in Japan as a standard decoder. The largest
advantage of using Julius is that Julius supports standard for-
mats of language/acoustic models. Developers are free to use
acoustic/language models created by popular modeling tools
(such as HTK{5], CMU-Cambridge Toolkit[6]). In previous
work([3], we reported processing speed of the embedded Julius
was 2.23 x RT on the condition of 5,000 words vocabulary.
Our goal is to realize the embedded Julius operating at real-
time on a MiCroprocessor.

Recently, some studies on CSR systems for portable devices
were reported. Ishikawa et. al. [7] developed 50,000 words
CSR on multi-core CPU (ARM9 core (150MHz) x 3). Gen-
erally speaking, multi-core CPU has high performance and
enables to handle large vocabulary. On the other hand, coding
of CSR deeply depends on CPU architecture. For single-
core processors, Huggins-Daines et. al.[8) released POCKET
SPHINX, which operates real-time on Sharp Zaurus (206MHz
Strong ARM, 235MIPS). Because Strong ARM processor has
no hardware support for floating point operations, vocabulary
size was only 1,000 words and word error rate was degraded to
the baseline system by cost reduction schemes (ex. fixed point
operations). Our target microprocessors are SH-4 series[2],
which are high-end processors of SH family. A SH-4 core
includes a high-speed FPU. Restrictions on CPU performance

1-4244-1274-9/07/$25.00 ©2007 IEEE 35

are few in comparison with Strong ARMs.

In this paper, we report a development of the embedded
Julius for the SH-4A microprocessor, which is upper version
of a SH-4. However operating frequency of the SH-4A is 1.67
times faster than the SH-4, further computational reduction
is necessary for the embedded Julius to operate in real-
time. We also describe some optimizations to realize real-time
processing.

II. SYSTEM OVERVIEW
A. SH-4A microprocessor

The SH-4A[2] is a RISC processor with operating frequency
of 400MHz. The instruction set is fully SH-4 upward com-
patible. It realizes a processing performance of 720 MIPS.
Furthermore, the SH-4A core includes an FPU that supports
both single-precision and double-precision arithmetic opera-
tions. The four-way set-associative cache memory is divided
into two 32-kbyte areas, one for instructions and one for data.

B. Developmental hardware platform

A T-engine[9] board is a developmental hardware platform
which has common operating system (OS) called eTRON.
Table I shows specifications of the T-engine board. Fig. 1 and
Fig. 2 show a photo and architecture of the T-engine board
respectively. The T-engine platform consists of a CPU board,
an LCD board. The CPU board has one microprocessor(SH-
4A), 128MB of work memory and many interfaces. Program,
dictionary, language models and acoustic models are stored
in a CF (Compact Flash) card. Speech data is digitized at

TABLE 1
SPECIFICATION OF T-ENGINE BOARD

CPU SH-4A(SH7780) (720 MIPS, 2.8 GFL.OPS)
Internal: 400MHz

External: 100MHz

Operating Freq.

User RAM 128MByte
oS T-Kemel
Audio CODEC (A/D) 16kHz,16bit
LDC TFT color, 240 x 320
Size / Power 120 mm x 75 mm / DC 5.6V

MMSP 2007

— 176 —

120mm

Fig. 1. T-engine Board

-Program
-Dictionary
-Language models

-Acouslic models

D Vs
LCD board
Display for recognition result

Fig. 2. Architecture of T-engine Board

16kHz/16bit sampling on Audio codec. Recognition result
displays on an LCD.

C. Baseline CSR system

Julius[4] is a high-performance, two-pass large vocabulary
continuous speech recognition software. Julius is distributed
with open license together with source codes, and has been
used by many researchers and developers in Japan. Major
search techniques are fully incorporated such as tree lexicon,
N-gram factoring, cross-word context dependency handling,
enveloped beam search, Gaussian pruning, Gaussian selection,
etc. Standard formats are supported to cope with a popu-
lar modeling toolkit. Based on word trigram and context-
dependent HMM, it can perform almost real-time decoding
on most current PCs in 20,000 words dictation task.

In order to distinguish Julius from the embedded Julius, we
call the baseline CSR a conventional Julius.

III. OPTIMAL IMPLEMENTATION

Through a development tool-kit for the T-Engine, Porting
Julius to the SH-4A was done without much difficulty. Source
codes of Julius written in C language can be compiled without
substantial modifications, excluding I/O depended modules
(audio modules, touch panel modules, etc.). Most difficulty
was computational reduction. Processing speed of the conven-
tional Julius was far from real-time on the SH-4A. In this
section, we describe optimizations for real-time processing.

A. Avoid data access from external device

In previous version of the embedded Julius worked on SH-
4, Language models were read from an external device (CF

36

card), because the SH-4 T-engine has only 64MB RAM. I/O
speed of the CF card is much slower than that of RAM. For
the SH-4A T-engine, which has enough user memory (128MB
RAM), Language models are loaded to RAM at start-up to
avoid overhead of data access from external device.

B. Reduce memory fragmentation

In decoding process, a lot of word hypotheses are generated
and some of them are pruned. System functions (memory
allocation / free) are frequently called at each time. Overhead
of these system calls is negligible on PC, but these can not be
ignored on T-engine. Memory fragmentation gets serious espe-
cially in case of recognizing long utterance. To avoid memory
fragmentation, memory management for word hypotheses was
changed as follows.

Memory area for hypotheses is secured in advance at initial
set-up. This memory area is partitioned at fixed interval which
is equivalent to data size of each word hypothesis. Then,
memory manager can reallocate a new hypothesis to the
memory pointer where hypothesis was already pruned.

IV. GAUSSIAN MIXTURE SELECTION

A major part of computational cost for CSR is calculation
of pdf (probability density function). To realize CSR soft-
ware with low calculation cost, computational reduction for
pdf calculations is needed. The conventional Julius already
introduces GMS (Gaussian Mixture Selection) algorithm(12],
which reduces the cost of pdf calculations. GMS is effective
for reducing computational cost of pdf calculations, but almost
half of the total process time is still taken by pdf calculations.
Additional process reduction is needed.

We have proposed a modified GMS method[3]. In this
section, we describe a conventional GMS briefly, and then
explain its modifications.

A. Conventional GMS

The GMS method[12] is a procedure to select Gaussian
distributions by the HMM states using a hierarchical relation-
ship between monophone models and triphone models. Fig.
3 shows a GMS procedure. For each frame, all Gaussians
of monophone HMM states are computed for preliminary
evaluation. Only HMM states corresponding to k-best states
on preliminary evaluation are selected for computations of
triphone models. Others are assigned to scores calculated on
monophone models.

B. Further cost reduction

We proposed two modifications on GMS as follows[3].

1) Computational reduction on mixture selection stage: In
the conventional GMS method, all HMM states in monophone
models are calculated for the mixture selection, since infor-
mation of active states is not available at that time. Knowing
where hypotheses stay alive at time ¢t — 1, only HMM states
which these hypotheses may be visited are calculated for the
mixture selection stage at time t. Applying this modification,
computational cost is reduced for the mixture selection com-
pared to the conventional GMS method, which calculates all

— i —

Input vectors

Score
from PTM from monophone

Score

Fig. 3. Conventional Gaussian Mixture Selection (GMS)

states in monophone models. Furthermore, since there is no
fear of selecting a useless state whose pdf score is not needed
to calculate, a small number of k-best states could be specified
without any degradation of recognition performance.

2) Gaussian selection within HMM state: Gaussian selec-
tion (GS)[10] is based on the idea “only Gaussians close to an
input vector have dominant effect on a pdf score of an HMM
state”. On the other hand. the conventional GMS method
calculates all Gaussians within an HMM state, even though
a pdf score derived from Gaussian distant from the input
vector is negligible. For reducing pdf calculations on HMM
states, the calculation strategy is changed: calculating only
Gaussians neighboring the input vector, instead of calculating
all Gaussians. By this procedure the computation cost is much
more reduced.

C. Efficiency

In previous work[3], efficiency of the GMS method was
evaluated on PC simulation. Fig. 4 shows computational cost
of Julius measured on a PC. The vertical axis is normalized
CPU time calculated by Linux command “gprof”. In no GMS
case, 73% of total computational cost was taken by pdf
calculations. Adopting the conventional GMS method, the total
computational cost was reduced to 74% of no GMS in spite of
additional costs for calculating monophone models. Modifying
the GMS method (the proposed GMS), the normalized CPU
time for GMS was reduced 26% to 20%; the normalized CPU
time of pdf calculations was reduced 24% to 16%. As a result,
the total computational cost was reduced to 60% of no GMS.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. experimental setup

We evaluated system performance of the embedded Julius
on the SH-4A T-engine platform. Table II shows experimental
conditions. The vocabulary size was 5,000 words. Julius is a
two-pass decoder using a bigram language model for the 1st-
pass and a trigram language model for the 2nd-pass. Acoustic
models were PTM[11] having 3,000 states with 64 mixtures.
Monophone models with 129 states and 16 mixtures/states

37

Normalized CPU time

No GMS

Modified GMS

Fig. 4. Profile of Computational Cost Measured on PC

were used for the GMS. Test-set speech was selected 60 sen-
tences (30 male, 30 female) from JNAS (Japanese Newspaper
Article Sentences) corpus[13].

B. evaluation of optimizations

Experimental results are shown in Table III. We evaluated
in three optimum conditions: (1) without optimization (Non),
(2) Avoid data access from CF card (CF), (3) reduce memory
fragmentation (Frag.) and three GMS conditions: (1) without
GMS (Non), (2) Conventional GMS (Conv.), (3) Modified
GMS (Modify).

Memory size consumed on the embedded Julius was about
50 MB. Adopting the GMS algorithm, additional memory
space was needed for monophone models used on the mix-
ture selection. Word accuracies of 5 conditions were almost
the same. Optimizations of implementation did not change
word accuracies (condition #1-#3). The GMS method, which
simplified pdf calculations, affected recognition performance
slightly. This result is in consistency with previous work(3].
Regarding recognition speed, the embedded Julius on the
condition #1 (without optimizations, without GMS) operated
3.57 x RT. By optimal implementation, recognition speed
was reduced to 1.21 x RT (condition #3). By combining
the optimization and the modified GMS method (condition
#5), the embedded Julius finally achieved real-time processing
(0.89 x RT).

TABLE 11
EXPERIMENTAL CONDITIONS

5,000 words
PTM (3,000 states, 64 mixtures)

Vocabulary size

Acoustic models
Monophone HMM
(used for GMS)

129 states, 16 mixtures

bi for 1st
Language models {gram Gor Stipass)
trigram (for 2nd pass)

Test speech 60 sentences in JNAS corpusf13]

- L78 =

TABLE III
PERFORMANCE ON VARIOUS OPTIMUM CONDITIONS

Optimize | Gms | Memo | Word | or
size accuracy
#1 Non Non 49.6MB 89.1% 3.57
#2 CF Non 50.1MB 89.1% 1.45
#3 || CF+Frag. Non 50.1MB 89.1% 1.21
#4 || CF+Frag. Conv. 51.0MB 89.3% 1.11
#5 || CF+Frag. | Modify | 51.0MB 89.7% 0.89
TABLE IV

PROFILE OF LANGUAGE MODELS

VocaPulary bigram entry | trigram entry
size
5,000 787,365 453,446
20,000 1,675,804 744,438

C. evaluation on large vocabulary condition

We also evaluated the embedded Julius on a large vocabu-
lary condition (20,000 words). In this experiment, a dictionary
size was expanded 5,000 words to 20,000 words. Table IV
shows a profile of language models. Based on entropy criteria,
trigram entries for 20k language model were compressed by
10% [14]. Acoustic models are same as 5,000 words dictation
task. Pruning parameter was set to appropriate value in order
to vocabulary size.

Experimental result is shown in TableV. Memory size was
increased 51.0MB to 94.1MB in proportion to vocabulary
size. Word accuracy in condition with the modified GMS was
declined by 1%, but it was not serious damage. Processing
speed was 1.60 x RT for no GMS and 1.25 x RT for the
modified GMS respectively. Applying the modified GMS,
recognition speed was 1.25 x RT, which was 1.3 times faster
than that of no GMS.

D. Discussions

In this section, we evaluated the embedded Julius on the
SH-4A T-engine. Experimental results indicated that memory
requirement for the embedded Julius was 51 MB on 5,000
words dictation task and 94.1 MB on 20,000 words dictation
task. It isn’t big problem for mobile applications, because

TABLE V
PERFORMANCE ON LARGE VOCABUALY TASK (20,000 WORDS)

Optimize GMS Me.mory o X¥.RT

size accuracy
#1 || CF+Frag. Non 93.0MB 91.8% 1.60
#2 || CF+Frag. | Conv. 94.1IMB 92.0% 1.44
#3 || CF+Frag. | Modify | 94.1MB 90.9% 1.25

38

commercial PDAs have 64-256MB of work memory. Regard-
ing processing speed on vocabulary size of 5,000 words, the
embedded Julius achieved real-time processing (0.89 x RT) on
the SH-4A (720MIPS). On the condition of large vocabulary
(20,000 words), the embedded Julius showed 1.25 x RT.

VI. CONCLUSIONS

This paper describes embedded Julius on a SH-4A T-engine.
The optimal implementation and the modified GMS method
are applied for computational reduction. This approach does
not change the structure of acoustic models in consistency with
that used by the conventional Julius, and enable developers
to use acoustic models created by popular modeling tools.
The experimental result shows 0.89 times of RT, resulting 1.4
times faster than that of no GMS and 4.0 times faster than
that without any optimizations. We also show almost real-
time processing (1.25 x RT) on large vocabulary task (20,000
words).

In future, we will investigate more compact and more
noise robust. For the noise robustness, we are developing a
noise reduction front-end. We will also develop an application
prototype using the embedded Julius on a mobile platform.

ACKNOWLEDGMENT

This research activity has been supported by the e-society
project founded by Ministry of Education, Culture, Sports,
Science and Technology, Japan.

REFERENCES

[1] N. Hataoka, K. Kokubo, Y. Obuchi, and A. Amano, “Development
of robust speech recognition middleware on microprocessor,” ICASSP,
pp-837-840, 1998.

[2] http://www.renesas.com/

[3] H.Kokubo, N.Hataoka, A.Lee, T.Kawahara, and K.Shikano, "Embedded
Julius: Continuous Speech Recognition Software for Microprocessor,”
MMSP, pp.378-381, 2006.

[4] A.Lee, T.Kawahara, and S.Doshita, “An efficient two-pass search algo-
rithm using word trellis index,” ICSLP, pp.1831-1834, 1998.

[5] S.Yang, G.Evermann, T.Hain, D.Kershaw, G.Moore, J.Odell, D.Ollanson,

D.Povey, V.Valtchev, and P.Woodland, The HTK book(for HTK version

3.2.1), In Cambridge University Engineering Department, 2002.

PR.Clarkson and R.Rosenfeld, "Statistical language modeling using the

CMU-Cambridge toolkit,” Eurospeech, vol.5, pp.2707-2710, 1997.

S.Ishikawa, K.Yamabane, R.Isotani, A.Okumura,’Parallel LVCSR al-

gorithm for cellphone-oriented multicore processors,” ICASSP, vol.l,

pp.177-180, 2006.

D.Huggins-Daines, M.Kumar, A.Chan, A.Black, M.Ravishankar,

A.Rudnicky, "POCKETSPHINX : A Free Real-time continuous speech

recognition system for hand-held devices,” ICASSP, vol. I, pp.185-188,

2006.

[9] http://www.t-engine.org/index.htm]

[10] E.Bocchieri, "Vector quantization for efficient computation of continu-
ous density likelihoods,” ICASSP, pp.692-695, 1993.

[11] A.Lee, T.Kawahara, K.Takeda, and K.Shikano, “A new phonetic tied-
mixture model for efficient decoding,” ICASSP, pp.1269-1272, 2000.
[12] A.Lee, T.Kawahara, and K.Shikano, “Gaussian mixture selection using

context-independent HMM,” ICASSP, pp.69-72, 2001.

[13] K.Itoh, M.Yamamoto, K.Takezawa, T.Matsuoka, K.Shikano,
T.Kobayashi, and S.Itahashi, “The design of the newspaper-based
Japanese large vocabulary continuous speech recognition corpus,”
ICSLP, pp.3261-3264, 1998.

[14] N.Yodo, K.Shikano and S.Nakamura,"Compression Algorithm of Tri-
gram Language Models based on Maximum Likelihood Estimation,”
ICSLP, pp.1684-1686, 1998.

(6

[7

(8

~ 179 —

