
Real-Time Continuous Speech Recognition System

on SH-4A Microprocessor

Hiroaki Kokubo*， Nobuo Hataoka*， Akinobu Lεe t， Tatsuya Kawahara+ and Kiyohiro Shikano�
*Central Research Laboratory， Hitachi Ltd， Tokyo， Japan目

Email: hiroaki.kokubo.dz@hitachi.com.hataoka@tohtech.ac.jp
↑Nagoya Institute of Technology， Nagoya， Japan. Email: ri@nitech.ac.jp

+Kyoto University， Kyoto， Japan. Email: kawahara@i.kyoto-u.ac.jp
�Nara Institute of Science and Technology， Nara， Japan. Email: sikano@is.naist.jp

Abstract- To expand CSR (continuous speech recognition)
software to the mobile environmental use， we have developed
embedded version of Julius (embedded Juli凶). Julius is open
source CSR software， and has been used by many researchers
and developers in Japan as a standard decoder on PCs. In this
paper， we describe an implementation of the embedded Julius
on a SH-4A microprocessor. SH-4A is a high-end 32・bit MPU
(720MIPS) with on-chip FPU. However， further computational
reduction is nec凶sary for the embedded Julius to operate問al­
time. Applying some optimizations， the embedded Julius achieves
real-time proc飴sing on the SH・4A. The experimental results show
0.89 x RT(real-time)， resulting 4.0 times faster than baseline
CSR. We also evaluated the embedded Julius on large vocabulary
(20，000 words). It shows almost real-time proc回sing (1.25 x RT).

1. INTRODUCTION

We have developed embedded CSR software named “em­
bedded Julius" on a SH-4 microprocessor (Renesas Tech­
nology Corp.[2])[3]. Julius[4] is open source CSR software
developed on PCs. It has been us巴d by many researchers
and developers in Japan as a standard decoder. The largest
advantage of using Julius is that Julius supports standard for­
mats of language/acoustic models. Developers are fr巴巴 to use
acoustic/language models created by popular modeling tools
(such as HTK[5]， CMU-Cambridge Toolkit[6]). ln previous
work[3]， we reported processing speed of the embedded Julius
was 2.23 x RT on the condition of 5，∞o words vocabulary.
Our goal is to realize the embedded Julius operating at real­
tlme on a mlcroprocessor.

Recently， some studies on CSR systems for portable d巴vlces
were reported. Ishikawa et. al. [7] developed 50，∞o words
CSR on multi-core CPU (ARM9 core (150MHz) x 3). Gen­
erally speaking， multi-core CPU has high performance and
enables to handle large vocabulary. On the other hand， coding
of CSR deeply depends on CPU architecture. For single­
core processors， Huggins-Daines et. al.[8] released POCKET
SPHINX， which op巴rates real-time on Sharp Zaurus (206MHz
Strong ARM， 235MIPS). Because Strong ARM processor has
no hardware support for ftoating point operations， vocabulary
size was only 1 ，0∞words and word error rate was degraded to
the baseline system by cost reduction schemes (ex. fixed point
operations). Our target microprocessors are SH-4 series[2]，
which are high-end processors of SH family. A SH-4 core
includes a high-speed FPU. Restrictions on CPU perfo口nance

1 -4244・1274・9/07/$25.00 <<)2007 IEEE 35

釘e few in comparison with Strong ARMs.
In this paper， we report a development of the embedded

Julius for the SH-4A microprocessor， which is upper version
of a SH-4. However operating frequency of the SH-4A is 1 .67
times faster than the SH-4， further computational reduction
is necessary for the embedded Julius to operate in real­
time. We also describe some optimizations to realize real-time
processmg.

11. SVSTEM OVERVIEW

A. SH-4A microprocessor

The SH-4A[2] is a RISC processor with operating frequency
of 400MHz. The instruction set is fùlly SH-4 upward com­
patible. It realizes a processing performance of 720 MIPS.
Furthermore， the SH-4A core includes an FPU that suppo口s
both single-precision and double-precision arithmetic opera­
tions. The four-way set-associative cache memory is divided
into two 32-kbyte areas， one for instructions and one for data.

B. Developmental hardware platform

AT引】gine[9] board is a d巴velopmental hardware platform
which has common operating system (OS) called eTRON.
Table 1 shows specifications of the T-engine board. Fig. 1 and
Fig. 2 show a photo and architecture of the T-engine board
respectively. The T-engine platforrn consists of a CPU board，
an LCD board. The CPU board has one microprocessor(SH-
4A)， 128MB of work memory and many interfaces. Program，
dictionary， language models and acoustic models are stored
in a CF (Compact Flash) card. Speech data is digitized at

TABLE I

SPECIFICATlON QF T-ENGINE BOARD

CPU SH-4A(SH7780) (720 MIPS， 2.8 GFl..OPS)

Operating Freq
Internal: 4∞MHz

External: IOO MHz

User RAM 128MByte

OS T-Kernel

Audio CODEC (A/D) 16kHz，I6bit

LDC TFf color， 240 x 320

Size I Power 120 mm x 75 mm I DC 5.6V

MMSP 2007

-176 -

Fig. 1. T-engine Board

Fig. 2. Architecture of T-engine Board

16kHz/16bit samp1ing on Audio codec. Recognition result
disp1ays on an LCD.

C. Baseline CSR syslem

Ju1ius[4] is a high-performance， two-pass 1arge vocabu1ary
continuous speech recognition software. Ju1ius is distributed
with open license together with source codes， and has be氾n
used by many researchers and deve10pers in Japan. M司jor
search techniques are fully inco中orated such as tree 1exicon，
N-gram factoring， cross-word context dependency hand1ing，
enve10ped beam search， Gaussian pruning， Gaussian se1ection，
etc. Standard formats are supported to cope with a popu
1ar mode1ing too1kit. Based on word trigram and context­
dependent HMM， it can perform a1most rea1-time decoding
on most cuηent PCs in 20，0∞words dictation task.

In order to distinguish Ju1ius from the embedded Ju1ius， we
call the baseline CSR a conventiona1 Ju1ius.

III. O P TIMAL IMPLEMENTATION

Through a development tool-kit for the T-Engine， Porting
Ju1ius to the SH-4A was done without much difficulty. Source
codes of Ju1ius written in C 1anguage can be compi1ed without
substantia1 modifications， excluding I10 depended modu1es
(audio modu1es， touch pane1 modu1es， etc.). Most difficulty
was computationa1 reduction. Processing speed of the conven­
tiona1 Julius was far from rea1-time on the SH-4A. In this
section， we describe optimizations for rea1-time processing

A. Avoid dala access from eXlernal device

In previous version of the embedded Julius worked on SH-
4， Language mode1s were read from an extema1 device (CF

card)， because the SH-4下engine has on1y 64MB RAM. I10
speed of the CF card is much slower than that of RAM. For
the SH-4A T-engine， which has enough user memory (1 28MB
RAM)， Language mode1s are 10aded to RAM at start-up to
avoid overhead of data access from extema1 device

B. Reduce memory fragmenlalion

In decoding proωss， a 10t of word hypotheses are generated
and some of them are prun巴d. System functions (memory
allocation / free) are frequent1y called at each time. Overhead
of these system calls is negligib1e on PC， but these can not be
ignored on T-engine. Memory fragmentation gets serious espe­
cially in case of recognizing 10ng utterance. To avoid memory
fragmentation， memory management for word hypotheses was
changed as follows.

Memory area for hypotheses is secured in advance at initia1
set-up. This memory area is partitioned at fixed interval which
is equivalent to data size of each word hypothesis. Then，
memory manager can reallocate a new hypothesis to the
memory pointer where hypothesis was a1ready pruned.

IV. GAUSSIAN MIXTURE SELECTION

A m句or paロ of computationa1 cost for CSR is calcu1ation
of pdf (probability density function). To realize CSR soft­
ware with 10w calcu1ation cost， computationa1 reduction for
pdf calcu1ations is needed. The conventiona1 Julius a1ready
introduces GMS (Gaussian Mixture Se1ection) a1gorithm[12]，
which reduces the cost of pdf calcu1ations. GMS is e仔'ective
for reducing computationa1 cost of pdf calcu1ations， but a1most
ha1f of the tota1 process time is still taken by pdf calcu1ations.
Additiona1 process r巴duction is need巴d.

We have proposed a modified GMS method[3]. In this
section， we describe a conventiona1 GMS briefly， and then
exp1ain its modifications.

A. Convenlional GMS

The GMS method[1 2] is a procedure to se1ect Gaussian
distributions by the HMM states using a hierarchica1 re1ation­
ship between monophone mode1s and triphone mode1s. Fig.
3 shows a GMS procedure. For each frame， all Gaussians
of monophon巴 HMM states are computed for preliminary
eva1uation. On1y HMM states corresponding to k-best states
on pre1iminary eva1uation are se1ected for computations of
triphone models. Others are assigned to scores calculated on
monophone models.

B. Furlher cosl reduclion

We proposed two modifications on GMS as follows[3].
1) Computational reduction on mixture selection stage: In

the conventiona1 GMS method， all HMM states in monophone
mode1s are calcu1ated for the mixture se1ection， since infor­
mation of active states is not avai1ab1e at that time. Knowing
where hypotheses stay a1ive at time t - 1， on1y HMM states
which these hypotheses may be visited are calcu1ated for the
mixture se1ection stage at time t. App1ying this modification，
computationa1 cost is reduced for the mixture se1ection com­
pared to the conventiona1 GMS method， which calcu1ates all

36

門/司，，114

In卯t vectors

S∞re S∞I官
from PTM from rnonophone

Fig. 3. Conventional Gaussian M.ixture Selection (GMS)

states in monophone models. Furthermore， since there is no
fear of selecting a useless state whose pdf score is not needed
to calculate， a small number of k-best states could be specified
without any degradation of recognition performance.

2) Gaussian selection within HMM state: Gaussian selec­
tion (GS)[IO] is based on the idea “only Gaussians close to an
input vector have dorninant effect on a pdf score of an HMM
state". On the other hand， the conventional GMS method
calculates all Gaussians within an HMM state， even though
a pdf score derived from Gaussian distant from the input
vector is negligible. For reducing pdf calculations on HMM
states， the calculation strategy is changed: calculating only
Gaussians neighboring the input vector， instead of calculating
all Gaussians. By this procedure the computation cost is much
more reduced.

仁ξfficiency

ln previous work[3]， efficiency of the GMS method was
evaluated on PC simulation. Fig. 4 shows computational cost
of Julius measured on a Pc. Th巴 vertical axis is normalized
CPU time calculated by Linux command "gprof". ln no GMS
case， 73% of total computational cost was taken by pdf
calculations. Adopting the conventional GMS method， the total
computational cost was reduced to 74% of-no GMS in spite of
additional costs for calculating monophone models. Modifying
the GMS method (the proposed GMS)， the normalized CPU
time for GMS was reduced 26% to 20%; the normalized CPU
time of pdf calculations was reduced 24% to 1 6%. As a result，
the total computational cost was reduced to 60% of no GMS.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. experimental setup

We evaluated system performance of the embedded Julius
on the SH-4A T-engine platform. Table II shows experimental
conditions. The vocabulary size was 5，0∞words. Julius is a
two-pass decoder using a bigram language model for the 1 st­
pass and a trigram language model for the 2nd-pass. Acoustic
models were PTM[1 1] having 3，∞o states with 64 mixtures.
Monophone models with 1 29 states and 16 mixtures/states

3

2

1

β

nV

AU

AU

AU

NoGMS GMS Modifi吋GMS

Fig. 4. Profile of Computational Cost Measured on i'(ご

were used for the GMS. Test-set speech was se1ected 60 sen­
tences (30 male， 30 female) from JNAS (Japanese Newspaper
Article Sentences) corpus[1 3].

B. evaluation of optimizations

Experimental results are shown in Tab1e ill. We eva1uated
in three optimum conditions: (1) without optimization (Non)，
(2) Avoid data access from CF card (CF)， (3) reduce memory
fragm巴ntation (Frag.) and three GMS conditions: (1) without
GMS (Non)， (2) Conventional GMS (Conv.)， (3) Modi自ed
GMS (Modify).

Memory size consumed on the embedded Ju1ius was about
50 MB. Adopting the GMS algorithm， additional memory
space was n巴巴d巴d for monophone mode1s used on the mix­
ture se1ection. Word accuracies of 5 conditions were a1most
the same. Optimizations of imp1ementation did not change
word accuracies (condition # 1 -#3). The GMS method， which
simplified pdf calcu1ations， a仔ected recognition performance
slightly. This resu1t is in consistency with previous work[3]
Regarding recognition speed， the embedded Julius on the
condition # 1 (without optimizations， without GMS) operated
3.57 x RT. By optimal implementation， recognition speed
was reduced to 1 .2 1 x RT (condition #3). By combining
the optimization and the modified GMS method (condition
#5)， the embedded Julius finally achieved rea1-time processing
(0.89 x RT).

TABLE 11

EXPERJM ENTAL CONDlTJONS

Vocabulary size 5，α)() words

A∞ustic models PTM (3，飢氾states， 64 mixtures)

Monophone HMM
129 states， 16 mixtures

(used for GMS)

Language models
bigram (for 1 st pass)

U1gr副n (for 2nd p晶s)

Test speech 60 sentences in JNAS corpus[13]

37

口。司i

TABLE III

PERFORMANCE ON VARIOUS OPTIMUM CONDITIONS

Optimize GMS
Memory Word

x RT
slze accuracy

#1 Non Non 49.6MB 89.1% 3.57

#2 CF Non 50.11、1B 89.1% 1.45

#3 CF+Frag Non 50.1MB 89.1% 1.21

#4 CF+Frag Conv 51.0MB 89.3% 1.11

#5 CF+Frag Modify 51.0MB 89.7% 0.89

TABLE IV

PROFILE OF LANGUAGE MODELS

C. evaluation on large vocabulary condition

We also evaluated the embedded Julius on a large vocabu­
lary condition (20，000 words). In this experiment， a dictior】ary
size was expanded 5，∞o words to 20，000 words. Table IV
shows a profil巴 of language models. Based on entropy criteria，
trigram entries for 20k language model were compressed by
1 0% (1 4). Acoustic models are same as 5，∞o words dictation
task. Pruning parameter was set to appropriate value in order
to vocabulary size.

Experimental result is shown in TableV. Memory size was
increased 5 1 .0MB to 94.山佃in propoロion to vocabulary
size. Word accuracy in condition with the modified GMS was
declined by 1 %， but it was not serious damage. Processing
speed was 1 .60 x RT for no G勘1S and 1 .25 x RT for the
modified GMS respectively. Applying the modified GMS，
recognition speed was 1 .25 x RT， which was 1 .3 times faster
than that of no GMS.

D. Discussions

In this section， we evaluated the embedded Julius on the
SH-4A T-engine. Experimental results indicated that memory
requirement for the embedded Julius was 51 MB on 5，000
words dictation task and 94.1 MB on 20，∞o words dictation
task. It isn't big problem for mobile applications， because

TABLE V

PERFORMANCE ON LARGE VOCABUALY TASK (20，000 WORDS)

commercial PDAs have 64-256MB of work memory. Regard­
ing processing speed on vocabu凶y size of 5，0∞words， the
embedded Julius achieved real-time processing (0.89 x RT) on
the SH-4A (720MIPS). On the condition of large vocabulary
(20，000 words)， the embedded Julius showed 1 .25 x RT.

VI. CONCLUSIONS

This paper describes embedded Julius on a SH-4A T-engine.
The optimal implementation and the modified GMS method
are applied for computational reduction. This approach does
not change the structure of acoustic models in consistency with
that used by the conventional Julius， and enable developers
to use acoustic models created by popular modeling tools.
The experimental result shows 0.89 times of RT， resulting 1 .4
times faster than that of no GMS and 4.0 times faster than
that without any optimizations. We also show almost reaト
time processing (1 .25 x RT) on large vocabulary task (20，000
words).

In future， we wiU investigate more compact and more
noise robust. For the noise robustness， we are developing a
noise reduction front-end. We will also develop an application
prototype using the embedded Julius on a mobile platform

ACKNOW LEDGMENT

This research activity has been suppo同ed by the e-society
project founded by Ministry of Education， Culture， Sports，
Science and Technology， Japan.

RE FERENCES

[1] N. Hataoka， K. Kokubo， Y. Obuchi， and A. Am阻止 “Development
of robust speech recognition middleware on microprocessor，" ICASSP，
pp.837 -840， 1998

[2] http://www.renesas.com/
[3] H.Kokubo， N.Hataoka， A.Lee， T.Kawahara， and K.Shikano， "Embedded

Julius: Continuous Speech Recognition Software for Microprocessor，"
MMSP， pp.378-38I， 2∞6

[4] A.Lee， T.Kaw泊町札制d S.Doshi回J‘An efficient two-p田s search algo­
rithm using word trellis index，" ICSLP， pp.1831-1834， 1998

[5] S.Yang， G.Evermann， T.Hain， D.Kershaw， G.Moore， J.Odell， D.Ollanson，
D.Povey，なValtchev， and P. W，∞dland， The HTK book(for HTK version
3.2.1)， In Carr】bridge University Engineering Departrnent， 2∞2

[6] P.R.C1arkson叩d R.Rosenfeld， "Statistical language modeling using the
CMU-Cambridge toolkit，" Eurosç町ch， vol.5， pp.2707-2710， 1997

[7] S.lshikawa， K.Yamabane， R.Isot却し A.Okumura，"Parallel LVCSR al
gorithm for cellphone-oriented multicore processors，" ICASSP， vol.I，
pp.I77-180， 2α)6

[8] D.Huggins-Daines， M. Kumar， A.Chan， A.Black， M.Ravishankar，
A.Rudnicky， "POCKETSPHINX A Free Real-time continuous speech

recognition system for hand-held devices，" ICASSP， vol. 1， pp.185-188.
2∞6

[9] http://www.t-engine.org!index.html
[10] E.Bocchieri， "Vector quanti回tion for efficient computation of continu­

ous density Iikelihoods，" ICASSP， pp.692・695， 1993
[11] A.Lee， T.Kawahara， K.Takeda， and K.Shikano， "A new phonetic tied­

mixture model for efficient decoding，" ICASSP， pp. 1269-1 272， 20∞
[12] A.Lee， T.Kawahara， and K.Shikano，“Gaussian mixture selection using

context-independent HMM，" ICASSP， pp.69-72， 2001
[13] K.ltoh， M.Yamamoto， K.Takezawa， T.Matsuoka， K.Shik加0，

T.Kobayashi， and S.Itahashi， ''The design of山e newspaper-b国ed
Japanese large vocabulary continuous speech recognition corpus，"
ICSLP， pp.326ト3264， 1998

[14] N.Yodo， K.Shikano 加d S.Nakamura，"Compression Algorithm of Trト
gram Language Models based on Maximum Likelihood Estimation，"
ICSLP， pp.1684-1686， 1998

38

Qd

司i可lム

