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Abstract— The model of the human/machine hands-free
speech interface is defined as a point source (the user voice)
and a diffuse background noise. This situation is very different
from the usual cocktail party model, separation of a mixture
of speeches, that is usually treated in frequency domain blind
signal separation (FD-BSS). In particular, the fast permuta-
tion solvers proposed for the cocktail party model results in
poor separation performance in this case. In order to resolve
the permutation more efficiently, this paper proposes a new
approach that exploits the statistical discrepancy between the
target speech and the diffuse background noise.

I. INTRODUCTION

In recent years, the acoustic signal processing community
started investigating blind signal separation (BSS) techniques
for processing the multidimensional observation given by
microphone arrays (see review paper [1]). The frequency
domain approach, referred to as FD-BSS, is especially of
great interest since the convolutive mixture modeling the
reverberant environment can be efficiently processed in the
frequency domain. However, a specific problem of this
approach is the so called permutation indeterminacy that
requires the addition of a permutation resolution method
to achieve the separation. Most of the research has been
focused on the cocktail party problem: the separation of
several speech signals [1], [2].

But another problem, that has been overlooked, is the separa-
tion of a close target speech signal from a diffuse background
noise (created by the sources far from the microphone array).
This situation is of great interest since it describes the
conditions of the human/machine interaction with a hands-
free speech interface. The user interacting with the machine
is close to the microphone array whereas other noise sources
are at a larger distance. The hands-free speech interface picks
the user’s voice at distance by a microphone array making a
more natural interface with the machine. But the cost is that
noises and reverberation deteriorate the speech quality.

In presence of diffuse background noise, the authors in
[31 showed that FD-BSS gives a better estimate of the
diffuse background noise than of the target speech signal.
Consequently they proposed an efficient front-end combining
spatial subtraction array techniques with FD-BSS based noise
estimation. Unfortunately, the permutation indeterminacy in
the presence of diffuse background noise degrades the quality
of the noise estimation. In particular, the fast permutation
method based on the direction of arrival (DOA) proposed
in [4] that is well suited for the cocktail party problem is
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Fig. 1. Time domain convolutive mixture and equivalent frequency
domain instantaneous mixtures.

not a reliable solution in the presence of diffuse background
noise.

This paper focuses on the permutation resolution for FD-
BSS in the situation of the human/machine hands-free speech
interface. The main objective is to enhance the quality of the
diffuse background noise estimate. The approach presented
in this paper exploits the statistical discrepancy between
the target speech and the diffuse background noise. This
statistical approach specific to the human/machine hands-
free speech interface is different of the usual statistical
approaches used in FD-BSS (that were usually developed
for the cocktail party problem) and does not rely on the
same spatial information used by the DOA-based methods.
But we also show how to combine the DOA information
with the proposed method. Some simulations in a realistic
environment are provided to show that the proposed approach
significantly improves the quality of the diffuse background
noise estimate.

II. PRELEMINARIES
A. Frequency domain blind signal separation

The goal of FD-BSS is to recover some unknown sig-
nals when only convolutive mixtures of these signals are
observed. Performing the separation in the frequency domain
replaces the time domain convolutive mixture by several
simpler instantaneous mixtures in the frequency domain (see
Fig. 1). The frequency domain model of the mixture is obtain
by applying a short time Fourier transform (STFT with a F'
points analysis frame) to the received signals. The observed
signal at the fth frequency bin is

V(f,t) = A(f)S(f:1), M
where the n x n matrix A(f) represents the instantaneous
mixture and S(f,t) = [s1(f,1), .. .,sn(f,)]7 is the emitted
signal at the fth frequency bin (¢ denotes the frame index
and f the frequency bin) .

In the fth frequency bin, the estimates Y (f,t) =
[1(£:1), - ¥a(f,1)]7 are obtained by applying an unmix-
ing matrices B(f) to the observed signals (see Fig.2)

Y(f,t) = B V(f,t) = BHAS(, 1. @
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Fig. 2. Mixture and blind separation at frequency bin f.

The blind separation is possible because of the following
theorem [5]
Theorem 1
If the components of S(f, t) are statistically independent then
the component of Y (£, t) are statistically independent if and
only if B(f) is such that

Y(f,t) = P(f)A(£)S(f, 1)

where P(f) is a n x n permutation matrix and A(f) is a
diagonal n x n matrix.(J

As a consequence, in each frequency bin, it is possible to
recover the components of S(f,t) up to scale and permuta-
tion indeterminacy by finding the unmixing matrix B(f) that
gives an estimate with statistically independent components
(see review paper [1]).

Theorem 1 also shows one major difficulty of the FD-BSS
approach: The permutation indeterminacy. Considering the
first component of Y (f,t) after separation of the frequency
domain signals in all the bins we have

y1(1,t) P(1)1)8(1,¢)

yx(f’, t) P(F)“':)S(F,t)

where P(f)(1) denotes the first row of P(f) (for simplicity
A(f) is omitted; see end of Sect. III-B for scale indetermi-
nacy).

Transforming back [y, (1,¢),..,y1(F,t)]T to the time do-
main only gives a time estimate y;(k) of one of the original
time signals (say s;(k)) if yi(f,t) = s;(f,t) for all f.
Namely the components belonging to the same signal must
be matched across all the frequency bins before transforming
back the signals to the time domain. The methods used to
force all the P(f) to be equal are referred to as permutation
resolution methods.

Several general permutation resolution methods exploit
statistical dependency between the components ¥;(f,t).
These methods compute second order [6] or higher order
statistics [7] between components in different bins and match
corresponding components using this statistical information.
The main drawback of these methods is their computation
cost. For this reason other approaches are usually preferred
like the method in [8]. But this method is not well suited for
long filters [1].

B. Point source separation: the two speakers scenario

The research in FD-BSS for acoustic signal processing
mainly focused on speech/speech separation also known as
the cocktail party problem. As a result the conventional per-
mutation resolution methods are designed with the cocktail
party model in mind. In particular, a speech signal can be
approximately considered as a point source and its direction
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Fig. 3. DOA estimate versus frequency bins speech/speech (left)
and speech/diffuse noise (right).

of arrival (DOA) can be exploited to resolve permutation.
The DOA of the speech is the direction of the emission point
as seen from the microphone array.

In [2], the authors showed that FD-BSS is equivalent to
a set of adaptive null beamformers (ANBF) each having its
null toward different speakers. Then it is possible to resolve
the permutation by determining the position of these nulls
using the directivity pattern of the matrices B(f).
In [4], a method exploiting the DOA information that does
not requires the estimation of the directivity pattern is
proposed.
Considering two persons talking at the same time in a room
with a reverberation time of 200ms. Suppose the speakers
are distant of 1 meter from a two microphone array and
have DOAs of 6, = 60 and §, = —60. Applying the method
in [4], the estimated DOA of the first components y1(f,t)
(o) and of the second components y,(f,t) (x) are plotted
in Fig. 3(left). The DOA repartition in the different bins
shows two clusters around 6; and 6. Then it is easy to
determine which components to match together. (Note that
even if the speakers are close to the microphone array and
the reverberation time is small, the variance of the DOA
estimate is large due to the reverberation condition).

III. MAIN RESULTS
A. Target speech in diffuse background noise

The model of the human/robot hands-free speech interface
is very different from the cocktail party model. The user is
assumed to be close to the microphone array and thus is
modeled as a point source. But the other sources are far
from the microphone array thus because of the reverberant
environment they are seen as a diffuse background noise.

In particular, the speech has a well defined DOA (few
spreading) but the diffuse background noise has no clear
DOA. Consequently, using FD-BSS it is possible to place a
null in the direction of the speech and get a good estimate of
the diffuse noise. But it is not possible to get a good speech
estimate since with a limited number of microphones it is
not possible to cancel the diffuse background noise. This is
the reason why FD-BSS gives a good estimate of the diffuse
background noise but not of the target speech [3].

The fact that the diffuse background noise has no clear
DOA also prevent the use of the fast DOA based permu-
tation resolution method [4]. Fig. 3 (right) shows the DOA
estimate corresponding to the human/robot hands-free speech
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Fig. 4. Pdf of speech and noise versus frequency bins.

interface situation (corresponding to the data in Sect. IV). In
some frequency bins, it is not possible to determine which
estimated DOA correspond to the speech or to the diffuse
background noise. In such frequency bins, the DOA based
permutation solver is likely to wrongly select the target
speech as diffuse background noise component. Then the
wrongly selected target speech component deteriorates the
diffuse background noise estimate.

Note that the elegant method proposed in [9] that is able
to separate signal with no permutation requires to have at
least as many sensors than there are signals which is not
possible for the diffuse background noise (composed of many
signals).

B. Statistical discrepancy of speech and diffuse noise

The spatial information contained in the separation matri-
ces B(f) cannot be exploited as it is when considering the
human/robot hands-free speech interface. Thus we propose
to use the statistical information contained in the estimates
yi(f,t). But contrary to the general methods cited at the
end of Sectll-A, we do not compute statistics involving
components from different frequency bins. In the case of a
target speech in a diffuse background noise, using statistics
computed in each frequency bins is enough to resolve the
permutation.

In time domain, the distribution of the speech signal
amplitude is often modeled by a Laplacian distribution
because the speech is a non stationary signal having activity
and non activity parts (silence). On the contrary, the diffuse
background noise is composed of the superposition of many
sounds consequently its amplitude has a distribution that is
close to the Gaussian distribution. After the STFT, in each
of the frequency bins, we can also observe that the modulus
of the speech signal has a spikier distribution than that of the
diffuse background noise. Fig. 4 shows the pdf Pg(z, f) of
the modulus of the nommalized speech and the pdf Py(z, f)
of the modulus of the normalized noise for a speech and
a diffuse background noise recorded in a train station (see
Sect. 1V). This statistical discrepancy between speech and
diffuse background noise is the key of the proposed method.
In each frequency bins, after convergence of the separation
matrices B(f), the permutation resolution is performed using

statistical features computed on the components of Y (f,t).
Then the selection of the components corresponding to the
target speech or diffuse background noise is based on this
feature. Several different features can be derived from this
idea.

In the following section we present different exploitation
of this idea. But let us briefly define the diffuse background
noise estimate in more detail before presenting these meth-
ods.

One important property is that to obtain the estimation of
the diffuse background noise contribution at the microphone
array only the selection of the speech component is required.
Suppose that at frequency bin f the estimated speech com-
ponent is y;(f,t) then the projection back of the diffuse
background noise is

Z(fvt) = B(f)_l(I_Di)y(fvt)

where [ is the identity matrix and D; is a matrix having
only one non null entry d;; = 1. If we assume perfect
separation B(f)A(f) = P(f)A(f) and s; (f,t) is the speech
component then P(f) is such that P(f)~*D;P(f) = D; and

Z(f,t) = ANS(f,t) = AN DIA(S)S(f, )
= A(f)S(f,t) — A(f)D1S8(f,1)
= A(f)s(fat) —A(fvt)(:,l)sl(fat)

A(f7 t)(:’k)sk (f7 t)

[
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where A(f,t)¢) is the j** column of A(f,t). Namely Z(f,t)
is equal to the contribution of the diffuse background noise
at the microphone array. Note that the scale indeterminacy
A(f) is compensated in the process of projection back.

C. Proposed permutation resolution methods

1) Kurtosis based method: The statistical feature com-
puted for all the separated components is the kurtosis of
their modulus )

_ g{lyt(fat)lA} -3
vi.f = 2
E{lui(£, 1)}

In each frequency bin, the component with the largest
kurtosis is selected as the speech component.

2) Distribution fitting based method: The statistical fea-
ture computed for all the separated components is the scale
parameter oy, ¢ of the Laplacian distribution that fits the
pdf of the modulus. The maximum likelihood estimate of
this parameter is

1
! = e w00

In each frequency bin, the component with the largest
parameter is selected as the speech component.
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Fig. 5. Distributions of modulus for target speech (left) and diffuse
noise (right).
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Fig. 6. Joint pdf of observation (left) and estimates (center) (right)
at frequency bin f.

3) Pdf based method: The statistical feature is obtained
from a kernel based estimate of the pdf of the modu-
lus |y;(f,t)| (For some separation methods using adaptive
method to determine the B(f) such estimates of the pdf are
readily available after separation [10]). The estimate of the
distribution obtained from |y;(f, t)| for the frames ¢ € [1 : T
is a set of K < T couples

k
{lwl®, P}

with & € [1: K]. The values are obtained by convoluting a K
bins histogram of the data with a Gaussian Kernel (adapted
from [11]). To determine the discriminant statistical feature
that measures the spikiness of the distribution, we first select
the L couples

k.
{Jsl®, P Ve

with highest values of Pl(ylj) (see Fig. 5). Then we compute
the mean 77; and standard deviation o; of the L selected
values of the amplitude |y, Finally the statistical
feature is obtained by taking

I(y:i(f,1)) = 75 0.

|(kt
le(1:L)"

At the frequency bin f, after computing the statistical feature
for all the components of Y (f,t), the component with the
smallest feature is selected as the target speech.

4) Joint pdf based method: For the two microphone array
case, it is possible to use the joint pdf of the estimated
components to resolve the permutation. Fig. 6 (left) shows
such joint pdf P(|yi], |y2|) at frequency bin f before the
separation is performned. After separation by the FD-BSS
method, the joint pdf take the form in Fig. 6 (center) if
y1(f,t) estimates the speech component or in Fig. 6 (right) if
y2(f,t) estimates the speech component. The classification
of the joint pdf in the one in Fig. 6 (center) or Fig. 6 (right)
is performed by comparing the average values of |y;| and
|y2| computed for the L points of maximal density (the joint
pdf is estimated on a K x K grid by convoluting a K x K
2D histogram of the data with a 2D Gaussian Kernel [11]).

1| DOA
post
proc.

Fig. 7.

Using DOA estimate as post processing.

5) Post processing using DOA: 1t is possible to improve
the performance of the proposed methods by using the DOA
estimate in a post processing stage.

After applying one of the proposed methods, the DOA is
estimated from the permuted B(f) using the estimator from
[4]. Fig. 7 (left) shows the DOA estimates obtained after the
pdf based method using the same data as in Fig. 3 (right).
At some frequency bins, the DOA estimates corresponding
to the estimated speech o is away from the general trend, see
the circled areas in Fig. 7 (left). As the DOA of the speech
signal should be consistent along the frequency axis, the row
of the separation matrix are permuted in these bins, see Fig. 7
(right). This post processing using the DOA information
enables the detection of bins where the statistical index
wrongly permuted the speech and noise. These bins appear
when the diffuse background noise has a spikier distribution
than that of the speech because of an isolated event with high
energy (in this data set Sect. IV, it seem to correspond to a
bell ringing for announcing incoming train in the station).

IV. EXPERIMENTAL RESULTS

Some experiments were conducted using recording from a
train station hall (see Fig.9). A two microphone array (mic.
spacing: 2.15cm) was used to record the ambient diffuse
noise in the station hall. The impulse response from a speaker
at 50cm and 150cm in front of the array were also measured
(the reverberation time is RT60 =~ 1s).

In such situation FD-BSS cannot estimate the speech as
it cannot suppress the background noise. But FD-BSS can
be used to estimate the background noise as proposed in
[3] where the noise estimate is used to clean the speech by
spectral subtraction. Here, the goal of the simulation is to
show that the proposed permutation resolution improves the
quality of the diffuse background noise estimate compared
to the conventional DOA based method.

The test data is composed of 200 Japanese sentences

(JNAS database [12]) that are convoluted with the measured
impulse response and mixed with the recorded noise at
different SNR levels. The sampling frequency is 16khz and
the sentences have variable lengths (from 2.4s to 14.7s). The
STFT is performed with a 512 points hanning window with
256 points overlap.
The ICA algorithm is a modified INFOMAX algorithm [13]
where the nonlinear activation functions are estimated from
the data using a kernel based estimator [10]. The matrices
B(f) are initialized to identity in all frequency bins then
300 iterations are performed with an initial adaptation step
of p1p = 0.3 that is divided by two every 100 iterations.

2175

— 212—



Distance 50 cm

SNR
~0dB

12
s 5 dB
x 8 : 10 dB
z ;l/ =15 dB
4 { 20 dB

KUR LAP PDF JPDF

DOA KUR LAP PDF JPDF DOA DOA DOA DOA

Fig. 8.
Extomal
concourse
Microphons array En ”
(Height: 1.5 m) pols

S © U
o osm D i2m

Loudspeaker
(Height: 1.5 m)

b

Fig. 9. Experimental settings.

In all experiments we compared the approach from [4]
(referred to as DOA) to the proposed approaches. KUR,
LAP, PDF and JPDF denote respectively the kurtosis based
method, the Laplacian distribution fitting based method, the
pdf based method and the method exploiting the joint pdf.
The terms KUR DOA, LAP DOA, PDF DOA and JPDF
DOA refer to the previous methods combined with the
proposed DOA post processing. For the PDF method the
parameters are K = 300 and L = 10 (equivalent parameters
for JPDF are K = 50 and L = 20).

The diffuse background noise estimation quality is mea-
sure in term of noise reduction rate (NRR) [2] defined as
the difference of the SNR of the diffuse background noise
estimates (after processing) and the SNR of the observations
(before processing). While computing the SNR, the signal of
interest is the diffuse background noise and the target speech
is considered as the noise. Consequently, a positive NRR
means that the diffuse background noise estimate quality is
improved since it contains less target speech.

We can see that the proposed methods outperforms the

DOA-based method for all situations in Figs.8. The dif-
ference is particularly important for higher SNR where
any permuted speech component has a high energy that
considerably degrades the quality of the estimation. Note
that for 150cm the stronger reverberation results in a less
good noise estimate because the point source approximation
for the target speech is less valid, consequently the spatial
null steered by FD-BSS in the direction of the speech is less
efficient at canceling it from the noise estimate.
The DOA post processing especially improves the NRR for
lower SNRs (0 dB, 5 dB and 10 dB) and the improvement is
reduced when the distance increases (one reason is that the
variance of the DOA estimate is larger).

The average computational times of the different ap-
proaches are given in Table I (in ms). The kurtosis based
method and distribution fitting method are faster than the
DOA based method in [4] (in fact the distribution fitting

Distance 150 cm

KUR LAP PDF JPDF

DOA KUR LAP PDF JPDF DOA DOA DOA DOA

Comparison of the NRR obtained with different permutation solvers.

TABLE 1
MEAN COMPUTATION TIMES (MS)

no DOA post proc. DOA post proc.
DOA 160 (not applicable)
KURT || 62 316
LAP 80 333
PDF 352 604
JPDF 2093 2359

requires less computation but it’s code was not as optimized
as the code of the kurtosis method). The pdf based method
requires more computation because of the pdf estimation.
The joint pdf approach has the highest cost because of the
costly estimation of the joint pdf (but in some situations the
additional information contained in the joint density results
in better performance). The additional cost of the DOA
post processing is comparable to the cost of the DOA or
pdf based method. As a result the best methods in termn of
performance/cost are the kurtosis based, distribution fitting
based and pdf based methods with DOA post processing (at
higher SNR the DOA post processing may be discarded).
As a comparison, the mean computation time of the FD-
BSS separation was 77098 ms (quite long because of the
300 iterations). Thus the ratio of the permutation method
computation time to total computation time varies from
0.08% for kurtosis based method to 2.96% for joint pdf
based method with DOA post processing (for 100 iterations
this ratio would varies from 0.24% to 8.4%).

V. CONCLUSION

In this paper, we proposed a new approach to the permu-
tation problem in order to improve the performance of FD-
BSS based front-end in the presence of diffuse background
noise. This approach is more efficient than the traditional
DOA-based method as it significantly improves the diffuse
background noise estimate quality. As a future development,
we are working on combining the proposed method with the
DOA approach to improve simultaneous speakers separation
in diffuse background noise (equivalent to two concurrent
users of the machine).
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