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Abstract

This paper presents a novel cross-language voice conversion
(VC) method based on eigenvoice conversion (EVC). Cross-
language VC is a technique for converting voice quality be-
tween two speakers uttering different languages each other. In
general, parallel data consisting of utterance pairs of those two
speakers are not available. To deal with this problem, we apply
EVC to cross-language VC. First, we train an eigenvoice GMM
(EV-GMM) using many parallel data sets by a source speaker
and many pre-stored other speakers who can utter the same lan-
guage as the source speaker. And then, the conversion model
between the source speaker and a target speaker who cannot ut-
ter the source speaker’s language is developed by adapting the
EV-GMM using a few arbitrary sentences uttered by the tar-
get speaker in a different language. The experimental results
demonstrate that the proposed method yields significant perfor-
mance improvements in both speech quality and conversion ac-
curacy for speaker individuality compared with a conventional
cross-language VC method based on frame selection.

Index Terms: speech synthesis, voice conversion, cross-
language, eigenvoice conversion, unsupervised adaptation

1. Introduction

Voice conversion (VC) is a technique to modify voices of a
given speaker, called the source speaker, so that they sound like
those of another speaker, called the target speaker. A conversion
method based on Gaussian mixture model (GMM) proposed
by Stylianou ef al. [1] is one of the most popular statistical
approaches to VC. In this method, a GMM of joint probabil-
ity density of source and target acoustic features is previously
trained with a parallel data set consisting of utterance pairs of
the source and target voices [2]. The trained GMM allows the
conversion from the source into the target based on minimum
mean square error 1] or maximum likelihood criterion [3]. Al-
though this method is very effective, this training framework is
difficult to use if parallel data are not available.

One of promising VC applications is cross-language VC [4]
of which the goal is to preserve voice quality of the speaker
when synthesizing another language. This technique is very
effective for a speech translation system, a language training
system, and so on. Abe et al. [4] proposed a cross-language
VC method between a Japanese speaker and an English synthe-
sizer. To synthesize English speech as if uttered by the Japanese
speaker, parallel data are created by synthesizing speech sam-
ples sounding like Japanese with the English speech synthe-
sizer, and then the mapping function is trained using those
pseudo-parallel data. Mashimo et al. [5] proposed another
method based on a source bilingual speaker. The conversion
model is trained using parallel data in the target speaker’s lan-
guage. And then, the trained conversion model is straightfor-
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wardly adopted for converting speech uttered in the other lan-
guage by the source speaker as if uttered by the target speaker.
These methods are not enough convenient to be applied to any
language-pair or any speaker-pair.

Several attempts at training the conversion model using
non-parallel data have been proposed for making the VC train-
ing framework more flexible. One typical approach is to create
pseudo-parallel data from non-parallel data. Suendermann ez al.
[6] proposed a text-independent training method based on frame
selection. This method adopts unit selection [7] to find corre-
sponding time frames in the source and target speech data. Erro
and Moreno [8] applied the frame selection method to cross-
language VC and reported that this method is very effective for
cross-language VC.

Another promising approach is to use the model adaptation
techniques. Mouchtaris ez al. [9] proposed a non-parallel train-
ing method based on maximum likelihood constrained adap-
tation of a GMM trained with an existing parallel data set of
a different speaker-pair. Inspired by this method, Toda ez al.
[10] proposed eigenvoice conversion by integrating an eigen-
voice technique [11] to the GMM-based VC framework. One-
to-many EVC, which is one of main frameworks of EVC, allows
the conversion from one pre-defined source speaker’s voice into
an arbitrary target speaker’s voice. In the training process, mul-
tiple parallel data sets consisting of utterance pairs of the source
speaker and many pre-stored target speakers are used for train-
ing an eigenvoice GMM (EV-GMM). In the adaptation process,
the EV-GMM is adapted to arbitrary target speakers using only
their speech data without any linguistic restrictions. One of
the main advantages of EVC is to exploit voices of many other
speakers as prior information to develop the conversion model
for the adapted target speaker, and thus a significant reduction
of the amount of adaptation data is allowed.

In this paper, we apply one-to-many EVC to cross-language
VC. We assume that a large amount of speech data of the source
speaker is previously available but quick and flexible develop-
ment of the conversion model for various target speakers is de-
sired. This situation would be observed in some applications,
e.g., converting output speech of a foreign language speech syn-
thesizer as if uttered by an arbitrary input speaker in a speech
translation system or converting a teacher’s voice into an ar-
bitrary student’s voice in language training. In such a situa-
tion, the EV-GMM can be trained in advance by using multi-
ple parallel data sets consisting of utterance pairs of the source
speaker and many pre-stored other speakers speaking the same
language as the source speaker because such parallel data sets
could be generally available. And then, the EV-GMM is adapted
to the target speaker who cannot speak the source speaker’s lan-
guage using a small amount of speech data uttered by the tar-
get speaker in a different language. We conduct experimental
evaluations in cross-language VC from a Japanese male speaker
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into a French female speaker. The experimental results demon-
strate that the proposed method yields significant improvements
in both converted speech quality and conversion accuracy for
speaker individuality compared with the conventional method
based on frame selection.

2. Conventional method based on
frame selection

We apply the conventional frame selection method to our cross-
language VC task from the source speaker, of which a large
amount of speech data is available, to the target speaker, of
which a relatively small amount of speech data is available.
First we create parallel data, of which the size is equal to the
size of the source speech data, by selecting frames in the tar-
get speech data to be aligned to individual frames in the source
speech data [6]. And then, a GMM of the joint probability den-
sity of source and target features is trained. In this paper, we
adopt the trajectory-based conversion method considering dy-
namic features and the global variance (GV) based on maximum
likelihood criterion [3].

2.1. Selection process

We use the Viterbi algorithm to select a sequence of frames
{y1, -+ ,yr} from the target database so that it best matches
a sequence of source frames {Z1, - ,zr}.

First all of the target frames are divided into C' clusters with
K-means algorithm. And then pre-selection is performed for
each source frame x: by selecting the cluster with the closest
centroid as follows:

D
& = argmcinZw(d) (z(d) - ye(d))?

d=1

M

where D is the dimension of the feature vector, x:(d) is the
dt component of the source feature vector at frame ¢, y.(d) is
the d** component of the ¢** centroid of the target, and w(®)
is the weighting factor associated with these d(*") components.
The target frames (ygé‘) yoee ,ygf;‘)) belonging to the selected
cluster ¢&; are used as candidates to be selected for frame ¢.

The selection process is performed by minimizing a global
distance, which is defined as the weighted sum of two types of
distance. One is the target distance capturing the quality degra-
dation caused by the difference between the selection target .
and a candidate yEf‘) , which is given by
2

D
D(ze, y)) = Y w'® (2u(d) - ¥ (d)) @
d=1

The other is the concatenation distance capturing the qual-
ity degradation caused by concatenating two candidate frames

y%=1) and y(®), which is given by
D " .
é 2 d) [, (Ee—1) é
D(ySe-1, ) = w®@ (ym‘ Y(d) - yﬁ‘)(d)) )
d=1

2.2. Training process

From the time-aligned feature vectors we generate 2D-
. T

dimensional acoustic feature vectors X [m;r ,A:ctT ]

-
(source speaker’s) and Y, = [ytT N ] (target speaker’s)
consisting of D-dimensional static and dynamic feature vectors,
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respectively, where T denotes transposition of the vector. The
joint probability density of the source and target feature vectors
is modeled by a GMM [2] as follows:

P(X¢,Y¢|A)
M ) o
= Y an (IXT, Y1560, 205) @
m=1
(X) (XX) (XY)
X.¥ K. XGX z:nL Z7n
“gnx P [ () } , BEHE =|: s0%) zg’)') :'(5)

where A(; £, ) denotes the Gaussian distribution with a
mean vector ¢ and a covariance matrix ¥. The mixture com-
ponent index is m. The total number of mixture components is
M. A parameter set of the GMM is A, which consists of weights
Qm, Mean vectors us,‘:(’y) and covariance matrices £ for
individual mixture components. This paper employs diagonal
covariance matrices for the individual block covariance matri-
ces in Eq. (5).

The probability density of the GV of the output static fea-
ture vectors over an utterance is also modeled by a Gaussian
distribution,

P(o(y)A™) = N(v(y); ™, £7) ©)

where the GV v(y) = [v(1),- - ,v(D)]" is calculated by

=5 (y:(d)— %Zm(d)) .o

A parameter set A(*) consists of a mean vector (") and a diag-
onal covariance matrix ().

v(d)

2.3. Conversion process

Let X = [X{,--,X7]TandY = [Y{, - ,Y7]  bea
time sequence of the source feature vectors and that of the target
feature vectors, reﬁpectively. The converted static feature vector
sequence ¢ = [§] ,--- ,§+] " is determined by maximizing a
product of the conditional probability density of Y given X
and the GV probability density under a constraint Y = Wy as
follows:

§ = argmax P(Y| X, A)“P(u(y)|AM) ®)

where W is a window matrix to extend the static feature vec-
tor sequence to the feature vector sequence consisting of static
and dynamic features. A balance between P(Y|X, ) and
P(v(y)]A™) is controlled by the weight w (= 1/2T in this
paper).

3. Proposed method based on
eigenvoice conversion (EVC)

We apply one-to-many EVC to our cross-language VC task.

3.1. Eigenvoice GMM (EV-GMM)

The joint probability density of the source and target feature
vectors is modeled by the EV-GMM as follows:

P(X., Y AEYV) w)

M
= > an (X7, Y5000 (), 25°7) @)
m=1
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where the mean vector ;.

(w) is written as

(X)

1O (w)

(X)

XY m
i) = | = [apatuo

(10

In one-to-many EVC, the target mean vector of the m® mix-
ture component is represented as a linear combination of
a bias vector bQ")(O) and representative vectors BY) =
B8 (1), - ,b27(J)], where the number of representative
vectors is J. The J-dimensional weight vector w
[w(1), - ,w(J)]" is adapted to arbitrary target speakers while
the parameter set of the EV-GMM A(FY) is tied over different
target speakers.

3.2. Training of EV-GMM

The tied parameter set of the EV-GMM is trained in advance
using the multiple parallel data sets consisting of the single
source speaker and many pre-stored target speakers. We employ
speaker adaptive training (SAT) [12] to construct a canonical
model causing significant improvements of the model adapta-

tion performance [13]. Let X ; and YES) be the feature vector of

the source speaker and that of the sth pre-stored target speaker
at frame ¢. SAT estimates not only the tied parameter set A(Z")
but also a set of the weight vectors wi = {wi,- -, ws}
adapted to individual pre-stored target speakers as follows:

S s

J(BV
A( )

A S
1
vwis s=1¢t=1

To enable maximum a posteriori (MAP) estimation in the
adaptation process [14] described bellow, we also train the fol-
lowing Gaussian distribution for the weight vector:

Pw|A™ 1) = N(w; p™, 771 8™ (12)
where 7 is a hyper-parameter. A model parameter set A(*) con-
sisting of the mean vector (* and the covariance matrix $¢*)
is estimated using a set of the weight vectors estimated for in-
dividual pre-stored target speakers in SAT (see Eq. (11)) as
follows:

3 (W)

A

s
=argT(i?)c§I=-‘[P(1bs|)\(w),r= 1). (13)

3.3. Unsupervised adaptation and conversion

The EV-GMM is adapted for an arbitrary target speaker by es-
timating the optimum weight vector for given speech samples
in a completely unsupervised manner, i.e., using neither paral-
lel data nor linguistic information. For a time sequence of the
given target feature vectors Y',, - - , Y, the MAP adaptation
of the EV-GMM is performed as follows:

w =

argmua,xp(w|ylla o 7Y£I‘7A)

(w) 71y (EV)
argmtgxP(w|/\ ,T)HP(YJ)\ ,w). (14)

t=1

The conversion process is straightforwardly performed with
the adapted EV-GMM in a manner described in Section 2.3.
Note that the probability density of the GV is also modeled by
eigenvoices and it is adapted to the arbitrary target speaker as
described in [15].

Wy = arg max HHP(Xt,YES)lz\(EV),ws). (11)
A
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4. Experimental evaluations

We conducted subjective evaluations in cross-language VC
from a Japanese male speaker into a French female speaker.

4.1. Experimental conditions

In order to train one-to-many EV-GMM, we used 160 speak-
ers consisting of 80 male and 80 female Japanese speakers in
the Japanese Newspaper Article Sentences (JNAS) database as
pre-stored target speakers. Each speaker uttered 50 phoneme-
balanced sentences. The source Japanese speaker not included
in JNAS uttered the same sentence sets as uttered by pre-stored
target speakers. The total number of training sentences uttered
by the source speaker was 350 (details in [16]).

We used 2, 8, and 32 sentences uttered by the target French
speaker who cannot speak Japanese to adapt the EV-GMM. The
number of mixture components was set to 128 and the number
of representative vectors was set to 159. The hyper-parameter
for the MAP estimation T was set to a constant value manually
determined in our preliminary experiment [14].

In the frame selection!, we created parallel data sets con-
sisting of 350 sentences by aligning 2, 8, and 32 sentences of
the target French speaker, which were the same as used in the
EV-GMM adaptation, to 350 Japanese sentences of the source
Japanese speaker, which were the same as used in training of
the EV-GMM. The number of mixture components was set to
128.

All speech data were sampled at 16 kHz. As a spectral
parameter, we employed 1°* through 24" mel-cepstral coeffi-
cients extracted by STRAIGHT analysis [17]. We converted the
source Japanese speaker’s voice into the target French speaker’s
voice. The number of Japanese test sentences was 21, which
were not included in the training data. The source fundamental
frequency Fy was converted into target fundamental frequency
Fy as follows:

" (v)
log By = % (log j - ;ﬁ’)) +u® 15)

where 1®) and ¢(*) are mean and standard deviation of log-
scaled Fy of the source, and p(y) and 0¥ are those of the tar-
get, respectively.

We conducted an opinion test on speech quality and an
XAB test on speaker similarity. In the opinion test, listeners
evaluated speech quality of the converted speech samples using
a 5-point-scale opinion score (5: excellent, 4: good, 3: fair, 2:
poor, 1: bad). In each trial of the XAB test, analysis-synthesized
French speech of the target French speaker was presented as
reference, and then a pair of two types of the converted speech
generated by EVC and frame selection were presented in ran-
dom order. Listeners were asked which voices sounded more
similar to the reference in terms of speaker individuality. Ten
Japanese listeners participated in each test.

4.2. Experimental results

Figure 1 shows the result of the opinion test on speech quality.
One-to-many EVC significantly outperforms the frame selec-
tion. Even if using only two sentences of the target speaker,
one-to-many EVC yields much better converted speech quality
than the frame selection using 32 sentences of the target speaker.
One-to-many EVC effectively exploits many other speakers’

'We used software available from http://www.enterface.net/
enterface06/docs/results/sources/project4_sources.zip
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Figure 1: Result of opinion test on speech quality.
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Figure 2: Result of preference test on speaker individuality.

voices to develop the conversion model for a target speaker even
if their language is different from the target speaker’s. In other
words, several parameters of the conversion model are effec-
tively shared between multiple speakers even if they utter dif-
ferent languages. These parameters are robustly estimated using
many other speaker’s voices in the EVC.

Figure 2 shows the result of the XAB test on speaker simi-
larity. Note that only two sentences of the target French speaker
were always used in the one-to-many EVC. We can observe that
one-to-many EVC yields much better conversion accuracy for
speaker individuality than the frame selection. The performance
of frame selection is improved by increasing the amount of tar-
get speaker’s data but it is still significantly inferior to that of
one-to-many EVC using only two target sentences.

These results suggest that the proposed method is very ef-
fective in cross-language VC and significantly outperforms the
conventional method based on frame selection.

5. Conclusions

This paper has described cross-language voice conversion (VC)
based on eigenvoice conversion (EVC). An eigenvoice GMM
(EV-GMM) is trained in advance using parallel data sets con-
sisting of a source and many pre-stored other speakers in the
same language. And then, the conversion model between the
source speaker and an arbitrary target speaker uttering a dif-
ferent language is effectively developed by unsupervised adap-
tation of the EV-GMM using a very limited amount of target
speech samples. The results of subjective evaluations have
demonstrated that our proposed cross-language EVC signifi-
cantly outperforms the conventional cross-language VC based
on frame selection.
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