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Abstract

In this paper, we describe development and evaluation of hands-
free spoken dialogue system which is used for railway station
guidance. In the application at the railway station, noise ro-
bustness is the most essential issue for the dialogue system. To
address the problem, we introduce two key techniques in our
proposed hands-free system; (a) blind spatial subtraction array
(BSSA) as a preprocessing, which can efficiently reduce non-
stationary and diffuse noises in real-time, and (b) robust voice
activity detection (VAD) based on speech decoding for further
improvement of speech recognition accuracy. The experimen-
tal assessment of the proposed dialogue system reveals that the
combination of real-time BSSA and robust VAD can provide the
recognition accuracy of more than 80% under adverse railway-
station noise conditions.

Index Terms: spoken dialogue system, hands-free, noise re-
duction, microphone array

1. Introduction

Spoken dialogue system is an essential technology for realiz-
ing an intuitive, unconstrained, and stress-free human-machine
interface. Recently much attention has been paid in develop-
ment of spoken dialogue system handled under real acoustical
environments. As a good example, our spoken-oriented guid-
ance system “Kitarobo” is working in an actual railway station
since the end of March 2006 in Japan [1]. The system is located
near the ticket gate, and everybody can use the system while the
station is open. This system can provide guidance information
to visitors regarding issues on the station itself and around the
station, e.g., map and travel information (see [1] for details).

The input device of the original system was a close-talking
microphone. Needless to say, this input style led to unnatural
communication in that user must approach the microphone too
closely, unlike human-human interface. To address this prob-
lem, in this paper, we extend our original one to be a hands-free
spoken dialogue system. This improved system undertakes very
challenging task, where there exist noises consisting of various
kinds of interferences, e.g., background noise, sounds of trains,
ticket-vending machines, automatic ticket wickets, foot steps,
cars, and wind. They result in a nonstationary and diffuse noise
environment, and thus it is too difficult to reduce the noises only
using the conventional noise reduction methods such as single
channel spectral subtraction (SS) [2] or simple beamforming
technique via microphone array.

Two key techniques in our proposed hands-free system are
(a) blind spatial subtraction array (BSSA) [3] as a preprocess-
ing, which can efficiently deal with nonstationary and diffuse
noises, and (b) robust voice activity detection (VAD) based on

Copyright © 2008 ISCA
Accepted after peer review of full paper

455

)

|
: I Response Generate }
| generator display information| |
I t 1
I
|
|
|

1
|| Speech recognitionl I Text to speech |
1 oy

|
! ¥
! | Robust VAD

Figure 1: Overview of hands-free spoken dialogue system with
real-time BSSA and robust VAD.

speech decoding [4]. Configuration of the whole dialogue sys-
tem is shown in Fig. 1. In this paper, we newly propose a real-
time architecture of BSSA and implement the real-time BSSA.
Moreover, we introduce the implemented real-time BSSA and
robust VAD method into the spoken-oriented guidance system.
The experimental assessment of the proposed dialogue system
reveals that the combination of real-time BSSA and robust VAD
can provide the recognition accuracy of more than 80% under
adverse railway-station noise conditions.

2. Blind spatial subtraction array
2.1. Motivation and feasibility

In the last decade, independent component analysis (ICA) [5]
becomes one of the most notable candidate of microphone ar-
ray method for separating and reducing interfering sounds in
acoustical signal processing [6]. This is due to the feasible prop-
erty that ICA is unsupervised adaptive signal processing, where
training sequences, a priori information of the microphones’ po-
sitions and their calibrations are not needed in advance. Gener-
ally speaking, the conventional ICA could work particularly in
speech-speech mixing, i.e., all sound sources can be regarded as
point sources. However, such a mixing assumption is very unre-
alistic in the railway-station environment, where the following
scenario are likely to arise.

Target speech model: The target sound is user’s speech, which
can be approximately regarded as a point source locating rela-
tively close to the microphone array (e.g., 1 or 2 m apart). Con-
sequently the accompanying reflection and reverberation com-
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Figure 2: The block diagram of the off-line BSSA

ponents are small.
Noise model: We are often confronted with interference sounds
which are not point sources but widespread sources. Also the
noise is usually far from the array and heavily reverberant.
From the above-mentioned scenario, the conventional ICA
can suppress the user’s speech signal to pick up the noise source,
but ICA is very weak in picking up target speech itself via sup-
pression of the far-located widely-spread noise. This is because
ICA with the small number of sensors and filter taps often pro-
vides only directional nulls against the undesired source sig-
nals [6]. This gives us an unfortunate conclusion that ICA
is not proficient in speech enhancement in the railway-station
noise environment. However, this also implies that we can still
use ICA as an accurate noise estimator. Based on the above-
mentioned fact, we decided to use our previously proposed
BSSA [3] that utilizes ICA as a noise estimator. In BSSA,
source extraction is achieved by subtracting the power spec-
trum of the estimated noise via ICA from the power spectrum of
the target speech enhanced observed signal via delay-and-sum
(DS). Although our previous work [3] only gives mathematical
basis of BSSA algorithm and did not refer to diffuse noise re-
duction, BSSA’s attractive feature is well expected to be suitable
for an robust reduction of the railway-station noise.

2.2. Basic principle of BSSA

The block diagram of the BSSA is shown in Fig. 2. BSSA
consists of two paths; a primary path which is DS-based tar-
get speech enhancer, and a reference path which is ICA-based
noise estimator. Finally, we obtain the target speech extracted
signal based on spectral subtraction procedure [2].

First, the observed signal vector in time-frequency domain
is defined as

) = [ (f,7), ..,z (f, )], (1)

where x(f,7) is the observed signal vector, f is the frequency
bin, 7 (= 0,1,2,...) is time frame index, and J is the number
of microphones. In the primary path, the target speech is partly
enhanced via DS; the procedure can be given as

yos(f,7) = gps(f,00) (f,7), @)
gps(f.0) = [g“’S)( £0),..,982 0", )
DS)(f,ﬁ') —exp( —i2n(f/M)fsdjsinf/c), (4)

where gpg(f,0) is the coefficient vector of DS array, and 6y
is the look direction which is estimated by the unmixing matrix
optimized by ICA [6]. Also, f, is the sampling frequency and
d; (j = 1,---,J) is the microphone position. Besides, M is
the DFT size, and c is the sound velocity.

In the reference path, the ICA-based noise estimation is per-
formed. First, we perform signal separation using the complex

m_,
MFCC(x.7)
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valued unmixing matrix Wica (f), so that the output signals

o(f,7) = [o1(f,7),...,0k(f, 7)]T become mutually inde-
pendent; this procedure can be represented by
o(f,7) = Wica(f)z(f,7), (5)
W(ICA)(f) W(ICA)(f)
Wica(f) = (6)
WS?“(f) “"'Wf)
Also, the unmixing matrix is updated iteratively by
wE(f) = u [1- Ele(o(£,7)0" (£, )] Wiks(£)
+ W), ©)

where p is the step size parameter, [p] is used to express the
value of the p-th step in the iterations, I is an identity matrix,
and E[] is the expectation operator. Besides, M H denotes her-
mitian transpose of matrix M, and ®(-) is the appropriate non-
linear vector function [6].

In the reference path, it is only required to estimate noise
component. Thus, the target signal component oy (f,7) is re-
moved from the output signal vector o( f, 7). This processing
can be designated as

q(f,T) = [01(f77)a . -sOU—l(faT),O7
0U+1(fa T)7--~ 70K(f’T)]T' (8)

Next, we apply the projection back (PB) method to remove the
ambiguity of amplitude. This procedure can be represented as

4(f,7) = Wica(f)a(f,7), )

where Mt denotes Moore-Penrose pseudo inverse matrix of
M . Next, we obtain the estimated noise signal z(f, 7) by per-
forming DS as follows:

2(f,7) = gps(£)a(f, 7). (10)

Note that z(f, 7) is the function of the frame number 7, unlike
the constant noise prototype estimated in the traditional SS [2].
Therefore, BSSA can deal with nonstationary noise.

Finally, source extraction is achieved by spectral subtrac-
tion as follows

lyos(£, 17 = B 2(£, ) 1,
(if lyos(f,7)>=B-lz(f,7)I*>0)
v - |lyps(f,7)| (otherwise),

yBssa(f,7) =

(1

where ygssa (f, 7) is the final output BSSA, (3 is the oversub-
traction parameter, and ~ is the flooring parameter. The appro-
priate setting, e.g., 3 > 1 and v < 1, gives an efficient noise
reduction.

2.3. Real-time implementation of BSSA

In BSSA’s signal processing, DS, SS, and separation filtering
parts are possible to work in real-time. However, it is toilsome
to optimize (update) the separation filter in real-time because
the optimization of the unmixing matrix by ICA consumes huge
amount of computations. Therefore, in this paper we newly in-
troduce a strategy in that the separation filter optimized by using
the past time period data is applied to the current data. Figure 3
illustrates a configuration of the proposed real-time implemen-
tation of BSSA. Signal processing in this implementation is per-
formed via the following manner.
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Figure 3: Signal flow in real-time implementation of BSSA.

Step 1: Inputted signals are converted into time-frequency do-
main series by using a frame-by-frame fast Fourier trans-
form (FFT).

Step 2: ICA is conducted using the past 1.5-s-duration data for
estimating separation filter while the current 1.5 s. The
optimized separation filter is applied to the next (not cur-
rent) 1.5 s samples. This staggered relation is due to
the fact that the filter update in ICA requires substantial
computational complexities and cannot provide the opti-
mal separation filter for the current 1.5 s data.

Step 3: Inputted data is processed in two paths. In the primary
path, target speech is partly enhanced by DS. In the ref-
erence path, ICA-based noise estimation is conducted.
Again, note that the separation filter for ICA is optimized
by using the past time period data.

Step 4: Finally, we obtain the target-speech-enhanced signal
by subtracting the power spectrum of the estimated noise
signal in the reference path from the power spectrum of
the primary path’s output.

Although the separation filter update in the ICA part is not
real-time processing but involves totally a latency of 3.0 sec-
onds, the entire system still seems to run in real-time because
DS, SS and separation filtering can work in the current segment
with no delay. In the system, the performance degradation due
to the latency problem in ICA is mitigated by oversubtraction
in the spectral subtraction.

3. Robust VAD based on speech decoding

Although BSSA can generally gain the output signal-to-noise
ratio (SNR) of about 10~ 15 dB, it is still insufficient to im-
prove the speech recognition accuracy because SNR of the in-
put speech is heavily degraded, e.g., up to 0 dB, in the actual
railway-station noise environment. Consequently, the conven-
tional VAD (based on amplitude level and zero cross counting)
is likely to fail, and this will yield speech recognition failure.
To solve the low input-SNR problem, we have proposed a
novel noise-robust VAD method based on speech decoding [4].
Our robust VAD method is embedded in a part of speech de-
coder different from the conventional VADs, namely, VAD and
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Figure 4: Appearance of hands-free spoken dialogue system.

speech decoding is performed in parallel. Robust VAD focuses
on the premise that non-speech segments (silence) exist before
and after the speech part of the utterance. Speech decoder can
detects silence or noise segments. A frame or series of frames
which are recognized as part of phonemes or series of phonemes
is considered as voice activity. Otherwise, a sequence of si-
lence frames of about 300-400 msec in duration is considered
as noise. It has been reported that the method can increase the
recognition performance in typical noisy environments (see [4]
for more details). In this paper, we newly apply the robust
VAD method into our development of hands-free spoken dia-
logue system in cooperation with real-time BSSA.

4. Experiment and performance assessment
4.1. Simulating railway-station noise

The main task of Kitarobo is a station guidance, and always
working in an actual railway-station. Thus, it is difficult to
conduct various assessment experiments in an arbitrary time.
Therefore, we have a necessity to construct the noise environ-
ment simulator of railway-station for experiments. To solve the
problem, we have constructed the experimental room for hands-
free spoken dialogue system with the real-time BSSA. The ex-
perimental room contains Kitarobo with the real-time BSSA
and railway-station noise simulator (see Fig. 4). The noise is
simulated via recording noises in an actual railway station with
eight-channel microphones, and playback of the multi-channel
recorded railway-station noise by eight surrounded loudspeak-
ers (see Fig. 5).

4.2. Experimental setup

To evaluate the hands-free spoken dialogue system with the
real-time BSSA, the speech recognition test was conducted.
Figure 5 depicts a layout of a reverberant room in our exper-
iment where the reverberation time is more than 400 ms. The
followingreal-recored 16 kHz-sampled signals were used in the
experiments. The target signal is user’s speech which is talked
in front of a microphone array and 1.5 m apart from the ar-
ray. As for noise, two noises were added simultaneously. First
noise is the real-recored noise in an actual railway-station noise
(it simulates railway-station noise) emitted from surrounded 8
loudspeakers. Second noise is an interference speech located at
50 degrees in the right direction of the microphone array, and
its distance is 2.0 m.

We use 5 speakers (250 words) as target user, and Julius [7]
ver. 4.0 RC2 as speech decoder. A eight-element array with
the interelement spacing of 2 cm is used. The array consists
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Figure 5: Layout of reverberant room in our experiment.

of directional microphone SHURE MX-184. DFT size is 512
points, window length for ICA is 256 points, and window shift
size is 128 points in the experiment. Thus, the algorithm latency
of the real-time BSSA is about 50 ms.

4.3. Experimental result and discussion

Figures 6 and 7 depict speech recognition results with or w/o
interference speech, where we compare (a) conventional single-
mic. system without robust VAD and BSSA, (b) the system
using robust VAD only, and (c) the proposed system with ro-
bust VAD and BSSA. In the case without interfering speech, ro-
bust VAD mainly contributes to the improvement of recognition
performance, but in the case including the interference speech,
BSSA notably sustains the recognition accuracy of more than
80%. This is very natural because speech-decoding-based VAD
depends on the existence of unknown (untrained) noise such as
speech interference, but BSSA cannot be affected. Overall, the
combination of BSSA and robust VAD is beneficial to hands-
free spoken dialogue system under the adverse condition.
Figure 8 gives another comparative assessment from the
viewpoint of microphone array signal processing. The results
reveal that both the word correct and word accuracy of the pro-
posed BSSA are obviously superior to those of DS and the con-
ventional ICA; this is a promising evidence of the proposed
signal processing’s efficacy. The demonstration movie of our
hands-free spoken dialogue system is available in the following
URL. Readers can confirm that the fluent conversation includ-
ing accurate responses with small latency is achieved via real-
time BSSA and VAD.
Demo video: http://spalab.naist.jp/database/Demo/rtbssa/

5. Conclusion
In this paper, we propose the hands-free speech-oriented guid-
ance system used in the railway-station noise environment.
To handle the noise robustness, we introduce two key tech-
niques, namely, real-time BSSA for efficient reduction of dif-
fuse noises, and robust speech-decoding-based VAD for further
improvement of recognition accuracy. The experimental results
reveal that the combination of real-time BSSA and robust VAD
can provide the recognition accuracy of more than 80% under
adverse railway-station noise conditions. Also it is confirmed
that real-time BSSA outperforms DS- and ICA-based methods.
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Figure 6: Contribution of VAD and BSSA in (a) word correct,
and (b) word accuracy (without interference speech).
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Figure 7: Contribution of VAD and BSSA in (a) word correct,
and (b) word accuracy (with interference speech).
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Figure 8: Comparison of signal processing methods in (a) word
correct, and (b) word accuracy (with interference speech).
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