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Abstract 

In this paper， we describe development and evaluation of hands­
free spoken dialogue system which is used for railway station 

忽lÎdance. ln the application at the railway station， noise ro・
bustness is the most essential issue for the dialogue system. To 
address the problem， we introduce two key techniques in our 
proposed hands-free system; (a) blind spatial subtraction a汀ay
(BSSA) as a preprocessing， which can efficiently reduce non­
stationary and diffuse noises in real-time， and (b) robust voice 
activity detection (VAD) based on speech decoding for further 
improvement of speech recognition accuracy. The experimen­
tal assessment of the proposed dialogue system reveals that the 
combination of real-time BSSA and robust VAD can provide the 
recognition accuracy of more than 80% und巴r adverse railway­
station noise conditions. 
Index Terms: spoken dialogue system， hands-企ee， noise re­
duction， microphone a汀ay

1. Introduction 

Spoken dialogue system is an essential technology for realiz­
ing an intuitive， unconstrained， and stress-free human-machine 
interface. Recent1y much attention has been paid in develop­
ment of spoken dialogue system handled under real acoustical 
environments. As a good example， our spoken-oriented忽lÎd­
ance system “ Kitarobo " is working in an actual railway station 
since the end ofMarch 2006 in Japan [1]. The system is located 
near the ticket gate， and everybody can use the system while the 
station is open. This system can provide guidance information 
to visitors regarding issues on the station itself and around the 
station， e.g.， map and 回vel information (see [1] for details) 

The input device of the original system was a cJose-talking 
microphone. Needless to say， this input style led to unnatural 
communication in that user must approach the microphone too 
closely， unlike human-human interface. To address this prob­
lem， in this paper， we extend our original one to be a hands-free 
spoken dialogue system. This improved system undertakes very 
chal1enging task， where there exist noises consisting of various 
kinds of interferences， e.g.， background noise， sounds of 甘ams，
ticket-vending machines， automatic ticket wickets， foot steps， 
cars， and wind. They result in a nonstationaηand diffuse noise 
environment， and thus it is too difficult to reduce the noises only 
using the conventional noise reduction methods such as single 
channel spectral subtraction (SS) [2] or simple beamforming 
technique via microphone aπay. 

Two key techniques in our proposed hands-free system are 
(a) blind spatial subtraction a汀ay (BSSA) [3] as a preprocess­
ing， which can efficient1y deal with nonstationary and diffuse 
noises， and (b) robust voice activity detection (VAD) based on 
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Figure 1: Overview of hands-企ee spoken dialogue system with 
real-time BSSA and robust VAD目

speech decoding [4]. Confìguration of the whole dialogue sys・
tem is shown in Fig. 1. ln this paper， we newly propose a real­
time architecture of BSSA and implement the real-time BSSA. 
Moreover， we introduce the implemented real-time BSSA and 
robust VAD method into the spoken-oriented guidance system 
The experimental assessment of the proposed dialogue system 
reveals that the combination of real-time BSSA and robust VAD 
can provide the recognition accuracy of more than 80% under 
adverse railway-station noise conditions. 

2. Blind spatial subtraction array 

2.1. Motivation and feasibility 

In the last decade， independent component analysis (lCA) [5] 
becomes one of the most notable candidate of microphone ar­
ray method for separating and reducing interfering sounds in 
acoustical signal processing [6]. This is due to the feasible prop­
eロy that ICA is unsupervised adaptive signal processing， where 
training sequences， a priori information of the microphones' po・
sitions and their calibrations are not needed in advance. Gener­
al1y speaking， the conventional ICA could work particularly in 
speech-speech mixing， i.e.， al1 sound sources can be regarded as 
point sources. However， such a mixing assumption is very unre­
alistic in the railway-station environment， where the fol1owing 
scenario are likely to arise 

Target speech model: The target sound is user's speech， which 
can be approximately regarded as a point source locating rela­
tively c/ose to the microphone arr，の (e.g.， 1 or 2 m apart). Con­
sequently the accompanying reftection and reverberation com-
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User's speech m(l，τ} 

Figure 2: The block diagram of the 0丘�Iine BSSA 

ponents are small. 
Noise model: We are often con合onted with interference sounds 
which are not point sources but widespread sources. Also the 
noise is usually far仕om the aπay and heavily reverberant. 

From the above-mentioned scenario， the conventional lCA 
can suppress the user's speech signal to pick up the noise source， 
but ICA is very weak in picking up target speech itself via sup­
pression of the far-located widely-spread noise. This is because 
lCA with the small number of sensors and filter taps often pro­
vides only directional nulls against the undesired soぽce sig­
nals [6]. This gives us an unfortunate conclusion that lCA 
is not proficient in speech enhancement in the railway-station 
noise environment. However， this also implies that we can still 
use lCA as an accurate noise estimator. Based on the above­
mentioned fact， we decided to use 0ぽ previously proposed 
BSSA [3] that utilizes lCA as a noise estimator. ln BSSA， 
source extraction is achieved by subtracting the power spec­
trum of the estimated noise via lCA 合om the power spec汀um of
the target speech enhanced observed signal via delay-and-sum 
(DS). Although our previous work [3] only gives mathematical 
basis of BSSA algorithm and did not refer to diffuse noise re­
duction， BSSA's attractive feature is well expected to be suitable 
for an robust reduction of the railway-station noise. 

2.2. 8asic principle of 8SSA 

The block diagram of the BSSA is shown in Fig. 2. BSSA 
consists of two paths; a primary path which is DS-based tar­
get speech enhancer， and a reference path which is lCA-based 
noise estimator. Finally， we obtain the target speech extracted 
signal based on spectral subtraction procedure [2]. 

First， the observed signal vector in time-frequency domain 
is defined as 

X(f，T) = [Xl(f，T)，... ，XJ(f，TW， (1) 

where x(f， T) is the observed signal vector， J is the frequency 
bin， T (= 0，1，2，.・・) is time frame index， and J is the number 
of microphones. In the primary path， the target speech is partly 
enhanced via DS; the procedure can be given as 

YDS(f，T) = 9DS(f， 8ufx(f， T)， (2) 

gDs(fJ)=lgiDS)(fJ)，...，g;DS))(fJ)lT， (3) 

gjDS)仰)= j 州一伽(fjM)仲州c) ， 内

where 9DS (f， B) is the coefficient vector of DS array， and Bu 
is the look direction which is estimated by the unmixing matrix 
optimized by lCA [6]. Also， Js is the sampling frequency and 
dj (j = 1γ・・ ， J) is the microphone position. Besides， M is 
吐le DFT size， and c is the sound velocity 

ln the reference path， the lCA・based noise estimation is per­
formed. First， we perform signal separation using the complex 

valued unmixing matrix WICA(f)， so that the ouゆut signals 

O(f，T) = [OI(f，T)，...，OK(f，T)]T become mutually inde­
pendent; this procedure can be represented by 

o(f， T) = W ICA(f)x(f， T)， (5) 

I W1�CA) (f) • • • w1アA)(f)l
WICA(f) = I 1. (6) 

l WiJ�A) (f) • • • WiJ�A) (f) J 
Also， the unmixing matrix is updated iteratively by 

wt広11(f) = μ [1 - E[cp(o(f， T))OH(f， T) ]] Wi�A (f) 

+ W\�A (f)， (7) 

where μis the step size parameter， [P] is used to express the 
value of the p-th step in the iterations， 1 is an identity matrix， 
and E[.] is the expectation operator. Besides， MH denotes heト
miti祖国nspose of matrix M， and 4> (・) is the appropriate non­
linear vector function [6]. 

ln the reference path， i比t IS 0叩nl砂y requ山llr印ed tωo estimate noise 
c∞om町po∞n巴阻削n凶t. T百Tも1附，t恥he t加訂g酔似et signal c∞om町po叩ne削n凶t 0町u(げJ，グT寸 ) i臼s 児

moved 企om the 0ωutゆpu凶t s幻ig伊na討1 vecto町r o(げJ，T吋). This processing 
can be designated as 

q(f，T) = [OI(f，T)，...，OU-l(f，T)，O， 
OU+l(f，T)，...，OK(f，TW. (8) 

Next， we apply the projection back (PB) method to remove the 
ambiguity of amplitude. This procedure can be represented as 

。(f，T)= WtCA(f)q(f，T)， (9) 

where M+ denotes Moore-Penrose pseudo inverse matrix of 
M. Next， we obtain the estimated noise signal z(f， T) by per・
forming DS as follows: 

z(f， T) = g�s(f)éj(f， T). (10) 

N尚陶Oωt旬削E引th加a飢t z柑(げfι，T小)りISt恥he 向伽n凶o∞noぱft恥he 合h伽a釘rπme
the constant noωIS臼e proωtoザpe estimated in t出he t甘raditiona叫 1 SS [ロ2勾].
Therefore， BSSA can deal with nonstationary noise. 

Finally， source extraction is achieved by spec回1 subtrac・
tion as follows 

I IYDS(f， TW - ß・IZ(f，TW !， 
YBSSA(f，T)= � (if IYDS(f，TW-β.IZ(f，T)12三0 )

lγIYDS(f，T)1 (otherwise)， 
( 1 1) 

where YBSSA (J， T) is the final output BSSA，βis the oversub­
甘action parameter， and γis the f100nng parameter. The appro­
pnate settmg， e.g.，β> 1加dγ<< 1， gives an efficient noise 
reduction. 

2.3. Real-time implementation of 8SSA 

ln BSSA's signal processing， DS， SS， and separation filtering 
pa口s are possible to work in real-time. However， it is toilsome 
to optimize (update) the separation filter in real-time because 
the optimization of the unmixing matrix by lCA consumes huge 
amount of computations. Therefore， in this paper we newly in­
甘oduce a s甘ategy in that the separation filter optimized by using 
the past time period data is applied to the current data. Figure 3 
ill ustrates a confi忽lration of the proposed real-time implemen­
tation of BSSA. Signal processing in this implementation is per・
formed via the following manner. 
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Fi思lre 3: Signal f10w in real-time implementation of BSSA. 

Step 1: Inputted signals are converted into time-合equency do­
main series by using a frame-by-合ame fast Fourier trans­
form (FFT). 

Step 2: ICA is conducted using the past 1.5-s・duration data for 
estimating separation fìlter while the cu汀ent 1 .5 s. The 
optimized separation fìlter is applied to the next (not cur­
rent) 1.5 s samples. This staggered relation is due to 
the fact that the fìlter update in ICA requires substantial 
computational complexities and cannot provide the opti­
mal separation fìlter for the current 1.5 s data. 

Step 3: Inputted data is processed in two paths. In the primary 
path， target speech is partly enhanced by DS. In the ref­
erence path， ICA胴based noise estimation is conducted. 
Again， note that the separation fìlter for ICA is optimized 
by using the past time period data. 

Step 4: Finally， we obtain the target-speech-enhanced signal 
by subtracting the power spec甘um of the estimated noise 
signal in the reference path 企om the power spectrum of 
the primary path's output. 

Although the separation fìlter update in the ICA pa口is not 
real-time processing but involves totally a latency of 3.0 sec­
onds， the entire system still seems to run in real-time because 
DS， SS and separation fìltering can work in the c町Tent segment 
with no delay. In the system， the performance degradation due 
to the latency problem in ICA is mitigated by oversubtraction 
in the spectral subtraction. 

3. Robust V AD based on speech decoding 

Although BSSA can generally gain the output signal-to・nOlse
ratio (SNR) of about IOrv 15 dB， it is still insufficient to im­
prove the speech recognition accuracy because SNR of the in­
put speech is heavily degraded， e.g.， up to 0 dB， in the actual 
railway-station noise environment. Consequently， the conven­
tional VAD (based on amplitude level and zero cross counting) 
is likely to fail， and this will yield speech recognition failure. 

To solve the low input幽SNR problem， we have proposed a 
novel noise-robust VAD method based on speech decoding [4]. 
Our robust VAD method is embedded in a part of speech de­
coder different from the conventional VADs， namely， VAD and 
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Figure 4: Appearance of hands-合ee spoken dialogue system. 

speech decoding is performed in parallel. Robust VAD focuses 
on the premise that non-speech segments (silence) exist before 
and after the speech part of the u口erance. Speech decoder can 
detects silence or noise segments. A合ame or series of frames 
which are recognized as part of phonemes or series of phonemes 
is considered as voice activity. Otherwise， a sequence of si­
lence 合ames of about 300-400 msec in duration is considered 
as noise. It has been reported that the method can increase the 
recognition performance in typical noisy environments (see [4] 
for more details). In this paper， we newly apply the robust 
VAD method into our development of hands-仕ee spoken dia­
logue system in cooperation with real-time BSSA. 

4. Experiment and performance assessment 

4.1. Simulating railway-station noise 

The main task of Kitarobo is a station guidance， and always 
working in an actual railway- station. Thus， it is difficult to 
conduct various assessment experiments in an arbitrary time. 
Therefore， we have a necessity to construct the noise environ­
ment simulator of railway-station for experiments. To solve the 
problem， we have constructed the experimental room for hands­
合ee spoken dialogue system with the real-time BSSA. The ex­
perimental room contains Kitarobo with the real-time BSSA 
and railway-station noise simulator (see Fig. 4). The noise is 
simulated via recording noises in an actual railway station with 
eight-channel microphones， and playback of the multi-channel 
recorded railway-station noise by eight surrounded loudspeak­
ers (see Fig. 5). 

4.2. Experimental setup 

To evaluate the hands-free spoken dialogue system with the 
real-time BSSA， the speech recognition test was conducted. 
Figure 5 depicts a layout of a reverberant room in our exper・
iment where the reverberation time is more than 400 ms. The 
following real-recored 16 kHz-sampled signals were used in the 
experiments. The target signal is user's speech which is talked 
in front of a microphone aηay and 1.5 m apart 合om the aト
ray. As for noise， two noises were added simultaneously. First 
noise is the real-recored noise in an actual railway-station noise 
(it simulates railway-station noise) emitted 合om surrounded 8 
loudspeakers. Second noise is an interference speech located at 
50 degrees in the right direction of the microphone a汀ay，and 
its distance is 2.0 m. 

We use 5 speakers (250 words) as target user， and Julius [7] 
ver. 4.0 RC2 as speech decoder. A eight-element aπay with 
the interelement spacing of 2 cm is used. The aπay consists 
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Figure 5: Layout of reverberant room in our experiment. 

of directional microphone SHURE MX・184. DFT size is 512 
points， window length for ICA is 256 points， and window shift 
size is 128 points in the experiment. Thus， the algorithm latency 
of the real-time BSSA is about 50 ms 

4.3. Experimenta1 result and discussion 

Fi忠Ires 6 and 7 depict speech recognition results with or w/o 
interference speech， where we compare (a) conventional single­
mic. system without robust VAD and BSSA， (b) the system 
using robust VAD only， and (c) the proposed system with ro­
bust VAD and BSSA. In the case without interfering speech， ro・
bust VAD mainly contributes to the improvement of recognition 
performance， but in the case incIuding the interference speech， 

BSSA notably sustains the recogt】ition accuracy of more than 
80%. This is very natural because speech-decoding-based VAD 
depends on the existence of unknown (untrained) noise such as 
speech interference， but BSSA cannot be affected. OveraIl， the 
combination of BSSA and robust VAD is benefìcial to hands­
合ee spoken dialogue system under the adverse condition 

Fi思Ire 8 gives another comparative assessment 合om the 
viewpoint of microphone a汀ay signal processing. The resuIts 
reveal that both the word coπect and word accuracy of the pro­
posed BSSA are obviously superior to those of DS and the con­
ventional ICA; this is a promising evidence of the proposed 
signal processing's e伍cacy. The demonstration movie of our 
hands-合ee spoken dialogue system is available in the following 

URL. Readers can confìrm that the fluent conversation incIud­

ing accurate responses with smaIl 1atency is achieved via real­
time BSSA and VAD. 

Demo video: http://spalab.naist.jp/databaselDemo/rtbssa/ 

5. Conclusion 
In this paper， we propose th巴 hands-合ee sp巴ech-oriented思lid­
ance system used in the railway-station noise environment. 
To handle the noise robustness， we introduce two key tech­
niques， namely， real-time BSSA for efficient reduction of diι 
fuse noises， and robust speech-decoding-based VAD for further 
improvement of recognition accuracy. The experimental resuIts 
reveal that the combination of real-time BSSA and robust VAD 
can provide the recognition accuracy of more than 80% under 
adverse railway-station noise conditions. AIso it is confìrmed 
that real-time BSSA outperforms DS- and ICA-based methods. 
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Fi思Ire 6: Contribution ofVAD and BSSA in (a) word coπect， 
and (b) word accuracy (without interference speech). 
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Figure 7: Contribution ofVAD and BSSA in (a) word correct， 
and (b) word accuracy (with interference speech). 
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Fi伊re 8: Comparison of signal processing methods in (a) word 
coπect， and (b) word accuracy (with interference speech). 
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