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This paper describes a novel framework of voice conversion (VC) 
We call it eigenvoice conversion (EVC). We apply EVC to出e con­
version from a source speaker's voice to arbitrary target speakers' 
voices. Using multiple parallel data sets consisting of utterance­
pairs of the source and multiple pre-stored target speakers， a 
C釦onical eigenvoice GMM (EV-GMM) is trained in advance 
That conversion model enables us to tlexibly control the spe依er
individuality of the converted speech by manually setting weight 
parameters. In addition， the optimum weight set for a specific 
target spe必cer is estimated using only speech data of the target 
speaker without any linguistic restrictions. We evaluate the per­
formance of EVC by a spectral distortion measure. Experimental 
results demonstrate that EVC works very well even if we use only 
a few utterances of the target speaker for白e weight estimation. 
Index Terms: speech synthesis， voice conversion， GMM， eigen­
voice， unsupervised training. 

1. Introduction 

Voice conversion (VC) is a remarkable technique for tlexibly mod­
ifying voice characteristics. There are many applications of vc 
such as a post-process of Text-to-Speech (TTS) for tlexibly syn­
thesizing speech of various speakers， an enhancement of speech 
quality for tel巴communications， and a multi-lingual speech syn­

出eSlZer.
Many statistical approaches to VC have been studied since the 

late 1980's [1]. Abe et al. [2] proposed a codebook mapping 
me出od based on hard clustering叩d discrete mapping. In order to 
direct1y model the correlation between source and target features， 
Valbret et al. [3] proposed a conversion method using linear mul­
tivariate regression (LMR)， i.e.， continuous mapping based 0目白E
hard clustering. As the most popular conversion method， Stylianou 
et al. [4] proposed a conversion method with a Gaussian mix­
ture model (GMM). That method realizes the continuous mapping 
bas巴d on出e so白clustering. Recently， Toda et al. [5] signific釦tly
improved the performance of the GMM・based conversion method 
by introducing maximum lik:elihood estimation (MLE) consider­
ing dynamic features and global vari釦ce (GV). That method shifts 
a conversion form from the conventional frame-based process to 
the trajectory-based one. It is indispensable to continue to make 
progress 1目白e conversion method for making VC capable of prac­
tical applications. 

Several approaches for improving a汀aining method of出E
conversion funct】on have been studied as well. As for the GMM­
based conversion， Stylianou et al. [4] proposed a training method 
based on least mean squ訂e e町or (LMSE). In order to improve 
the robustness against a small amount of tr創ning data， Kain and 
Macon [6] proposed a training me出od based on joint density es­
timation (JDE).百10se methods use a parallel data set consisting 
of utter釦ce-p創rs of source and target speakers. Such a training 
framework causes many limitatior】5 of VC applications. In order to 

address this problem， Mouchtaris et al. [7] proposed a non-parallel 
training method based on maximum likelihood constrained adap­
tation. The GMM trained with an existing paral1el data set of a 
ce目白n source and target speakers is adapted for the desired source 
and target speakers separately.百llS adaptation is supported by the 
fact出創出e feature correlation b巴tween a speaker-pair is usefulω 
a prior knowledge for VC between another speaker-pair. 

This paper describes a novel framework for the GMM-based 
conversion using the information extracted from a lot of pre-stored 
speakers as 出e prior knowledge. We call it eigenvoice conveト
sion (EVC).η1e eigenvoice is a popular technique in出e speech 
recogmtlOn紅白[9]. It realiz白血e hidden Markov model (HMM) 
speaker adaptation using a quite small amount of adaptation data 
by reducing the number of free parameters for controlling speaker 
dependencies off品1Ms. It also realizes an è仏1M・based TTS hav­
ing a voice quality controller [10] or a speはing style con位oller
[11]. We apply that technique to 出e GMM-based conversion 
method for realizing tlexible VC from the source speaker， e.g.， an 
user into arbitrary speakers. EVC is similar to the speaker inter­
polation proposed by Iwal1ashi and Sagisaka [8] in terms of using 
the information of multiple pre-stored speakers. EVC outperforms 
it in view of出e ability to convert any sample of the source to that 
of the target whil巴 the speaker interpo1ation can convert only fea­
ture segments inc1uded in the pre・stored database. Experimental 
results demonstrate that EVC works very well in出e non-parallel 
紅白川ng for arbitrary target speaker古.

The paper is organized as follows. In Section 2， a framework 
of conventional VC is described. In Section 3. a framework of 
EVC is described. In Section 4， an experimen凶evaluation is de­
scribed. Finally， we summarize血is paper in Section 5 

2. Framework of Conventional 
Voice Conversion (VC) 

2.1. Parallel Training 

We use 2D-dimensional acoustic features X t = [xi，ムXi]T
(source speaker's) and Y t = [Yν7， ムν7汀1 T (凶g炉伊巴et耶a誌kμ加E町r刈，
s幻15幻tingoぱf D-dimen郎I凶siぬ0叩na叫a叫15はtatic and dynarnic features， where T de­
notes紅ansposition of山e vector. As described in [6]， using paralle1 
training data set consisting of time-aligned source and t釘get fea・
tures [Xi，Y!]，. .. ，[Xj: ，Y引 deterrnined by Dynamic Time 
Warping (DTW)， a GMM onjoint probability density p(X， YI入)
is trained in advance as follows: 

入= arg max rr;=1 p(X t， Y t!入)， ( l )  

where入denotes model 阿ameters.百e joint probability density 
IS written as 

p(Xt，Ytl入) = 2::と1 Q.iN(Xt， Yt ; μ�X，Y)， :r:�X，y) )， 

(X，Y) ー|μfX) l p(x，Y) ー I :r:lXX) :r:;XY) I μz 一 | μìY) l ' 民 一I ;;ìY X) ;;ìyy) I ' (2) 
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3. Framework of Eigenvoice Conversion 
(EVC) 

ln this paper， we describe only an example of EVC from one 
source speaker to arbitrary target speakers， i.e.， one-to-many VC 
We may apply EVC to other cases such as many-to-one VC or 
many-to-many VC. 

whereN(Xiμ， :E) shows the normal d凶ribution with a mean vec­
torμand a covariance matrix :E. The 円mixture weight isαz・
The total number of mixtures is M. The model parameters c釦be
estimated with the EM algori出m.

3.1. Eigenvoice GMM (EV-GMM) 

EV-GMM represents the joint probability density in出e same man­
ner as出e conventional GMM shown in Eq. (2) except for a deι 
nition of 由e target mean vector wntten as 

2.2. VC ßased on島1LE [5] 

Let X = [X"[". . ， Xi] T be a time sequence of出e source fea­
ture vecto爪and let Y = [Y;r，・・・，Y日T be伽t of恥町get
feature v巴ctors. We perfo口百出e spectral conversion based on出E
maximization of出e following Iik巴lihood function， 

p(YIX，入)=乞{all m} p(mIX，入)p(YIX，m，入)，
μjY)=Btω+bjO)， 

where blO) is a b出V削or for 恥ρmixture. The matrix 
Bi = [bi(l)，... ， bi(J)] consists of basis vectors bi(j) for the 
th t '" mlX凶re. The number of basis vectors is J. The targ巴t sp巴叫ぼr

individuality is controlled with the J -dimensional weight vector 
切=[ω(1)，.. ，ω(J)]T. Consequently，出e EV-GMM has a pa­
rameter set 入(EV) consisting of出e single weight vector and pa 
rameters for individual mixtures such as the mixture weights， the 
source mean vectors，出e bias and basis vectors， and出e covanance 
matnces 

(9) 

(3) 

wh巴re m {mi11 m山・・・，miT}is a mix旬陀sequence. At 
frame t， p(m;lXt，入)釦dp(YtIXt，mi，入) are given by 

町N(Xti μ;X)，:E ;XX) ) 、 1 ;��l I VV\. ' (4) 
2主1町N(Xti μ;X)，z;XX))

p(YtIXt，mi，入) = N(YtiEt(mi)，D(mi))， 

p(miIXt，入) = 

(5) 

(6) μjY)+zjYX)zjxx)l(XtーμlX))，
2jYY)-zjYX)zjXX)lzjXY) 

wh巴re
Et(mi) = 

D(mi) = 
A time sequence of the converted static fI巴atures 'ÎI 
[ 《 T AT] T
'ÎI; ， . • .  ， 'ÎlT I . is determined as follows 

'ÎI = argmaxp(YIX，λ) 
where W is a transformation matrix from static features into static 
and dynamic features. The converted features c釦 be estimated 
with 出e EM algorithm. We ma勾ys幻19m自fic叩tl砂y reduce c∞ompu凶ta瓜仰ti叩0叩n 
timeb句y a叩pp戸ro侃xima仰tin昭g出e li批i氷ke出lih加O∞O吋d f1向ur山r
W問1出出巴 optimum miはX印r閃e s鈎equence ri千n山a剖t ma似xlmlze凶s白巴 poωst旬e­
吋巾0ωrp戸ro油ba幼b凶il町 p州(ml山X，入). 

Figure 1 shows an example of批converted trajectory on a 
time sequence of the conditional probability density functions， i.e.， 
the approximated likelihood function. Note that 出e tr勾ectory on 
the dynarnic feature is derived from that on the static feature. This 
conversion method estimates the converted static features with ap­
propriate bo由民atic and dynamic characteristics. We c釦consid­
erably improve the naturalness of converted speech by further con­
sidering GV of the converted static features [5] 

3.2. Training of Canonical EV・GMM

ln order to train a canonical EV-GMM， we use multiple parallel 
data sets. Each of them consists of utterance-pairs of出e source 
spe水er and one of出e multiple pre-stored target speakers. A train 

ing process of出e canonical EV-GMM is shown in Figure 2 
Firstly， we train a target independent GMM 入(0) simultane 

ously using all of the multiple parallel data sets as follows: 

入(0)= arg max n:=l n;r�l p(X t， Y;s) I入)，

(7) 

(8) Y=Wy， subject to 

(10) 

where Y;s) is出e feature vector of the s th pr何回ed凶get sp叫er
at frame t. The number of feature vectors for the s出speaker is Ts 
The number of pre-stored target speakers is S. 

Secondly， we train each target dependent GMM入(8) by updat­
(Y) ing only target mean vec!ors μt of出e !arge! independent GMM 

入(0) using each of the multiple parall巴1 data sets as follows: 

入(8)= argm出n;r�l p(X t'y;S) I入)

qJ
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)
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ln this paper， we employ the EM algorithm for th巴 training of the 
target independent GMM and the target dependent GMMs. 

Lぉtly， we determi削he b出vector blO) ar山he basis v削ors

Bi. We prepare a (2D x M)-dimensionaJ supervector SV(.) = 
[μiY)(S)T，... ，μ�) (s ) T 1 T for each pre-stored ta取t speaker by 

concatenating 白巴 ta伊t mean vectorsμjY) (s) of出e target de­

pendent GMM 入 (s) Note that the coπespondence of mixtures 
among all of the target dependent GMMs is obviously known be­
cause those GMMs are caused from the same target independent 
GMM while tying several parameters. We extract 出e basis vec­
tors WI出 principal component analysis (PCA) for the supervectors. 
Consequently， the supervector is writtenぉ

SV(8)::e [B;r，...，BItITw(s)+[blO)�.・. ，b�)TJT， (12) 
bjO)T=会Z二lμjY)(s)， (13) 

where ω(8) consists of principal componen岱for the s th pre・stored
target speaker. Now， various supervectorsパ.e.，白e target mean 
vectors are created by v町ing only J(く S << 2D x M) free pa­

rameters ofω. We construct白e canonicaJ EV-GMM入(EV)合om
出e resulting bias and basis vectors and the tied p紅ameters， i.e.，白E
mixture weights，出e source mean vectors， and the covariance ma­
trices. We may further update all of出ose p紅白neters with the EM 
algori出m in a Speaker Adaptive Training (SAT) paradigm [12). 

3.3. EVC in One-to-Many VC 

We perform EVC based on MLE in the sarne m釦ner as mentioned 
in Section 2.2. The conditional mean vector of the target for the 

Z出mixture in EVC is written as 

E�EV)(mi) = B川+blO) + :ElYX) :E;XX)ーl(Xtーμ;X))(14)

We can see that varying the weight vectorω causes shifts of the 
conditional me組V巴ctors.

3.3.1. Non-Parallel (Unsupervised) Training 

Th巴EV-GMM for the conversion from the source speaker's voice 
to any target spe沿ær's voice is created by estimating白e optlmum
weight vector for the target speaker. Because only the target data 
is used for the estimation， we don't have to use出巴 parallel data 
of the source叩d白色 町get. Fuロhermore， we don't have to know 
sentences uttered by the target speaker. Narnely， the non-parallel 

or unsupervised training for 釦y target speaker is available 
We apply the maximum likelihood eigen-decomposition 

(MLED) [9) to the weight vector estimation in EVC as follows: 

ÛJ = argmax fp(X， y(tar)1入(EV))dX
= arg max f p(Y(附)1入(EV))p(XIY(tar)，入(EV))dX
= argmaxp(Y (臼r)1入(EV))， (15) 

where y(tar) is a time sequence of the target features for the tr創作
ing. Because the probability density is modeled with a GMM， we 
iteratively maximize出e following auxili訂y function， 

Q(w，ÛJ) = 2ン(=Iy(t円入(EV)) logp(Y川=1え(EV)).(16) 
aJI = 

The estimated weight vector is written as 

⑪={立1マjUT)B72jw)ーlBJbzIB72jw)ヤ??m

• 

wh巴re

マjtar)=乞LIP(m|YiUT)，入(EV))， (18) 
yrr)=2LlP(mlyjtar)，入(EV))(Y�tar) _ blO))・(19)

We use the target independent GMM as 釦 initial model. 
An advantage of EVC compar巴d with the constrained linear 

regression approach (7) is the robust parameter estimation when 
using a quite small amount of target data due to a smaJler number 
of合ee parameters to be estimated. 

3.3.2. Manual Control ofConverted Speaker 1ndividualiη 

The other advantage of EVC is 白紙we can flexibly control the 
speはer individuaJity of the converted speech by manuaJly mod­
ifying the weight vector. This causes a novel framework of VC 
allowing fine tuning 

If we would like to control not 0凶y spec甘al parameters but 
also the other speech p紅白neters such as an Fo， it is possible to 
realize the weight vector simultane⑪usly affecting all of those pa­
rameters by extracting basis vectors from supervectors consisting 
of their mean vectors. It might be possible to improve the con­
甘ollability for the converted speaker individuality by perceptually 
designing the weight vector [Il) 

4. Experimental Evaluations 

We objectively evaluated the spectral conversion accuracy ofEVC 
compared with 出at of the conventional vc when varying the 
arnount of target 紅白ning data. 

4.1. Experimental Conditlons 

ln order to町ain the canonica1 EV-GMM， we used 160 speakers 
consisting of 80 male and 80 female speakers as出e p陀・sto陀d tar­
get speakers. 百lese speakers were included in Japanese Newspa­
per Article Sentences (n可AS) database (13). Each of them uttered 
a set of phonetically balanced 50 sentences. Because 7 sub-sets 
were uttered by them as shown in Table 1， we used a male speaker 
not included in JNAS as the source speaker， who uttered 10 sub­
sets including the 7 sub-s巴ts. We automatically performed D TW 
between utter釦ces of the source and each pre-stored target speaker 
for preparing parallel data sets. 

We performed voice conversion仕om the source speaker to 
o出er 10 t紅get speakers consisting of five male and five female 
speakers， who were not included in the pre-stored speakers. Every 
speaker uttered the sub-set J including 53 sentences. We varied the 
number of target training utterances from 1 to 32. The remωnmg 
21 utterances were used for the evaluation. ln the EVC， we es­
timated the weight vector of the canonical EV-GMM using only 

出e target 紅白ning data. ln the conventional VC， we individually 
trained GMMs for the conversion between出e source and 10 target 
speakers using parallel training data sets. 

We used mel-cepstrum as a spectral feature. The first出rough

24th mel-ceps仕al coefficients were extracted 合om 16 kHz sam­
pling spe巴ch data. The S TRAIGH T analysis method [14) was em­
ployed for the sp即位al extraction. 

In EVC， we used all eigenvectors (159 vectors) as the basi5 
vectors without any 1055 of the information caused by truncating 
eigenvector5. The number of mixtures of the EV-GMM was con­
stantly set to 512. On the other hand， we optimized the number of 
mixtures of the conventional GMM 50 that the mel-cpe5tral distor­
tion between the converted and target mel・cepstra was minimized 
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w巴 proposed a novel voic巴 conversion (VC) framework called 
eigenvoice conversion (EVC). We applied the eigenvoice tech­
nique to the conversion method with a Gaussian mixture model 
(GMM) for realizing VC from a source speaker to arbitrary tar­
get spe討<ers (one-to-many VC). Statistics extracted from multiple 
parallel data sets consisting of the source's voices and the multiple 
p陀-stored target sp巴叫cers' voices were e仔ectively used as a prior 
knowledge in EVC. We conducted an experimental evaluation on 
the spectral conversion accuracy. As a result， it was demonstrat巴d
that EVC works very well even if we have only a few utterances 
of批target speaker. We need to perform subリective evaluations of 
the converted speech with EVC as well. 

The proposed idea of constructing a canonical VC model from 
multiple speaker-pωrs' data sets se巴ms to cause explosive spread 
of VC applications. We will apply it to various types of VC， e.g.， 
m加y-to-one VC and many-to-many vc. 
Acknowledgment: This research was supported in part by MIC 
SCOPE-S and MEXT e-Society leading project. 
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5. Conclusions Tabl巴 1: The number of pre-stored target speakers uttering each 
sub-set (A， 8， ・ ， or G). Each sub-set consists of phonetically 

balanced 50 sentences 

Total 
80 
80 
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日
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日
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目
白
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日
日
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回
目

Sub-sets 
Number of male speakers 
Number of female spe必cers

Table 2: The optimum number of mixtu附for each size of train­

ing data in the c百nνentional Vc. Each number shows the a、erage

number ofmixtures for 10 target speakers 

Number of utterance-pωrs 11 1 2 4 8 16 32 
Number of mixtures 11 7.6 18.4 20.8 54.4 76.8 224.0 

A丘er converSlOn: 
f'+'1 Conventional VC 
ト*-l EVC 
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Figure 3: Mel-cepstral distortion as aルnction of the number of 

target training utterances. We show mean distortions and its stan­

dard deviations for 10 target speakers 

40 1 

m出e evaluation set. Such an optimization was separately per­
formed for each target spe心cer and each size of tr釦ning data. The 
optimization results are shown in Table 2. We used the diagona1 
covariance matrices for both GMMs 
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4.2. Experimental Result 

Figure 3 shows mel-cepstral distortion as a function of the number 
of target training utter釦ces. EVC outperforms the conventional 
VC when using a small amount of training data. This is because 
EVC e仔ectively uses the information extracted from a lot of pre 
stored speakers as a prior knowledge. 

We can see出at in the conventional VC an increase of the 
amount of training data causes a large decrease of the distortion. 
The joint probability density is modeled more accurately as the op­
timum number of mixtures increases according to a larger number 
of the trωning data as shown in Table 2. On the 0出er hand， we 
can see a tendency出at出e distortion decrease in EVC is not so 
large when incr巴asing more than two target utterances du巴to出e
constant model complexity. Consequently，白巴 conventional VC 
outperfo口ns EVC when using dozens of target utterances. Note 
that EVC still has an advantag巴of unsupervised tr出ning compared 
with the conventional VC even in such cases. 

I t  is obse円ed that inter叩eaker variances of the distortion in 
EVC are larger than those i目白e conventional Vc. This might 
be caused by setting several parameters of EV-GMM to those of 

出e target independent GMM. Applying SAT to the canonical EV­
GMM training is very promising 


