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a noise signal becomes a null beamformer (NBF) [3] in that envi 
ronment. 1n general， the noise reduction perfoロnance of OS be創n­
former is very limited， but that of NBF is m紅kedly high. Therefore， 
it can be expected that 1CA's extraction performance of target speech 
is not so good rather than that of noise estimation. This imbalanced 
prope町is a1so confirmed by由e computer sirnulation and experi­
ment in an actual railway-station environment. Based on the above 
mentioned fact， we have proposed blind spatial subtraction array 
(BSSA) which utilizes 1CA as noise estimator [6]. 1n BSSA， source 
ex甘action is achieved by subtracting the power specむum of the estト
mated noise signal via 1CA from the noisy observations. However， 
BSSA causes artificial distortion because BSSA is noise reduction 
method based on spectral subtraction. Such artificial distortion sig­
nific組tly deteriorate也e speech recognition result.τberefore， in 
由民paper， we newly introduce an Wiener filtering instead of spec­
tral subtraction in BSSA. 1n the proposed， it can be expected that the 
distortion of a target speech signal is decreased because oversubtrac­
tion like a spectral sub甘action is not performed. 

Finally， we compare the conventional BSSA， the conventional 
1CA which simply uses 1CA as a direct target estimator， and the pro­
posed method. ln conclusion， speech recognition test in an actual 
environment reveals the proposed method's superiority to the con­
ventional methods. 

2. ANALYSIS OF ICA IN WIDESPREAD NOISE 
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ABSTRACT 

In this paper， we proposed a new blind speech ex甘action method 
consisting of Wiener filtering and noise estimation based on indepen­
dent component analysis (ICA). First， we provide both theoretically 
and experimental investigations on proficiency of ICA in noise es­
timation under a non-point-source noise condition. Next， computer 
simulation and experiment in an actual railway-station environment 
紅'e conducted， and白巴ir results a1so indicate that ICA is proficient 
in noise estimation under a non-point-source noise condition. Fi­
nally， we newly propose a blind speech ex住action method based on 
Wiener filtering and ICA-based noise estimation， and th巴 effective­
ness of the proposed method via speech recognition test in an actual 
railway-station environment. 

Index Terms- Speech enhancement， acoustic signal process 
ing， acoustic 紅rays， unsupervised learning 

1. INTRODUCTION 

Blind source sep訂ation (BSS) is釦approach to estimate origi­
nal sources using only infoロnation of observed signals. R巴cently，
various BSS methods based on independent component analysis 
(ICA) [1] have been presented for acoustic-sound separation [2， 3] 
Indeed， the conventional ICA could work p紅ticularly in speech­
speech rnixing， i.e.， all sources can be reg紅白d as point sources， but 
such a mixing condition is very rare and unrealistic; real noises are 
often widespread sources. In this paper， we m出nly deal with gen­
eralized noise that cannot be regarded as a point source. Moreover， 
we assume this noise to be nonstationary nois巴 that arises in many 
acoustical environments; however， traditional methods， e.g.， adap­
tive bearnformer (ABF) could not汀eat this noise well. Although 
ICA is not influenced by nonstationarity of signals unlike ABF， 
this is still a very challenging task that conventional ICA-based 
BSS could hardly address because 1CA cannot separate widespread 
sources. 

Related with the performance analysis of 1CA， one of the authors 
has mentioned that ICA-based BSS has an equivalence to p紅allelly­
constructed ABFs [4]. However，白is investigation was focus巴d on 
a separation wi出a non-singular mixing matrix; thus valid for only 
point sources. In也is paper， first， we give a mor，巴detaiIed inter­
pretation of ICA， namely， the bearnformers optimized by 1CA be­
come specific beamforrners which maxirnize the signal-to-noise ra­
tio (SNR) in each output (so-called SNR-maximize beamformers). 

Next， we clarify what kinds of bearnformers are optimized by 
ICA under a non-point-source noise condition. We find out白at the 
bearnformer which enhances a target speech signal becomes a delay­
and-sum (OS) bearnformer [5] and the bearnformer which picks up 
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2.1. Independent component analysis 

We consider an acoustic mixing model where the number of array 
elements (microphones) is J and the observed signal contains only 
one target speech signal， which can be regarded as a point source， 
and an additive noise signal.This additive noise represents noises 
which cannot be reg訂ded as point sources， e.g.， spatially uncoπe­
lated noises， background noises， leakage of reverberation compo­
nents outside the fぬme analysis. Hereafter， the observed signal vec­
tor in time-frequency domain， x(f， T) = [Xj (f， T)， • • • ， xJ(f， TW， is 
given by 

x(f， T) = h(j)s(f， T) + na(f， T)， (1) 

where f is the frequency bin number， T is the time index number， 
h(f) = [hj (f)， • • • ， hJ(f)]T is a column vector of transfer functions 
from the target signal component to each microphone， s(f， T) is a tar­
get speech 叩al c∞om町po叩nen叩n瓜t， a 仙tら以aバ(f，T竹)= [nr 1( λμTの)，. . . ，n�l( λ TW 
is a column vector of the additive noise signal. In ICA， we perform 
signal separation using a complex-valued unmix.ing matrix W1CA(f)， 
so that the output signals y(f， r) = [y，(f， r)， Yn(f， r)]T become mutu­
ally independent; this procedure can be represented by [2] 

y(f， T) = [y，(f， T)，Yn(f， T)f = W1CA(f)X(f， T)， (2) 

W15勺)=μ[1ー〈内(f，T)) yH(f， T))τlwlEL(刀+ W:��(凡(3)
whereμis the step-size paramet巴r， [p] is used to express the value 
of the p-th step in iterations， y，(f， T) is the estimated target speech 
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signal， Yn(f， T) is the estimated noise signal， and I is 出e identity 
matrix. Besides， OT denotes a time-averaging operator， MH denotes 
conjugate transpose of matrix M， and ψ(・) is an appropriate nonlinear 
vector function which defined as 

ψ(J(f， T))三[<p(J，(f，T))，ψ(Jn(f， T))]T， (4) 

仰k(j，T))三tanh y�RV， T) + i tanh y�I)(f， T)， (5) 
where the superscripts (R) and (1) denote the real and imaginary 
parts， respectively 
2.2. SNR・maximize beamformers optimized by ICA 
ICA optimizes two bearnformers; these can be written as 

W1CA(f) = [g，(f)，gn(f)]T， 

where g，(ρ= [g\') (凡.• • ，g�'V)]T is 出e coeffici削vector of 
出e bearnformer to pick up the t紅E巴t speech signal and gnげ) = 
[g\n)(f)，... ，g�)(f)]T is the coeffi.cient vector of the bean伽ner to 
pick up the noise. Using Tailor expansion， we can express a factor 
of the nonlinear vector function of ICA，ψ(Jk(f， T))， as 

<p(Jk(j， T)) = t組hy�RV，T) + itanhy�1)げ" T)， 
( ぽ)(f，T)/ ωV， T)/ ì= Yk(f， T)ー{ーーす一一+1一一τ一一>+ー • (7) 

Thus， the calculation part of higher-order correlation in ICA， 
ψ(J(f， T))yH(J， T)， can be decompos巴d to a second-order correlation 
matrix and the summation of higher-order correlation matrices of 
each order. This is shown as 

(ψ(J(J， T))yH(f， T))T = (J(f， T)yH(f， T))T + '1'(凡

where 哩'(f) is a set of higher-order correlation matrices. In ICA， 
separatio目白lters 紅e optimized so也at the all order correlation ma­
trices b巴come diagonal ma町ices. Then， at least the second-order 
correlation matrix is diagonalized by lCA. In the following， hence， 
we prove that ICA optimizes bearnformers as SNR-maximize beam­
formers focusing on only the part of second-order correlation. Then， 
an absolute value of normalized cross-correlation coeffi.cient (off­
diagonal entries) of second-order correlation， C， is detined by 

C = _�__�I仇(f，T)y�(f， T))TI 一

羽衣?前; �玄京司言�'
y，(f， T) = s(f， T) + r，fi(f， T)， 
Yn(f， T) = fi(f， T) + rns(f， T)， 

where s(f， T) is a target speech component in ICA's output and 
fi(f， T) is a noise component in ICA's output， r， is a coefficient of 
residual noise component， rn is a coeffi.cient of target-Ieakage com 
ponent， and superscript権問presents co吋ugate complex number. 
Therefore， SNRs of y，(f， T)釦d Yn(f， T) can be represented by 

r， = (i(f， T))τ/(市fi2(f，r))τ)， (12) 
rn = (品2(f，T))T/(イ($2(f，T))T)， (13) 

where r， is SNR of y，(f， T) and rn is SNR of Yn(J， T). Using (10)， 
(11)， (12) and (13) we can rewrite (9) as 

C -
| l/ J: +l/ Jt e胸刊行)1-

ýf+守"F; >!π甘r;;

(6) 

where arg r represents argument of r. Thus， C is a function of only r， 
and rn. Therefore， the cross-correlation between y，(f， T) and Yn(f， T) 
depends on only the SNRs of bearnformers g ，(f)釦d gn(f). 

Now， we consider C minimization， which is identical with 
the second-order correlation matrix diagonalization in ICA. When 
largr� - argr，l >π/2 where -π < arg r ， :5 π 加dーπ < arg r�三π，
it is possible to make C zero or minimization ind巴pendently of 
r， and rn. This case is proper to the orthogonalization between 
y，(f， T) and Yn(f， T)， which is related to the principal component 
analysis (PCA) unlike ICA. However， ICA utilizes higher-order 
cross-correlation to maximize independence among all outputs. 
This results in the prevention of出巴 orthogonalization of y，(f， T) and 
Yn(J， T); consequently， hereafter we can consider only the case of 
I arg r�一時r，l壬π/2.Then， p副aI ditferential of C2 by r， is given 
by 

。C2 (1ーに) +r，刊すっ(1ーに)・2Re I ej(arg r;一町け |
今

， ， < 0， (15) θr， (r， + 1)2(rn + 1 )  

where r， > 1 and rn > 1 .  A s  for the partial differential of C 2  by 
rn， we can a1so proveδC2/δrn < 0， where r， > 1 and rn > 1 in the 
same manner. Therefore， C is a monotonically decreasing function 
of r， and rn. The above-mentioned fact indicates the following in 
ICA: 

• The abso1ute value of cross-corre1ation depends on only 
SNRs of bearnformers spanned by each row of an unmixing 
ロ1atnx.

(8) 

• The absolute value of cross-correlation is a monotonically de­
creasing function of SNR. 

• Therefore， the diagonalization of a second-order correlation 
ma住民leads to SNR maximization. 

Thus， we can conclude that ICA， in a parallel marmer， optimizes 
multiple beamformers， i.e.， g，(f) and gn(f)， so 白紙the SNR of the 
output by each bearnformer becomes m以lmum.
2ふ Wbat beamformers are optimized under non-point-source 
noise cond.ition? 

In the previous subsection， it has been proved that ICA optimizes 
bearnformers as SNR-maximize bearnformers. In出is subsection， 
we analyze what kind of bearnformers are optimized by ICA partic­
ularly under a non-point-source noise condition， where we assume 
the two-source separation problem. The target speech can be re­
garded as a point so町ce， and the noise source is widespread and spa­
tially uncoπelated noise. First， we f，ωus on山bearnformer g ，(f) 
which picks up the target signal in the environment. lt is clear that 
the desired bearnformer is minirnum vari釦ce distortionless response 
(MVDR) beamforrner [5]. MVDR bearnforrner is optimized by min­
imizing the undesired signal 's power in noise only interval under 

出e condition that the direction of the target source is known in ad­
vance. Thus， MVDR beamform巴r certainly maximizes the SNR of 
desired source. Note出at we carmot know the汀ue DOA of the tar­
get so町ce signal because ICA is unsupervised adaptive technique. 
Thus，恥1VDR beamformer is expect巴d to be the upper limit of ICA 
in the presence of non-point-source noises. 百1e bearnformer g，(f) 
is given by 

(9) 

(10) 
(1 1 ) 

(14) 

T， ，， a(J， (}，(f))HR-1(f) g; (f) = . _ _ :J �. .::::'�; 。 a(f，(}，(f))HR- '(刀a(J，(}，(f 
a(f， ()，(刀)= [exp(i2rr(f/M)J，d1 sinB，/c， 

. . ，  exp(i27r(f/M)J，d， sin B，/d， (17) 

(16) 
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Fig. 1. (a) Layout of reverberant room used in simulation， (b) separation results in simulation， and (c) typical directivity patterns under 
non-point-source condition shaped by ICA at 2 kHz and two-element 紅ray

der a non-point-source noise condition， We used 白e following 8 
kHz-sampled signals as ICA's input; the original target speech (3 
seconds) convoluted with impulse responses that were recorded in 
an actual environment， and to which three types of noise from 36 
loudspeakers were added (see Fig. l(a))， The three types of noise are 
an independent Gaussian noise， an actually recorded railway-station 
noise， and interference speech by 36 people. We use 12 speakers (6 
males and 6 females) as sources of the original target speech， and the 
input SNR of test data is set to 0 dB. We use a two-， three-， or four­
element microphone array with an interelement spacing of 4.3 cm‘ 

The simulation results are shown in Figs. l(b) and l(c). Fig­
ure l(b) shows the result for the average noise reduction rate 
(NRR) [3] of all the target speakers. NRR is de自ned as the ouト
put SNR in dB minus the input SNR in dB. From this result， we can 
see an imbalance performance between the target speech estimation 
and the noise estimation in every noise case; the performance of 
白e target speech estimation is sig凶白C佃tly poor， but that of noise 
estimation is very high. This result is consistent with the theory pre­
viously stated. Moreover， Fig. 1 (c) shows directivity patterns shaped 
by the beamformers optimized by ICA in the simulation. It is c1early 
indicated that the beamformer g，(f)出at picks up the target speech 
resembles the DS beamformer， and the beamformer gn(f) that picks 
up the noise becomes NBF. From these results， we confinn 白at出e
previously stated theory， i.e.， the beamfoロners optimized by ICA 
under a non-point-source noise condition are DS and NBF， is valid. 

3. PROPOSED島1ETHOD

where a(f，9，(f)) is a steering vector， 9，(f) is the direction of the 
target speech， M is the DFT size， !s is the sampling f民quency，
and R(f) = (na(λT)n�(λT))T is the correlation matrix of na(!， T). 
Note that 9s(刀is the function of合equency because 白e direction­
of-arrival (DOA) of the source varies in each 合equency subband 
under reverberant condition. Although the correlation is often not 
diagonalized in lower frequency subbands [5]， e.g.， diffuse noise， we 
approximate that the correlation matrix is diagonalized in whole fre­
quency subbands. Then， regarding出e power of noise signal as ap­
proximately 62(f)，出e correlation matrix results in R(f) = 62(f)・1.
Therefore， the inverse of correlation matrix R-1 (f) = 1/62(f). 
Moreover， a(f， 9，(f))Ha(f， 9，(f)) = J 羽1U S， ( 16) can be rewritten 
as 

3.1. Overview 

As clearly shown in Sects. 2.3 and 2.4， ICA is pro白cient in noise 
estimation rather 白an in target-speech estimation.百1US， we can­
not use ICA as a target estimation directly under a non-point-source 
noise condition. However， we can still use ICA as a noise estima­
tor. In our previous work， we have proposed BSSA [6] algorithm. 
BSSA comprises ICA-based noise estimator， and noise reduction is 
achieved by spectral subtraction. However， original BSSA suffers 
from large distortion of a target speech， which is mainly due to non­
linear artifact such as musical noise Therefore， speech recognition 
results are often darnaged by the distortion. In this paper， we newly 
m紅吋uce釦Wiener-fiIter -like me白od instead of spec回1 sub回c­
tion in BSSA architecture. Figure 2 shows the block diagram of the 
proposed method. In the proposed method， it can be expected that 
the distortion of a target speech signal is mitigated because oversub­
traction like a spec甘al subtraction is not performed. 
3.2. Signal processing in proposed method 

The proposed method consists of two paths; a primary path which is 
DS-based target speech enhancer， and a reference path which is ICA­
based noise estimator. Finally， we obtain the target speech extracted 

. . .  ， exp(ーi2n(f/M)!sdj sin9，(f)/c)f. 

τbis filter g，(f) is approx.imately equal to DS beamformer [5]. Note 
伽t the 白lter g，(f) is not simple DS beamformer but reverberation­
adapted DS beam!ormer because it is optimized for 9，ぴ) in each 

合equency bin. It is well-known that出e noise-reduction perfoロnance
of the DS bearnformer optimized by ICA under a non-point-source 
noise condition is proportional to IO 10gIQ J [dB];出is performance 
is not so good. 

Next， we consider the other beamformer gn(f) which picks up 
the noise source. The task of picking up the noise source equals 
suppressing the target speech arriving from 9，ぴ). Generally， SNR­
maximize beamformer for suppressing the target speech signal is 
lik巴Iy to become NBF. For instance， NBF for two-element紅Tay can 
be defined by， 

(18) 

がか j [expゆ(f/M)μl叫ぴ)/c)

gn(f) = [巴xp(ーi2π(f/M)!sdlsin9，(f)/c)， 

- exp(-i2π(f/M)!sd2 sin9，(!)/c)]T .σ(f)， 

where σ(f) is a g泊n compensation constant.百lÏs filter surely sat­
isfies g�(f) • a(!，9s(f)) = 0ηlUS， this filter steers a directional 
null agωnst the target speech signal with few number of elements 
(at least two elements). Moreover， the undesired-signal-reduction 
performance of NBF is quite high， and this performance does not 
depend on the number of microphone elements. Also， note that the 
filter gn(f) is not simple NBF b巴cause it is optimized for 9，(f) in 
each frequency bin respectively. Overall， the performance of en­
hancing the target speech is very low and that of estimating noise 
source is high. 
2.4. Computer simulation 

We conduct computer simulations in the reverberant room where the 
reverberation time is 200 ms 10 con自ロn出巴 performance of ICA un-

(19) 
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signal based on Wiener filtering. The Wiener filter gain is designed 
as follows: 

かos(f，T)12 
gw(f， T) 

= 1 ，，_ _fI" ��;:"y :
'
1.， F �\12' (20) 

IYos(f， T)12 + ( . Iz(jうT)I
where gw(f， T) is the Wiener filter gain， yos(f， T) is the output of pri­
mary path， z(f， T) is the estimated noise via ICA， and ( is a gain fac­
tor. Finally， we obtain the speech enhanced signal based on Wiener 
fiItering. This proced町巴 can be represent巴d as 

か(j， T)12 = gw(j， T) ・ IYos(j，T)12， (21) 

where y(f， T) is the output of the proposed method. 
4. EXPERIMENT IN REAL ，市ORLD

4.1. Experimental setup 

To confirm the effectiveness of the propos巴d method， we conducted 
experiments in an actual railway-station environment. Figure 3 
shows a layout of the railway-station environment where the rever­
beration time is about 1000 ms. We used the 46 spealcers (200 sen­
tences) as the target speech signal， and noise signal as real-recored 
noise signal in the environment. The noise in the environment is 
nonstationary and almost diffuse， and the noise consists of various 
kinds of interference noise， e・g.， background noise， sounds of住ains，
ticket-vending machines， automatic ticket wickets， foot steps， cars， 
M】d wind. A four-element array with the interelement spacing of 
2 cm is used. As far as we know， the demonstration in such an 
actual railway-station， that is very challenging task， is the world's 
first attempt for ICA study 
4.2. Experimental results 

First， we would mention an actual separation result by ICA. NRRs 
of the target estimation are 6. 1 dB and 3.8 dB in the noise 1 case and 
noise 2 case， respectively. Also， NRRs of the noise estimation are 
9 .6 dB and 14.6 dB in the noise 1 case and noise 2 case， respectively. 
We can also ascertain the imbalanced performance between target 
estimation and noise estimation， similarly to the simulation results 
(see Sect. 2.4)， i.e.， ICA is proficient in noise estimation 

In the next experiment， we compare the conventional ICA， the 
conventional BSSA， 釦d 白e proposed me由od (Wiener-fi1ter-1ike 
method)， on the basis of NRR， cepstral distortion， and speech recog­
nition performance. Figure 4(a) shows the results for the average of 
NRR in whole spealcers. From these results， we can see that NRR of 
the proposed method is inferior to the conventional BSSA， but the 
ceps佐al distortion of the proposed method is signi且cantly reduced 
compared with the conventional BSSA. Finally， we show results of 
speech recognition， where the extracted sound quality is completely 
considered， in Fig. 4(c). Speech recognition task is 20 k-word dic­
tation， the acoustic model is phonetic tied mixture [7]， we use 260 
spealcers ( 1 50 sentences/spealcer) as training data for the acoustic 
model， and we use Julius [7] 3.5目1 for the speech decoder. From this 
result， we can conclude that the target-enhancement performance of 
the proposed method is superior to the conventional BSSA， and ICA 
which directly estimates the t訂get speech component. 
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Fig. 3. Layout of railway-station used in real-recording experiment. 
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Fig.4. Experimental results of (a) noise reduction rate， (b) cepstral 
distortion， and (c) sp巴ech recognition test， in railway四station envi­
ronπJent. 

5. CONCLUSION 

h血is paper， first， we revealed由at beamformers optirnized by ICA 
become DS bearnformer which enhances the target sp巴ech signal and 
NBF which picks up noise signal. Next， computer simulation and ex­
periment in the actual railway-station environment were conducted， 
and we obtained the separating result in that the performance of en­
hancing the target signal is poor and出at of estimating noise source 
is very high. Therefore， we realized that ICA is suitable for noise 
estimator under a non-point-source noise condition. Next， we newly 
propose the blind source extraction method based on Wiener filtering 
組d ICA-based noise estimation. Finally， it was confirmed血at也e
speech recognition perfoロnance of the proposed method overtook 
those of the conventional ICA. and BSSA 
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