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ABSTRACT

In this paper, we proposed a new blind speech extraction method
consisting of Wiener filtering and noise estimation based on indepen-
dent component analysis (ICA). First, we provide both theoretically
and experimental investigations on proficiency of ICA in noise es-
timation under a non-point-source noise condition. Next, computer
simulation and experiment in an actual railway-station environment
are conducted, and their results also indicate that ICA is proficient
in noise estimation under a non-point-source noise condition. Fi-
nally, we newly propose a blind speech extraction method based on
Wiener filtering and ICA-based noise estimation, and the effective-
ness of the proposed method via speech recognition test in an actual
railway-station environment.

Index Terms— Speech enhancement, acoustic signal process-
ing, acoustic arrays, unsupervised learning

1. INTRODUCTION

Blind source separation (BSS) is an approach to estimate origi-
nal sources using only information of observed signals. Recently,
various BSS methods based on independent component analysis
(ICA) [1] have been presented for acoustic-sound separation [2, 3].
Indeed, the conventional ICA could work particularly in speech-
speech mixing, i.e., all sources can be regarded as point sources, but
such a mixing condition is very rare and unrealistic; real noises are
often widespread sources. In this paper, we mainly deal with gen-
eralized noise that cannot be regarded as a point source. Moreover,
we assume this noise to be nonstationary noise that arises in many
acoustical environments; however, traditional methods, e.g., adap-
tive beamformer (ABF) could not weat this noise well. Although
ICA is not influenced by nonstationarity of signals unlike ABF,
this is still a very challenging task that conventional ICA-based
BSS could hardly address because ICA cannot separate widespread
sources.

Related with the performance analysis of ICA, one of the authors
has mentioned that ICA-based BSS has an equivalence to parallelly-
constructed ABFs [4]. However, this investigation was focused on
a separation with a non-singular mixing matrix; thus valid for only
point sources. In this paper, first, we give a more detailed inter-
pretation of ICA, namely, the beamformers optimized by ICA be-
come specific beamformers which maximize the signal-to-noise ra-
tio (SNR) in each output (so-called SNR-maximize beamformers).

Next, we clarify what kinds of beamformers are optimized by
ICA under a non-point-source noise condition. We find out that the
beamformer which enhances a target speech signal becomes a delay-
and-sum (DS) beamnformer (5] and the beamformer which picks up
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a noise signal becomes a null beamformer (NBF) [3] in that envi-
ronment. In general, the noise reduction perforinance of DS beam-
former is very limited, but that of NBF is markedly high. Therefore,
it can be expected that ICA’s extraction performance of target speech
is not so good rather than that of noise estimation. This imbalanced
property is also confirmed by the computer simulation and experi-
ment in an actual railway-station environment. Based on the above
mentioned fact, we have proposed blind spatial subtraction array
(BSSA) which utilizes ICA as noise estimator [6]. In BSSA, source
extraction is achieved by subtracting the power spectrum of the esti-
mated noise signal via ICA from the noisy observations. However,
BSSA causes artificial distortion because BSSA is noise reduction
method based on spectral subtraction. Such artificial distortion sig-
nificantly deteriorate the speech recognition result. Therefore, in
this paper, we newly introduce an Wiener filtering instead of spec-
tral subtraction in BSSA. In the proposed, it can be expected that the
distortion of a target speech signal is decreased because oversubtrac-
tion like a spectral subtraction is not performed.

Finally, we compare the conventional BSSA, the conventional
ICA which simply uses ICA as a direct target estimator, and the pro-
posed method. In conclusion, speech recognition test in an actual
environment reveals the proposed method’s superiority to the con-
ventional methods.

2. ANALYSIS OF ICA IN WIDESPREAD NOISE

2.1. Independent component analysis

We consider an acoustic mixing model where the number of array
elements (microphones) is J and the observed signal contains only
one target speech signal, which can be regarded as a point source,
and an additive noise signal.This additive noise represents noises
which cannot be regarded as point sources, e.g., spatially uncorre-
lated noises, background noises, leakage of reverberation compo-
nents outside the frame analysis. Hereafter, the observed signal vec-
tor in time-frequency domain, x(f,7) = [x;(f,7),...,x;(f, DT, is
given by

x(f,7) = h(f)s(f,7) + n,(f,7), Q)

where f is the frequency bin number, 7 is the time index number,
h(f) = [hi(f),...,hy(H]T is a column vector of transfer functions
from the target signal component to each microphone, s(f, 7) is a tar-
get speech signal component, and n,(f, 7) = [n(l‘”(f, s ,n(l")(f. T
is a column vector of the additive noise signal. In ICA, we perform
signal separation using a complex-valued unmixing matrix Wica(f),
so that the output signals y(f,7) = [;(f, 1), ¥»(f, 7)]T become mutu-
ally independent; this procedure can be represented by [2]

AT =0 3£ DT = Wica(DX(, 7). @
WL =T - e OO D) WD + WL, 3)

ICA
where g is the step-size parameter, [p] is used to express the value
of the p-th step in iterations, y;(f, T) is the estimated target speech
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signal, Y,(f,T) is the estimated noise signal, and 7 is the identity
matrix. Besides, (-); denotes a time-averaging operator, M! denotes
conjugate transpose of matrix M, and ¢(-) is an appropriate nonlinear
vector function which defined as

(4)
(5)

PO (£, 1) = [, (f, ), 9O f, DI,

@i(f,7) = tanhy(f, 1) + itanh yO(f, 1),
where the superscripts (R) and (I) denote the real and imaginary
parts, respectively.

2.2. SNR-maximize beamformers optimized by ICA
ICA optimizes two beamformers; these can be written as

Wica(f) = (g, 8. (N1,
where g,(f) = [&°(),....8 (NI is the coefficient vector of
the beamformer to pick up the target speech signal and g,(f) =
[g(l’"(f), ... ,,gf,")(f)]T is the coefficient vector of the beamformner to
pick up the noise. Using Tailor expansion, we can express a factor

of the nonlinear vector function of ICA, ¢(Y«(f, 7)), as

(6)

eOk(f, 7)) = tanh y{V(f, 7) + itanh y (£, 7),
Wan)  60d)
=yk(f,r>—{(* - )+i(k 3 ) ™

Thus, the calculation part of higher-order correlation in ICA,

e (f, ))YH( f,T), can be decomposed to a second-order correlation
matrix and the summation of higher-order correlation matrices of
each order. This is shown as

@O = QUYL+ D, (8)

where W(f) is a set of higher-order correlation matrices. In ICA,
separation filters are optimized so that the all order correlation ma-
trices become diagonal matrices. Then, at least the second-order
correlation matrix is diagonalized by ICA. In the following, hence,
we prove that ICA optimizes beamformers as SNR-maximize beam-
formers focusing on only the part of second-order correlation. Then,
an absolute value of normalized cross-correlation coefficient (off-
diagonal entries) of second-order correlation, C, is defined by

___loongo )
s DBYe Nl DP7
ys(fs7) = 3(f, ) + rea(f, 7), (10)

(i) = A(f,T) + rp3(f,7), (an

where $(f,T) is a target speech component in ICA’s output and
A(f,7) is a noise component in ICA’s output, r, is a coefficient of
residual noise component, r, is a coefficient of target-leakage com-
ponent, and superscript * represents conjugate complex number.
Therefore, SNRs of y(f, 7) and y,(f, ) can be represented by

T, = (B, T JOHR(f, T))e)s (12)
T, = (A2 (f, D) /(PGS D)), (13)

where I'; is SNR of y,(f,7) and I'; is SNR of y,(f, 7). Using (10),
(11), (12) and (13) we can rewrite (9) as
. |] IS+ 1/, ej(ars';-a!gr,r)l

14
VIi+ I VT+ 1T, (9
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where arg r represents argument of 7. Thus, C is a function of only I
and [7,. Therefore, the cross-correlation between y(f, 7) and y,(f, T)
depends on only the SNRs of beamformers g,(f) and g,(f).

Now, we consider C minimization, which is identical with
the second-order correlation matrix diagonalization in ICA. When
|argr; — argrg| > /2 where -7 < argr; < mand -7 < argr;, <,
it is possible to make C zero or minimization independently of
I'; and I,. This case is proper to the orthogonalization between
ys(f,7) and y,(f,T), which is related to the principal component
analysis (PCA) unlike ICA. However, ICA utilizes higher-order
cross-correlation to maximize independence among all outputs.
This results in the prevention of the orthogonalization of y,(f,7) and
Ya(f,7); consequently, hereafter we can consider only the case of
|arg r; — arg ry| < /2. Then, partial differential of C? by T, is given
by

gc2  (1-T)+TVIT,(1-T,) 2Re [eﬂargr;—a:gr.a]
ars (T, + DAT, + 1)

<0, (15)

where [, > 1 and I, > 1. As for the partial differential of C? by
I, we can also prove dC2/dI, < 0, where I’y > 1 and ', > 1 in the
same manner. Therefore, C is a monotonically decreasing function
of I’y and I',. The above-mentioned fact indicates the following in
ICA:

e The absolute value of cross-correlation depends on only
SNRs of beamformers spanned by each row of an unmixing
matrix.

o The absolute value of cross-correlation is a monotonically de-
creasing function of SNR.

o Therefore, the diagonalization of a second-order correlation
matrix leads to SNR maximization.

Thus, we can conclude that ICA, in a parallel manner, optimizes
multiple beamformers, i.e., g,(f) and g,(f), so that the SNR of the
output by each beamformer becomes maximum.

2.3. What beamformers are optimized under non-point-source
noise condition?

In the previous subsection, it has been proved that ICA optimizes
beamformers as SNR-maximize beamformers. In this subsection,
we analyze what kind of beamformers are optimized by ICA partic-
ularly under a non-point-source noise condition, where we assume
the two-source separation problem. The target speech can be re-
garded as a point source, and the noise source is widespread and spa-
tially uncorrelated noise. First, we focus on the beamformer g,(f)
which picks up the target signal in the environment. It is clear that
the desired beamformer is minimum variance distortionless response
(MVDR) beamformer [S]. MVDR beamformer is optimized by min-
imizing the undesired signal’s power in noise only interval under
the condition that the direction of the target source is known in ad-
vance. Thus, MVDR beamformer certainly maximizes the SNR of
desired source. Note that we cannot know the true DOA of the tar-
get source signal because ICA is unsupervised adaptive technique.
Thus, MVDR beamformer is expected to be the upper limit of ICA
in the presence of non-point-source noises. The beamformer g (f)
is given by

a(f,0,(NR'(f)

T = - 16)
&)= e R (Palf, 60 (
a(f,0,(f)) = [exp(i2n(f/M)f,d; sin6,/c,

... exp(2n(f M) f,d; sin6,/c]", (17)
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Fig. 1. (a) Layout of reverberant room used in simulation, (b) separation results in simulation, and (c) typical directivity patterns under
non-point-source condition shaped by ICA at 2 kHz and two-element array.

where a(f,05(f)) is a steering vector, 6,(f) is the direction of the
target speech, M is the DFT size, f; is the sampling frequency,
and R(f) = (na(f,r)nfj(f,‘r))f is the correlation matrix of n,(f, 7).
Note that 6,(f) is the function of frequency because the direction-
of-arrival (DOA) of the source varies in each frequency subband
under reverberant condition. Although the correlation is often not
diagonalized in lower frequency subbands (5], e.g., diffuse noise, we
approximate that the correlation matrix is diagonalized in whole fre-
quency subbands. Then, regarding the power of noise signal as ap-
proximately 62(f), the correlation matrix results in R(f) = 6*(f)- 1.
Therefore, the inverse of correlation matrix R™'(f) = I/82(f).
Moreover, a(f,8,(f))a(f,6,(f)) = J. Thus, (16) can be rewritten
as

1
&:(f) = lexp (—i2n(fIM)fd, sin0y(f)/c),

.., exp(=i2x(f/M)f.d; sin 6,(f)/c)]".

This filter g, (f) is approximately equal to DS beamformer [5]. Note
that the filter g,(f) is not simple DS beamformer but reverberation-
adapted DS beamformer because it is optimized for 6,(f) in each
frequency bin. It is well-known that the noise-reduction perfortnance
of the DS beamformer optimized by ICA under a non-point-source
noise condition is proportional to 10log,, J [dB]; this performance
is not so good.

Next, we consider the other beamformer g,(f) which picks up
the noise source. The task of picking up the noise source equals
suppressing the target speech arriving from 6,(f). Generally, SNR-
maximize beamformer for suppressing the target speech signal is
likely to become NBF. For instance, NBF for two-element array can
be defined by,

8.(f) = lexp(=i2n(f/M) f.d, sin6,(f)/c),
— exp(=i2n(f/M) fidy sin 8,(f)/)]" - o (f),

where ¢(f) is a gain compensation constant. This filter surely sat-
isfies g1 (f) - a(f,6s(f)) = 0. Thus, this filter steers a directional
null against the target speech signal with few number of elements
(at least two elements). Moreover, the undesired-signal-reduction
performance of NBF is quite high, and this performance does not
depend on the number of microphone elements. Also, note that the
filter g,(f) is not simple NBF because it is optimized for 6,(f) in
each frequency bin respectively. Overall, the performance of en-
hancing the target speech is very low and that of estimating noise
source is high.

2.4. Computer simulation

We conduct computer simulations in the reverberant room where the
reverberation time is 200 ms to confirn the performance of ICA un-

(18)

(19)
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der a non-point-source noise condition. We used the following 8
kHz-sampled signals as ICA’s input; the original target speech (3
seconds) convoluted with impulse responses that were recorded in
an actual environment, and to which three types of noise from 36
loudspeakers were added (see Fig. 1(a)). The three types of noise are
an independent Gaussian noise, an actually recorded railway-station
noise, and interference speech by 36 people. We use 12 speakers (6
males and 6 females) as sources of the original target speech, and the
input SNR of test data is set to 0 dB. We use a two-, three-, or four-
element microphone array with an interelement spacing of 4.3 cm.
The simulation results are shown in Figs. 1(b) and 1(c). Fig-
ure 1(b) shows the result for the average noise reduction rate
(NRR) [3] of all the target speakers. NRR is defined as the out-
put SNR in dB minus the input SNR in dB. From this result, we can
see an imbalance performance between the target speech estimation
and the noise estimation in every noise case; the performance of
the target speech estimation is significantly poor, but that of noise
estimation is very high. This result is consistent with the theory pre-
viously stated. Moreover, Fig. 1(c) shows directivity patterns shaped
by the beamformers optimized by ICA in the simulation. It is clearly
indicated that the beamformer g (f) that picks up the target speech
resembles the DS beamformer, and the beamformer g,(f) that picks
up the noise becomes NBF. From these results, we confirm that the
previously stated theory, i.e., the beamformers optimized by ICA
under a non-point-source noise condition are DS and NBF, is valid.

3. PROPOSED METHOD
3.1. Overview
As clearly shown in Sects. 2.3 and 2.4, ICA is proficient in noise
estimation rather than in target-speech estimation. Thus, we can-
not use ICA as a target estimation directly under a non-point-source
noise condition. However, we can still use ICA as a noise estima-
tor. In our previous work, we have proposed BSSA [6] algorithm.
BSSA comprises [CA-based noise estimator, and noise reduction is
achieved by spectral subtraction. However, original BSSA suffers
from large distortion of a target speech, which is mainly due to non-
linear artifact such as musical noise Therefore, speech recognition
results are often damaged by the distortion. In this paper, we newly
introduce an Wiener-filter-like method instead of spectral subtrac-
tion in BSSA architecture. Figure 2 shows the block diagram of the
proposed method. In the proposed method, it can be expected that
the distortion of a target speech signal is mitigated because oversub-
traction like a spectral subtraction is not performed.
3.2. Signal processing in proposed method
The proposed method consists of two paths; a primary path which is
DS-based target speech enhancer, and a reference path which is ICA-
based noise estimator. Finally, we obtain the target speech extracted
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Fig. 2. Block diagrams of proposed method.

signal based on Wiener filtering. The Wiener filter gain is designed

as follows:
lyps(f, DI

lyos(fs TP + £ - lz(f, TP’
where g..(f, 7) is the Wiener filter gain, yps(f, 7) is the output of pri-
mary path, z(f,7) is the estimated noise via ICA, and ¢ is a gain fac-
tor. Finally, we obtain the speech enhanced signal based on Wiener
filtering. This procedure can be represented as

TP = gu(f 1) - Iyps(f, DI,

where y(f, 7) is the output of the proposed method.

4. EXPERIMENT IN REAL WORLD
4.1. Experimental setup
To confirm the effectiveness of the proposed method, we conducted
experiments in an actual railway-station environment. Figure 3
shows a layout of the railway-station environment where the rever-
beration time is about 1000 ms. We used the 46 speakers (200 sen-
tences) as the target speech signal, and noise signal as real-recored
noise signal in the environment. The noise in the environment is
nonstationary and almost diffuse, and the noise consists of various
kinds of interference noise, e.g., background noise, sounds of trains,
ticket-vending machines, automatic ticket wickets, foot steps, cars,
and wind. A four-element array with the interelement spacing of
2 cm is used. As far as we know, the demonstration in such an
actual railway-station, that is very challenging task, is the world’s
first attempt for ICA study.
4.2. Experimental results
First, we would mention an actual separation result by ICA. NRRs
of the target estimation are 6.1 dB and 3.8 dB in the noise 1 case and
noise 2 case, respectively. Also, NRRs of the noise estimation are
9.6 dB and 14.6 dB in the noise 1 case and noise 2 case, respectively.
We can also ascertain the imbalanced performance between target
estimation and noise estimation, similarly to the simulation results
(see Sect. 2.4), i.e., ICA is proficient in noise estimation.

In the next experiment, we compare the conventional ICA, the
conventional BSSA, and the proposed method (Wiener-filter-like
method), on the basis of NRR, cepstral distortion, and speech recog-
nition performance. Figure 4(a) shows the results for the average of
NRR in whole speakers. From these results, we can see that NRR of
the proposed method is inferior to the conventional BSSA, but the
cepstral distortion of the proposed method is significantly reduced
compared with the conventional BSSA. Finally, we show results of
speech recognition, where the extracted sound quality is completely
considered, in Fig. 4(c). Speech recognition task is 20 k-word dic-
tation, the acoustic model is phonetic tied mixture [7], we use 260
speakers (150 sentences/speaker) as training data for the acoustic
model, and we use Julius [7] 3.5.1 for the speech decoder. From this
result, we can conclude that the target-enhancement performance of
the proposed method is superior to the conventional BSSA, and ICA
which directly estimates the target speech component.

gw(f,7) =
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5. CONCLUSION
In this paper, first, we revealed that beamformers optimized by ICA
become DS beamformer which enhances the target speech signal and
NBF which picks up noise signal. Next, computer simulation and ex-
periment in the actual railway-station environment were conducted,
and we obtained the separating result in that the performance of en-
hancing the target signal is poor and that of estimating noise source
is very high. Therefore, we realized that ICA is suitable for noise
estimator under a non-point-source noise condition. Next, we newly
propose the blind source extraction method based on Wiener filtering
and ICA-based noise estimation. Finally, it was confirmed that the
speech recognition performance of the proposed method overtook
those of the conventional ICA, and BSSA.
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