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ABSTRACT  7777=m7meees '
In this paper, we consider the human/machine hands-fre ' S(fl’t):G):A(fl) :@:V(fl*t)
speech interface where the user voice is picked at a distan: s(x)[1) | A(z) V() ISTFT n o

with a microphone array. It is assumed that the user is clos i [
enough to the machine to be considered as a point sourc " i S(fr 1) :@A(ff‘) V(e t)
The noise is a diffuse background noise, created by all th ------------ gl i
sources present in the environment. The proposed method

aims at suppressing the diffuse background noise effigientl  Figure 1: Equivalent mixtures in frequency domain.
without distorting the speech estimate. This method is a

modification of a method combining frequency domain blind

signal separation (FD-BSS) and Wiener filter based postoise estimate used by the post-filter (non linear procggsin
processing. Contrary to the conventional approach, we modn order to keep the distortion of the estimated speech low.
ify the estimate of the diffuse background noise given by FD-This is particularly important for speech recognition gsk
BSS before applying the Wiener filter based post-processingvhere the the post-filter should give a good trade-off betwee
We also have to build a modified observation using the FDhigh SNR and low distortion [6]. In the proposed approach,
BSS in order to apply our modified post-processing. Simuafter the FD-BSS, we exclude from the noise estimate the
lation results show that the proposed approach can achieveeatimated noise components that are the least correlatied wi
better speech enhancement, measured in term of word recatye speech estimate. Using this modified noise estimatein th
nition in a speech recognition task, than the conventionalViener filter based post-filter also requires the modificatio

Wiener filter based post-processing. of the observation before filtering.
Experimental results show the impact of the proposed
1. INTRODUCTION method on the quality of the speech estimate in a speech

recognition task. In particular, the proposed method aeisie
etter performance than the conventional Wiener filter thase
st-processing.

In hands-free speech recognition, microphone array tec
nigues are used to improve the captured speech by reduci
the effect of noise and reverberation ([1, 2]). Among thes
techniques, in recent years, frequency domain blind signal
separation (FD-BSS) has been used with success for recov- 2. PRELIMINARIES

ering the speech by separating the observed signals in theltl Frequency Domain Blind Signal Separation

different components (see review paper [3]). In blind si : —— :

, e . . signal separation of acoustic signals, the propaga
FD-BSS s efficient for speech/speech separation [4]. But ifys se soinds from their locations of emission to the micro-
the human/machine communication where the USer's VOICk, ,ne array is modeled by a convolutive mixture. After ap-
has to be extracted from a diffuse background noise, FD-BSg i /2 F 5ints short time Fourier transform (STET) to the
gives a better estimate of the diffuse background noise th

served signals, the convolutive mixture is equivalerk to
of the target speech. Consequently FD-BSS has to be COMiqiananeous mixtures in the frequency domain (see Fig. 1)
bined with some nonlinear post-filtering techniques in orde

to improve the quality of the captured speech [5, 4, 6, 7]. AnAt the fth frequency bin, the observed signals are

efficient approach suppresses the diffuse background noise V(f,t) =A(f)S(f,1)
estimated by FD-BSS via Wiener filtering [6]. i

In this paper, our goal is to improve the speech recognilhere then x n complex valued matri(f) represents the
tion performance for the human/machine hands-free speediStantaneous mixture received by thenicrophone array
interface. The user is assumed to be close to the micropho@®d S(f;t) = [s1(f.t),....s(f,t)]" are the emitted signal
array and thus is modeled as a point source whereas the other
sources create a diffuse background noise. We use a similar

approach as in [6] where the noise estimate is obtained by Unk_nf\ivz_______lv(f’ t)
FD-BSS and noise suppression is performed via Wiener fil- — . N
tering. But we propose a modified noise estimate and we do S0 _:. AU |0 B(f) . Y(f.t)
not apply the Wiener filtering directly to the observations. i y
The main idea is that if some of the sources from the @  =-=-=-====---- !
diffuse background noise are efficiently canceled by the FD- . ]
BSS (linear processing), it is better not to include thenhén t Figure 2: BSS at frequency bih
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components at théth frequency bin.t denotes the frame In our case, FD-BSS gives a good estimate of the diffuse
index. background noise by placing a null in the direction of the
In each frequency bin, the blind estimation of the emittedspeech. But it is not possible to get a good speech estimate
signal components is possible using BSS [8]. The estimatesince with a limited number of microphonesi it is not possible
Y(f,t) = [yi(f,1),...,yn(f,1)]T are obtained by applying an to cancel the diffuse background noise [12].
unmixing matrice8( f) to the observed signals (see Fig.2) Another problem of the separation of speech and dif-
fuse background noise is the permutation resolution. The
Y(f,t) =B(f)X(f,t) =B(f)A(f)S(f,t). (1)  methods developed for the speech/speech separation are of-
o ) ten not efficient for the case of speech in diffuse background
If the components d(f,t) are statistically independent (and nojse [13]. Here, in order to find the speech component
at most one Is GaUSS|an) then it is pOSSIble‘_ to.reCOVer thm each of the frequency bin, we rely on the fact that the
components of( f,t) up to scale and permutation indetermi- speech distribution is spikier than that of the diffuse back
nacy by finding the separation matf«f ) such that the com-  ground noise. To measure the ‘spikedness’ of the distribu-
ponents ofY (f,t) are statistically independent [9]. Namely tion, we determine the scale parametgff) of the expo-

B(f) is such that nential distribution that fits the distribution of the modsiof
VIE.D) = POAS f they;(f,t). The maximum likelihood estimate of this param-
(1,0) =P(HADS(.Y eter isai(f) = (&{|yi(f,t)|}) . The component with the

largest parameter is selected as the target speech (falsdeta
see [13]). After this first step of permutation resolutiorg w

Consequently several FD-BSS methods adapt the matr‘ﬁstiume thaththe compor;en'ﬁhgr%permuted suclyiht)
cesB(f) in order to minimize a cost function measuring the'S € SP€€ch componentin n.

statistical independence of the components of the estamate N _ ) - _
Y(f,t) (see [3)]). 3.2 Modified Noise Estimate and Modified Observation

Because of the unknown order of the estimated CompOAssuming that the FD-BSS method achieved the best
nentsy;(f,t), in order to achieve separation in the time do-, e ~ separation, the estimated noise components
main , it is necessary to match the components from the san? (f1),- '

signal in all the frequency bin before transforming back th stimai@lg%/nt()ff;)sgl(l) gt)ar:?anm?nzrigg %r;, ?hoe\)/v ﬁggrethe speech
signals in time. This is referred to germutation resolu The noise estimate for the conventional Wiener filter
tion. Aftgr resolving ';he permutation, the estimated S'gnal%ased post-processing is obtained by projecting back the
are still filtered by an indeterminate filter because of thed-sc ;

N : P : n— 1 componentgy(f,t),---,ya(f,t) to the microphone ar-

ing indeterminacy\(f). A solution is toproject backhe es- ray [6]. Butin our approach we do not project back the 1
timated signals to the microphone array [10]. The projectio :

. - . - . noise components.
back of theith estimate is @ component signal defined by The noFi)se estimate is composed of several components

_ _ —1n. and these components may contribute at different levels in
z(ty = B(H)7DY(T.Y the noise still present in the speech estimate. In particula
some of these estimated noise components may have a very
small contribution in the noise contaminating the speeeh es

; : e ; timate. Meaning that FD-BSS suppressed some part of the
2”? quD_iS?mit%d &g(;\;l ?(f’tj ;‘hfen F;(j];) .|sf suchhthat diffuse background noise (the diffuse background noise may

(f)—"DiP(f) = D1 andZzi(f,t) = A(f,t)"Vs;(f,t) where  ;5nain contributions of point sources for example). Infsuc
A(f,t)¢1) is the j™ column of A(f,t). NamelyZ(f,t) is  case, we propose to exclude these components from the noise
equal to the contribution of thgth estimated signal at the estimate used by the Wiener filter post-processing. The rea-
microphone array because the projection back replaces tk@n is that it is better in term of speech distortion to sugpre

indeterminate filtering of the estimated signal by the estén  these components with the FD-BSS filter that is linear than
of the room impulse response between the location oftthe  with the nonlinear post-processing.

whereP(f) is an x n permutation matrix and(f) is a diag-
onaln x n matrix.

whereD; is a matrix having only one non null entds =
1. If we assume perfect separatiBOf )A(f) = P(f)A(f)

signal and the microphone array (representedtiyt)))). To determine the noise components that have few con-
Note that the observation is the sum of all the projected baciibution in the noise contaminating the speech estimage, w
componentX(f,t) = 3, Z(f,t). compute the correlation between the speech estigéfet)
and the other componentg(f,t),--- ,yn(f,t). This correla-
3. PROPOSED METHOD tion is denoted byCi = &{y1(f,t)yi(f,t)*} (where&{-} is

expectation operator amndhe complex conjugate).

The noise components are sorted according to the abso-
e value of these correlations. In the remainder, the com-
ponents are permuted such tigat> --- > C,. The p com-

3.1 Speech and Diffuse Background Noise Blind Sepa- ponents with smallest corr_elat!on are not projected baek (s
ration the p components set to 0 in Fig. 3).

. Thus the noise estima( f,t) is only composed of the
In [11], the authors showed that for speech/speech separati projection back of(f,t), - ’(yn_:)( f,1) P

(cocktail party model) FD-BSS is equivalent to a set of adap-
tive null beamformers (ANBF) each having its null toward np
different speakers. Thus the separation is achieved becaus _ -1 _ :
FD-BSS is able to cancel the speeches that are point sources. X(f,1) = B(F)DnY(F,1) = i; 4(ty

The block diagram in Fig 3 shows the proposed processing1e
in the frequency domain. The different blocks are explainecli
in the following sections. ut
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Figure 3: Overview of the method.

whereDy is a matrix selecting>(f,t),---,yn—p(f,t) (the (a vacuum cleaner at two meters from the array a6d°),
Noise PBblock in Fig. 3). the impulse responses at one meter from the array in front of
Since the lasp components are not projected back thethe array and at an angle of 6(see Fig. 4). The recorded
Wiener filtering has to be applied to the modified observanoise is mixed with the convolution of the impulse response
tion Xo(f,t) obtained by projecting back all the componentsat an angle of 60with a recorded fan noise. The SNR of this
except thes@ last ones mixture is 0dB. Then this mixture of noises is mixed with
the convolution of the impulse responses and a clean speech
1 n-p (100 signals from the JNAS database of Japanese sentences
Xo(f,t) =B(f) "DoY(f,t) = Z Z(f.1) [14]). A second set of data is obtain by mixing only the dif-
= fuse background noise with the filtered speeches. The first
. . . data set is referred to by ‘fan’ whereas the second is raferre
where Do IS a matrix selecting to by ‘no fan’. The SNR values between noise and speech
?r}(gig)é);z(f’t)’ woYn-p(f,t) (the Mod obs PBblock o adjusted to be the same for both datasets.
e For the frequency domain processing, the short time

3.3 Wiener post-filter and delay and sum beamformer Fourier transform uses a 512 point hamming window with
- . . - 50% overlap. The separation is performed by 300 iterations
The modified noise estimai(f,t) and the modified obser- ¢ 3 BSS method with adaptation step of @ivided by two
Vat".’nXO(lf.’tg both haven co_mpon((ajntﬁ. The Wiener f:clter-h every 100 iterations (the method is adapted from [15, 16]).
:?ﬁézrﬁggrzzmﬁgmponem wise and the Wiener gain for the The proposed approach is tested with two modified noise
estimates corresponding = 1 andp = 2. The result
N0 ) are compared to the delay and sum beamformer in front of
Gt = X F the array (DS), the FD-BSS with no post processing (BSS)
’ |X\g)(f,t)|2+ylx\£)(f7t)|2 and the conventional Wiener filtgg = O (note: the FD-
BSS with no post processing can be seen as discarding all
where the subscrigi) denotes théth component angis ~ the noise components = 3). Several values of the coef-
a parameter controlling the noise reduction. Thecompo- ficient y of the Wiener filter were tested for each method:
nent of the filtered target speech is y €{1,5,10,15,20,25}.
Since our goal is speech recognition, a 20K-word
_ : — )’Zg)(f t) Japanese dictation task from JNAS is used as performance
Sh(ft) = \/G<'>(f,t)|xc()')(f,t)|2A.7’. measure. The word accuracy achieved by the recognizer is
|Xg)(f,t)| function of both the SNR and the amount of distortion of the
speech estimate. The recognizer is JULIUS [17] using Pho-
finally the n components of the Wiener filtered speechnetically Tied Mixture (PTM) model [18]. The open test set
estimate are merged into one by applying a delay and sum
(DS) beamformer in the directioBiarget Of the target speech

§(f,t) = 37, GUL (£,0)80 (f,t) whereGUL, (f,t) the gain point noise source
of the DS beamformer at thth microphone (the target DOA

is estimated during the permutation resolution step affter t Im o
speech components are found). 60 .
User Im [ ™~
4. EXPERIMENTAL RESULTS |.| 2.15cm
To demonstrate the effectiveness of the proposed post- -60° »

processing based on partial projection back, we compare it
to the conventional Wiener filter based post-processing, to
the FD-BSS with no post-processing and to a delay and sum
beamformer (DS).

A four (n= 4) microphone array (inter microphone spac- . ]
ing of 2.15cm) was used to record a diffuse background noise Figure 4: Experimental setup.

(T60=200mSs)
diffuse noise source
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SNR 5dB

Table 1:System specifications.
Sampling frequency 16 kHz _ 8
Frame length 25ms 3 B
= 35
Frame period 10 ms S a0
Pre-emphasis 1-097z1 T .
Feature vectors 12-order MFCC, 2 »
12-orderAMFCCs 15
1-orderAE 10 Er ‘ ‘ ‘
HMM PTM , 2000 states DS BSS  p=0  p=1  p=2
Training data Adult and Senior (JNAS) SNR 10dB
Test data Adult and Senior female (JNAS)

is composed of 100 utterances (female speakers). The con-
ditions used in recognition are given in Table 1. The acous-

1
tic model is a clean model with super-imposed noise (office j r

noise 25dB SNR) DS BSS p=0 p=1 p=2

Figure 5 shows the word accuracy achieved by the differ- SNR 15dB
ent methods on the two data sets (‘fan’ and ‘nofan’) for the
different SNR values. For each case the result is the one ob-
tain with the parametergiving the best word accuracy (also

see first row of Table 2). 7 T |
We can see that the performances are better for the ‘fan’ 7
dataset that contains a point source in addition to the dif-
fuse background noise. In particular for the lower SNRs 65 j}
(5dB and 10dB), the improvement of the word accuracy with . ‘ ‘ ‘ ‘

the proposed method over the conventional method is better DS BSS  p=0
for the ‘fan’ dataset. This shows that if some components SNR 20dB
of the noise are canceled by the FD-BSS (the point source &
fan noise), modifying the noise estimate improves the per- 82 =
formance. There is also a performance gain on the ‘nofan’ 8 ]

dataset showing that some of the noise components of the %

diffuse background noise contributed less to the noise con- P

taminating the speech estimate given by FD-BSS. We can ;:

also notice that fop = 2 the performance is better than for . r

p = 1. Meaning that discarding more noise components lead - ‘ ‘ ‘ ‘
to better results on these datasets. But we can also see that DS BSS  p=0 p=1 p=2
the nonlinear post-processing is necessary in all cases the ] fan I nofan

is an improvement over the FD-BSS.

The effect of the coefficieny is depicted in Fig. 6 (the Figure 5: Word accuracy for different SNR values with the
three plots share same color scale). For the proposed poslfifferent methods.

processing, like for the conventional Wiener filter thera is

trade-off between SNR and distortion, the word accuracy is

better with a largely at low SNR and a smalley at high 5. CONCLUSION
SNR.

Table 2 shows the difference of word accuracy betwee
the proposed method with= 2 and the conventional method
p = 0O for different choice ofy. The row ‘besty’ is obtained

Word acc. [%]
®858888 3 a3

Word acc. [%]

p=1 p=2

Word acc. [%]

In this paper, we consider the suppression of the diffusk-bac
lEjround noise in the human/machine communication sce-
nario. We proposed a modification of the noise estimation
A given by FD-BSS. This modification leads to a more effi-
by selecting for each method at each SNR the paranyeter ciont \wiener filter based post-processing of the speech esti

from the list{1,5,10, 15,20, 25} that gives the best word ac- pate  Some experimental results showed that this approach
curacy. This row shows the improvement for the proposegh e ases the word accuracy in a dictation task.
method forp = 2 over conventional methog & 0) in Fig. 5.

The other rows show the improvement for fixed valuey.of

Note that for largery there is no performance improvement REFERENCES

on the ‘fan’ dataset as the proposed method perform best with o o ) )
smally (see bottom of Fig. 6). This shows that at high SNR it [1] L. Griffiths and C. Jim, “An alternative approach to lin-
is important to choose a smallgifor the proposed method. early constrained adaptive beamformingtEE Trans.
We can also notice that for the ‘nofan’ dataset the perfor-  Antennas Prapagatigivol. AP-30, pp. 27-34, 1982.
mance difference is larger than for the ‘fan’ dataset at high[2] S. Doclo, A. Spriet, and M. Moonen, “Efficient
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‘fan’ dataset ‘nofan’ dataset
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y=1 ] 133 | 1503 | 6.79 | 091 93 | 1247 | 7.13 4
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