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ABSTRACT
In this paper, we consider the human/machine hands-free
speech interface where the user voice is picked at a distance
with a microphone array. It is assumed that the user is close
enough to the machine to be considered as a point source.
The noise is a diffuse background noise, created by all the
sources present in the environment. The proposed method
aims at suppressing the diffuse background noise efficiently
without distorting the speech estimate. This method is a
modification of a method combining frequency domain blind
signal separation (FD-BSS) and Wiener filter based post-
processing. Contrary to the conventional approach, we mod-
ify the estimate of the diffuse background noise given by FD-
BSS before applying the Wiener filter based post-processing.
We also have to build a modified observation using the FD-
BSS in order to apply our modified post-processing. Simu-
lation results show that the proposed approach can achieve a
better speech enhancement, measured in term of word recog-
nition in a speech recognition task, than the conventional
Wiener filter based post-processing.

1. INTRODUCTION

In hands-free speech recognition, microphone array tech-
niques are used to improve the captured speech by reducing
the effect of noise and reverberation ([1, 2]). Among these
techniques, in recent years, frequency domain blind signal
separation (FD-BSS) has been used with success for recov-
ering the speech by separating the observed signals in their
different components (see review paper [3]).
FD-BSS is efficient for speech/speech separation [4]. But in
the human/machine communication where the user’s voice
has to be extracted from a diffuse background noise, FD-BSS
gives a better estimate of the diffuse background noise than
of the target speech. Consequently FD-BSS has to be com-
bined with some nonlinear post-filtering techniques in order
to improve the quality of the captured speech [5, 4, 6, 7]. An
efficient approach suppresses the diffuse background noise
estimated by FD-BSS via Wiener filtering [6].

In this paper, our goal is to improve the speech recogni-
tion performance for the human/machine hands-free speech
interface. The user is assumed to be close to the microphone
array and thus is modeled as a point source whereas the other
sources create a diffuse background noise. We use a similar
approach as in [6] where the noise estimate is obtained by
FD-BSS and noise suppression is performed via Wiener fil-
tering. But we propose a modified noise estimate and we do
not apply the Wiener filtering directly to the observations.

The main idea is that if some of the sources from the
diffuse background noise are efficiently canceled by the FD-
BSS (linear processing), it is better not to include them in the

STFT
n

n

n

n

Figure 1: Equivalent mixtures in frequency domain.

noise estimate used by the post-filter (non linear processing)
in order to keep the distortion of the estimated speech low.
This is particularly important for speech recognition tasks
where the the post-filter should give a good trade-off between
high SNR and low distortion [6]. In the proposed approach,
after the FD-BSS, we exclude from the noise estimate the
estimated noise components that are the least correlated with
the speech estimate. Using this modified noise estimate in the
Wiener filter based post-filter also requires the modification
of the observation before filtering.

Experimental results show the impact of the proposed
method on the quality of the speech estimate in a speech
recognition task. In particular, the proposed method achieves
better performance than the conventional Wiener filter based
post-processing.

2. PRELIMINARIES

2.1 Frequency Domain Blind Signal Separation

In blind signal separation of acoustic signals, the propagation
of the sounds from their locations of emission to the micro-
phone array is modeled by a convolutive mixture. After ap-
plying aF points short time Fourier transform (STFT) to the
observed signals, the convolutive mixture is equivalent toF
instantaneous mixtures in the frequency domain (see Fig. 1).
At the f th frequency bin, the observed signals are

V( f ,t) = A( f )S( f ,t)

where then×n complex valued matrixA( f ) represents the
instantaneous mixture received by then microphone array
and S( f ,t) = [s1( f ,t), . . . ,sn( f ,t)]T are the emitted signal
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Figure 2: BSS at frequency binf .
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components at thef th frequency bin. t denotes the frame
index.

In each frequency bin, the blind estimation of the emitted
signal components is possible using BSS [8]. The estimates
Y( f ,t) = [y1( f ,t), . . . ,yn( f , t)]T are obtained by applying an
unmixing matricesB( f ) to the observed signals (see Fig.2)

Y( f ,t) = B( f )X( f , t) = B( f )A( f )S( f , t). (1)

If the components ofS( f , t) are statistically independent (and
at most one is Gaussian) then it is possible to recover the
components ofS( f , t) up to scale and permutation indetermi-
nacy by finding the separation matrixB( f ) such that the com-
ponents ofY( f ,t) are statistically independent [9]. Namely
B( f ) is such that

Y( f , t) = P( f )Λ( f )S( f , t)

whereP( f ) is an×n permutation matrix andΛ( f ) is a diag-
onaln×n matrix.

Consequently several FD-BSS methods adapt the matri-
cesB( f ) in order to minimize a cost function measuring the
statistical independence of the components of the estimates
Y( f ,t) (see [3]).

Because of the unknown order of the estimated compo-
nentsyi( f ,t), in order to achieve separation in the time do-
main , it is necessary to match the components from the same
signal in all the frequency bin before transforming back the
signals in time. This is referred to aspermutation resolu-
tion. After resolving the permutation, the estimated signals
are still filtered by an indeterminate filter because of the scal-
ing indeterminacyΛ( f ). A solution is toproject backthe es-
timated signals to the microphone array [10]. The projection
back of theith estimate is an component signal defined by

Zi( f ,t) = B( f )−1DiY( f , t)

whereDi is a matrix having only one non null entrydii =
1. If we assume perfect separationB( f )A( f ) = P( f )Λ( f )
and the estimated signal issj( f , t) then P( f ) is such that
P( f )−1DiP( f ) = D1 andZi( f , t) = A( f , t)(:, j)sj( f , t) where
A( f ,t)(:, j) is the j th column of A( f , t). NamelyZi( f ,t) is
equal to the contribution of thejth estimated signal at the
microphone array because the projection back replaces the
indeterminate filtering of the estimated signal by the estimate
of the room impulse response between the location of thejth
signal and the microphone array (represented byA( f ,t)(:, j)).
Note that the observation is the sum of all the projected back
componentsX( f ,t) = ∑n

i=1Zi( f , t).

3. PROPOSED METHOD

The block diagram in Fig 3 shows the proposed processing
in the frequency domain. The different blocks are explained
in the following sections.

3.1 Speech and Diffuse Background Noise Blind Sepa-
ration

In [11], the authors showed that for speech/speech separation
(cocktail party model) FD-BSS is equivalent to a set of adap-
tive null beamformers (ANBF) each having its null toward
different speakers. Thus the separation is achieved because
FD-BSS is able to cancel the speeches that are point sources.

In our case, FD-BSS gives a good estimate of the diffuse
background noise by placing a null in the direction of the
speech. But it is not possible to get a good speech estimate
since with a limited number of microphones it is not possible
to cancel the diffuse background noise [12].

Another problem of the separation of speech and dif-
fuse background noise is the permutation resolution. The
methods developed for the speech/speech separation are of-
ten not efficient for the case of speech in diffuse background
noise [13]. Here, in order to find the speech component
in each of the frequency bin, we rely on the fact that the
speech distribution is spikier than that of the diffuse back-
ground noise. To measure the ‘spikedness’ of the distribu-
tion, we determine the scale parameterαi( f ) of the expo-
nential distribution that fits the distribution of the modulus of
theyi( f ,t). The maximum likelihood estimate of this param-
eter isαi( f ) = (E {|yi( f ,t)|})−1. The component with the
largest parameter is selected as the target speech (for details
see [13]). After this first step of permutation resolution, we
assume that the components are permuted such thaty1( f ,t)
is the speech component in thef th bin.

3.2 Modified Noise Estimate and Modified Observation

Assuming that the FD-BSS method achieved the best
possible separation, the estimated noise components
y2( f ,t), · · · ,yn( f ,t) contain no speech however the speech
estimatey1( f ,t) is still contaminated by the noise.

The noise estimate for the conventional Wiener filter
based post-processing is obtained by projecting back the
n−1 componentsy2( f ,t), · · · ,yn( f ,t) to the microphone ar-
ray [6]. But in our approach we do not project back then−1
noise components.

The noise estimate is composed of several components
and these components may contribute at different levels in
the noise still present in the speech estimate. In particular
some of these estimated noise components may have a very
small contribution in the noise contaminating the speech es-
timate. Meaning that FD-BSS suppressed some part of the
diffuse background noise (the diffuse background noise may
contain contributions of point sources for example). In such
case, we propose to exclude these components from the noise
estimate used by the Wiener filter post-processing. The rea-
son is that it is better in term of speech distortion to suppress
these components with the FD-BSS filter that is linear than
with the nonlinear post-processing.

To determine the noise components that have few con-
tribution in the noise contaminating the speech estimate, we
compute the correlation between the speech estimatey1( f ,t)
and the other componentsy2( f ,t), · · · ,yn( f ,t). This correla-
tion is denoted byCi = E {y1( f ,t)yi( f ,t)∗} (whereE {·} is
the expectation operator and∗ the complex conjugate).

The noise components are sorted according to the abso-
lute value of these correlations. In the remainder, the com-
ponents are permuted such thatC2 > · · · > Cn. The p com-
ponents with smallest correlation are not projected back (see
the p components set to 0 in Fig. 3).

Thus the noise estimateXN( f ,t) is only composed of the
projection back ofy2( f ,t), · · · ,yn−p( f ,t)

XN( f ,t) = B( f )−1DNY( f ,t) =
n−p

∑
i=2

Zi( f ,t)
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Figure 3: Overview of the method.

whereDN is a matrix selectingy2( f , t), · · · ,yn−p( f ,t) (the
Noise PBblock in Fig. 3).

Since the lastp components are not projected back the
Wiener filtering has to be applied to the modified observa-
tion XO( f ,t) obtained by projecting back all the components
except thesep last ones

XO( f , t) = B( f )−1DOY( f , t) =
n−p

∑
i=1

Zi( f , t)

where DO is a matrix selecting
y1( f ,t),y2( f ,t), · · · ,yn−p( f , t) (the Mod obs PB block
in Fig. 3).

3.3 Wiener post-filter and delay and sum beamformer

The modified noise estimateXN( f , t) and the modified obser-
vationXO( f ,t) both haven components. The Wiener filter-
ing is applied component wise and the Wiener gain for the
ith component is

G(i)( f ,t) =
|X̂(i)

O ( f , t)|2

|X̂(i)
O ( f , t)|2 + γ|X̂(i)

N ( f , t)|2

where the subscript(i) denotes theith component andγ is
a parameter controlling the noise reduction. Theith compo-
nent of the filtered target speech is

Ŝ(i)( f ,t) =

√
G(i)( f , t)|X̂(i)

O ( f , t)|2
X̂(i)

O ( f , t)

|X̂(i)
O ( f , t)|

.

finally the n components of the Wiener filtered speech
estimate are merged into one by applying a delay and sum
(DS) beamformer in the directionθtarget of the target speech

Ŝ( f ,t) = ∑n
i=1G(i)

DSθ ( f , t)Ŝ(i)( f , t) whereG(i)
DSθ ( f , t) the gain

of the DS beamformer at theith microphone (the target DOA
is estimated during the permutation resolution step after the
speech components are found).

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed post-
processing based on partial projection back, we compare it
to the conventional Wiener filter based post-processing, to
the FD-BSS with no post-processing and to a delay and sum
beamformer (DS).

A four (n= 4) microphone array (inter microphone spac-
ing of 2.15cm) was used to record a diffuse background noise

(a vacuum cleaner at two meters from the array and−60o),
the impulse responses at one meter from the array in front of
the array and at an angle of 60o (see Fig. 4). The recorded
noise is mixed with the convolution of the impulse response
at an angle of 60o with a recorded fan noise. The SNR of this
mixture is 0dB. Then this mixture of noises is mixed with
the convolution of the impulse responses and a clean speech
(100 signals from the JNAS database of Japanese sentences
[14]). A second set of data is obtain by mixing only the dif-
fuse background noise with the filtered speeches. The first
data set is referred to by ‘fan’ whereas the second is referred
to by ‘no fan’. The SNR values between noise and speech
are adjusted to be the same for both datasets.

For the frequency domain processing, the short time
Fourier transform uses a 512 point hamming window with
50% overlap. The separation is performed by 300 iterations
of a BSS method with adaptation step of 0.1 divided by two
every 100 iterations (the method is adapted from [15, 16]).

The proposed approach is tested with two modified noise
estimates corresponding top = 1 and p = 2. The result
are compared to the delay and sum beamformer in front of
the array (DS), the FD-BSS with no post processing (BSS)
and the conventional Wiener filterp = 0 (note: the FD-
BSS with no post processing can be seen as discarding all
the noise componentsp = 3). Several values of the coef-
ficient γ of the Wiener filter were tested for each method:
γ ∈ {1,5,10,15,20,25}.

Since our goal is speech recognition, a 20K-word
Japanese dictation task from JNAS is used as performance
measure. The word accuracy achieved by the recognizer is
function of both the SNR and the amount of distortion of the
speech estimate. The recognizer is JULIUS [17] using Pho-
netically Tied Mixture (PTM) model [18]. The open test set

-60

2.15cm

2m

1m
60

1m

diffuse noise source

point noise source

User

(T60=200ms)

Figure 4: Experimental setup.
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Table 1:System specifications.
Sampling frequency 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1−0.97z−1

Feature vectors 12-order MFCC,
12-order∆MFCCs
1-order∆E

HMM PTM , 2000 states
Training data Adult and Senior (JNAS)
Test data Adult and Senior female (JNAS)

is composed of 100 utterances (female speakers). The con-
ditions used in recognition are given in Table 1. The acous-
tic model is a clean model with super-imposed noise (office
noise 25dB SNR).

Figure 5 shows the word accuracy achieved by the differ-
ent methods on the two data sets (‘fan’ and ‘nofan’) for the
different SNR values. For each case the result is the one ob-
tain with the parameterγ giving the best word accuracy (also
see first row of Table 2).

We can see that the performances are better for the ‘fan’
dataset that contains a point source in addition to the dif-
fuse background noise. In particular for the lower SNRs
(5dB and 10dB), the improvement of the word accuracy with
the proposed method over the conventional method is better
for the ‘fan’ dataset. This shows that if some components
of the noise are canceled by the FD-BSS (the point source
fan noise), modifying the noise estimate improves the per-
formance. There is also a performance gain on the ‘nofan’
dataset showing that some of the noise components of the
diffuse background noise contributed less to the noise con-
taminating the speech estimate given by FD-BSS. We can
also notice that forp = 2 the performance is better than for
p = 1. Meaning that discarding more noise components lead
to better results on these datasets. But we can also see that
the nonlinear post-processing is necessary in all cases there
is an improvement over the FD-BSS.

The effect of the coefficientγ is depicted in Fig. 6 (the
three plots share same color scale). For the proposed post-
processing, like for the conventional Wiener filter there isa
trade-off between SNR and distortion, the word accuracy is
better with a largerγ at low SNR and a smallerγ at high
SNR.

Table 2 shows the difference of word accuracy between
the proposed method withp= 2 and the conventional method
p = 0 for different choice ofγ. The row ‘bestγ ’ is obtained
by selecting for each method at each SNR the parameterγ
from the list{1,5,10,15,20,25} that gives the best word ac-
curacy. This row shows the improvement for the proposed
method forp= 2 over conventional method (p= 0) in Fig. 5.
The other rows show the improvement for fixed values ofγ.
Note that for largerγ there is no performance improvement
on the ‘fan’ dataset as the proposed method perform best with
smallγ (see bottom of Fig. 6). This shows that at high SNR it
is important to choose a smallerγ for the proposed method.
We can also notice that for the ‘nofan’ dataset the perfor-
mance difference is larger than for the ‘fan’ dataset at high
SNR.
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Figure 5: Word accuracy for different SNR values with the
different methods.

5. CONCLUSION

In this paper, we consider the suppression of the diffuse back-
ground noise in the human/machine communication sce-
nario. We proposed a modification of the noise estimation
given by FD-BSS. This modification leads to a more effi-
cient Wiener filter based post-processing of the speech esti-
mate. Some experimental results showed that this approach
increases the word accuracy in a dictation task.
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