
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Department of Electrical and Computer
Engineering: Dissertations, Theses, and Student
Research

Electrical & Computer Engineering, Department
of

Winter 12-2023

An Investigation of Match for Lossless Video Compression An Investigation of Match for Lossless Video Compression

Brittany Sullivan-Reicks
University of Nebraska-Lincoln, sullivan.brittany@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/elecengtheses

 Part of the Biomedical Commons, Broadcast and Video Studies Commons, Other Analytical,

Diagnostic and Therapeutic Techniques and Equipment Commons, and the Other Computer Engineering

Commons

Sullivan-Reicks, Brittany, "An Investigation of Match for Lossless Video Compression" (2023). Department
of Electrical and Computer Engineering: Dissertations, Theses, and Student Research. 146.
https://digitalcommons.unl.edu/elecengtheses/146

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Department of Electrical
and Computer Engineering: Dissertations, Theses, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/267?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/326?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/994?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/994?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses/146?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages

AN INVESTIGATION OF MATCH FOR LOSSLESS VIDEO COMPRESSION

by

Brittany Sullivan-Reicks

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Electrical Engineering

Under the Supervision of Professor Khalid Sayood

Lincoln, Nebraska

December, 2023

AN INVESTIGATION OF MATCH FOR LOSSLESS VIDEO COMPRESSION

Brittany Sullivan-Reicks, M.S.

University of Nebraska, 2023

Adviser: Khalid Sayood

A new lossless video compression technique, Match, is investigated. Match uses

the similarity between the frames of a video or the slices of medical images to find a

prediction for the current pixel. A portion of the previous frame is searched to find

a matching context, which is the pixels surrounding the current pixel, within some

distance centered on the current location. The best distance to use for each dataset

is found experimentally. The matching context refers to the neighborhood of w, nw,

n, and ne, where the pixel in the previous frame with the closest matching context

becomes the prediction. w, nw, n, and ne stand for west, northwest, north, and north-

east respectively. Using these directions, w is the pixel to the left of the current one,

nw is the pixel to the left and up one row, n is the pixel directly above the current one

and ne refers to the pixel up one row and to the right one column. From the predic-

tion, the error is then calculated, remapped and encoded using adaptive arithmetic

encoding. Match’s resulting compression ratio is then compared to that of CALIC’s,

where the larger the compression ratio the more efficient the method. CALIC is a

context-bases adaptive lossless image compression technique that is regarded as one of

the best lossless image compression techniques. Match was evaluated for twenty-two

video datasets of varying resolutions as well as 65 C.T. scans and 17 M.R.I. scans.

Some common differences amongst videos are resolution and frame rate. Therefore,

Match was used to compress four videos with varying resolution to see how Match

is affected by resolution and Match was examined on one dataset that had varying

frame rate. There were times when Match outperformed CALIC; however, there were

also times where CALIC outperformed Match and other times where the two methods

resulted in nearly identical compression ratios. Therefore, as a preprocessing step,

the structural similarity was examined as well as the edge quality measurements to

predict which method, Match or CALIC, results in the best compression.

iv

DEDICATION

To the love of my life, Andrew Ray Reicks. And to my incredibly supportive family

who I could not have done this without.

v

ACKNOWLEDGMENTS

I would like to offer special thanks to the following individuals:

My advisor, Dr Khalid Sayood for all of their support, guidance, and understand-

ing.

Miss Roxanne and Shadow for all of their love and support as I could not have

remained sane without them.

My father, Timothy Sullivan for all of his love, support and guidance. Without

him I wouldn’t have been able to debug my code.

My mother, Kristi Sullivan for all of her love and support.

My committee members, Drs. Michael Hoffman and Dr. Benjamin Riggan

vi

Table of Contents

List of Figures viii

List of Tables xii

1 Introduction 1

2 Related Work 16

3 Preliminary Information 28

3.1 Adaptive Arithmetic Coding . 30

3.2 Context-Based Adaptive Lossless Image Compression 33

3.3 Structural Similarity . 38

3.4 Edge Stability . 42

4 Match 44

5 Results 49

5.1 176 Resolution . 50

5.2 720 Resolution . 54

5.3 1080 Resolution . 57

5.4 4k Resolution . 61

5.5 C.T. Scans . 64

vii

5.6 M.R.I. Scans . 74

5.7 Resolution . 84

5.8 Frame Rate . 91

6 Determining Which Method to Use 95

6.1 Structural Similarity . 95

6.2 Edge Stability . 109

7 Conclusion 129

Bibliography 131

A C.T. Scans 137

B Code 155

viii

List of Figures

1.1 Camera Obscura Pinhole Camera Example [3] 2

1.2 Daguerreotype Camera [4] . 3

1.3 Original Kodak Film Camera (left)[6] and the Kodak 35 (right)[7] 4

1.4 Chronophotographic Gun[8] . 5

1.5 Chronophotographic Gun[9] . 5

1.6 The Kinetograph[10] . 5

1.7 The Fotoman[11] . 7

1.8 World’s Biggest Digital Camera[17] . 12

1.9 Kodak’s First Digital Camera invented by Stephen Sasson 1975[20] . . . 13

1.10 Nikon D6 Camera 2023[21] . 13

2.1 Block Diagram of Ying Li’s Proposed Algorithm[23] 17

2.2 Proposed HACP Scheme for 8x8 Block[25] 20

2.3 The HEVC Lossless Coding Block Diagram[26] 21

2.4 One Prediction Level of IHINT Algorithm[28] 23

2.5 One Prediction Level of HOP Algorithm[28] 23

2.6 Contextual Prediction Pattern (left) and Linked Pixels used for Gradient

Estimation (right)[28] . 24

2.7 Set of Causal Pixels used for HOP-LSE (left) and HOP-LSE+ (right)[28] 24

2.8 SWT Block Diagram[29] . 26

ix

3.1 CALIC Neighborhood [32] . 33

3.2 Block Diagram of SSIM Measurement [34] 38

4.1 Distance . 48

5.1 Match CRs with Varying Distance - 176 Resolution 51

5.2 CALIC with Match Context CRs with Varying Distance - 176 Resolution 52

5.3 CALIC’s CR Compared to Match’s CR Compared to CALIC with Match’s

Context - 176 Resolution . 53

5.4 Match CRs with Varying Distance - 720 Resolution 55

5.5 CALIC’s CR Compared to Match’s CR - 720 Resolution 56

5.6 Match Compression Ratios with Varying Distance - 1080 Resolution . . . 57

5.7 Match CRs with Varying Distance - 1080 Resolution 59

5.8 CALIC’s CR Compared to Match’s CR - 1080 Resolution 59

5.9 Match CRs with Varying Distance - 4k Resolution 62

5.10 CALIC’s CR Compared to Match’s CR - 4k Resolution 63

5.11 Match CRs with Varying Distance - C.T. Scans: |5|% < Percent Difference

< |10|% and CR < 6 . 68

5.12 Match CRs with Varying Distance - C.T. Scans:

|5|% < Percent Difference < |10|% and CR > 6 68

5.13 CALIC’s CR Compared to Match’s CR - C.T. Scans: |5|% < Percent

Difference < |10|% . 70

5.14 Match CRs with Varying Distance - C.T. Scans: Percent Difference > |10|% 72

5.15 CALIC’s CR Compared to Match’s CR - C.T. Scans: Percent Difference

> |10|% . 73

5.16 Match CRs with Varying Distance - M.R.I. Scans 75

5.17 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 76

x

5.18 Match CRs with Varying Distance - M.R.I. Scans 77

5.19 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 78

5.20 Match CRs with Varying Distance - M.R.I. Scans 79

5.21 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 81

5.22 Match CRs with Varying Distance - M.R.I. Scans 82

5.23 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 83

5.24 Match CR For Each Video Dataset . 84

5.25 Match CRs with Varying Distance - Ducks Take Off 85

5.26 Match CRs with Varying Distance - In To Tree 87

5.27 Match CRs with Varying Distance - Old Town Cross 88

5.28 Match CRs with Varying Distance - Park Joy 90

6.1 Average SSIM Compared to Match’s CR 96

6.2 Average SSIM Compared to The Percent Difference Between Match and

CALIC . 97

6.3 Average Edge Stability Measurement Compared to Match’s CR 110

6.4 Average Edge Stability Measurement Compared to The Percent Difference

Between Match and CALIC . 111

6.5 Crowd Run [37] . 112

6.6 WB MAC P690 [38] . 112

6.7 Edges of Crowd Run . 113

6.8 Edges of WB MAC P690 . 114

A.1 Match CRs with Varying Distance - Miscellaneous C.T. Scans 137

A.2 CALIC’s CR Compared to Match’s CR - Miscellaneous C.T. Scans . . . 138

A.3 Match CRs with Varying Distance - LIDC-IRDI C.T. Scans 139

A.4 CALIC’s CR Compared to Match’s CR - LIDC-IRDI C.T. Scans 140

xi

A.5 Match CRs with Varying Distance - AMC-001 C.T. Scans 140

A.6 CALIC’s CR Compared to Match’s CR - AMC-001 C.T. Scans 141

A.7 Match CRs with Varying Distance - AMC-002 C.T. Scans 142

A.8 CALIC’s CR Compared to Match’s CR - AMC-002 C.T. Scans 143

A.9 Match CRs with Varying Distance - AMC-003 C.T. Scans 143

A.10 CALIC’s CR Compared to Match’s CR - AMC-003 C.T. Scans 144

A.11 Match CRs with Varying Distance - AMC-004 C.T. Scans 145

A.12 CALIC’s CR Compared to Match’s CR - AMC-004 C.T. Scans 146

A.13 Match CRs with Varying Distance - AMC-005 C.T. Scans 146

A.14 CALIC’s CR Compared to Match’s CR - AMC-005 C.T. Scans 147

A.15 Match CRs with Varying Distance - AMC-006 C.T. Scans 148

A.16 CALIC’s CR Compared to Match’s CR - AMC-006 C.T. Scans 149

A.17 Match CRs with Varying Distance - AMC-007 C.T. Scans 149

A.18 CALIC’s CR Compared to Match’s CR - AMC-007 C.T. Scans 150

A.19 Match CRs with Varying Distance - 4D-Lung C.T. Scans 151

A.20 CALIC’s CR Compared to Match’s CR - 4D-Lung C.T. Scans 152

A.21 Match CRs with Varying Distance - CMB-CRC-MSB-02381 C.T. Scans . 152

A.22 CALIC’s CR Compared to Match’s CR - CMB-CRC-MSB-02381 C.T. Scans153

xii

List of Tables

5.1 Match CRs with Varying Distance - 176 Resolution 50

5.2 CALIC with Match Context CRs with Varying Distance - 176 Resolution 51

5.3 CALIC’s CR Compared to Match’s CR - 176 Resolution 54

5.4 Match CRs with Varying Distance - 720 Resolution 55

5.5 CALIC’s CR Compared to Match’s CR - 720 Resolution 56

5.6 Match CRs with Varying Distance - 1080 Resolution 58

5.7 Match CRs with Varying Distance - 1080 Resolution 60

5.8 CALIC’s CR Compared to Match’s CR - 1080 Resolution 60

5.9 CALIC’s CR Compared to Match’s CR - 1080 Resolution 61

5.10 Match CRs with Varying Distance - 4k Resolution 62

5.11 CALIC’s CR Compared to Match’s CR - 4k Resolution 62

5.12 Match CRs with Varying Distance - C.T. Scans:

|5|% < Percent Difference < |10|% . 66

5.13 Match CRs with Varying Distance - C.T. Scans:

|5|% < Percent Difference < |10|% . 67

5.14 CALIC’s CR Compared to Match’s CR - C.T. Scans:

|5|% < Percent Difference < |10|% . 69

5.15 CALIC’s CR Compared to Match’s CR - C.T. Scans:

|5|% < Percent Difference < |10|% . 69

xiii

5.16 Match CRs with Varying Distance - C.T. Scans: Percent Difference >

|10|% . 71

5.17 CALIC’s CR Compared to Match’s CR - C.T. Scans: Percent Difference

> |10|% . 72

5.18 Match CRs with Varying Distance - M.R.I. Scans 76

5.19 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 76

5.20 Match CRs with Varying Distance - M.R.I. Scans 78

5.21 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 78

5.22 Match CRs with Varying Distance - M.R.I. Scans 80

5.23 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 80

5.24 Match CRs with Varying Distance - M.R.I. Scans 82

5.25 CALIC’s CR Compared to Match’s CR - M.R.I. Scans 83

5.26 Match CRs with Varying Distance - Ducks Take Off 86

5.27 Match CRs with Varying Distance - In To Tree 87

5.28 Match CRs with Varying Distance - Old Town Cross 89

5.29 Match CRs with Varying Distance - Park Joy 90

5.30 Match CRs with Varying Distance . 92

6.1 SSIM of Video Datasets . 99

6.2 SSIM of Miscellaneous C.T. Scans . 100

6.3 SSIM of LIDC-IRDI C.T. Scans . 101

6.4 SSIM of AMC C.T. Scans . 105

6.5 SSIM of 4D-Lung C.T. Scans . 106

6.6 SSIM of CMB-CRC-MSB-02381 C.T. Scans 107

6.7 SSIM of M.R.I. Scans . 108

6.8 Edge Quality Measurement of Videos . 116

xiv

6.9 Edge Quality Measurement of Miscellaneous C.T. Datasets 118

6.10 Edge Quality Measurement of LIDC-IRDI C.T. Datasets 119

6.11 Edge Quality Measurement of AMC C.T. Datasets 124

6.12 Edge Quality Measurement of 4D-Lung C.T. Datasets 125

6.13 Edge Quality Measurement of CMB-CRC-MSB-02381 C.T. Datasets . . 125

6.14 Edge Quality Measurement of M.R.I. Datasets 127

A.1 Match CRs with Varying Distance - Miscellaneous C.T. Scans 138

A.2 CALIC’s CR Compared to Match’s CR - Miscellaneous C.T. Scans . . . 138

A.3 Match CRs with Varying Distance - LIDC-IRDI C.T. Scans 139

A.4 CALIC’s CR Compared to Match’s CR - LIDC-IRDI C.T. Scans 139

A.5 Match CRs with Varying Distance - AMC-001 C.T. Scans 141

A.6 CALIC’s CR Compared to Match’s CR - AMC-001 C.T. Scans 141

A.7 Match CRs with Varying Distance - AMC-002 C.T. Scans 142

A.8 CALIC’s CR Compared to Match’s CR - AMC-002 C.T. Scans 142

A.9 Match CRs with Varying Distance - AMC-003 C.T. Scans 144

A.10 CALIC’s CR Compared to Match’s CR - AMC-003 C.T. Scans 144

A.11 Match CRs with Varying Distance - AMC-004 C.T. Scans 145

A.12 CALIC’s CR Compared to Match’s CR - AMC-004 C.T. Scans 145

A.13 Match CRs with Varying Distance - AMC-005 C.T. Scans 147

A.14 CALIC’s CR Compared to Match’s CR - AMC-005 C.T. Scans 147

A.15 Match CRs with Varying Distance - AMC-006 C.T. Scans 148

A.16 CALIC’s CR Compared to Match’s CR - AMC-006 C.T. Scans 148

A.17 Match CRs with Varying Distance - AMC-007 C.T. Scans 150

A.18 CALIC’s CR Compared to Match’s CR - AMC-007 C.T. Scans 150

A.19 Match CRs with Varying Distance - 4D-Lung C.T. Scans 151

xv

A.20 CALIC’s CR Compared to Match’s CR - 4D-Lung C.T. Scans 151

A.21 CALIC’s CR Compared to Match’s CR - 4D-Lung C.T. Scans 152

A.22 Match CRs with Varying Distance - CMB-CRC-MSB-02381 C.T. Scans . 153

A.23 CALIC’s CR Compared to Match’s CR - CMB-CRC-MSB-02381 C.T. Scans154

1

Chapter 1: Introduction

A camera is an optical instrument used to capture and store images, either digitally

or chemically. Cameras have a lens, shutter, and a focal plane array that captures

visual information and are sensitive to one, or more, ranges of wavelengths of light. As

technology advances, cameras have evolved to produce better images. Film cameras

have become a thing of the past as digital cameras have taken over. Today, most

everyone has access to a decent camera, specifically through their smart phones.

Cameras have evolved to where anyone can take a photo or video, edit the resulting

images, and share those images or videos with the rest of the world in minutes.

The resulting photos have evolved, specifically in resolution. I remember my first

digital camera, I thought this camera was the coolest thing and the camera produced

higher quality images than a film camera. Not only did this digital camera result

in higher resolution, but you can see your images right away instead of waiting and

hoping that you captured what you wanted as your film develops. You can also store

many more photos on an S.D. card than the limited amount of film old cameras use.

Cameras have become so common, that these days, no one can imagine life without

photography. But how did we get here? Where do cameras come from? How did the

world of photography start?

The camera was created based on the principle of camera obscura. Obscura is

Latin for “dark room”. Therefore, camera obscura is an optical device that creates

2

an image by focusing rays of light onto a screen or sheet of paper [1]. More than 2,000

years before the invention of camera obscura, Aristotle discovered that by passing

sunlight through a pinhole, he could create a reversed image of the sun on the ground.

He then proceeded to use this discovery to view eclipses without having to stare

directly into the sun [2]. Before photo paper was a thing, artists would use this

concept to cast the image on a wall and trace the reflection. Using this concept, I

once made a pin hole camera out of a shoe box. To do this, you paint the inside

of the box black, and make sure that there’s no light coming in other than from a

little hole you create. From there, you tape photo paper to the inside and let light

shine through the pin hole for a discrete amount of time. The photo paper then

needs to be developed. The resulting photograph is nothing like the pictures that

are taken today. The idea of camera obscura using a pinhole camera is illustrated

in Figure 1.1 [3]. The earliest known written record of a pinhole camera is found

in the Chinese text called Moxi which is from the 4th century BC. The concept of

camera obscura has been known for millennia; even Aristotle used a pinhole camera

to observe solar eclipses. During the 18th century, this technique led to the creation

of portable “camera boxes” [4].

Figure 1.1: Camera Obscura Pinhole Camera Example [3]

In 1839, Louis Daguerre invented the daguerreotype which is an early form of

3

a photo camera and was the first mass marketed camera. The daguerrotype is a

direct-positive process that creates a highly detailed image on a sheet of a copper

plate that is coated with a thin layer of silver without the use of a negative. This

process required a clean and polished silver-plated copper plate so that it looked like a

mirror. From there, the plate was sensitized in a closed box over iodine until the plate

would take on a yellow-rose appearance. The plate, held in a lightproof holder, would

then be transferred to the camera. Using the concept of camera obscura, the plate

is then exposed to light. After the exposure to light, the plate was then developed

over hot mercury until an image appeared. To fix the image, the plate was immersed

in a solution of sodium thiosulfate or salt and then toned with gold chloride [5]. A

drawing of a daguerrotype camera is illustrated in Figure 1.2 [4]. This camera had

an exposure time of five to thirty minutes.

Figure 1.2: Daguerreotype Camera [4]

In 1850, the daguerrotype was replaced by a new “colloid process” which required

4

treating the plates before using them. This process resulted in a shorter exposure

time and produced sharper images. The exposure time was so little that the shutter

was invented so that the plate would only be exposed to light for a short period of

time[4].

The first roll film camera, the Kodak, was invented in 1888 by George Eastman.

This camera, unlike the daguerrotype, would capture the negative picture. The film

needed to remain in a dark box camera before being sent off to Eastman’s company

for the film to be processed into pictures. The first kodak camera could hold a roll of

film up to 100 pictures [4]. Figure 1.3 illustrates the first Kodak film camera released

in 1888 and the Kodak 35 which was introduced in 1938, which used 35mm film.

Figure 1.3: Original Kodak Film Camera (left)[6] and the Kodak 35 (right)[7]

As cameras developed, they became more affordable and therefore more popular.

People were now able to capture moments in time, but what about capturing more

than just a second? The first movie camera was invented by French inventor Etienne-

Jules Marey in 1882. This video camera was known as the “chronophotographic

gun”, illustrated in Figures 1.4 and 1.5. It took 12 images a second and exposed

them on a single curved plate. At it’s most superficial level, a video camera is simply

a photographic camera that can take repeated images at a high rate, where each

photo is referred to as a frame. In 1893, William Dickson invented the most famous

early movie camera, the “kinetograph”, illustrated in Figure 1.6. This video camera

5

was powered by an electric motor, used celluloid film and ran at 20-40 frames per

second. This invention signaled the beginning of cinematography [4].

Figure 1.4: Chronophotographic Gun[8] Figure 1.5: Chronophotographic Gun[9]

Figure 1.6: The Kinetograph[10]

Thomas Sutton developed the first camera to use single-lens reflex (SLR) technol-

ogy in 1861. Knowing that the reflected image from the concept of camera obscura,

the SLR camera used mirrors to reflect the image so that the user would see the exact

image recorded on film when looking through the camera’s lens. The SLR camera

6

became the camera of choice in the mid 1900’s as new technology allowed the reflec-

tive mirror to “flip up” when the shutter opened. This means the resulting image

through the viewfinder was perfectly like that captured on film [4].

Digital photography may have been theorized in 1961 but it wasn’t created until

1975 by Steven Sasson. His creation weighed four kilograms and captured black and

white images onto a cassette tape. This camera couldn’t have been invented without

the “charged-coupled device” (CCD), which was developed in 1969 by Willard S.

Boyle and George E. Smith. This device used electrodes that would change voltage

when exposed to light. Sasson’s camera had a resolution of 0.01 megapixels which is

[100 x 100], and took 23 seconds of exposure to record an image. Note that in the

Graphic’s industry, the standard is to present width by height.

The first commercially available digital camera, the Dycam Model 1, also known

as the Fotoman, became available in 1990 and cost $995. This digital camera is

illustrated in Figure 1.7. Created by Logitech, it used a similar CCD to Sasson’s

original design, however it recorded the data onto the internal memory, which came

in the form of one megabyte of RAM [4]. Today, the capabilities of this camera are

not very impressive; this camera could only take black and white photographs at a

measly resolution of [367 x 240] pixels. This camera also only had 1MB of internal

storage, which can only handle approximately 32 photographs. To then see these

photos, you had to plug the camera into your computer where you would then use

Logitech’s software to view and edit the images. When using this camera, you have

to keep an eye on how charged the batteries are because if they died, then the images

stored in the camera would be lost. Not only would you lose all the photos you took,

but you would have to reinstall it’s operating software from scratch. Despite it’s many

drawbacks, this camera was just the beginning. [11]

7

Figure 1.7: The Fotoman[11]

Three years later, Logitech released the Fotoman Plus, which was $200 cheaper

and has an increased resolution of [496 x 360]. The resulting photographs were still

in black and white, but now the images were in the format finalized by the Joint

Photographic Experts Group (JPEG) in 1992. Everything changed after this. JPEG

has become a standard image format that is compatible across all our different digital

architectures. JPEG made the images usable in a wider variety of contexts as the

images were no longer in a format that can only be read by Logitech’s software [11].

This led to the first digital single-lens reflex (DLSR) camera, the Kodak DCS-100,

which was also released in 1991. This camera had a built-in 1.3-megapixel Kodak

CCD to capture images, which results in a resolution of [1288 x 1024]. This camera

required an external data storage unit that was connected via a cable. This made

photographers wear a shoulder strap to carry around the storage unit [12].

A few years later, in 1994, Kodak came out with the Kodak AP NC2000. This

8

camera was designed specifically for photojournalists. This camera was also a 1.3

mega-pixel camera, however, it had a removable memory card. This camera also has

an ISO up to 1600[12]. ISO stands for the International Organization for Standard-

ization and is a parameter that determines how bright your image will be, which gives

photographers an extra setting to manipulate their exposures.

ISO gets its name from the international Standards Organization, which set this

standard in 1988. ISO doesn’t change the amount of light coming into the camera

like shutter speed and aperture. It does, however, determine how the camera deals

with the light the sensor receives. The larger the ISO the more sensitive the sensor

is [13].

Other companies other than Kodak also began to create digital cameras. Not only

was the Kodak AP NC200 created in 1994, but Apple put out the Apple Quick Take

100. This was Apple’s first digital camera and was built in collaboration with Kodak.

Apple emphasized the ease of use for this camera. This camera has a 307-kilopixel

sensor which produced images at a resolution of [640 x 480] and produced color images.

However, storage was an issue. The camera conveniently features internal memory,

but there’s no way to expand it. It can hold 32 “standard” ([320 x 240]) images or a

mere 8 images of its 307-kilopixel pictures [14]. This camera also had a fixed 50mm

equivalent F2 lens, an optical viewfinder, and an LCD display to view the settings

[13].

In 1995, the Casio QV-10 was released; which was the first consumer digital

camera that included a built-in LCD screen. This camera has the same resolution as

the “standard” images of the Kodak AP NC200 [16].

Not only was the Casio QV-10 released in 1995, but Ricoh released the RDC-i700

image capturing device. This is the first camera to combine still image digital captures

with video and audio recording. This camera was designed to look and operate as

9

much like a hand-held computer as a point-and-shoot digital camera. This camera

was really more of a portable image-capture and manipulation computer system than

a typical camera. Accommodating these functions, however, brings bulk, cost, and

complexity beyond what’s expected of a digital camera. The RDC-i700 provides 0.41-

megapixel and 1
3
” CCD, which is a resolution of [768 x 576]. It not only has 8MB

of internal memory, but a removable storage option as well. Some special features

of this camera include motion picture recording, continuous shooting mode, interval

recording, timed exposures up to 8 seconds, macro lens adjustment, white balance

adjustment, exposure compensation, a self-timer option for delayed shutter release,

and on-screen image editing and annotation [15].

Two major cameras were released in 1996, the Nikon Coolpix 100 and the Kodak

DC25. Their resolutions are 0.24 mega-pixel ([512 x 480]) and 0.18 mega-pixel ([493

x 373]) respectively. The Nikon Coolpix 100 plugged into a laptop’s PC card slot to

transfer pictures, while the Kodak DC25 was the first digital camera to incorporate

Compact Flash media for storage. Compact Flash is a flash memory mass storage

device used in portable electronic devices [16].

A year later, in 1997 Sony released the Sony Digital Mavica FD5, which is the

first digital camera to write to a 3.5-inch floppy disk for photo storage. This camera

has a resolution of 0.3 mega-pixel, or [640 x 480].

Three major cameras were released in 1999, the first being the WWF Slam Cam

which was the first digital camera on the market aimed towards kids. It could only

store six photos of a resolution of 0.02 mega-pixel or [160 x 120]. The second camera

that was released in 1999 was the Nikon D1, the first fully integrated digital SLR

camera. This camera is notable for using lenses from it’s equivalent film camera,

the Kodak 35 which used 35mm film. This camera had incredible resolution for this

time of 2.62 mega-pixels which is [2000 x 1312] [16]. As cameras were improving

10

and becoming more common, cell phones were also becoming a common item. These

days, nearly everyone has a cell phone with high resolution cameras. The third major

camera released in 1999 is the first camera phone released by Kyocera, the Kyocera

Visual Phone VP-210. This phone had a 0.11-megapixel front camera and could store

20 still photos and transmit live “video” at a rate of 2 frames per second [13].

The next year, in 2000, the Fujifilm FinePix S1 Pro was released. It’s the first

camera with interchangeable-lens DSLR. It has a super CCD sensor that resulted in

output images of 6.13-megapixels ([3040 x 2016]) and enabled sensitivity setting up

to ISO 1600 [13]. Another camera released in this year was the Canon S100, which

pushed digital pocket cameras toward smaller sizes and higher resolutions. This one

has a 1.92 mega-pixel resolution, which is [1600 x 1200]. Canon also released the EOS

D30, which is Canon’s first digital SLR camera with a resolution of 3.11 mega-pixels

([2160 x 1440]) [16].

2002 saw three revolutionary digital cameras, the Casio Exilim EX-S1, the Contax

N Digital, and Canon’s EOS-1Ds. The Casio Exilim EX-S1 continued Canon’s trend

of small cameras, however this camera was tiny with dimensions of 55 x 88 x 11.3mm.

This camera was about the same height and width of a credit card (53.98 x 85.6mm).

This tiny camera has a resolution of 1.22 mega-pixels which generates a photo that’s

[1280 x 960] pixels. The Contax N Digital camera, on the other hand, was the first

camera to include a CCD sensor the size of a full 35mm frame. Its resolution is 6.1

mega-pixels which creates an image size of [3040 x 2008] pixels. Unlike the other

two, Canon’s EOS-1Ds was Canon’s first full-frame camera with a 10.99 mega-pixel

resolution ([4064 x 2704]) [16].

In 2003, Canon’s digital camera evolved to the EOS Digital Rebel D300, which

was the first SLR camera under $1,000. It had a resolution of 6.29 mega-pixels or

[3072 x 2048] pixels. This same year, the Olympus E-1 was also released, it was the

11

first camera to use the 4
3
SLR system and has a resolution of 4.91 mega-pixel ([2560

x 1920]) [16].

The Epson R-D1 was released in 2004 and was the first digital rangefinder camera

with a resolution of 6.01 mega-pixel ([3008 x 2000]) [16].

In 2007, Steve Jobs released the first iPhone. Phone memories have gotten larger

so more pictures could be stored on them. The first iPhone had a 3.5-inch screen,

a 2 mega-pixel ([1600x1200]) camera and 16GB of storage. The CCD sensors were

replaced by CMOS chips that use less power. The internet, 3G, 4G, and 5G made

it possible to share photos instantly, whether through text, email, or social media.

Even though the iPhone isn’t the first phone camera, the iPhone is the most popular

camera in the market [13].

Nikon released the Nikon D3X which was Nikon’s top-of-the-line DSLR camera

that targeted professional photographers in 2008. It has an outstanding resolution of

24.38 mega-pixels resulting in images of [6048 x 4032] pixels [16].

In 2010, Sony released the Sony Cyber-DSC-TX7, which is a full-featured pocket

point-and-shoot camera with intelligent panorama features that has a resolution of

9.98 mega-pixels ([3648 x 2736]). This same year the Pentax 645D was released. It

was the first medium-format DSLR camera that was sold for under $10,000. This was

the opening for the high-end super high resolution photography to be more accessible

to the average person. This camera has an incredible resolution of 39.51 mega-pixels

([7264 x 5440]) [16].

Digital cameras have continued to evolve, to the point where the world’s biggest

digital camera is coming into focus. While a powerful, personal camera has megapixel

resolution, astronomers have constructed a device to image the distant universe with

a 3.2 giga-pixel resolution, this camera is illustrated in Figure 1.8. This resolution is

nearly 100 times that of the Pentax 645D. This camera is to be the workhorse for the

12

Vera C. Rubin Observatory’s telescope, which has been in the works for nearly two

decades. Aaron Roodman, who is an astrophysicist working on this camera says, “In

the combination of the camera’s giant focal plane and 25-foot mirror to collect light,

we are unparalleled.” This camera is in the Guinness Book of World Records for the

extraordinary sizes of its 5.5 foot lenses, their lens caps, and the focal plane.[17].

This camera is absolutely revolutionary, Ramin Skibba states in his Wired article,

“The camera will image each piece of the sky every three days, providing snapshots

that can be used together to examine faint or distant objects, or spot changing ones,

such as supernova explosions and the paths of near-Earth asteroids and comets slowly

moving in their orbits. “It’s making a 10-year color movie,” says Risa Wechsler, a

Stanford University astrophysicist and member of the Rubin Observatory scientific

advisory committee. “And in addition, it’s stacking the frames of that movie to get a

really deep image. That will give us a map of all of the galaxies, which traces where

all of the matter is, which is mostly dark matter. We’ll see what the universe looked

like billions of years ago and learn more about what dark matter is.”[17].

Figure 1.8: World’s Biggest Digital Camera[17]

13

Cameras have evolved greatly over the years, from film to digital, from [100 x 100]

pixels to [6048 x 4032] pixels. Not only that, but cameras have become incredibly

affordable with great resolution. A Nikon COOLPIX B600 along with a memory card,

memory card wallet, deluxe soft bag, 12 inch flexible tripod, deluxe cleaning set, and

USB card reader costs only $439.99 on amazon [19]. The resulting images from this

camera are [4608 x 3456] pixels. A few years ago, I bought myself a Nikon D3400

which has a resolution of 24.2 mega-pixels and produces images that are [6000 x

4000] pixels. These days, you don’t even need a digital camera to capture incredibly

detailed images, nearly every phone has at least one camera. Smartphones today

incorporate three cameras to provide better images. These cameras are as follows:

the long-focus camera, which helps to magnify distant objects and include them in

the resulting photo, the color camera which assists in capturing color information of

the objects you are shooting, and the monochrome camera which plays an important

role in capturing details.

Figure 1.9: Kodak’s First Digital Camera
invented by Stephen Sasson 1975[20]

Figure 1.10: Nikon D6 Camera 2023[21]

14

Digital cameras can routinely exceed 200 fps when recording video while most

smart phones can record video up to 60fps. However, the fastest camera out there

records video at 70 trillion frames per second [18].

The technological evolution of cameras has lead to a common issue, storage space.

When cameras first became common, they used film, which allowed for a finite amount

of images that you had to hope and pray turned out once the film was developed.

Digital cameras, on the other hand, are stored onto an SD memory card. Initially, the

first commercially available digital camera could only hold 32 photographs. Today,

SD cards can go up to one terabyte of data, which can hold 250,000 photos taken

with a 12 mega-pixel ([4000 x 3000]) camera. However, storage space is still limited.

Not only is storage space a problem, but bandwidth is limited; where bandwidth

refers to the volume of information per unit of time that a transmission medium can

handle - specifically with uploading and downloading files. In simpler terms, the

larger the information file is, the more time it will take to upload and download.

Therefore, video compression is used to reduce the size of the file to clear up storage

space and ease upload and download times.

There are two kinds of compression, lossy and lossless. In lossy compression, data

is lost to increase the amount of compression. Lossy compression is great for movies

as a lot of information can be lost without visually affecting the quality of the image.

However, in certain cases, no information can be lost, such as when looking at a series

of medical images. Lossless compression results in less compression than lossy but

maintains the high quality of the image. In this thesis, we will be focusing on lossless

compression due to the incorporation of medical images in our datasets.

A new non-linear prediction method that depends on the previous frame of a

video to predict the next pixel in the current frame is explored. The first time Match

was introduced, it was introduced as a prediction method that used conditional av-

15

erages known as Conditional Average Prediction (CAP) [33]. Unlike other predictive

schemes, this one does not depend on the assumption that neighboring pixels tend

to be alike. The neighboring pixels are examined to find a matching neighborhood in

the previous frame in order to find the best predictor for the current pixel. This new

method implements adaptive arithmetic coding and uses CALIC to predict the first

image which are first discussed.

The rest of the thesis is organized as follows: first, other lossless video and medical

image compression algorithms are discussed before we delve into the necessary back-

ground information. The method we describe in this thesis uses adaptive arithmetic

coding to encode the prediction residuals generated by the method. It also uses mea-

sures of structural similarity and edge quality measurements to select the encoding

mode. Adaptive arithmetic coding, CALIC, structural similarity, and edge quality

measurements are all discussed in chapter 3. In chapter 4, the method of the new

algorithm, Match, is explained. The resulting compression ratio of Match is then ex-

amined and compared to the compression ratio of CALIC. This is done for 22 videos,

65 C.T. scans and 17 M.R.I. scans. The performance of the algorithm for different

resolutions and frame rates are also examined and discussed. Lastly, we show how we

can use the structural similarity and edge quality measurements to determine which

method, Match or CALIC, should be used to compress the videos.

16

Chapter 2: Related Work

Before we delve into the proposed non-linear prediction method, it’s important that

we first see what others have done in not only the world of lossless video compression,

but lossless medical image compression as well. Both videos and medical scans are

a series of images, or frames, that make the datasets 3-dimensional. Lossless image

compression algorithms can be divided into two categories, transform and prediction-

based coding. In transform coding, a reversible transformation to the image is applied.

Prediction-based coding, on the other hand, predicts the pixels of the image using

spatial correlation and the residual image [22]. When dealing with three-dimensional

images, many prediction methods have been previously explored.

Li developed a lossless video sequence compression that utilizes adaptive predic-

tion [23]. It exploits the spectral, spatial, and temporal redundancies. This method

selects the best predictor out of a set of predictors without using any side information.

It employs a backward pixel-based temporal predictor without using motion vectors.

Li’s predictive method follows the block diagram in Figure 2.1. To start, the

source frames need to be preprocessed, where the first step estimates the amount

of temporal redundancy by the interframe correlation coefficients of the test video

sequence. If the average of these coefficients is smaller than a predefined threshold

of 0.9, then the video sequence is likely to be high motion. If this is the case, then

motion compensation in the wavelet domain is inefficient; and thus the sequence is

17

Figure 2.1: Block Diagram of Ying Li’s Proposed Algorithm[23]

operated in the spacial domain. Once the preprocessing is complete, a reversible color

transform is implemented before the suitable integer wavelet transform (IWT) is de-

termined for the test sequence by estimating its spatial redundancy. To then reduce

the spacial redundancy, a prediction is computed based on the neighboring symbols

in the same frame as the symbol to be encoded. In this scheme, the predictive method

is the median edge detector (MED) used in JPEG-LS. Not only is there a prediction

based on the neighboring symbols, but a temporal prediction is also found. This is

an adaptive pixel-based predictor based on the symbols in the reference frame with

improvement to reduce the temporal redundancy. This predictor aims to find the best

matched symbol in a window of the reference frame. Due to the energy compaction

property of the IWT, the wavelet coefficients in the high frequency subbands usually

have small amplitudes, which may be smaller than the amplitudes of the spatial pre-

diction residuals and temporal prediction residuals. Therefore, if this is the case, then

the wavelet coefficients are encoded and transmitted directly. There are now three

possible predictions, the spacial prediction or MED, the temporal prediction, and

18

the direct mode prediction. To decide which prediction is the best one, a backward

adaptive prediction mode selector is implemented to adaptively select the predictor

among the three candidates based on previous prediction accuracy. Finally, context

modeling is used for efficient coding of the prediction residuals. By utilizing suitable

context models, the given prediction residuals are then encoded by switching between

different probability models according to already encoded neighboring symbols of the

symbol to be encoded [23].

A contex-based predictive coder for lossless and near-lossless compression of video

was developed by Yang and Frayer [24]. They implement interframe and intraframe

coding modes. The coding mode is adaptively chosen for the pixel by comparing the

temporal and spatial variations.The intraframe coding utilizes the JPEG-LS standard

where the JPEG-LS coder is a context-based predictive method operating in two

coding modes, the run mode and the regular mode. The interframe coder also operates

in two sub-modes, the temporal run mode and the temporal prediction mode which are

conceptually very similar respectively to the run and regular modes. In the temporal

prediction mode, the temporal prediction is performed and then the prediction error

is corrected by a context dependent bias. In the temporal run mode, the encoder

looks for a sequence of consecutive samples each of which has a value near identical

to the value of the corresponding reconstructed sample in the reference frame. To

determine which mode should be selected the scheme is illustrated in listing 2.1. Here,

Ra, Rb, Rc, and Rd are the reconstructed values of the neighboring samples of the

current frame where Ra is the value of sample to the left of the current pixel, Rb is

the value of the upper sample, Rc is the value of the upper-left sample, and Rd is the

value of the upper-right sample. Ra’, Rb’, Rc’, and Rd’ are the reconstructed values

in the reference frame and respectively in the same locations as Ra, Rb, Rc, and Rd.

Vt is the temporal variation around the pixel, Vs is the spacial variation around the

19

pixel and a is set to 0.5.

1 i f (|Rd = Rb | <= Near && |Rb = Rc | <= Near && |Rc = Ra | <= Near) {

2 run mode

3 }

4 else i f (|Ra = Ra ’ | <= Near && |Rb = Rb ’ | <= Near && |Rc = Rc ’ | <= Near && |Rd

= Rd ’ | <= Near) {

5 temporal run mode

6 }

7 else i f (Vt < a * Vs) {

8 temporal p r ed i c t i on mode

9 }

10 else {

11 r e gu l a r mode

12 }

Listing 2.1: Prediction Scheme [24]

A method specific for high definition, HD, video coding using significant bit trun-

cation was developed by Kim and Kyung to compress videos in real time [25]. Their

algorithm consists of two steps. The first step being a hierarchical prediction method

that is based on pixel averaging and copying. It uses as many average predictions in a

block as possible, which then gives a more accurate prediction. The second step then

involves significant bit truncation (SBT) which encodes the prediction errors without

any data dependency so that multiple prediction errors in a group are decoded in a

clock cycle.

The proposed Hierarchical Average and Copy Prediction (HACP) is represented

in Figure 2.2 for an 8x8 block where the level number L represents the distance by

2L−1 between the original pixel and the source pixel for predicting the pixel value.

The pixels on level 1 and level 2 are predicted by the pixels of the one-pixel and

two-pixel distance respectively. In level 3, each of the four pixels is predicted by

their average value. The arrow tail represents the source pixel, which is then used

20

to predict the destination pixel indicated by the arrow head. There are four types of

prediction methods in HACP: horizontal average prediction (HAP), vertical average

prediction (VAP), horizontal copy prediction (HCP), and vertical copy prediction

(VCP). If a pixel is pointed to by more than one arrow, the pixel is then predicted

by the average value of those pixels. However, if only one arrow points to the pixel,

then the prediction is made by copying the neighboring pixel.

Figure 2.2: Proposed HACP Scheme for 8x8 Block[25]

Kim and Kyung’s second step is significant bit truncation (SBT), which is a novel

coding method. The basic concept of SBT coding is to express all of the prediction

errors in a group with as many significant bits truncated as the information of each

prediction error is preserved [25].

Choi and Ho considered the statistical differences of the residual data between

lossy and lossless coding [26]. They modified the context-based adaptive binary arith-

metic coding (CABAC) mechanism to convert from lossy to lossless coding. They do

this by analyzing the statistical characteristics of lossless coding and designing an ef-

ficient level binarization method, which leads to a binarization table selection method

that uses the weighted sum of the previously encoded results. This method not only

increases the compression ratio, but it also reduces decoding complexity. The algo-

21

rithm for this prediction method is illustrated in the block diagram in Figure 2.3.

Figure 2.3: The HEVC Lossless Coding Block Diagram[26]

They propose an efficient residual data coding method for HEVC lossless video

compression by using sample-based angular prediction (SAP), modified level binariza-

tion, and binarization table selection with the weighted sum of previously encoded

level values to improve the HEVC. SAP is used to explore the spacial sample redun-

dancy of the intra-coded frame. The prediction for this method can be performed

sample by sample to achieve better intra-prediction accuracy. The samples in the pre-

diction unit are processed in predefined orders where the raster scanning and vertical

scanning processing order is applied to vertical and horizontal angular predictions.

The reference samples around the right and bottom boundaries of the prediction unit

are padded. As an entropy coder, HEVC employed context-based adaptive binary

arithmetic coding (CABAC).

We’ve explored multiple video compression techniques varying from prediction

based coding to transform coding. In their most basic form videos are 3-dimensional

datasets, but what about other 3-dimensional datasets? These include magnetic

22

resonance imaging (MRI) and computerized tomography (CT) scans. MRI scans

combine a magnetic field, radiofrequency waves, and a computer to create detailed

images of your body. The resulting images are based on how the water molecules in

your body move in response to the magnetic field. CT scans, on the other hand, are

3-dimensional x-rays, where instead of an x-ray beam being fixed in place, it rotates

360◦ around you taking hundreds of pictures, or slices, of your body. Two proposed

methods specifically for medical scans are explored: one that uses gradients to form

a prediction and another that implements a wavelet transform [27].

Taquet and Labit proposed a new hierachial approach to resolution scalable loss-

less and near-lossless compression [28]. Their method combines the adaptability of

DPCM schemes with new hierarchical oriented predictors to provide resolution scal-

ability. This proposed prediction is not very efficient on smooth images, thus they

also introduce new predictors, which are dynamically optimized using a least-square

criterion. They refer to their hierarchical oriented prediction as HOP.

HOP begins with hierarchical decomposition which can be summarized in two

steps. A common decomposition is IHINT, where the first step (HStep) consists of

predicting the pixels of H using an interpolative finite impulse response filter on L.

H then contains the residual values of the prediction. The next step (VStep), is

the mathematical transposition of HStep applied independently on L to obtain two

sets, LL and LH. The transposition is then applied on H to obtain HL and HH.

This is visually illustrated in Figure 2.4. The proposed approach to hierarchical

decomposition is similar to IHINT and is illustrated in Figure 2.5. In the proposed

method, the first step (HStep) consists of predicting horizontally odd indexed pixels

with the aid of already known pixels. This proposed approach uses not only the even

indexed pixels but it can also take advantage of any previoulsy predicted pixels, which

are now causal values. In the second step (VStep), the mathematical transposition

23

of HStep is applied and acts on the lower resolution images.

Figure 2.4: One Prediction Level of IHINT Algorithm[28]

Figure 2.5: One Prediction Level of HOP Algorithm[28]

Most medical images are noisy images that contain structured objects with sharp

edges, therefore HOP is designed for images such as those. Thus an orientation es-

timation is done using the pattern presented in Figure 2.6. To start, the absolute

value of the local differences is computed for each orientation belonging to the set.

Then, using a noise threshold Tnoise, the diagonal gradient and the horizontal/ver-

tical gradient are used to find the most favorable orientation which is then selected

for the prediction. Tnoise is set to a noise estimation that is computed on the highest

frequencies of an orthonormal Haar transform of the image to compress. This thresh-

old allows for a slight improvement of compression on noisy datasets for HOP and

smooth datasets for HOP-LSE+. However, on noisy CTs, HOP-LSE+ compression

is not improved because the noise in CTs have strong location dependence and thus

cannot be captured by using the least square optimization process.

Since HOP’s prediction is not effective on smooth images due to the small pre-

diction support size that is not adequate for the decorrelation of diffuse information.

24

Figure 2.6: Contextual Prediction Pattern (left) and Linked Pixels used for Gradient
Estimation (right)[28]

Therefore, two new predictive approaches, HOP-LSE and HOP-LSE+ are introduced.

These two predictive approaches exploit the extended sets of causal pixels compared

with HOP. These two approaches are dynamically built using the least square estima-

tions, giving a better adaptation to the specific characteristics of each image. Figure

2.7 illustrates the causal pixels used for HOP-LSE and HOP-LSE+.

Figure 2.7: Set of Causal Pixels used for HOP-LSE (left) and HOP-LSE+ (right)[28]

To avoid systematic errors, or biases, that generally occur within context-based

static predictors, a common technique to correct the prediction in a context is to use

25

the average of the previous errors that occurred within the same context. To do this,

you add the average of the errors to your current prediction. To better accommodate

for the biases, Taquet and Labit propose a sequential context-based error correlation

(SCEC). SCEC always allows the asymptotic improvement of the compression, with

further improvements for smooth images. They do this by sequentially applying the

following correction scheme for k = 1 to K in equation 2.1. Here, x̂ is the prediction,

∈ is the prediction error, µ∈
k (Ck (x̂k−1)) is the average prediction in a context, and

αk is a coefficient that is fixed to 1
K
.

x̂← x̂k−1 + αkµ
∈
k (Ck (x̂k−1)) (2.1)

.

Taquet and Labit proposed a method based on gradient prediction, similar to

CALIC. Anusuya, Raghavan, and Kavitha, on the other hand, propose a prediction

to losslessly compress MRI images using a 2D-stationary wavelet transform (SWT)

[29]. Their system proposes to implement a lossless codec using and entropy coder.

This method provides random access as well as resolution and quality scalability to

the compressed data. Here, random access refers to the ability to decode any section

of the compressed image without having to decode the entire dataset.

The main objective of this system is to effectively implement lossless compression

by reducing the amount of data that is required to represent a digital image. Figure

2.8 illustrates the architectures of this system. The original 3-dimensional medical

images is given as an input that is then converted into 2-dimensional slices. Then,

segmentation is used to extract the region of interest alone for the 2-dimensional

slices. Then, the extracted information is decimated using a 2-dimensional SWT.

These decimated coefficients are then compressed in parallel using embedded block

26

coding with optimized truncation of the embedded bit stream. These bit streams are

then decoded and reconstructed using the inverse SWT. The system concentrates on

minimizing the time computation by introducing parallel computing on the arithmetic

coding stage as it deals with multiple subslices.

Figure 2.8: SWT Block Diagram[29]

Many techniques varying from transforms to prediction-based coding have been

previously evaluated for lossless video compression. Li composed a lossless video

sequence compression that uses adaptive preditions while Yang and Frayer imple-

mented interframe and intraframe coding modes to form a context-based predictive

coder. Using significant bit truncation to losslessly compress high definition videos

was developed by Kim and Kyung and was also discussed. Choi and Ho’s compression

method modifies the context-based adaptive binary arithmetic coding mechanism to

convert from lossly to lossless coding which considers the statistical differences of the

residual data between lossy and lossless coding.

Similarly, some medical imaging, such as MRIs and CT scans, are 3-dimensional.

Taquet and Labit proposed a prediction-based coding method that, like CALIC, de-

pend on the gradients in the 2-dimensional frames. They used a hierachial approach to

27

resolution scalable lossless compression combining the adaptability of DPCM schemes

with new hierarchical oriented predictors. The other method we delved into used a

2-dimensional stationary wavelet transform (SWT) proposed by Anusuya, Raghavan,

and Kavitha. Their system implements a lossless codec using an entropy coder and

provides random access as well as resolution and quality scalability to the compressed

data.

Now that we’ve seen what others have done, the necessary background information

for the proposed method will be discussed before delving into the proposed method

itself. One commonality between each video and scan is motion and how much change

there is between frames. Classification is implemented based on the amount of motion

between frames or scans and the prediction is found accordingly. This idea of clas-

sification is used to determine if Match or CALIC should be the prediction method

implemented on each dataset.

28

Chapter 3: Preliminary

Information

There are two main methods of entropy coding, Huffman and arithmetic. Huffman

encoding is dependent on prefix codes that are optimal for a given model, or set of

probabilities. Prefix codes are the bit strings represent some particular symbol. The

procedure for Huffman encoding is based on two observations regarding the optimal

prefix codes: the first is in an optimal code, symbols that occur more frequently will

have shorter codewords than symbols that occur less frequency; and the second is that

in an optimal code, the two symbols that occur the least frequently will have the same

length. In cases where the alphabet is small and the probability of occurrence of the

different letters is skewed, Huffman coding can become inefficient when compared to

the entropy. Where the entropy is the lowest rate at which the source can be coded.

One way to avoid this issue is to block more than one symbol together and generate

an extended Huffman code. Unfortunately, however, this approach does not always

work. Due to the shortcomings of Huffman coding, adaptive arithmetic coding was

selected to encode the datasets used in this thesis.

Instead of simply compressing the datasets with strictly adaptive arithmetic cod-

ing, a pixel value is predicted and the error is then encoded to improve compression.

One of the best prediction methods that uses the gradients in an image to predict the

29

value of the current pixel is a Context-Based Adaptive Lossless Image Compression

technique, which is referred to as CALIC. So we do not have to worry about encod-

ing negative values, the error calculated by taking the actual pixel value minus the

prediction is remapped to a value between 0 and 255 before being encoded.

CALIC is a linear prediction method and depends only on the current image. On

the other hand, Match is a non-linear prediction method that looks at the previous

frame of the video to make a prediction. Due to this non-linearity, the correlation

between frames is examined at in two ways: the structural similarity and edge quality.

The global structural similarity looks at local patterns of pixel intensities while the

edge quality measurement looks at how the edges of an image shift between the frames.

The greater the structural similarity the greater the compression ratio, however the

smaller the edge quality measurement is the greater the compression ratio.

This section first delves into the specifics of adaptive arithmetic coding, both from

the encoder side and the decoder side. Next, CALIC is explained in terms of how

the linear prediction works as well as how the error is remapped. The discussion

shifts to the correlation between the frames of videos explaining how to calculate the

structural similarity and edge quality measurements.

30

3.1 Adaptive Arithmetic Coding

Adaptive arithmetic coding was utilized by me because arithmetic coding is bet-

ter than Huffman coding for sources with skewed probabilities and adaptive coding

outperforms a fixed model in terms of compression efficiency. Arithmetic coding is

represented with a probability model, where the probabilities are counts. In adap-

tive arithmetic coding, the probability model is initialized by setting the counts for

all possible variables to one and initializing cumulative counts based on the initial

counts. However, the counts and cumulative counts start at index one and not zero

because count[0] must not be the same as count[1]. Therefore, a translation table

that maps the range of the pixels, [0, 255], to symbols [1, 256] is also initialized. This

model is then updated with each pixel that’s encoded.

To encode a pixel, the symbol that represents the pixel on the translation table

must be determined. From there, the upper and lower limits must be updated. As

shown in equations (3.1) and (3.2), where x is the symbol that’s to be encoded, u is

the upper limit, and l is the lower limit.

l = l +

⌊
(u− l + 1)CumCount(x− 1)

TotalCount

⌋
(3.1)

u = l +

⌊
(u− l + 1)CumCount(x− 1)

TotalCount

⌋
− 1 (3.2)

Now that the upper and lower limits have been updated, the most significant bits

must be checked. If the most significant bits match, then that bit is encoded and

shifted out, with a zero shifting into the least significant bit for the lower limit and

a one shifting into the upper limit. If the most significant bits differ, then nothing

is encoded and the scale 3 condition is checked. A scale 3 conditions occurs when

31

the second most significant bit of the upper limit is 0 and 1 for the lower limit. If

this occurs, then the most significant bit of each limit is shifted out with a 0 or 1

being shifted in depending on the limit. From there, the most significant bit is then

complemented, resulting in a 1 for the most significant bit for the upper limit and

a 0 for the lower limit. A variable is then incremented each time this occurs. The

next time a bit is encoded, the complement of that bit is encoded for each scale 3

condition that has been seen. This then clears the variable count for that condition.

Once the pixel is encoded, the model is then updated. This is done by first

checking if the total count is equal to the maximum count. This maximum count is

chosen based off of the size of the upper and lower limits, also referred to as word

lengths. Given a word length m, it is possible to only accommodate a total count

of 2m−2 or less. In this case, the upper and lower limits are unsigned sixteen bit

integers, therefore the total counts is 214 - 1 = 16,383. If the total count is equal

to the set maximum count, then all of the counts are then scaled down by two and

rounding up the result so that no count gets rescaled to zero. From there, the model

reorders the symbols to place the current one in its correct rank in the cumulative

count ordering. This keeps the cumulative counts in descending order and is kept

track of through the translation tables. The final step of updating the model is to

increment the appropriate count and adjusts the cumulative counts accordingly. Once

the entire image has been encoded, the lower limit is then written to the file.

To decode what’s been encoded, a tag value is incorporated. The tag is the same

size as the upper and lower limits (unsigned 16 bit integer), and is initialized as the

first 16 bits that were encoded. To decode a symbol, the following equation, equation

3.3, is utilized.

32

⌊
(t− l + 1)TotalCount− 1

u− l + 1

⌋
(3.3)

The resulting value is compared to the cumulative counts. Whatever cumulative

count the value is less than but greater than or equal to the previous count, the symbol

that corresponds to that cumulative count is the decoded symbol. To determine which

pixel value the symbol represents, the symbol is translated to a character through the

index to pixel array.

The decoder then repeats the same algorithm as the encoder, only whatever bit

manipulation is performed to the upper and lower limits is also performed on the tag

value, which each new bit being pulled in from the encoded bits [31].

33

3.2 Context-Based Adaptive Lossless Image Compression

CALIC, a context-based adaptive lossless image compression technique, utilizes the

gradients in an image to predict the pixel value. CALIC assumes a given pixel has

a value close to one of its neighbors. Which neighboring pixel that is, is dependent

on the local structure of the image. When the neighboring pixels are close to that of

the current pixel and there’s little variation, CALIC provides a better prediction and

thus a smaller error and larger compression ratio. However, when there are hard lines

in the image and the current pixel isn’t close to one of it’s neighbors, CALIC had a

harder time predicting the value which results in a larger error and less compression.

Therefore, CALIC takes into consideration the environment of the pixel to be encoded

to make the prediction. Figure 3.1 illustrates the context, or the neighborhood, that

CALIC references to make the prediction.

Figure 3.1: CALIC Neighborhood [32]

To get an idea of what boundaries may or may not be in the neighborhood of

the current pixel, the horizontal, dh, and vertical, dv, gradients are calculated using

equations 3.4 and 3.5 respectively.

34

dh = |w − ww|+ |n− nw|+ |ne− n| (3.4)

dv = |w − nw|+ |n− nn|+ |ne− nne| (3.5)

The gradients are used to determine how to predict the pixel as they take into

consideration the surrounding texture and are used to make a determination about

the environment of the pixel to be encoded. If the vertical gradient is much larger

than the horizontal gradient, then there is a large amount of vertical variation, thus

the initial prediction is taken to be w. Having a large vertical gradient makes the

assumption that there’s a horizontal edge, therefore the prediction should be a pixel

value on the same row as the current location, hence why the initial prediction is w.

However, if the horizontal gradient is much larger than the vertical gradient, then

there’s a large amount of horizontal variation and therefore n is chosen to be the

initial prediction. A large horizontal gradient assumes that there’s a sharp vertical

edge in the image. Thus selecting a pixel in the same column as the current location

becomes the initial prediction. If the gradients are closer together, the predicted

value becomes a weighted average of the neighboring pixels. The exact algorithm for

calculating the prediction, x̂, is illustrated in listing 3.1.

Once the gradients have been calculated, they’re first checked to see if there’s large

horizontal or vertical variations which assumes there’s a sharp edge. If there isn’t large

horizontal or vertical variation, then the prediction becomes a weighted average of the

neighboring pixels. If there’s no large variation, then the pixel prediction, x̂, becomes

a weighted average using equation 3.6 before being further refined.

x̂ =
n+ w

2
+

ne− nw

4
(3.6)

35

The difference between the gradients is then used to determine how to further

refine the prediction. If the difference between the gradients is greater than 32,

then either equation 3.7 or 3.8 is used depending on which gradient is larger. If the

horizontal gradient is larger, then equation 3.7 is used, otherwise equation 3.8 is used

to form the final prediction.

x̂ =
x̂+ n

2
(3.7)

x̂ =
x̂+ w

2
(3.8)

If the difference between the gradients is less than 32, but greater than 8; then

either equation 3.9 or 3.10 is used to form the final prediction. Equation 3.9 is

used if the horizontal gradient is greater than the vertical gradient. On the other

hand, equation 3.10 is used when the vertical gradient is greater than the horizontal.

However, if the difference between the gradients is less than 8, then the prediction is

not altered and remains as the value found in equation 3.6.

x̂ =
3x̂+ n

4
(3.9)

x̂ =
3x̂+ w

4
(3.10)

36

1 i f d h = d v > 80

2 x hat = n

3 else i f d v = d h > 80

4 x hat = w

5 else {

6 x hat = (n + w) /2 + (ne = nw) /4

7 i f d h = d v > 32

8 x hat = (x hat + n) /2

9 else i f d v = d h > 32

10 x hat = (x hat + w) /2

11 else i f d h = d v > 8

12 x hat = (3 x hat + n) /4

13 else i f d v = d h > 8

14 x hat = (3 x hat + w) /4

15 }

Listing 3.1: CALIC x̂ Prediction [33]

Once the prediction has been calculated, the error is then remapped to a value

between 0 and 255. Listing 3.2 follows the psuedo code for remapping the error. xn

represents the value of the pixel, pn is the prediction value, dn is the prediction error,

In is the remapped value, and m is the number of bits per pixel. Since dn is the error,

it’s calculated by subtracting pn from xn which is illustrated in equation 3.11. There

are two ways to perform remapping that depends on the value of the prediction, pn.

Note that in this situation, there are 8-bits per pixel.

dn = xn − pn (3.11)

37

1 i f p n <= (2ˆm) = 1{

2 i f | d n | <= p n{

3 i f d n < 0

4 l n = 2 | d n |

5 else

6 l n = 2 | d n | = 1

7 }

8 else {

9 i f | d n | <= 2ˆm = 1 = p n{

10 i f d n < 0

11 l n = 2 | d n |

12 else

13 l n = 2 | d n | = 1

14 }

15 else {

16 l n = | d n | + (2ˆm = 1 = p n)

17 }

18 }

Listing 3.2: Remapping the Error

With the error remapped to a positive value, the remapped value is then arith-

metically encoded [33].

38

3.3 Structural Similarity

The structural similarity (SSIM) measurement compares local patterns of pixel inten-

sities that are normalized for luminance and contrast. This system separates the task

of calculating the SSIM into three comparisons: luminance, contrast, and structure.

Figure 3.2 illustrates the block diagram for calculating the SSIM. One of the outputs

of this measurement is “S”, which is the SSIM image where each pixel is the local

structural similarity measurement. These local measurements are then averaged to

provide the mean SSIM: mssim.

Figure 3.2: Block Diagram of SSIM Measurement [34]

The SSIM measurement starts by comparing the luminance of each signal, which

is estimated as the mean intensity, illustrated in equation 3.12. This results in the

luminance function, l(x,y), being a function of µx and µy. Typically this is a lo-

cal mean, where there is no “structure” unless this becomes a local, patch based

measurement.

µx =
1

N

N∑
i=1

xi (3.12)

39

The mean intensity is then removed from the signal, resulting in the signal x−µx.

Standard deviation is then used to estimate the signal contrast, the unbiased estimate

is given by equation 3.13. The contrast comparison, c(x,y), is the comparison of σx

and σy. Similar to the luminance function, the standard deviation is also a local

mean.

σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

) 1
2

(3.13)

The signal is then normalized by dividing it by its own standard deviation. This

is so the two signals being compared have unit standard deviation. The structure

comparison, s(x,y), is then conducted on these normalized signals.

Once the three main comparisons are calculated, they are combined to yield an

overall similarity measure, illustrated in equation 3.14. Each of the three comparisons

are relatively independent.

S(x,y) = f (l(x,y), c(x,y), s(x,y)) (3.14)

This similarity measurement needs to satisfy symmetry, boundness, and unique

maximum. For symmetry, S(x,y)=S(x,y); for boundness, S(x, y) ≤ 1; and for

unique maximum, S(x,y) = 1 if and only if x = y.

The luminance comparison is defined by equation 3.15, where the constant C1 is

included to avoid instability when µ2
x + µ2

y is very close to zero. This constant is

determined by C1 = (K1L)
2, where L is the dynamic range of the pixel values and

K1 << 1.

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

(3.15)

40

The contrast comparison, defined in equation 3.16, has a similar form to that of

the luminance comparison. Here, C2 = (K2L)
2 where K2 << 1. With the same

amount of contrast change, ∆σ = σy − σx, the contrast comparison is less sensitive

to a case of high base contrast, σx, than low base contrast.

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

(3.16)

The definition of the structure comparison is illustrated in equation 3.17. The

correlation between the two signals is a simple and effective measure to quantify

the structural similarity. As in the luminance and contrast measurements, a small

constant, σxy, is introduced. This constant can be estimated in discrete form using

equation 3.18.

s(x,y) =
σxy + C3

σxσy + C3

(3.17)

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (3.18)

These three comparisons are then combined, resulting in the similarity measure,

or the SSIM index, defined in equation 3.19. If we set α = β = γ = 1 and C3 = C2

2
,

the SSIM measurement simplifies to equation 3.20.

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ (3.19)

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.20)

The SSIM index has a range from 0 to 1, where 1 signifies a perfect match between

41

the two images being compared [34].

42

3.4 Edge Stability

Edge stability is defined as the consistency of edges that are evident across different

scales in each frame of the videos. Edge maps are generated using simple edge de-

tection for different scale parameters. Where the simple edge detection is using the

gradient images where a value greater than a threshold means it’s an edge. Before

the derivatives of the image are calculated, the image is first blurred using a Gaussian

filter with standard deviations of σs = 1.19, 1.44, 1.68, 2.0, and 2.38.

Sobel filters in the x and y direction are then implemented to determine the

derivative of the images, where the magnitude of the derivatives is defined as C. A

threshold is then calculated depending on the maximum and minimum values of the

norm of the gradient output, which are referred to as Cmax and Cmin, respectively.

Once Cmax and Cmin have been determined, the threshold for each σs is calculated

using equation 3.21.

T s = 0.1(Cmax − Cmin) + Cmin (3.21)

Now that the threshold, Tm, has been found, the edge map at scale σm of image

C is obtained using equation 3.22. Here, Cs(i, j) is the output of the derivative of the

Gaussian operator at the sth scale. Equation 3.23 illustrates the Gaussian filter which

is used to calculate Cs(x, y) = C(x, y) ∗ ∗Gs(x, y), where ∗∗ represents convolution.

E(x, y, σm) =


1 Cm(i, j) > Tm at (i, j)

0 otherwise

(3.22)

Gm(x, y) =
1

2πσ4
m

xy exp

{
−x2 + y2

2σ2
m

}
(3.23)

43

The edge stability map, Q(i, j), is then constructed by considering the longest

subsequence E(i, j, σm)...E(i, j, σ(m+l−1)) of the edge maps such that Q(i, j) = l where

equation 3.24 is true.

l = argmax
l

⋂
σm≤σk≤σm+l−1

E(i, j, σk) = 1 (3.24)

Once the edge stability maps are created, each frame is compared to the next frame

by calculating the edge stability mean square error (ESMSE), which is calculated

using Equation 3.25. Here, M and N are the dimensions of the edge stability maps.

The smaller the ESMSE, the more stable the edges are [35].

ESMSE =
1

MN

M∑
i=1

N∑
j=1

[Q1(i, j)−Q2(i, j)]
2 (3.25)

In this chapter we delved into the process of arithmetic encoding and decoding.

One of the best predictive lossless image compression techniques, CALIC, was dis-

cussed as well as how to remap the error to be a positive 16-bit integer. Once the

compression information has been discussed, we shifted to talking about how the

frames of each video are correlated through the structural similarity as well as an

edge quality measurement. Now that all of the necessary background information

has been presented, we will now delve into the proposed algorithm of Match. Once

Match’s algorithm has been explained, we then evaluate the technique by comparing

its compression ratio’s to CALIC. The two classification methods, the structural sim-

ilarity and edge quality measurements, will be used to predict which method results

in the best compression.

44

Chapter 4: Match

The first time Match was introduced, it was presented as a prediction method that

used conditional averages to obtain the prediction, known as CAP, a Conditional

Average Prediction [33]. This method uses the history of what’s already been encoded

of the image to find a neighborhood that matches the neighborhood of the current

pixel. The value of the pixel with the same neighborhood is then the prediction.

However, finding a neighborhood that is the same as the current one is unlikely, and

thus a conditional average prediction is applied.

To start, a neighborhood is defined to be the contexts for which a match will be

searched for. Using the labeling in Figure 3.1 the neighborhood that is used consists

of w, nw, n, and ne. In order to generate a prediction, the encoder looks for matches

to the context in the already encoded portion of the image. The matching criteria can

be rigid where an exact match is needed or it can be defined more loosly where the

match is accepted if the difference between the pixels is less than a threshold. Here,

to guard against the possibility of a bad prediction, this proposed algorithm requires

at least five matches to be observed before a prediction can be generated. If more

than five matches are found, then the algorithm takes the average of the pixels that

have the matching contexts as the predicted value. If, however, the larger context

cannot garner five or more matches, then the algorithm shifts to the next smaller

context: w, nw, and n. If there are no sufficient matches for the smallest context

45

allowed, then the algorithm uses the version of the median adaptive predictor used

in JPEG-LS, equation 4.4, as a default.

From there, Match was adapted and presented by Babacan as a prediction algo-

rithm based on estimating the conditional expectation of a pixel [36]. Statistically,

the optimal estimate, in the mean squared sense, of a random variable X with ob-

servations {Yi} is the conditional expectation of X given {Yi} illustrated in equation

4.1.

E [X| {Yi}] =
∑

xP [X = x|Y1 = y1, ..., YN = yN] (4.1)

The optimal predictor of the current pixel is then the conditional expected value

E
[
Xi,j| {Xi−l,j−m}i,j(l,m)=(1,1)

]
. Here, Xi,j is assumed to be conditionally independent

of the surrounding pixels that are some distance from it which limits the conditional

variables to be the pixels in the causal neighborhood, or context, of Xi,j. The con-

text, or neighborhood, for this method depends on the pixels directly surrounding the

current one, like in CALIC, illustrated in Figure 3.1. In jointly Gaussian processes,

the conditional expectation can be simplified to a linear combination of the observa-

tions. However, if the process in non-Gaussian, the computation of the conditional

expectations requires the conditional probability density function. It is difficult to

assume that that image pixels are Gaussian and the conditional density required to

obtain the optimal prediction is not available.

Since calculating the optimal predictor is impossible, the prediction method is

simplified to depend on the textual information that is found in images. Therefore,

given a pixel xi,j, Ci,j is the set of pixels in the causal context of xi,j. The pixels

found in this causal context are referred to as xi,j
1 , xi,j

2 , ... , xi,j
k . Given a set of values,

α = (α1, α2, ..., αk), Ck(α) is defined in equation 4.2.

46

Ck(α) =
{
xl,m : xl,m

1 = α1, x
l,m
2 = α2, ..., x

l,m
k = αk

}
(4.2)

Once we have Ck(α), E[Xi,j|xi,j
1 = α1, x

i,j
2 = α2, ..., x

i,j
k = αk] can be estimated by

the sample mean in equation 4.3, where || · ||denotes the cardinality.

µ̂X|α =
1

||Ck(α)||
∑

x∈Ck(α)

x (4.3)

When using this approach, the size and composition of the context first needs to

be decided. It is important that ||Ck(α)|| is large enough that µ̂X|α is a good estimate.

However, if ||Ck(α)|| is not large enough for µ̂X|α to be a good estimate, the MED

predictor used in JPEG-LS becomes the default prediction method. This method,

illustrated in equation 4.4 uses the same context labels from CALIC in Figure 3.1,

where X̂ is the prediction.

X̂ =


min {n,w} if nw ≥ max {n,w}

max {n,w} if nw ≤ min {n,w}

n+ w − nw otherwise

(4.4)

It was found that contexts of sizes greater than four gave marginal gains over the

smaller contexts. Thus, the context consisting of w, nw, n, and ne were used.

However, when implementing this version of Match, it did not perform better

than CALIC. Therefore, the algorithm was adjusted to form a non-linear prediction

method. This new version of Match utilizes the similarity between frames in a video.

Not only was Match adjusted to form a non-linear prediction method, but it more

heavily falls back onto how the method was initially presented. The main difference,

however, is that instead of the previously encoded portion of the image being searched,

47

the previous frame of the video is. The other major difference is that instead of

shrinking the context to find a direct match, a threshold value is increased each time

until a matching context is found.

The context consisting of w, nw, n, and ne remained the same; however, these

pixel values are no longer used to calculate the prediction, instead they become search

parameters. To find the prediction, Match searches the previous image to find the

closest matching context. When searching the previous image, a match close to the

current pixel location results in a more accurate prediction. Therefore, when searching

the previous image, only a portion of it is looked at, illustrated in Figure 4.1. The

previous image is searched some distance, D, to the left, right, above and below the

current pixel location. The best distance for each video is different with no clear

reasoning as to why that distance works the best, therefore, the distance is found

through trial and error.

To start, the frame of the previous image is searched for a context that is identical

to the current context. Due to the differences between frames, an exact match is not

common, therefore a threshold needs to be implemented. If no exact match is found,

then the frame is searched again where any of the pixels in the context can differ from

the current context by a threshold of one. If no match is found, then the threshold is

increased and the frame is searched until a match is found. The pixel in the previous

image that has the closest matching neighborhood then becomes the prediction. For

simplicity, the frame is searched from top left to bottom right.

Once the prediction has been found, the error is calculated, then remapped and

encoded using adaptive arithmetic encoding. However, this method is dependent on

the previous image, so the very first image in the video needs to be compressed in a

different way. Since CALIC is the best lossless image compression method, it is used

to compress the first image of the videos.

48

Figure 4.1: Distance

Match has one major drawback, like all other search methods, it is computationally

complicated. Therefore, as the distance increases and the resolution of the datasets

increases, so does the amount of time it takes for the algorithm to run.

The proposed algorithm of match has been described, so we are now going to go

through the results. The resulting compression ratio at varying distances is looked at

to find the best distance for each dataset. The largest resulting compression ratio is

then compared to that of CALIC to evaluate how well the proposed algorithm works.

From there, resolution and frame rate are examined to see how Match is affected by

these variables. Finally, the structural similarity and edge quality measurements are

looked at to predict which of these two methods should be used to compress each

dataset.

49

Chapter 5: Results

Since the proposed algorithm has now been explained, we need to explore how well

this method performs. Therefore, to determine how efficient Match is, its compression

ratio, CR, will be compared to that of CALIC’s. The larger the compression ratio, the

more efficient the method of compression is. The compression ratio is a measurement

of the relative reduction in size of data and is calculated using equation 5.1. The

uncompressed size was calculated by how many bits are contained in the videos or

scans and the compressed size was found by counting how many bits were encoded.

CR =
Uncompressed Size

Compressed Size
(5.1)

There are five video sets at resolution [144, 176, 3], five video sets at resolution

[1280, 720, 3], eight video sets at resolution [1920, 1080, 3], and four video sets at

resolution [4096, 2160, 3] from [37]. These resolutions will be referred to as 176,

720, 1080 and 4k respectively. Along with the various video datasets, 10 datasets

containing multiple C.T. scans, and 17 M.R.I scans were also compressed from [38].

For each dataset, the first 6 images were compressed. The medical datasets were

compressed from distances one to fifteen while the video frames were compressed to

varying distances based on where the largest compression ratio was found.

The compression ratio of these datasets is looked at as the distance for Match

50

varies. The largest compression ratio is then compared to CALIC’s compression

ratio. From there, resolution and frame rates are looked at.

5.1 176 Resolution

Five video sets were tested at resolution [144, 176, 3]: Claire, Claire at six frames per

second, Carphone, Foreman, and Miss Am. Table 5.1 contains Match’s compression

ratios as the distance varies between one to ten pixels and are plotted in Figure

5.1. Looking at the plot in Figure 5.1, as the distance increases, the compression

ratio evens out and does not vary much. However, the plot also illustrates that the

compression ratio slightly decreases after the best distance is found. A distance of

two pixels resulted in the largest compression ratio of 2.606 for Claire while a distance

of four pixels provided the best compression ratio of 2.439 for Claire at six frames per

second. Carphone has the largest compression ratio of 1.834 with a distance of three

pixels. Similar to Claire at six frames per second, Foreman also performed the best

at a distance of four pixels with a maximum compression ratio of 1.835. Miss Am, on

the other hand, has the largest compression ratio, 2.022, at a distance of six pixels.

Distance Claire Claire (6fps) Carphone Foreman Miss Am
1 2.571 2.348 1.748 1.716 1.938
2 2.606 2.414 1.829 1.795 1.990
3 2.590 2.436 1.834 1.824 2.009
4 2.581 2.438 1.832 1.835 2.019
5 2.568 2.431 1.829 1.833 2.017
6 2.567 2.428 1.826 1.828 2.022
7 2.551 2.421 1.822 1.822 2.018
8 2.547 2.418 1.822 1.816 2.020
9 2.539 2.415 1.816 1.811 2.015
10 2.535 2.413 1.813 1.806 2.017

Table 5.1: Match CRs with Varying Distance - 176 Resolution

Selecting the pixel from the previous frame with the closest matching context is

51

Figure 5.1: Match CRs with Varying Distance - 176 Resolution

one way to predict what the current pixel would be. However, what if CALIC was

used to predict the pixel using the matching context of the previous frame instead of

the current context? The compression results for this prediction method are in Table

5.2 which are plotted in Figure 5.2. For each of the datasets, the best distance to

use was found to be ten pixels. Using this distance results in a compression ratio of

2.338 for Claire, 2.333 for Claire at six frames per second, 1.762 for Carphone, 1.600

for Foreman, and 2.001 for Miss Am.

Distance Claire Claire (6fps) Carphone Foreman Miss Am
1 2.238 2.183 1.655 1.515 1.877
2 2.301 2.267 1.708 1.570 1.936
3 2.317 2.301 1.719 1.589 1.969
4 2.323 2.313 1.722 1.596 1.979
5 2.327 2.319 1.724 1.598 1.987
6 2.331 2.323 1.725 1.599 1.991
7 2.333 2.326 1.726 1.599 1.995
8 2.333 2.328 1.726 1.600 1.997
9 2.333 2.331 1.726 1.600 2.000
10 2.338 2.333 1.726 1.600 2.001

Table 5.2: CALIC with Match Context CRs with Varying Distance - 176 Resolution

52

Figure 5.2: CALIC with Match Context CRs with Varying Distance - 176 Resolution

To evaluate how well Match performs, the maximum compression ratios are com-

pared to CALIC as well as CALIC with the context found for Match. For all of

the videos, but one, Match outperformed CALIC, as illustrated in Table 5.3. Figure

5.3 illustrates the direct comparison between the compression ratio of CALIC and

the maximum compression ratio found for Match. The percent increase for Claire

was calculated to be 9.313% while Claire at six frames per second only increased by

2.193%. Carphone increased by 5.015% and Foreman was found to have the greatest

increase of 13.971%. The only outlier, Miss Am, had a decrease of 1.555%. Fore

Claire and Carphone, it can be said that Match outperforms CALIC, while it only

slightly outperforms CALIC for Carphone. Due to small percent differences for Claire

and six frames per second and Miss Am, Match is comparable to CALIC for these

two datasets.

When using CALIC with the closest matching context from the previous frame

to predict the current pixel, it results in the smallest compression ratio of the three

methods. Comparing this method to CALIC results in minor percent differences;

53

where CALIC outperforms this method by 1.938% for Claire, 2.223% for Claire at

six frames per second, 1.130% for Carphone, 0.627% for Foreman, and 2.458% for

Miss Am. The compression ratios when using the context found with Match for

CALIC seem to approach CALIC’s compression ratio as the distances increases, es-

pecially with such minor percent differences. When comparing this method to Match,

Match outperformed it with a percent difference of 10.292% for Claire and 12.811%

for Foreman. Claire at six frames per second and Carphone, on the other hand, only

have minor percent increases, 4.309% and 5.874% respectively, when using Match.

Miss Am is the only dataset where all three methods have minor percent differences,

where the one between this method and Match is 0.912%. Since this method is found

to be the worst prediction method, it isn’t tested on the remaining datasets.

Figure 5.3: CALIC’s CR Compared to Match’s CR Compared to CALIC with Match’s
Context - 176 Resolution

Li [23] implemented their algorithm on Claire, Miss Am, and Foreman; however,

they present their data with the bit rate while the compression ratio was looked at

for this thesis. Therefore, these two methods cannot be directly compared.

54

Method Claire Claire (6fps) Carphone Foreman Miss Am
CALIC 2.384 2.386 1.746 1.610 2.051
Match 2.606 2.438 1.834 1.835 2.019

CALIC with
Match Context

2.338 2.333 1.726 1.600 2.001

Percent Difference
(Match and CALIC)

9.312 2.179 5.040 13.975 -1.560

Percent Difference
(Match and CALIC
with Match Context)

10.292 4.309 5.874 12.811 0.912

Percent Difference
(CALIC and CALIC
with Match Context)

1.938 2.223 1.130 0.627 2.458

Table 5.3: CALIC’s CR Compared to Match’s CR - 176 Resolution

5.2 720 Resolution

Five data sets, Johnny, KristenAndSara, Mobcal, Parkrun, and Sheilds of resolution

[1280, 720, 3] were compressed using Match. Figure 5.4 illustrates how the compres-

sion ratio for Match changes with the distance; the values are listed in Table 5.4.

These datasets were tested from distance of one to five pixels, as the compression

ratio started decreasing for each dataset after . A distance of four pixels results in

the largest compression ratios for Johnny, Parkrun, and Shields with compression

ratios of 2.572, 1.308, and 1.549 respectively. A maximum compression ratio of 2.654

was found for KristenAndSara at a distance of three pixels and Match performed the

best at a distance of one pixel for Mobcal with a compression ratio of 1.563.

55

Figure 5.4: Match CRs with Varying Distance - 720 Resolution

Distance Johnny KristenAndSara Mobcal Parkrun Shields
1 2.492 2.583 1.563 1.183 1.353
2 2.560 2.649 1.535 1.240 1.439
3 2.571 2.654 1.517 1.307 1.543
4 2.572 2.651 1.503 1.308 1.549
5 2.566 2.640 1.49 1.303 1.541

Table 5.4: Match CRs with Varying Distance - 720 Resolution

To evaluate how well Match performed for this resolution, the largest compres-

sion ratio found is compared to CALIC’s compression ratio. These comparisons are in

Table ?? and graphed in Figure ??. It was found that Match resulted in a larger com-

pression ratio than CALIC for Johnny, KristenAndSara, and Mobcal. The percent

increases were found to be 13.906%, 15.441% and 9.684%. Due to the large percent

increases, it can be said that Match outperforms CALIC. Parkrun and Shields, on the

other hand, have percent decreases of 2.096% and 1.777% respectively. Due to such

small percent decreases, Match results in a comparable compression ratio to CALIC

for these two datasets.

56

Figure 5.5: CALIC’s CR Compared to Match’s CR - 720 Resolution

Method Johnny KristenAndSara Mobcal Parkrun Shields
CALIC 2.258 2.299 1.425 1.336 1.576
Match 2.572 2.654 1.563 1.308 1.548

Percent Difference 14.677 15.442 9.684 -2.096 -1.777

Table 5.5: CALIC’s CR Compared to Match’s CR - 720 Resolution

Choi and Ho implemented their proposed compression method of using residual

data coding in CABAC for HEVC lossless video compression on Johnny and Kriste-

nAndSara. Their method resulted in compression ratios of 3.15 and 3.18 respectively

which is 18.349% and 16.541% larger than the resulting compression ratios for Match

[26].

57

5.3 1080 Resolution

The datasets for the [1920, 1080, 3] resolution are split into two sets. For the first five

videos, the distance at which Match performs the best is less than fifteen, therefore

the distance varies between one and fifteen. Figure 5.6 plots the compression ratios

with their corresponding distance that are in Table 5.6. At a distance of thirteen

pixels, Blue Sky has the largest compression ratio of 2.046 and a distance of twelve

pixels results in the largest compression ratio of 2.023 for Station2. A distance of

one pixel results in the largest compression ratio of 1.945 for Controlled Burn while a

distance of six pixels is needed for the best compression ratio of 1.446 for Crowd Run.

Lastly, four pixels was found to result in the largest compression ratio of 2.597 for

Life.

Figure 5.6: Match Compression Ratios with Varying Distance - 1080 Resolution

The second sets of 1080 resolution videos include three videos, all of which need a

greater distance for the best Match results. Figure 5.7 plots the Match compression

ratios with varying distance that are listed in Table 5.7. For Riverbed and Aspen,

58

Distance Blue Sky Controlled Burn Crowd Run Station2 Life
1 1.606 1.945 1.391 1.538 2.406
2 1.693 1.918 1.420 1.653 2.533
3 1.764 1.897 1.420 1.772 2.597
4 1.833 1.879 1.433 1.863 2.597
5 1.890 1.863 1.445 1.934 2.594
6 1.946 1.847 1.446 1.981 2.591
7 1.979 1.834 1.445 2.005 2.585
8 2.015 1.821 1.444 2.046 2.582
9 2.027 1.810 1.442 2.021 2.577
10 2.042 1.800 1.440 2.023 2.573
11 2.043 1.791 1.439 2.023 2.567
12 2.046 1.783 1.437 2.023 2.562
13 2.044 1.776 1.436 2.023 2.557
14 2.043 1.769 1.435 2.023 2.553
15 2.041 1.762 1.434 2.022 2.548

Table 5.6: Match CRs with Varying Distance - 1080 Resolution

the best distances found were seventy and forty-one respectively. However Table 5.7

only goes to a distance of thirty pixels, which was determined to be the best distance

for Dinner. Riverbed’s best compression ratio was found to be 1.852, which is only

1.591% greater than Riverbed’s compression ratio at a distance of thirty pixels, which

was found to be 1.823. The best compression ratio for Aspen was found to be 2.266

with a distance of fourty one, which is merely 0.177% larger than the compression

ratio of 2.262 at a distance of thirty.

To determine how well Match performs, the best compression ratios are compared

to the compression ratios from compressing the datasets with CALIC. The compres-

sion ratios that are illustrated in Figure 5.8 are from Table 5.8 and Table 5.9. Match

outperformed CALIC for two of the datasets, Controlled Burn and Life. The percent

increase of Match was calculated to be 17.239%, and 38.634% respectively. Although

Match has a better compression ratio than CALIC for Dinner, the percent increase

was found to be only 1.852%. Therefore, Match performs comparably to CALIC for

59

Figure 5.7: Match CRs with Varying Distance - 1080 Resolution

Dinner. On the other hand, Blue Sky, Crowd Run, Station2, Riverbed, and Aspen see

a percent decrease when Match is used to compress the videos. The percent decreases

are calculated to be -3.627%, -3.856%, -6.602%, -4.781% and -7.774% respectively. For

all of these datasets but Station2 and Aspen, Match performs comparably to CALIC

with negligible percent decreases.

Figure 5.8: CALIC’s CR Compared to Match’s CR - 1080 Resolution

60

Distance Riverbed Aspen Dinner
1 1.295 1.789 3.634
2 1.358 1.965 3.928
3 1.420 2.084 4.145
4 1.474 2.152 4.328
5 1.521 2.192 4.458
6 1.561 2.215 4.592
7 1.627 2.228 4.674
8 1.654 2.237 4.792
9 1.676 2.242 4.859
10 1.696 2.245 4.946
11 1.696 2.247 4.996
12 1.713 2.249 5.069
13 1.728 2.251 5.108
14 1.740 2.252 5.170
15 1.751 2.253 5.201
16 1.761 2.255 5.256
17 1.770 2.256 5.280
18 1.777 2.256 5.326
19 1.783 2.257 5.344
20 1.789 2.258 5.384
21 1.794 2.258 5.396
22 1.799 2.259 5.432
23 1.803 2.259 5.441
24 1.807 2.260 5.472
25 1.810 2.261 5.472
26 1.813 2.261 5.505
27 1.816 2.261 5.509
28 1.818 2.262 5.532
29 1.821 2.262 5.532
30 1.823 2.262 5.555

Table 5.7: Match CRs with Varying Distance - 1080 Resolution

Method Blue Sky Controlled Burn Crowd Run Station2 Life
CALIC 2.123 1.659 1.504 2.166 1.874
Match 2.046 1.945 1.446 2.023 2.598

Percent Difference -3.627 17.239 -3.856 -6.602 38.634

Table 5.8: CALIC’s CR Compared to Match’s CR - 1080 Resolution

61

Method Riverbed Aspen Dinner
CALIC 1.945 2.457 5.454
Match 1.852 2.266 5.555

Percent Difference -4.781 -7.774 1.852

Table 5.9: CALIC’s CR Compared to Match’s CR - 1080 Resolution

5.4 4k Resolution

Match was used to compress four datasets at a resolution of [4096, 2160, 3]: Netflix Boat,

Netflix BoxingPractice, Netflix Narrator, and Netflix Tango. The compression ratios

with varying distance can be found in Figure 5.9 with the values listed in Table 5.10.

Due to the large size of the images, the runtime for Match drastically increased, and

further increases as the distance increases. Therefore, the 4k videos were tested until

the compression ratio decreased.

A distance of six pixels results in the largest compression ratio, 1.075, for Netflix Boat

while a distance of five pixels is best for Netflix BoxingPractice which results in a com-

pression ratio of 1.103. Netflix Narrator is best compressed by Match at a distance

of four pixels with a compression ratio of 1.144. Netflix Tango, on the other hand,

has the best compression ratio of 1.079 at a distance of twelve pixels.

To evaluate how well Match performed, the largest compression ratios are com-

pared to the compression ratios of CALIC. These ratios are charted in Figure 5.10

with their values listed in Table 5.11. For only one of these datasets, Netflix Narrator,

Match slightly outperforms CALIC with a percent increase of 5.333%. For the remain-

ing datasets, Match performed comparably to CALIC with small percent increases.

Netflix Boat, Netflix BoxingPractice, and Netflix Tango have percent differences of

0.422%, 2.309%, and -0.678% respectively. The percent increases could be minimal

due to the resolution of the datasets or due to the structural similarity between the

frames of the videos.

62

Figure 5.9: Match CRs with Varying Distance - 4k Resolution

Distance Netflix Boat Netflix BoxingPractice Netflix Narrator Netflix Tango
1 1.0484 1.0677 1.089 1.041
2 1.065 1.089 1.123 1.063
3 1.067 1.099 1.142 1.070
4 1.073 1.100 1.144 1.073
5 1.072 1.103 1.143 1.075
6 1.075 1.102 - 1.075
7 1.075 - - 1.076
8 - - - 1.076
9 - - - 1.077
10 - - - 1.078
11 - - - 1.078
12 - - - 1.079

Table 5.10: Match CRs with Varying Distance - 4k Resolution

Method Boat BoxingPractice Narrator Tango
CALIC 1.071 1.078 1.086 1.086
Match 1.075 1.103 1.144 1.079

Percent Difference 0.422 2.309 5.333 -0.678

Table 5.11: CALIC’s CR Compared to Match’s CR - 4k Resolution

63

Figure 5.10: CALIC’s CR Compared to Match’s CR - 4k Resolution

In some cases, Match outperformed CALIC; in others, CALIC outperformed

Match; and in the remaining videos, both methods performed nearly the same. Most

often, a distance of one resulted in the lowest compression ratio. Overall, as the

distance varied for each of the video datasets the compression ratio of Match varied

slightly. The greatest variation was found to be 1.921 for the video Dinner in the 1080

resolution datasets. At a distance of one, Match results in the smallest compression

ratio of 3.634 while the largest compression ratio found at a distance of thirty was

5.555.

Miss Am was the most frustrating dataset as Match resulted in a larger compres-

sion ratio for the rest of the 176 resolution datasets with the smallest percent increase

being 2.179%. Similar to Claire, the frames of Miss Am didn’t visually change much

frame to frame; which leads one to expect that Match would perform better as it’s

dependent on the contexts being as close of a Match as possible.

Since Match is dependent on how much one frame varies from the next, it can

be assumed that as the frame rate decreases the resulting compression ratio also

64

decreases as the differences between the frames will be greater. The only datasets

which show this are Claire and Claire(6fps) where Claire(6fps) is every sixth frame

of the original video. The largest compression ratio for Claire was found to be 2.606

while the compression ratio of Claire(6fps) was 2.438. Therefore, Claire is better

compressed by 0.168 in comparison to Claire(6fps).

For all but one of the 176 resolution videos, Match outperformed CALIC; for all

but two of the 720 resolution videos, Match outperformed CALIC; however, only three

of the 1080 videos, Match outperformed CALIC; and Match barely outperformed

CALIC for all but one of the 4k videos. Excluding the results of the 4k resolution

videos as the cost for using Match doesn’t outweigh the slight increase in compression,

one can assume that as the resolution of the video increases the less likely Match

outperforms CALIC. Not only does the likelihood of Match performing better seem

to decrease, but it takes longer for Match to run, especially as the distance increases.

5.5 C.T. Scans

Match was tested on various C.T. scans that were collected from the National Can-

cer Institute [38]. Like the video datasets, the first six images of each scan were

compressed; however, each dataset was tested from a distance of one to fifteen pixels.

According to the Mayo Clinic, “a computerized tomography (CT) scan combines a

series of X-ray images taken from different angles around your body and uses computer

processing to create cross-sectional images (slices) of the bones, blood vessels and soft

tissues inside your body. C.T. scan images provide more-detailed information than

plain X-Rays do” [39].

The C.T. datasets are split up into different categories dependent on the label

they were collected under from the National Cancer Institute. In total, 65 datasets

65

were collected, however for the majority of these scans, the percent difference between

Match and CALIC was found to be less than |5|%. Therefore, all of the resulting

Match compression ratios as the distance varies between one and fifteen pixels as well

as the comparison between Match and CALIC can be found in Appendix A. The

results in the appendix include the datasets that are discussed in this section.

The remaining datasets have been split into two categories, those with compression

ratios that have a percent difference greater than |5|% but less than |10|% and those

with a percent difference of greater than |10|%.

Firstly, the datasets with a percent difference between Match and CALIC that

falls in the range between |5|% and |10|% will be discussed. The datasets that fall

into this category are coronal from AMC-002; CORONAL MPR 2MM, CT FUSION,

and CTAC from AMC-003; WB MAC P690 and WB NAC P690 from AMC-004;

CHEST 7.0 MIP Axial from AMC-005; CORONAL SP, CT images, and

PET BODY NO AC from AMC-006; Thorax 2.0 SPO cor and Thorax 2.0 SPO sag

from AMC007; and BODY 5.000CE 1 and BODY 5.000CE 2 from CMB-CRC-MSB-

02381. Tables 5.12 and 5.13 contain Match’s compression ratio for these datasets

as the distance varies, where Table 5.12 contains the datasets in AMC-002 through

AMC-005. The compression ratios for the remaining datasets are in Table 5.13.

The following label substitutions were made for the datasets in Table 5.12: COR

for CORONAL MPR 2MM and FUSION for CT FUSION from AMC-003; MAC

for WB MAC P690 and NAC for WB NAC P690 from AMC-004; and Axial for

CHEST 7.0 MIP Axial from AMC-005. Of the seven datasets in this table, four

of them have the largest compression ratio at a distance of 15. These C.T. scans

include coronals with a compression ratio of 2.399, CORONAL MPR 2MM with a

compression ratio of 2.243, WB MAC P690 with a compression ratio of 12.528, and

WB NAC P690 with a compression ratio of 5.545. The remaining two datasets in

66

AMC-003, CT FUSION and CTAC have the largest compression ratios of 8.087 and

15.220 at distances of four and five respectively. Lastly, CHEST 7.0 MIP Axial has

the largest compression ratio at a distance of seven with a value of 4.017.

AMC-002 ACM-003 AMC-004 AMC-005
Distance coronals COR FUSION CTAC MAC NAC Axial

1 1.785 1.722 7.903 15.000 7.936 3.446 3.615
2 1.960 1.855 8.058 15.220 9.299 4.006 3.811
3 2.101 1.960 8.084 15.209 10.355 4.468 3.923
4 2.198 2.043 8.087 15.161 10.939 4.756 3.977
5 2.257 2.210 8.077 15.153 11.275 4.933 4.004
6 2.296 2.137 8.074 15.134 11.488 5.058 4.013
7 2.324 2.162 8.071 15.123 11.672 5.146 4.017
8 2.344 2.181 8.069 15.108 11.859 5.244 4.015
9 2.359 2.195 8.068 15.098 11.995 5.302 4.012
10 2.370 2.207 8.066 15.084 12.106 5.354 4.009
11 2.378 2.217 8.060 15.073 12.226 5.418 4.005
12 2.386 2.226 8.055 15.062 12.321 5.447 4.002
13 2.391 2.232 8.052 15.045 12.424 5.499 3.998
14 2.395 2.238 8.050 15.038 12.479 5.529 3.994
15 2.399 2.243 8.047 15.027 12.528 5.545 3.990

Table 5.12: Match CRs with Varying Distance - C.T. Scans:
|5|% < Percent Difference < |10|%

Similar to Table 5.12, Table 5.13 also has substitutions for the names of the

datasets. The following substitutions were made: COR for CORONAL AP and

PET BODY for PET BODY NO AC in AMC-006; cor for Thorax 2.0 SPO cor and

sag for Thorax 2.0 SPO sag in AMC-007; and Body 1 and Body 2 for BODY 5.000CE 1

and BODY 5.000CE 2 in CMB-CRC-MSB-02381. For these datasets, Match per-

formed best at a distance of 15 for all but CT images in AMC-006. Match performs

the best at a distance of seven with a compression ratio of 8.926 for CT images. The

largest compression ratios for the remaining datasets are 8.836, 5.636, 2.688, 2.558,

2.017, and 2.903 respectively.

67

AMC-006 AMC-007 CMB-CRC-MSB
Distance COR CT images PET BODY cor sag Body 1 Body 2

1 7.555 8.254 2.972 2.125 2.216 1.645 2.525
2 7.714 8.695 3.330 2.219 2.359 1.744 2.638
3 7.845 8.855 3.715 2.278 2.430 1.820 2.708
4 7.972 8.914 4.075 2.329 2.466 1.876 2.757
5 8.096 8.920 4.390 2.378 2.490 1.915 2.792
6 8.228 8.926 4.621 2.423 2.504 1.943 2.819
7 8.343 8.926 4.813 2.468 2.514 1.962 2.839
8 8.446 8.921 5.007 2.514 2.522 1.976 2.855
9 8.536 8.919 5.144 2.556 2.528 1.994 2.866
10 8.608 8.918 5.254 2.593 2.534 1.994 2.875
11 8.670 8.915 5.343 2.623 2.540 2.000 2.884
12 8.715 8.907 5.463 2.647 2.545 2.005 2.889
13 8.764 8.904 5.536 2.665 2.550 2.010 2.895
14 8.803 8.900 5.594 2.678 2.554 2.013 2.899
15 8.836 8.900 5.636 2.688 2.558 2.017 2.903

Table 5.13: Match CRs with Varying Distance - C.T. Scans:
|5|% < Percent Difference < |10|%

Figures 5.11 and 5.12 illustrate how the resulting compression ratio of Match

changes as the distance varies. The various scans with a percent difference in between

five and ten percent were split into two plots, the first being the datasets with a

compression ratio less than six and the later being those with a compression ratio

larger than six. The datasets with resulting compression ratios less than six include:

coronals from AMC-002; CORONAL MPR 2MM from AMC-003; WB NAC P690

from AMC-004; CHESET 7.0 MIP Axial from AMC-005; PET BODY NO AC from

ACM-006; the two datasests in AMC-007; and the remaining two datasets in CMB-

CRC-MSB-02381. The other datasets have compression ratios greater than six and

are plotted in Figure 5.12.

68

Figure 5.11: Match CRs with Varying Distance - C.T. Scans: |5|% < Percent Differ-
ence < |10|% and CR < 6

Figure 5.12: Match CRs with Varying Distance - C.T. Scans:
|5|% < Percent Difference < |10|% and CR > 6

To evaluate how well Match performed, the best compression ratio is compared to

that of CALIC’s. Tables 5.14 and 5.15 compare the compression ratios. These tables

are split in the same way and contain the same substitutions as Tables 5.12 and 5.13.

The compression ratios between Match and CALIC are plotted in the chart of Figure

69

5.13. In this set, clearly, Match performed the best for CTAC, not just by having the

largest compression ratio, but also has the largest increase when compared to CALIC.

Between the two tables, only four of the datasets have a positive percent difference

where Match results in the larger compression ratio. These datasets are CT FUSION

and CTAC from AMC-003; CHEST 7.0 MIP Axial from AMC-005; and CT images

from AMC-005 and have percent increases of 5.451%, 8.878%, 5.934%, and 6.765%

respectively. The remaining datasets have negative percent differences, which means

Match underperformed when compared to CALIC. The smallest of these differences

is -5.100% and is the result of the datasets Body 5.000CE 2 under CMB-CRC-MSB-

02381; while the largest negative difference is -9.179% for CORONAL AP from AMC-

006.

AMC-002 AMC-003 AMC-004 AMC-005
coronals COR FUSION CTAC MAC NAC Axial

CALIC 2.546 2.415 7.669 13.979 13.415 6.034 3.792
Match 2.399 2.243 8.087 15.220 12.528 5.545 4.017
Percent

Difference
-5.774 -7.122 5.451 8.878 -6.612 -8.104 5.934

Table 5.14: CALIC’s CR Compared to Match’s CR - C.T. Scans:
|5|% < Percent Difference < |10|%

AMD-006 AMC-007 CMB-CRC-MSB
COR CT image PET BODY cor sag Body 1 Body 2

CALIC 9.729 8.361 6.049 2.940 2.787 2.153 3.059
Match 8.836 8.926 5.636 2.688 2.558 2.017 2.903
Percent

Difference
-9.179 6.756 -6.828 -8.571 -8.217 -6.317 -5.100

Table 5.15: CALIC’s CR Compared to Match’s CR - C.T. Scans:
|5|% < Percent Difference < |10|%

70

Figure 5.13: CALIC’s CR Compared to Match’s CR - C.T. Scans: |5|% < Percent
Difference < |10|%

Now that the datasets that have a percent difference that fall in the range of

|5%| and |10%|, the datasets that have a percent difference that’s greater than

|10%| will be discussed. These datasets include TCGA-38-4628 and NLST-LSS from

the miscellaneous label, WB NAC P690 and CHST 1.25MM SHARP from ACM-

001; CHEST 2.0 coronal and CHEST 2.0 Sagittal from AMC-005; LUNG 1MM from

AMC-006; and 60 from 4D-Lung. Table 5.16 contains the resulting compression ratio

of Match as the distance varies between one and fifteen with the following substi-

tutions: TCGA for TCGA-38-4628, NLST for NLST-LSS, NAC for WB NAC P690,

CHST for CHST 1.25MM SHARP, cor for CHEST 2.0 coronal, sag for

CHEST 2.0 Sagittal, and LUNG for LUNG 1MM. These resulting Match ratios are

plotted against the distance in Figure 5.14.

Similar to the datasets that have a percent difference between |5%| and |10%|,

the majority of these datasets also result in the largest compression ratio being at

the largest distance of 15. The datasets that follow this trend are TCGA-38-4628,

WB NAC P690, CHEST 2.0 coronal and CHEST 2.0 Sagittal with compression ra-

71

tios of 2.041. 5.692, 2.512, and 2.663 respectively. The dataset 60 in the 4D-Lung

C.T. scans performs best at the shortest distance of three with a compression ratio

of 4.844. At a distance of one greater, four, LUNG 1MM performs the best with a

resulting ratio of 2.571. Increasing the distance one more to five results in the largest

compression for CHST 1.25MM SHARP with a ratio of 2.418. NLST-LSS, on the

other hand, has the largest compression ratio of 1.773 at a distance of eight.

Miscellaneous AMC-001 AMC-005 AMC-006 4D-Lung
Distance TCGA NLST NAC CHST cor sag LUNG 60

1 1.776 1.725 3.456 2.402 2.111 2.272 2.500 4.717
2 1.847 1.754 4.025 2.413 2.190 2.400 2.557 4.829
3 1.892 1.766 4.504 2.415 2.233 2.481 2.566 4.844
4 1.924 1.770 4.805 2.418 2.265 2.534 2.571 4.839
5 1.950 1.772 4.998 2.418 2.293 2.571 2.570 4.831
6 1.969 1.773 5.139 2.418 2.319 2.596 2.568 4.826
7 1.985 1.773 5.238 2.417 2.349 2.614 2.564 4.824
8 1.998 1.773 5.349 2.417 2.379 2.629 2.561 4.817
9 2.008 1.773 5.416 2.417 2.407 2.638 2.557 4.810
10 2.016 1.772 5.481 2.416 2.431 2.644 2.554 4.806
11 2.023 1.771 5.558 2.415 2.451 2.650 2.550 4.800
12 2.029 1.770 5.589 2.414 2.470 2.655 2.546 4.793
13 2.034 1.769 5.646 2.414 2.486 2.658 2.541 4.786
14 2.038 1.768 5.675 2.413 2.500 2.661 2.539 4.780
15 2.041 1.768 5.692 2.413 2.512 2.663 2.536 4.776

Table 5.16: Match CRs with Varying Distance - C.T. Scans: Percent Difference >
|10|%

72

Figure 5.14: Match CRs with Varying Distance - C.T. Scans: Percent Difference >
|10|%

The comparison between Match’s compression ratio and CALIC’s is in Table 5.17

and graphed in Figure 5.15. Match outperforms CALIC for half of these datasets:

TCGA-38-4628 from miscellaneous, CHST 1.25MM SHARP from ACM-001,

LUNG 1MM from AMC-006, and 60 from 4D-Lung. Their corresponding percent in-

creases are 13.895%, 10.159%, 20.365%, and 22.975%. CALIC results in a significantly

larger compression ratio for the remaining datasets: NLST-LSS from miscellaneous;

WB NAC P690 from AMC-001; and CHEST 2.0 coronal and CHEST 2.0 Sagittal

from ACM-005. Match underperforms CALIC by -17.227%, -11.587%, -12.838%, and

-10.936% respectively.

Miscelaneous AMC-001 AMC-005 AMC-006 4D-Lung
TCGA NLST NAC CHST cor sag LUNG 60

C 1.792 2.142 6.438 2.195 2.882 2.990 2.136 3.939
M 2.041 1.773 5.692 2.418 2.512 2.663 2.571 4.844
PD 13.895 -17.227 -11.587 10.590 -12.838 -10.936 20.365 22.975

Table 5.17: CALIC’s CR Compared to Match’s CR - C.T. Scans: Percent Difference
> |10|%

73

Figure 5.15: CALIC’s CR Compared to Match’s CR - C.T. Scans: Percent Difference
> |10|%

For the most part, as the distance changes, the compression ratio from Match

doesn’t vary much. However, there are a few datasets where Match varies greatly

as the distance increases. These datasets are WB NAC P690 from ACM-004 and

PET BODY NO AC from ACM-007 in Figure 5.11; WB MAC P690 from AMC-004

in Figure 5.12; and WB NAC P690 from AMC-001 in Figure 5.14. In AMC-004,

WB MAC P690 varies from 7.936 at a distance of one to 12.528 at a distance of 15,

which is a difference of 4.592. Also in AMC-004, WB NAC P690 varies a total of 2.099

from 3.446 at a distance of one to 5.545 at a distance of 15. PET BODY NO AC

from ACM-007 varies a total of 2.664 as a distance of one results in a compression

ratio of 2.972 but a distance of 15 results in a compression ratio of 5.636. Lastly,

WB NAC P690 from AMC-001 varies a total of 2.236 as a distance of one results in

a ratio of 3.456 while a distance of fifteen results in a compression ratio of 5.692. The

remaining datasets have compression ratios that vary within approximately one as

the distance changes.

74

In general, the resulting compression ratio of the C.T. datasets provides results

that Match is incredibly similar to CALIC. Some examples include the LIDC-IRDI

datasets all have miniscule percent differences between the compression ratios. The

AMC C.T. scans. on the other hand, mostly have percent differences less than |10|%.

Only five of the thirty six datasets under AMC have a percent increase of at least 10%,

with largest percent increase being 22.975%. There’s only four datasets where Match

underperformed CALIC with a percent decrease greater than -10% with the largest

difference being -17.227%. The remaining twenty eight datasets in this category all

have percent differences less than 10%, that’s 77.778% of these datasets. Another

overall disappointing result is that all but one of the 4D lung datasets has a percent

difference of less than |5|%.

Overall, Match’s performance for the C.T. datasets is unimpressive. Out of the

65 datasets, 43 of them result in a percent difference between Match and CALIC to

be less than |5|%, which is 66.154% of the C.T. scans.

5.6 M.R.I. Scans

According to the National Institute of Biomedical Imaging and Bioengineering, a

Magnetic Resonance Imaging (M.R.I.) “is a non-invasive imaging technology that

produces three dimensional detailed anatomical images” [40]. 17 M.R.I. datasets

under the classification ACRIN-6698-102212, were collected from the National Cancer

Institute [38] and compressed with Match for distances of one to fifteen. These M.R.I.

scans are split based on the compression ratios.

The first set of datasets are for a compression ratio under two, which includes

ISPY2 Fieldmap, ISPY2 T2fseidealarc BP, ISPY2 WATER T2 fseidealarc BP and

ISPY2 Water T2feidealarc BP. Figure 5.16 plots the compression ratios in Table 5.18

75

where ISPY2 T2fseidealarc BP is represented by T2fseidealarc BP,

ISPY2 WATER T2 fseidealarc BP is represented with WATER, and

ISPY2 Water T2feidealarc BP is represented by Water. It was found that a dis-

tance of fifteen pixels results in the largest compression ratio for all of these datasets.

The resulting maximum compression ratios are 1.672 for ISPY2 Fieldmap, 1.676 for

ISPY2 T2fseidealarc BP, 1.971 for ISPY2 WATER T2 fseidealarc BP and 1.908 for

ISPY2 Water T2 fseidealarc BP.

Figure 5.16: Match CRs with Varying Distance - M.R.I. Scans

To evaluate how well Match performed for these datasets, the largest compression

ratio found is compared to CALIC’s compression ratio. Figure 5.17 illustrates the

comparison of the two with the compression ratios listed in Table 5.19. For all but

ISPY2 Fieldmap, CALIC slightly outperforms Match with a percent difference of

approximately 5%. ISPY2 Fieldmap, on the other hand, has a percent decrease of

-15.014% when using Match. Therefore, CALIC greatly outperforms Match for this

dataset.

76

Distance ISPY2 Fieldmap T2fseidealarc BP WATER Water
1 1.426 1.551 1.778 1.729
2 1.489 1.608 1.855 1.801
3 1.534 1.633 1.894 1.837
4 1.563 1.646 1.916 1.858
5 1.585 1.654 1.931 1.872
6 1.601 1.659 1.941 1.881
7 1.614 1.663 1.949 1.887
8 1.625 1.666 1.954 1.892
9 1.635 1.668 1.959 1.896
10 1.643 1.670 1.962 1.899
11 1.650 1.671 1.965 1.902
12 1.656 1.673 1.967 1.904
13 1.662 1.674 1.969 1.906
14 1.667 1.675 1.970 1.906
15 1.672 1.676 1.971 1.908

Table 5.18: Match CRs with Varying Distance - M.R.I. Scans

Figure 5.17: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

Method ISPY2 Fieldmap T2fseidealarc BP WATER Water
CALIC 1.967 1.781 2.095 2.007
Match 1.672 1.676 1.971 1.908

Percent Difference -15.014 -5.897 -5.891 -4.966

Table 5.19: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

77

The next batch of datasets consist of ACRIN-6698 ADC,

ISPY2 Fat T2fseidealarc BP, ISPY2 IP T2fseidealarc BP, ISPY2 multiphase384,

ISPY2 OP T2fseidealarc BP, and ISPY2 VOLSER DCE which are represented in Ta-

ble 5.20 and Table 5.21 with ADC, Fat, IP, multiphase384, OP, and VOLSER DCE

respectively. For these datasets, the compression ratio when compressing with Match

falls between two and three. A distance of fifteen pixels results in the largest compres-

sion ratio for all but ISPY2 multiphase384 with ratios of 2.935, 2.691, 2.429, 2.591,

and 2.259. Match has the largest compression ratio of 2.040 at a distance of thirteen

pixels for ISPY2 multiphase384.

Figure 5.18: Match CRs with Varying Distance - M.R.I. Scans

Comparing Match to CALIC results in Figure 5.19 and table 5.21. For all but

ACRIN-6698 ADC, CALIC slightly outperforms Match with percent differences of -

7.305%, -7.901%, -3.606%, -5.660% and -4.111% respectively. ACRIN-6698 ADC has

the only positive percent increase of 0.131, however, the difference is so small that

Match and CALIC result in nearly identical compression ratios.

78

Distance ADC Fat IP multiphase384 OP VOLSER DCE
1 2.374 2.389 2.133 1.997 2.373 1.675
2 2.520 2.523 2.256 2.014 2.479 1.826
3 2.626 2.580 2.316 2.024 2.521 1.939
4 2.696 2.609 2.348 2.030 2.543 2.012
5 2.743 2.628 2.369 2.030 2.556 2.062
6 2.783 2.643 2.383 2.033 2.566 2.107
7 2.810 2.654 2.395 2.035 2.573 2.135
8 2.837 2.662 2.403 2.037 2.578 2.167
9 2.857 2.669 2.410 2.038 2.582 2.183
10 2.878 2.675 2.416 2.039 2.585 2.208
11 2.890 2.680 2.419 2.039 2.586 2.218
12 2.905 2.683 2.423 2.039 2.587 2.237
13 2.915 2.687 2.425 2.040 2.589 2.242
14 2.928 2.689 2.427 2.040 2.590 2.257
15 2.935 2.691 2.429 2.039 2.591 2.259

Table 5.20: Match CRs with Varying Distance - M.R.I. Scans

Figure 5.19: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

Method ADC Fat IP multiphase384 OP VOLSER DCE
CALIC 2.931 2.903 2.637 2.116 2.746 2.355
Match 2.935 2.691 2.429 2.04 2.591 2.259

Percent Difference 0.131 -7.305 -7.901 -3.606 -5.660 -4.111

Table 5.21: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

79

The compression ratios for ACRIN-6698 4bval, ACRIN-6698 DWI TRACE,

ISPY2 3 Plane Scout, ISPY2 VOLSER PE2, and ISPY2 VOLSTER PE6 fall between

approximately five and twenty. Figure 5.20 plots the compression ratios in Table 5.22.

In Table 5.18 ACRIN-6698 4bval is represented with 4bval, DWI TRACE represents

ACRIN-6698 DWI TRACE, ISPY2 3 Plane Scout is represented with 3 Plane Scout,

PE2 is used in place of ISPY2 VOLSER PE2, and similarly PE6 represents

ISPY2 VOLSER PE6. It was determined that a distance of fourteen pixels produces

the largest compression ratios for ACRIN-6698 4bval, ACRIN-6698 DWI TRACE,

and ISPY2 3 Plane Scout with values of 6.571, 20.230, and 4.486 respectively. The

remaining two datasets, ISPY2 VOLSER PE2 and ISPY2 VOLSTER PE6, have the

largest compression ratios of 18.483 and 21.237 respectively at a distance of fifteen

pixels.

Figure 5.20: Match CRs with Varying Distance - M.R.I. Scans

80

Distance 4bval DWI TRACE 3 Plane Scout PE2 PE6
1 4.351 6.139 2.824 15.117 17.376
2 5.033 7.184 3.146 16.136 18.565
3 5.525 8.082 3.432 16.749 19.203
4 5.840 8.734 3.641 17.006 19.535
5 6.011 9.022 3.782 17.219 19.757
6 6.175 9.462 3.934 17.428 20.000
7 6.242 9.456 4.005 17.584 20.168
8 6.348 9.835 4.130 17.746 20.371
9 6.367 9.686 4.163 17.889 20.514
10 6.447 10.042 4.278 18.025 20.651
11 6.454 9.818 4.282 18.131 20.764
12 6.520 10.163 4.393 18.247 20.953
13 6.515 9.905 4.380 18.340 21.081
14 6.571 10.230 4.486 18.428 21.187
15 6.557 9.947 4.458 18.483 21.237

Table 5.22: Match CRs with Varying Distance - M.R.I. Scans

Comparing the largest compression ratios of Match to CALIC’s compression ratio

result in Figure 5.21 and Table 5.23. For all of these datasets, CALIC outperforms

Match; however, for ISPY2 VOSER PE2 Match and CALIC perform nearly identi-

cally as the percent difference is -1.623. When compressing ACRIN-6698 DWI Trace

and ISPY2 VOSER PE2 with Match, it slightly under performs compared to CALIC

with percent differences of -5.948% and -3.564% respectively. For the remaining

datasets, ACRIN-6698 4bval and ISPY2 3 Plane Scout, CALIC outperforms Match

with percent differences of -7.344% and -10.681% respectively.

Method 4bval DWI TRACE 3 Plane Scout PE3 PE6
CALIC 7.092 10.877 5.023 18.788 22.022
Match 6.571 10.230 4.486 18.483 21.237

Percent Difference -7.344 -5.948 -10.681 -1.623 -3.564

Table 5.23: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

81

Figure 5.21: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

The final two M.R.I. datasets are ACRIN-6698 DWI MASK and ISPY2 Volser SER.

Both of these datasets result in compression ratios greater than 100. Figure 5.22

plots the compression ratios with varying distance found in Table 5.24. A dis-

tance of fifteen pixels results in the largest compression ratio of 108.843 for ACRIN-

6698 DWI MASK. On the other hand, Match results in the largest compression ratio

of 193.808 for ISPY2 Volser SER at a distance of three pixels.

Comparing these compression ratios to CALIC results in Figure 5.23 and Ta-

ble 5.25. For both of these datasets, compressing with Match results in greater

compression compared to CALIC. Match greatly outperforms CALIC for ACRIN-

6608 DWI Mask with a percent difference of 39.268%. On the other hand, Match

outperforms CALIC ISPY2 Volser SET with a percent difference of 7.389%.

Similar to the C.T. scans, the majority of the results from the M.R.I. scans

are unimpressive, and even disappointing. Out of the 17 M.R.I. datasets, Match

outperforms CALIC for only two of these datasets: ACRIN-6698 DWI MASK and

ISPY2 Volser SER. The compression ratio for ACRIN-6698 DWI MASK increases

82

Figure 5.22: Match CRs with Varying Distance - M.R.I. Scans

Distance ACRIN-6698 DWI MASK ISPY2 Volser SER
1 92.156 189.457
2 95.696 192.793
3 98.622 193.808
4 100.516 193.636
5 102.309 193.333
6 103.420 193.265
7 104.430 192.797
8 104.939 192.781
9 105.419 192.890
10 106.128 193.344
11 106.637 193.246
12 107.138 193.464
13 107.707 193.399
14 108.274 193.312
15 108.843 193.133

Table 5.24: Match CRs with Varying Distance - M.R.I. Scans

by an impressive 39.268% while the increase for ISPY2 Volser SET is only 7.389%.

ACRIN-66698 DWI MASK not only results in the largest percent increase, but it

also is the dataset with the second largest compression ratios. The largest com-

pression ratios come from the only other dataset where Match outperforms CALIC,

83

Method ACRIN-6698 DWI MASK ISPY2 Volser SER
CALIC 78.154 180.473
Match 108.843 193.808

Percent Difference 39.268 7.389

Table 5.25: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

Figure 5.23: CALIC’s CR Compared to Match’s CR - M.R.I. Scans

ISPY2 Volser SER, with an astounding ratio of 193.808. Six of these datasets result

in a percent difference between Match and CALIC less than |5|%: ACRIN-6698 ADC,

ISPY2 multiphase384, ISPY2 VOLSER DCE, ISPY2 VOLSER PE2,

ISPY2 VOLSER PE6, and ISPY2 Water T2fseidealarc BP. This leaves nine datasets

where CALIC outperformed Match: ACRIN-6698 4bval, ACRIN-6698 DWI TRACE,

ISPY2 3 Plane Scout, ISPY2 Fat T2fseidealarc BP, ISPY2 Fieldmap,

ISPY2 IP T2fseidealarc BP, ISPY2 OP T2fseidealarc BP, ISPY2 T2fseidealarc BP,

and ISPY2 WATER T2 fseidealarc BP. Therefore, Match performs better than CALIC

for 11.765% of the M.R.I. scans, nearly the same as CALIC for 35.294% of the M.R.I.

scans, and worse than CALIC for 52.941%. of the M.R.I. scans

84

5.7 Resolution

We’ve seen the results for how the distance affects Match as well as how effective of

a compression technique it is compared to CALIC. These results were explored for

various videos at different resolutions. Figure 5.24 illustrates the best compression

ratios for each of the 22 video datasets. In general, as resolution increases, the

resulting compression ratio decreases.

Figure 5.24: Match CR For Each Video Dataset

Looking at each of these various videos at different resolutions may give us some

idea of how Match is affected by resolution, but there are other variables changing

between the datasets as each video is different. Therefore, to determine how Match

is affected by resolution, four datasets from [37] were tested. Each dataset includes

videos at dimensions [720, 1280, 3], [1080, 1920, 3], and [2160, 3840, 3]. These

resolutions will be referred to as 720, 1080, and 2160 respectively. The first six

frames of each video were compressed using Match with the distance varying from

one to twenty pixels and the compression ratios are examined.

85

The first dataset is Ducks Take Off, where the best compression ratio for the

smallest resolution was found to be 1.496. This compression ratio is slightly better

than the best compression ratio that was determined for the 1080 resolution, which

is 1.468. At resolution 2160, the best compression ratio is 1.391, which is worse than

the other two resolutions. The 720 resolution is 4.110% better than the 1080 and

7.549% better than the 2160. The 1080 resolution is 5.536% better than the 2160

compression. Figure 5.25 illustrates the compression ratios that are in Table 5.26. For

each distance, the 720 resolution results in the best compression while 2160 results

in the worst compression. Therefore, the trend found with Ducks Take Off is that as

resolution increases, Match’s performance decreases.

Figure 5.25: Match CRs with Varying Distance - Ducks Take Off

86

Distance 720 1080 2160
1 1.479 1.435 1.345
2 1.495 1.460 1.377
3 1.496 1.465 1.387
4 1.496 1.467 1.390
5 1.495 1.468 1.391
6 1.494 1.468 1.391
7 1.493 1.468 1.391
8 1.493 1.468 1.391
9 1.162 1.468 1.391
10 1.492 1.468 1.390
11 1.492 1.468 1.390
12 1.492 1.468 1.390
13 1.492 1.468 1.390
14 1.492 1.468 1.389
15 1.492 1.468 1.389
16 1.492 1.468 1.389
17 1.492 1.468 1.389
18 1.492 1.468 1.389
19 1.492 1.468 1.389
20 1.492 1.468 1.389

Table 5.26: Match CRs with Varying Distance - Ducks Take Off

The second dataset is In To Tree. Unlike Ducks Take Off, it was determined that

the best compression results from the 1080 resolution with a ratio of 1.586. The

best compression for 720 and 2160 are 1.564 and 1.555 respectively. Therefore, the

1080 resolution is 1.407% better than the 720 resolution and 1.994% better than

the 2160 resolution. The 720 resolution is 0.579% better than the 2160 resolution.

Figure 5.26 illustrates the compression ratios for Table 5.27. For each distance, the

1080 resolution performs the best, however 720 performs better for shorter distances

compared to the 2160, but for larger distance the 2160 performs better.

87

Figure 5.26: Match CRs with Varying Distance - In To Tree

Distance 720 1080 2160
1 1.544 1.543 1.478
2 1.564 1.578 1.522
3 1.554 1.586 1.541
4 1.547 1.584 1.549
5 1.543 1.582 1.552
6 1.539 1.580 1.553
7 1.536 1.579 1.554
8 1.534 1.578 1.554
9 1.532 1.577 1.554
10 1.531 1.576 1.555
11 1.523 1.576 1.555
12 1.528 1.575 1.555
13 1.527 1.575 1.555
14 1.526 1.575 1.555
15 1.525 1.574 1.555
16 1.525 1.574 1.555
17 1.524 1.573 1.555
18 1.523 1.573 1.555
19 1.528 1.573 1.555
20 1.522 1.573 1.555

Table 5.27: Match CRs with Varying Distance - In To Tree

88

Old Town Cross is similar to the results from In To Tree where the best compres-

sion ratio is given with 1080 resolution. The best compression ratio for 720, 1080,

and 2160 resolutions were found to be 1.517, 1.547, and 1.444 respectively. The 1080

resolution is 1.978% better than the 720 resolution and 7.133% better than the 2160

resolution. The best compression ratio for resolution 720 is 5.055% better than the

compression ratio for resolution 2160. Figure 5.27 illustrates the compression ratio

for each resolution, the exact values are in Table 5.28. For each distance, the 1080

resolution has the best compression while the 2160 has the worst.

Figure 5.27: Match CRs with Varying Distance - Old Town Cross

89

Distance 720 1080 2160
1 1.517 1.533 1.403
2 1.506 1.547 1.431
3 1.498 1.545 1.439
4 1.492 1.543 1.443
5 1.488 1.541 1.443
6 1.485 1.539 1.444
7 1.482 1.538 1.444
8 1.480 1.537 1.444
9 1.477 1.536 1.444
10 1.476 1.535 1.444
11 1.474 1.534 1.443
12 1.472 1.533 1.443
13 1.471 1.532 1.443
14 1.470 1.532 1.443
15 1.469 1.531 1.443
16 1.468 1.531 1.443
17 1.467 1.530 1.443
18 1.466 1.529 1.443
19 1.466 1.529 1.443
20 1.465 1.529 1.443

Table 5.28: Match CRs with Varying Distance - Old Town Cross

Unlike the other datasets, Park Joy has the best compression ratio for resolution

2160 at 1.613. The 720 resolution has the best compression ratio at 1.482 while

the best compression ratio for resolution 1080 is 1.528. The compression ratio for

2160 is 8.839% larger than the ratio for resolution 720 and 5.563% larger than the

ratio for resolution 1080. The best compression ratio for resolution 1080 is 3.104%

larger than the ratio for resolution 720. Therefore, the trend for Park Joy is as

the resolution increases Match’s performance increases. Figure 5.28 illustrates the

compression ratios for the varying resolutions that are found in Table 5.29.

90

Figure 5.28: Match CRs with Varying Distance - Park Joy

Distance 720 1080 2160
1 1.332 1.347 1.374
2 1.390 1.396 1.428
3 1.420 1.442 1.469
4 1.427 1.460 1.498
5 1.433 1.471 1.524
6 1.439 1.477 1.538
7 1.444 1.483 1.550
8 1.448 1.488 1.558
9 1.452 1.493 1.565
10 1.457 1.497 1.572
11 1.461 1.501 1.577
12 1.465 1.505 1.582
13 1.467 1.509 1.587
14 1.469 1.512 1.591
15 1.472 1.515 1.595
16 1.474 1.579 1.599
17 1.476 1.521 1.603
18 1.478 1.526 1.607
19 1.480 1.526 1.610
20 1.482 1.528 1.613

Table 5.29: Match CRs with Varying Distance - Park Joy

91

The trend from Ducks Take Off was determined to be as resolution increases,

Match’s performance decreases. This is the exact opposite of the trend found in

Park Joy. In To Tree and Old Town Cross, on the other hand had the same trend

where the middle resolution performed the best and the largest resolution performed

the worst. Therefore, there is no clear conclusion on how Match is affected by reso-

lution.

5.8 Frame Rate

Only one dataset was found to see how Match is affected by the frame rate. It

is assumed that the faster the frame rate, the more similar the frames are to one

another and therefore the better Match will do. These two datasets are from the 176

resolution videos, they are Claire and Claire(6fps). Claire is the original video while

Claire(6fps) is the video with a 6Hz frame rate that is obtained by skipping 5 frames.

Table 5.30 compares the compression ratio of Match for both videos as the distance

varies from one to ten. For every distance, Match results in a larger compression ratio

for Claire over Claire(6fps). The far right column is the percent difference between

the compression ratios of the two videos, which was calculated using equation 5.2.

However, since there’s only one dataset, it can only be assumed that as frame rate

increases the compression ratio of Match will also increase.

PercentDifference = 100

(
CRClaire − CRClaire(6fps)

CRClaire

)
(5.2)

92

Distance Claire Claire (6fps) Percent Difference
1 2.571 2.348 8.682
2 2.606 2.414 7.401
3 2.590 2.436 5.970
4 2.581 2.438 5.519
5 2.568 2.431 5.313
6 2.567 2.428 5.403
7 2.551 2.421 5.095
8 2.547 2.418 5.048
9 2.539 2.415 4.892
10 2.535 2.413 4.822

Table 5.30: Match CRs with Varying Distance

In this chapter, we went through presenting the compression results of Match

for each of the datasets. They were presented for 22 videos that were organized

by their resolution. In general, for the 176 resolution images, Match outperformed

CALIC. However, the one dataset where Match didn’t have a larger compression

ratio - Miss Am - the percent difference between the two methods was negligible

and thus it can be said that Match performed at least as well as CALIC for these

videos. The same can be said for the 720 resolution videos; however, for two of

these datasets the difference between the resulting compression ratio is minimal. The

1080 resolution is when you can really see that Match does have weaknesses. In

these datasets, Match underperforms CALIC by over 25% for Crowd Run; however

Match did outperform CALIC by over 38% for another one of these datasets, Life.

The final resolution of these video datasets is 4k. These datasets exploited Match’s

computational complexity and took time to run. Not only did it take a lot of time, but

the percent differences for all but Narrator are negligible. Even Narrator’s resulting

compression ratio with Match is only 5% better and thus Match isn’t worth using at

this resolution.

Once the results of the videos were discussed, the results of the CT scans were

93

examined. Overall, the resulting compression ratio of Match is unimpressive, espe-

cially when compared to CALIC. For the most part, the compression difference is so

small it’s negligible, therefore the compression data for all of the CT scans is located

in Appendix A. However, we examined the CT scans that have a percent difference

greater than |5|%. The largest percent increase in compression ratio was found to

be 20% while the largest percent decease was -17%. FLike the Similarly, the results

of the MRI scans are also unimpressive. Out of the 17 datasets, Match results in a

significantly larger compression ratio for only two of these datasets. The first of these

datasets is ACRIN-6698 DWI MASK has an impressive compression ratio increase of

39% while the second, ISPY2 Volser SET, is only 7% better. Out of the remaining

15 MRI scans, CALIC outperformed Match for nine of these datasets and Match

performed the same as CALIC for the remaining six datasets.

Once the results of Match were examined for each of the various datasets, we

looked at how resolution and frame rate affect match. Unfortunately, no clear con-

clusions could be made for either. When looking at how Match performs for the 22

videos of varying resolution, one would believe that as resolution increased, the com-

pression ratio would decrease. However, when we looked at how Match performed

for different resolutions of the same video we found three different trends out of the

four datasets. For frame rate, on the other hand, we only had one dataset with

varying frame rate but the same resolution. The assumption is that as frame rate

increases, Match’s compression ratio increases as well. Logically this makes sense as a

higher frame rate results in less motion and thus less differences between each frame.

However, we only have the one dataset so this cannot be conclusively stated.

Now that we’ve seen how Match performs for each of the datasets, we need to

predict which method should be used on which dataset. This needs to be done for

various reasons, such as Match sometimes outperforms CALIC and sometimes does

94

not. Not only that, but we need to consider if the computational complexity of Match

is worth the resulting compression. Therefore, we now will look at the structural

similarity and the edge quality measurements to see how well they work at selecting

the right method to use for each video and medical scan.

95

Chapter 6: Determining Which

Method to Use

Looking at the compression results that were just discussed, there are times when

Match outperforms CALIC, underperforms CALIC, and performs the same as CALIC.

Not only that, but no clear conclusion can be made for how resolution and frame rate

affect Match, thus they cannot be used to predict which method is best to use.

Match is also a computationally complicated algorithm, therefore it can take a lot

of time for the algorithm to run. Therefore, a way to determine if not only the

computational complexity is worth the wait, but if CALIC would result in a better

compression ratio. It was determined that calculating the structural similarity, SSIM,

and the edge quality between each frame gives a good prediction on which method

will provide the larger compression ratio.

6.1 Structural Similarity

The structural similarity, SSIM, was calculated between each frame of the video se-

quences as well as each slide of the medical images. The SSIM has a value between

zero and one, where the closer to one the SSIM is, the stronger the similarity is be-

tween the frames. In general, the stronger the similarity is between frames, the better

96

Match performs and the larger the compression ratio is. This trend is clearly illus-

trated in Figure 6.1 which plots the average SSIM compared to Match’s compression

ratio. Note that the maximum compression ratio in this graph is 20, which excludes

the two datasets that resulted in compression ratios greater than 100. These two

datasets are ACRIN-6698 DWI MASK and ISPY2 Volser SER with compression ra-

tios of 108.843 and 193.808 respectively. The calculated average SSIM was 0.996 for

ACRIN-6698 DWI MASK and 0.997 for ISPY2 Volser SER, which follows the trend.

Figure 6.1: Average SSIM Compared to Match’s CR

Due to Match’s compression ratio increasing as the average SSIM increases, the

percent difference between Match and CALIC follows the same trend; where the

larger the SSIM, the larger the percent increase. Therefore, plotting the percent

difference calculated between the two methods against the average SSIM results in

Figure 6.2. Between approximately 0.800 and 1.000 the majority of the points are

clustered between 0% and 50%.

Table 6.1 contains the SSIM measurement between frames for the various video

datasets with the far right column being the average SSIM. If the percent difference

97

Figure 6.2: Average SSIM Compared to The Percent Difference Between Match and
CALIC

between Match and CALIC is less than |5|%, then the resulting compression ratios

are similar enough that it doesn’t matter which compression method is used. A

threshold of 0.820 is applied to determine if Match or CALIC should be used, where

an average SSIM greater than 0.820 results in a prediction of Match.

All of the 176 videos have average SSIM measurements greater than 0.820, there-

fore the predicted method to use is Match. Since all but two of the 176 videos have

percent increases greater than |5|%, Claire (6fps) and Miss Am, the SSIM predic-

tions are accurate. Out of these videos, Foreman was found to have the smallest

average SSIM of 0.885, however Foreman had the highest compression ratio increase

of 13.971%. The average SSIM for Miss Am was found to be 0.975, which would

lead one to believe that Match would outperform CALIC. However, Miss Am was the

only dataset that underperformed with a percent decrease of -1.560% when compared

to CALIC. Thankfully, due to such a small percent difference, either method would

suffice in compressing this video.

Match outperformed CALIC for three of the 720 datasets: Johnny, KristenAnd-

98

Sara, and Mobcal with percent increases of 14.677%, 15.442%, and 9.684% respec-

tively. Their corresponding average SSIM measurements were calculated to be 0.942,

0.947, and 0.923. On the other hand, Mobcal and Parkrun had minor percent de-

creases of -2.096% and -1.776% when compressed with Match. Their average SSIM

measurements were determined to be 0.279 and 0.418 respectively. Since they are

less than 0.820, the method predicted to perform the best is CALIC and due to the

percent differences being less than |5|%, the predicted method is accurate.

Only two of the 1080 datasets, Controlled Burn and Life, resulted in large percent

increases of 17.239% and 38.581% respectively. Their average SSIM measurements

were determined to be 0.965 and 0.890, therefore Match is accurately predicted to be

the preferred method. For two of the datasets: Station2, and Aspen, CALIC slightly

outperforms match with percent differences of -6.602%, and -7.774% respectively.

Their corresponding averages SSIMs were calculated to be 0.568, and 0.780, which is

less than 0.820 and therefore CALIC is accurately predicted to be the better compres-

sion method for these videos. The remaining four 1080 datasets: Riverbed, Blue Sky,

Crowd Run, and Dinner result in percent differences less than |5%| with values of

-4.781%, -3.627%, -3.856%, and 1.852% respectively. Their corresponding average

SSIM measurements are 0.395, 0.660, 0.658, and 0.984. Applying the 0.820 thresh-

old results in Dinner being the only dataset where Match is the predicted method.

Therefore, the average SSIM accurately predicts which method to use for all of the

1080 datasets.

In Table 6.1, all of the 4k videos are listed without the Netflix in their title. All

but one of the 4k video datasets, Netflix Narrator, results in percent differences that

are less than |5%|. The percent differences found are 0.373%, 2.319%, and -0.645%

for Netlfix Boat, Netflix BoxingPractice, and Netflix Tango respectively. Their cor-

responding SSIM measurement were calculated to be 0.755, 0.747, and 0.715. Due

99

to the average SSIM for these datasets being less than 0.820, the predicted method

is CALIC. Netflix Narrator, on the other hand, has an SSIM of 0.927 and has a per-

cent difference of 5.314%; and thus Match is accurately predicted to be the preferred

method. However, Match is computationally complicated and thus takes more time

to run the higher the resolution. None of these percent differences are large enough to

outweigh the run-time Match takes. Therefore, CALIC should be used to compress

the 4k resolution videos as the run-time is nearly instantaneous.

The average SSIM results in 100% accuracy for the various video datasets that

were collected.

Resolution Dataset 1 - 0 2 - 1 3 - 2 4 - 3 5 - 4 Average

176

Claire 0.981 0.971 0.989 0.990 0.987 0.984
Claire (6fps) 0.916 0.943 0.972 0.934 0.981 0.949
Carphone 0.891 0.939 0.850 0.928 0.969 0.915
Foreman 0.882 0.870 0.880 0.889 0.904 0.885

720

Miss Am 0.973 0.975 0.976 0.976 0.975 0.975
Johnny 1.000 0.929 0.927 0.926 0.929 0.942

KristenAndSara 1.000 0.935 0.935 0.934 0.933 0.947
Mobcal 0.921 0.932 0.914 0.916 0.934 0.923

1080

Parkrun 0.272 0.300 0.267 0.263 0.293 0.279
Shields 0.423 0.425 0.417 0.412 0.412 0.418
Blue Sky 0.660 0.660 0.660 0.660 0.661 0.660

Controlled Burn 0.966 0.969 0.966 0.967 0.958 0.965
Crowd Run 0.604 0.655 0.683 0.685 0.663 0.658
Riverbed 0.404 0.403 0.395 0.396 0.379 0.395
Station2 0.563 0.566 0.566 0.570 0.573 0.568
Aspen 0.757 0.784 0.763 0.787 0.808 0.780
Dinner 0.993 0.990 0.982 0.977 0.978 0.984
Life 0.894 0.890 0.889 0.889 0.888 0.890

4k

Boat 0.756 0.759 0.757 0.753 0.750 0.755
BoxingPractice 0.749 0.748 0.748 0.746 0.746 0.747

Narrator 0.926 0.927 0.927 0.927 0.926 0.927
Tango 0.714 0.714 0.714 0.716 0.718 0.715

Table 6.1: SSIM of Video Datasets

The SSIM measurements of the various C.T. scans are split the same way as Ap-

100

pendix A, starting with the five miscellaneous datasets. Three of these five datasets,

4D-Lung, CT FUSION, and WB MAC P690, have percent differences less than |5%|

with values of 4.805%, 4.285%, and -1.785% respectively. Their corresponding aver-

age SSIM measurements were calculated to be 0.820, 0.85, and 0.968. Therefore, with

their average SSIM measurements being greater than or equal to 0.820, Match is the

selected method. Match outperforms CALIC by 13.895% for TCGA-38-4628; how-

ever, its average SSIM was calculated to be 0.691 which is less than 0.820. Therefore,

CALIC would inaccurately be predicted to perform better. Similarly, CT FUSION

has an average SSIM measurement of 0.600 but Match underperformed CALIC by

-17.227%; therefore the average SSIM accurately predicts that CALIC should be the

method used to compress this dataset.

Dataset 1 - 0 2 - 1 3 - 2 4 - 3 5 - 4 Average
4D-Lung 0.811 0.817 0.824 0.825 0.825 0.820

TCGA-38-4628 0.698 0.690 0.684 0.694 0.690 0.691
NLST-LSS 0.470 0.899 0.542 0.545 0.546 0.600
CT FUSION 0.859 0.858 0.859 0.856 0.850 0.857

WB MAC P690 0.945 0.963 0.974 0.977 0.980 0.968

Table 6.2: SSIM of Miscellaneous C.T. Scans

The largest percent difference between Match’s compression ratio and CALIC’s

compression ratio for the LIDC-IRDI datasets was determined to be 1.789%. Since

this increase is so small, predicting either method would result in nearly the same

compression ratio. The SSIM measurements between slides as well as the average

SSIM are found in Table 6.3. In numerical order of the datasets, the average SSIM

was calculated to be 0.881, 0.726, 0.836, 0.824, 0.886, 0.918, 0.751, 0.865, 0.867,

and 0.839. Any average SSIM greater than 0.800 should be compressed with Match;

which results in all but LIDC-IRDI-0002 and LIDC-IRDI-0007 being compressed with

Match.

101

Dataset 1 - 0 2 - 1 3 - 2 4 - 3 5 - 4 Average
LIDC-IRDI-0001 0.879 0.884 0.882 0.884 0.878 0.881
LIDC-IRDI-0002 0.727 0.715 0.726 0.728 0.736 0.726
LIDC-IRDI-0003 0.840 0.837 0.835 0.834 0.834 0.836
LIDC-IRDI-0004 0.818 0.827 0.825 0.822 0.829 0.824
LIDC-IRDI-0005 0.882 0.884 0.891 0.889 0.884 0.886
LIDC-IRDI-0006 0.913 0.921 0.920 0.920 0.917 0.918
LIDC-IRDI-0007 0.747 0.753 0.751 0.756 0.748 0.751
LIDC-IRDI-0008 0.871 0.866 0.862 0.862 0.866 0.865
LIDC-IRDI-0009 0.868 0.867 0.870 0.865 0.867 0.867
LIDC-IRDI-0010 0.837 0.841 0.839 0.839 0.838 0.839

Table 6.3: SSIM of LIDC-IRDI C.T. Scans

The SSIM between slides as well as the average SSIM for the seven various AMC

C.T. scans with 36 individual datasets is in Table 6.4.

In AMC-001, datasets WB MAC P690, CT FUSION, and Coronals have respec-

tive percent differences of -1.785%, 4.285% and 0.301%. Since the percent differ-

ences are so small, using either CALIC or Match will result in a nearly identi-

cal compression. These two datasets have average SSIM measurements of 0.968,

0.857, and 0.538 respectively. Due to the average SSIM for WB MAC P690 and

CT FUSION being greater than 0.820 it’s predicted that Match should be the method

chosen while CALIC would be chosen for Coronals. Using the average SSIM to pre-

dict which method to use for WB NAC P690 and CHST 1.25MM SHARP, selects

the wrong method. WB NAC P690 has an average SSIM of 0.923, which predicts

Match would result in the larger compression ratio; however, Match under-performs

CALIC by -11.587%. An average SSIM measurement of 0.767 was calculated for

CHST 1.25MM SHARP, thus CALIC is the method predicted to perform the best,

which is incorrect as Match results in a percent increase of 10.159%.

AMC-002 contains two datasets, CHEST 1.0 B45f and coronals. Their average

SSIM measurements were calculated to be 0.838 and 0.690 respectively. Since the

102

average SSIM for CHEST 1.0 B45f is greater than 0.820, it’s predicted that Match is

the compression technique that results in better compression. The percent difference

between Match and CALIC for this dataset was determined to be -1.064%, which is

minimal and thus both methods result in nearly equivalent compression. On the other

hand, coronals has an average SSIM that is less than 0.820 and therefore CALIC is

the method that will result in the best compression ratio. This predictions is correct

as CALIC slightly outperforms Match with a percent difference of -5.774%.

Seven datasets are found under AMC-003: CORONAL MPR 2MM, CT FUSION,

CTAC, THORAX LUNG 1MM, THORAX LUNG 2MM, WB MAC P690, and

WB NAC P690. For CORONAL MPR 2MM, CALIC outperforms Match with a per-

cent difference of -7.1224%. The average SSIM for this dataset was calculated to be

0.666 which reflects that CALIC is the method that results in the best compression

as the average SSIM is less than 0.820. CT FUSION compresses slightly better with

Match while CTAC compresses better with Match with corresponding percent differ-

ences of 5.451% and 8.878% respectively. Both of these datasets have average SSIM

measurements greater than 0.820 with values of 0.938 and 0.976. Therefore, for these

three datasets, the average SSIM accurately predicts which method results in the

best compression. The remaining datasets, however, all have minor percent differ-

ences with the largest being -3.579%. Due to this, it doesn’t matter which method is

chosen to compress these datasets. THORAX LUNG 1MM, THORAX LUNG 2MM,

WB MAC P690, and WB NAC P690 average SSIM measurements were calculated to

be 0.821, 0.821, 0.978, and 0.952 respectively. Since all of these values are greater

than 0.820, Match would be the chosen compression method.

Similar to AMC-001, AMC-004 contains five datasets: coronals, CT FUSION,

THORAX 1.0 B45f, WB MAC P690, and WB NAC P690. Their corresponding av-

erage SSIM measurements were calculated to be 0.623, 0.823, 0.699, 0.967, and

103

0.928 respectively. The percent difference for the first three datasets, coronals,

CT FUSION, and THORAX 1.0 B45f are -2.834%, 1.703%, and -1.064%. These are

all negligible differences, therefore it doesn’t matter which method is used to com-

press these. The average SSIM would predict CALIC for the first and third while

Match would be chosen for the second. WB MAC P690, and WB NAC P690, on the

other hand, have more significant percent differences of -6.612% and -8.104%. Both

of these datasets should be compressed with CALIC, however, their average SSIM

measurements are both greater than 0.820 and thus the method would inaccurately

be predicted.

Like the previous batch of datasets, AMC-005 contains five datasets:

CHEST 1.0 B45f, CHEST 2.0 coronal, CHEST 2.0 Sagittal, CHEST 5.0 B31f, and

CHEST 7.0 MIP Axia. For CHEST 1.0 B45f and CHEST 5.0 B31f, either method

could be chosen to result in the best compression as the percent differences found

for these two datasets are -1.818% and -2.779% respectively. Their average SSIM

measurements were found to be 0.784 and 0.653 which are both less than 0.820 and

therefore CALIC would be the method that’s predicted to have the larger compres-

sion ratio. CHEST 2.0 coronal and CHEST 2.0 Sagittal both have average SSIM

measurements greater than 0.820 with values 0.863 and 0.869 respectively. There-

fore, Match would be incorrectly chosen to predict these two datasets as Match under

performs CALIC by -12.838% and -10.935-6% respectively. The only dataset in this

series that results in a correct prediction that Match should be used to compress the

sequence is CHEST 7.0 MIP Axia with an average SSIM measurement of 0.943. For

this dataset, Match slightly outperformed CALIC with a percent increase of 6.725%.

Out of these five datasets, two were incorrectly predicted.

AMC-006 has seven datasets like AMC-003. These datasets consist of AP 1MM,

CORONAL AP, CT images, LUNG 1MM, PET BODY CTAC, PET BODY NO AC,

104

and ST CAP 5MM. Between AP 1MM, PET BODY CTAC, and ST CAP 5MM, the

largest percent difference is -2.083%. The corresponding SSIM measurements for these

three datasets was calculated to be 0.892, 0.950, and 0.850 respectively. Since all of

these average SSIM measurements are greater than 0.820, Match would accurately

be the chosen compression method due to the negligible differences between the two

methods. Similarly, CORONAL AP and PET BODY NO AC have average SSIM

measurements of 0.897 and 0.922 and therefore Match would also be chosen. How-

ever, Match under performs CALIC for these two datasets by -9.179% and -6.828%

respectively. Therefore these two datasets are inaccurately predicted. For CT images

and LUNG 1MM Match would also be the predicted method as they have average

SSIM measurements of 0.932 and 0.874 respectively. However, the prediction for these

two are accurate as Match outperforms CALIC by 20.365% and 6.758%.

Like many of the other AMC sets, AMC-007 also contains five datasets consisting

of THORAX 1.0 B45f, Thorax 2.0 SPO cor, Thorax 2.0 SPO sag, Thorax 5.0 B31f

and Thorax 7.0 MIP ax. Three of these five datasets, THORAX 1.0 B45f,

Thorax 5.0 B31f and Thorax 7.0 MIP ax, have small percent differences of -2.097%,

-1.183%, and 2.506% respectively. Due to the small percent error, it doesn’t matter

which method the average SSIM predicts. In the same order, the average SSIM

was calculated to be 0.781, 0.721, and 0.834. CALIC is the chosen method for

the first two datasets while Match is selected for the third. The average SSIM for

Thorax 2.0 SPO cor is 0.805 and the average SSIM for Thorax 2.0 SPO sag was cal-

culated to be 0.831; sticking to the same threshold of 0.820, the average SSIM ac-

curately predicts that CALIC will result in a higher compression ratio for the first

dataset but inaccurately predicts that Match will result in larger compression for the

second, where CALIC outperforms Match for each of these datasets by -8.571% and

-8.217% respectively.

105

Dataset 1-0 2-1 3-2 4-3 5-4 Average

1

WB NAC P690 0.847 0.916 0.941 0.953 0.958 0.923
WB MAC P690 0.945 0.963 0.974 0.977 0.980 0.968
CT FUSION 0.859 0.858 0.859 0.856 0.850 0.857

coronals 0.563 0.568 0.586 0.596 0.603 0.583
CHST 1.25MM SHARP 0.770 0.766 0.767 0.768 0.765 0.767

2
CHEST 1.0 B45f 0.834 0.842 0.836 0.836 0.843 0.838

coronals 0.699 0.694 0.687 0.683 0.685 0.690

3

CORONAL MPR 2MM 0.687 0.690 0.675 0.645 0.631 0.666
CT FUSION 0.939 0.940 0.940 0.937 0.934 0.938

CTAC 0.976 0.976 0.977 0.975 0.974 0.976
THORAX LUNG 1MM 0.818 0.819 0.827 0.821 0.819 0.821
THORAX LUNG 2MM 0.818 0.819 0.827 0.821 0.819 0.821

WB MAC P690 0.975 0.965 0.981 0.983 0.986 0.978
WB NAC P690 0.898 0.940 0.956 1.000 0.964 0.952

4

coronals 0.632 0.629 0.622 0.618 0.616 0.623
CT FUSION 0.833 0.829 0.822 0.817 0.812 0.823

THORAX 1.0 B45f 0.685 0.703 0.701 0.701 0.702 0.699
WB MAC P690 0.940 0.963 0.974 0.978 0.981 0.967
WB NAC P690 0.856 0.918 0.947 0.954 0.964 0.928

5

CHEST 1.0 B45f 0.785 0.788 0.782 0.781 0.786 0.784
CHEST 2.0 coronal 0.890 0.870 0.861 0.852 0.844 0.863
CHEST 2.0 Sagittal 0.870 0.870 0.873 0.867 0.865 0.869
CHEST 5.0 B31f 0.658 0.658 0.660 0.643 0.648 0.653

CHEST 7.0 MIP Axia 0.941 0.940 0.942 0.945 0.946 0.943

6

AP 1MM 0.891 0.893 0.893 0.890 0.890 0.892
CORONAL AP 0.954 0.925 0.896 0.871 0.841 0.897

CT images 0.934 0.933 0.934 0.932 0.929 0.932
LUNG 1MM 0.844 0.838 0.842 1.000 0.847 0.874

PET BODY CTAC 0.937 0.949 0.953 0.956 0.955 0.950
PET BODY NO AC 0.902 0.920 0.926 0.931 0.930 0.922

ST CAP 5MM 0.855 0.851 0.850 0.843 0.850 0.850

7

THORAX 1.0 B45f 0.776 0.783 0.783 0.782 0.780 0.781
Thorax 2.0 SPO cor 0.808 0.802 0.805 0.807 0.804 0.805
Thorax 2.0 SP sag 0.833 0.834 0.830 0.829 0.828 0.831
Thorax 5.0 B31f 0.726 0.720 0.724 0.723 0.711 0.721

Thorax 7.0 MIP ax 0.826 0.845 0.833 0.836 0.832 0.834

Table 6.4: SSIM of AMC C.T. Scans

106

The SSIM measurements for the ten datasets in 4D-Lung are in Table 6.6. For

only one of these datasets, 60, Match outperformed CALIC with a percent increase

of 22.975%. The average SSIM for this dataset was calculated to be 0.837 which

is greater than 0.800 and therefore would accurately predict that Match results in a

larger compression ratio. The remaining C.T. scans in this set result in minor percent

differences between the two methods; and thus either method predicted would be an

accurate prediction. In order from left to right excluding dataset 60, the average

SSIM measurements were calculated to be 0.817, 0.821, 0.819, 0.812, 0.809, 0.811,

0.779, 0.810, and 0.807. Of these datasets with negligible differences, the only scan

with an SSIM measurement greater than 0.820 is 10 and is the only Match predicted

dataset in this batch; the remainder will be compressed with CALIC.

Dataset 1-0 2-1 3-2 4-3 5-4 Average
0 0.821 0.812 0.813 0.819 0.817 0.817
10 0.826 0.822 0.819 0.819 0.819 0.821
20 0.821 0.819 0.817 0.820 0.817 0.819
30 0.814 0.811 0.812 0.813 0.810 0.812
40 0.810 0.806 0.808 0.809 0.811 0.809
50 0.812 0.813 0.809 0.811 0.809 0.811
60 0.812 0.808 0.759 1.000 0.807 0.837
70 0.813 0.810 0.646 0.814 0.814 0.779
80 0.818 0.808 0.808 0.808 0.808 0.810
90 0.814 0.803 0.807 0.809 0.805 0.807

Table 6.5: SSIM of 4D-Lung C.T. Scans

Table 6.6 contains the SSIM measurements for the C.T. scans under CMB-CRC-

MSB-02381, which consist of datasets Body 5.000CE 1, Body 5.000CE 2, Body 5.0CE 1,

and Body 5.0CE 2. The first two datasets, Body 5.000CE 1 and Body 5.000CE 2,

result in Match slightly under-performing CALIC with percent differences of -6.317%

and -5.100% respectively. The average SSIM for these two datasets was calculated

to be 0.575 and 0.775, which accurately predicts CALIC is the better compression

107

method with the threshold of 0.820. The remaining two datasest, Body 5.0CE 1 and

Body 5.0CE 2, both have minor percent differences of 1.486% and -1.295% respec-

tively. Their average SSIM measurements were calculated to be 0.864 and 0.750,

which leads to a prediction of Match for Body 5.0CE 1 and a prediction of CALIC

for Body 5.0CE 2. Due to the small percent differences, both methods result in near

identical compressions, so the prediction can’t be wrong.

Dataset 1-0 2-1 3-2 4-3 5-4 Average
Body 5.000CE 1 0.562 0.583 0.586 0.571 0.572 0.575
Body 5.000CE 2 0.776 0.786 0.778 0.776 0.760 0.775
Body 5.0CE 1 0.880 0.875 0.866 0.855 0.847 0.864
Body 5.0 CE 2 0.742 0.744 0.755 0.753 0.758 0.750

Table 6.6: SSIM of CMB-CRC-MSB-02381 C.T. Scans

The SSIM measurements for the 17 M.R.I. datasets are in Table 6.7. Six of these

datasets, ACRIS-6698 ADC, ISPY2 multiphase384, ISPY2 VOLSER DCE,

ISPY2 VOLSER PE2, ISPY2 VOLSER PE6, and ISPY2 Water T2fseidealarc BP,

have minor percent differences between the two compression methods of 0.136%,

-3.592%, -3.626%, -1.623%, -3.565%, and -4.933%. Therefore, no matter which

method the average SSIM predicts, it will be correct. The average SSIM was cal-

culated for each of these datasets to be 0.938, 0.622, 0.606, 0.947, 0.957, and 0.561

respectively. For the threshold, 0.820, ACRIS-6698 ADC, ISPY2 multiphase384,

ISPY2 VOLSER DCE, and ISPY2 Water T2fseidealarc BP would all be selected to

be compressed with CALIC. For the remaining two datasets, ISPY2 VOLSER PE2,

and ISPY2 VOLSER PE6, Match is be the selected compression method.

The average SSIM inaccurately predicts that Match should result in a larger

compression ratio than CALIC for four datasets. These four datasets are ACRIN-

6698 4bval with an average SSIM of 0.938, ACRIN-6698 DWI TRACE with an av-

erage SSIM of 0.961, an average SSIM value of 0.897 for ISPY2 3 Plane Scout, and

108

ISPY2 Fat T2fseidealarc BP with an average SSIM of 0.839. Match under-performed

for these datasets with percent decreases of -7.346%, -5.948%, -10.691%, and -7.303%

respectively.

On the other hand, the average SSIM accurately predicts seven of these datasets:

ACRIN-6698 DWI MASK, ISPY2 Fieldmap, ISPY2 IP T2fseidealarc BP,

ISPY2 OP T2fseidealarc BP, ISPY2 T2fseidealarc BP, ISPY2 Volser SER, and

ISPY2 WATER T2 fseidealarc BP. In order, these datasets have average SSIM mea-

surements of 0.996, 0.412, 0.802, 0.808, 0.447, 0.997, and 0.608 and percent differences

of 39.267%, -14.997%, -7.888%, -5645%, -5.896%, 7.389%, and -5.896%. Applying the

0.820 threshold results in Match being the prediction for ACRIN-6698 DWI MASK

and ISPY2 Volser SER and CALIC being the prediction for the remainder of the

datasets.

Dataset 1-0 2-1 3-2 4-3 5-4 Average
ACRIN-6698 4bval 0.941 0.940 0.938 0.936 0.935 0.938
ACRIS-6698 ADC 0.941 0.940 0.938 0.936 0.935 0.938

ACRIN-6698 DWI MASK 0.999 0.997 0.996 0.993 0.994 0.996
ACRIN-6698 DWI TRACE 0.969 0.967 0.957 0.958 0.956 0.961

ISPY2 3 Plane Scout 0.908 0.908 0.904 0.890 0.873 0.897
ISPY2 Fat T2fseidealarc BP 0.853 0.850 0.844 0.829 0.818 0.839

ISPY2 Fieldmap 0.404 0.392 0.391 0.436 0.439 0.412
ISPY2 IP T2fseidealarc BP 0.826 0.815 0.801 0.792 0.778 0.802

ISPY2 multiphase384 0.615 0.617 0.622 0.626 0.632 0.622
ISPY2 OP T2fseidealarc BP 0.831 0.824 0.807 0.797 0.781 0.808
ISPY2 T2fseidealarc BP 0.453 0.466 0.455 0.414 0.446 0.447
ISPY2 VOLSER DCE 0.601 0.607 0.608 0.602 0.610 0.606
ISPY2 VOLSER PE2 0.969 0.961 0.946 0.931 0.925 0.947
ISPY2 VOLSER PE6 0.980 0.971 0.959 0.943 0.931 0.957
ISPY2 Volser SER 1.000 0.999 0.998 0.995 0.992 0.997

ISPY2 WATER T2 fseidealarc BP 0.628 0.620 0.603 0.602 0.588 0.608
ISPY2 Water T2fseidealarc BP 0.580 0.571 0.558 0.557 0.539 0.561

Table 6.7: SSIM of M.R.I. Scans

109

If the threshold for determining which method to use based on the average SSIM

is set to 0.820, then fourteen of the 104 datasets are inaccurately predicted, resulting

in an accuracy of 86.539%. The threshold remained at 0.820 for the medical images as

there’s a lot of correlation between the slides in the scans as the structural similarity

considers luminance, contrast, and structure when calculated how alike two frames

are.

6.2 Edge Stability

For each frame in each dataset, the edges were found and the mean squared error was

calculated between the edge images giving the edge quality measurements. Once the

measurement was calculated between each frame, the average was taken. Similar to

the SSIM measurement, the edge quality measurement falls in a range between zero

and one; however, unlike the SSIM, the closer the measurement is to zero, the better

the edge quality. Figure 6.3 illustrates the average edge stability measurement com-

pared to Match’s compression ratio, where visually looks as though there is no clear

trend. However, looking strictly at the average edge quality measurement for strictly

the video datasets, the better the edge stability, the smaller the value and the better

Match is going to perform. On the other hand, the C.T. datasets result in larger com-

pression ratios spaced from 0.100 and 0.600. Similar to the C.T. scans, the M.R.I.

datasets also have large compression ratios, but between the range 0.300 and 0.600.

Therefore, a different prediction threshold is necessary. Like with the SSIM measure-

ment, the maximum compression ratio in this graph is 20, which excludes the two

datasets that resulted in compression ratios greater than 100. These two datasets are

ACRIN-6698 DWI MASK and ISPY2 Volser SER with compression ratios of 108.843

and 193.808 respectively. The average edge stability measurement was calculated to

110

be 0.086 for ACRIN-6698 DWI MASK and 0.422 for ISPY2 Volser SER; where the

first dataset is the only medical one that follows the clear trend of the videos.

Figure 6.3: Average Edge Stability Measurement Compared to Match’s CR

111

Comparing the average edge stability measurement to the percent difference be-

tween CALIC and Match results in the plot in Figure 6.4. Similar to the comparison

between the measurement and the compression ratio, the closer to zero the edge

stability is, the larger the percent difference. However, this trend is clearly seen in

the video datasets and the single medical dataset that follows the trend from the

comparison with the compression ratio, ACRIN-6698 DWI MASK. For this M.R.I.

dataset, Match outperformed CALIC by 39.267%. For the C.T. scans, all but seven

of the datasets have edge quality measurements that fall between 0.100 and 0.500,

with the largest percent increase between 0.400 and 0.500. Similarly, most of the

M.R.I. datasets have edge quality measurements between 0.300 and 0.600, with the

majority of the percent differences being negative.

Figure 6.4: Average Edge Stability Measurement Compared to The Percent Difference
Between Match and CALIC

112

Excluding the 4k video datasets, the smallest compression ratio when using Match

is 1.446 for Crowd Run, where Match slightly under-performs compared to CALIC

by -3.856%. The edge quality measurement was calculated to be 0.163, which is

the largest measurement in the video datasets. Figure 6.5 is the last image that is

compressed with Match for Crowd Run and is labeled as the fifth image. ACRIN-

6698 DWI MASK, on the other hand, has a compression ratio of 108.843 when Match

is the selected prediction method. Match greatly outperforms CALIC by 39.267%,

however, its edge quality measurement was calculated to be 0.086. Figure 6.6 is the

fifth image but of ACRIN-6698 DWI MASK.

Visually, Crowd Run has very clear, hard lines throughout the image, making it

easy to find the edges in the image. When compared to one of the many C.T. scans,

such as WB MAC P690 from the miscellaneous datasets, it’s clear that the edges of

the subject aren’t nearly as clear and look blurry. This causes the edge detection to

be less accurate and thus a larger threshold is needed for determining which method

results in the larger compression for the medical images.

Figure 6.5: Crowd Run [37] Figure 6.6: WB MAC P690 [38]

Figure 6.7 is the resulting edge images for each of the images that were compressed.

The edge quality measurement is the mean squared error between each of these edge

113

images. Visually, all of these edge images look identical, hence why the quality

measurement is so low. However, all but one of the medical images has an edge

quality measurement greater than 0.100, which is the video threshold for determining

which prediction method results in better compression. Clear differences can be seen

between the different edge detection images in Figure 6.8, which leads to a larger

edge quality measurement. Since the majority of the medical images don’t have clear

defined edges like the video datasets, the threshold for which method to use needs to

be adjusted to 0.300.

Figure 6.7: Edges of Crowd Run

114

Figure 6.8: Edges of WB MAC P690

Table 6.8 contains the edge quality measurements between the frames of the videos

with the far right column being the average.

For the 176 resolution images, all of the edge quality measurements were found to

be less than 0.100. Match outperforms CALIC for Claire and Foreman with cor-

responding percent increase of 9.314% and 13.971%. Their average edge quality

measurements were calculated to be 0.014 and 0.081 respectively. When compressing

Carphone with Match, its resulting compression ratio is 5.015% better than CALIC’s,

therefore Match slightly outperforms CALIC. Carphone’s resulting average edge sta-

bility measurement was determined to be 0.069. For the remaining two datasets,

Clair(6fps) and Miss Am, on the other hand, have minor percent differences between

the two methods, 2.193% and -1.555% respectively. Therefore, no matter which

method is selected to compress these datasets results in near identical compression.

Their corresponding average edge stability measurements are 0.031 and 0.019.

115

Three of the 720 resolution images, Johnny, kristenAndSara, and Mobcal, com-

pressing with Match results in a larger compression ratio than CALIC with percent

differences of 13.906%, 15.441%, and 9.684% respectively. Like the 176 resolution

images, their corresponding edge quality measurements are less than 0.100 with val-

ues of 0.015, 0.012, and 0.064. Parkrun and Shields, on the other hand, have minor

percent differences of -2.096% and -1.776% respectively.

Out of the eight 1080 resolution images, only two of the datasets, Controlled Burn

and Life, are best compressed with CALIC with ratio increases of 17.239% and

38.581% respectively. Their corresponding edge stability measurements were cal-

culated to be 0.050 and 0.058, which both are less than 0.100. On the other hand,

CALIC compresses better than Match for Station2 and Aspen with percent differ-

ences of -6.602%, and -7.774% respectively. It was calculated that Station2 has an

average edge stability measurement of 0.105, and Aspen has an average edge stabil-

ity measurement of 0.047. Therefore, it will be accurately predicted that Station2

should be compressed with CALIC. On the other hand, it is incorrectly predicted that

Match should be the method to compress Aspen. The remaining datasets: Blue Sky,

Crowd Run, Riverbed, and Dinner all have minor percent differences between the

two methods of -3.627%, -3.856%, -4.781% and -1.852%. Their corresponding edge

stability measurements are 0.127, 0.163, 0.151, and 0.000 respectively. However, due

to the minor percent differences, both methods result in near identical compression

and thus the predicted method cannot be incorrect.

The 4k resolution datasets are represented without the Netflix portion of their

name in Table 6.8. Three of the 4k resolution videos, Netflix Boat,

Netflix BoxingPractice, and Netflix Tango, all have minor percent differences between

the two methods of 0.373%, 2.319%, and -0.645% respectively. Their corresponding

average edge stability measurements were calculated to be 0.118, 0.052, and 0.018;

116

where the first will be compressed with CALIC and the others with Match. Due

to their low percent differences, it doesn’t matter which method is predicted to use.

Netflix Narrator, on the other hand, is compressed best with Match with a percent

difference of 5.341% and its average edge stability measurement is 0.013, which fol-

lows the trend. However, none of these percent increases are large enough to make

the computationally difficult method of Match worth it. Therefore, all of these 4k

resolution datasets should be compressed with CALIC, and thus it doesn’t matter

how accurate the edge stability measurement is at predicting which method to use

for this resolution.

Resolution Dataset 1-0 2-1 3-2 4-3 5-4 Average

176

Claire 0.017 0.022 0.011 0.008 0.012 0.014
Claire (6fps) 0.047 0.034 0.021 0.036 0.017 0.031
Carphone 0.091 0.061 0.096 0.064 0.034 0.069
Foreman 0.094 0.087 0.076 0.077 0.072 0.081
Miss Am 0.020 0.020 0.017 0.019 0.017 0.019

720

Johnny 0.000 0.018 0.019 0.019 0.019 0.015
kristenAndSara 0.000 0.015 0.015 0.015 0.016 0.012

Mobcal 0.069 0.053 0.076 0.075 0.049 0.064
Parkrun 0.267 0.257 0.265 0.264 0.259 0.262
Shields 0.217 0.216 0.220 0.221 0.221 0.219

1080

Blue Sky 0.127 0.128 0.127 0.126 0.125 0.127
Controlled Burn 0.051 0.039 0.050 0.047 0.061 0.050

Crowd Run 0.181 0.163 0.154 0.153 0.163 0.163
Riverbed 0.164 0.150 0.150 0.142 0.150 0.151
Station2 0.106 0.105 0.105 0.104 0.105 0.105
Aspen 0.049 0.047 0.050 0.048 0.040 0.047
Dinner 0.000 0.000 0.000 0.001 0.000 0.000
Life 0.056 0.059 0.058 0.058 0.060 0.058

4K

Boat 0.117 0.116 0.118 0.118 0.118 0.118
BoxingPractice 0.051 0.052 0.052 0.052 0.053 0.052

Narrator 0.014 0.014 0.013 0.013 0.013 0.013
Tango 0.018 0.018 0.019 0.019 0.018 0.018

Table 6.8: Edge Quality Measurement of Videos

117

The edge quality measurements were calculated for the C.T. scans; however, unlike

the video datasets, all of the C.T. scans have measurements between 0.100 and 0.700.

This is clearly illustrated in Figure 6.3. If the threshold of 0.100 remains the same,

then CALIC would be the method predicted for all of the C.T. datasets. If all of the

predictions are CALIC, then the accuracy of the edge quality measurement prediction

method would become 89.423% as ten medical datasets: nine C.T. scans and one

M.R.I. scan; would be incorrectly predicted. However, if the threshold remains 0.100

for the video datasets, but is adjusted to 0.300 for the medical images, then the

accuracy greatly improves.

118

Table 6.9 contains the edge quality measurements for the miscellaneous C.T.

datasets, where the far right column is the average. Of these five datasets, three have

percent differences that are less than |5|%: 4D-Lung, CT FUSION, andWB MAC P690.

Therefore, the predicted method for each of these datasets will be correct either way.

Of these three datasets, only 4D-Lung has an average edge stability measurement

less than 0.300 with a value of 0.263 and would thus be compressed with Match.

The other two, CT FUSION and WB MAC P690, have corresponding average edge

quality measurements of 0.433 and 0.473; therefore CALIC is the predicted method.

TCGA-38-4628 is the only dataset where Match outperforms CALIC with a per-

cent increase of 13.895%, however it has an average edge stability of 0.353, which

leads to the inaccurate prediction that CALIC would result in better compression.

WB MAC P690, on the other hand, is best compressed with CALIC as Match under

performs by -17.227%. The average edge stability measurement for this dataset was

calculated to be 0.519, and therefore the predicted method of CALIC is accurate.

Dataset 1-0 2-1 3-2 4-3 5-4 Average
4D-Lung 0.282 0.267 0.256 0.252 0.256 0.263

TCGA-38-4628 0.352 0.350 0.351 0.360 0.352 0.353
NLST-LSS 0.633 0.223 0.554 0.579 0.609 0.519
CT FUSION 0.446 0.462 0.436 0.410 0.413 0.433

WB MAC P690 0.540 0.591 0.419 0.424 0.390 0.473

Table 6.9: Edge Quality Measurement of Miscellaneous C.T. Datasets

Table 6.10 contains the edge quality measurements for the LIDC-IRDI C.T. datasets.

All of these datasets have minor percent differences between the two prediction meth-

ods with the largest being 1.789% for LIDC-IRDI-0007. Therefore, either method

predicted using the edge quality measurement is accurate. In numerical order, the

average edge quality measurements were calculated to be 0.1869, 0.365, 0.150, 0.337,

0.337, 0.180, 0.228, 0.159, 0.363, and 0.297. Applying the threshold of 0.300, datasets

119

LIDC-IRDI-0001, LIDC-IRDI-0003, LIDC-IRDI-0006, LIDC-IRDI-0007, LIDC-IRDI-

0008, and LIDC-IRDI-0010 would be compressed with Match. While the remain-

ing datasets, LIDC-IRDI-0002, LIDC-IRDI-0004, LIDC-IRDI-0005, and LIDC-IRDI-

0009 would be compressed with CALIC.

Dataset 1-0 2-1 3-2 4-3 5-4 Average
LIDC-IRDI-0001 0.198 0.187 0.182 0.188 0.187 0.189
LIDC-IRDI-0002 0.353 0.363 0.362 0.369 0.378 0.365
LIDC-IRDI-0003 0.166 0.149 0.142 0.148 0.143 0.150
LIDC-IRDI-0004 0.332 0.351 0.338 0.339 0.325 0.337
LIDC-IRDI-0005 0.332 0.351 0.338 0.339 0.325 0.337
LIDC-IRDI-0006 0.218 0.187 0.161 0.160 0.173 0.180
LIDC-IRDI-0007 0.216 0.240 0.232 0.221 0.230 0.228
LIDC-IRDI-0008 0.149 0.167 0.172 0.159 0.147 0.159
LIDC-IRDI-0009 0.371 0.370 0.363 0.353 0.359 0.363
LIDC-IRDI-0010 0.310 0.282 0.291 0.306 0.295 0.297

Table 6.10: Edge Quality Measurement of LIDC-IRDI C.T. Datasets

The edge quality measurements for the various AMC C.T. datasets are in Table

6.11.

AMC-001 contains the datasets WB NAC P690, WB MAC P690, CT FUSION,

coronals, and CHST 1.25MM SHARP. Their corresponding average edge quality mea-

surements are 0.430, 0.473, 0.433, 0.646, and 0.268. Applying the 0.300 threshold

results in all but CHST 1.25MM SHARP being compressed with CALIC. The first

dataset, WB NAC P690, is accurately predicted as Match under-performs for this

dataset by -11.587%. However, the second, third, and fourth datasets, WB MAC P690,

CT FUSION, and coronals, have minor percent differences between the two predic-

tion methods of -1.785%, 4.285%, and 0.301% respectively; therefore, either method

is an accurate prediction.

120

AMC-002 is the smallest of the ACM datasets with only two datasets,

CHEST 1.0 B45f and coronals. The average edge quality measurement for

CHEST 1.0 B45f was calculated to be 0.132 and for coronals was calculated to be

0.410. With the 0.300 threshold, CHEST 1.0 B45f will be compressed with Match

while coronals would be compressed with CALIC. Both of these predictions are accu-

rate as the percent difference for CHEST 1.0 B45f is insignificant as its -1.064% and

Match slightly under-performs CALIC by -5.774% for coronals.

Seven datasets, CORONAL MPR 2MM, CT FUSION, CTAC,

THORAX LUNG 1MM, THORAX LUNG 2MM, WB MAC P690, and

WB NAC P690, are in ACM-003. The first two of these datasets have average

edge quality measurements, 0.512 and 0.335 respectively, that are greater than 0.300

and therefore CALIC is the method that is predicted. For CORONAL MPR 2MM,

Match under-performs CALIC by -7.122%, and therefore the average edge qual-

ity measurement prediction is accurate. However, CT FUSION is best compressed

with Match by 5.451%, and therefore the prediction is inaccurate. Match outper-

forms CALIC by 8.878% for the CTAC dataset. Its average edge stability mea-

surement was calculated to be 0.235, which is less than 0.300 and is therefore ac-

curately predicting that Match is the better compression method. The remain-

ing four datasets, THORAX LUNG 1MM, THORAX LUNG 2MM, WB MAC P690,

and WB NAC P690, all have minor percent differences of 0.000%, 0.000%, -2.925%,

and -3.579%. Therefore, no matter which way the average edge stability measure-

ment predicts, it’s accurate. These datasets are all predicted that Match is the method

that should be used with corresponding average edge stability measurements of 0.175,

0.175, 0.108, and 0.168.

121

Like AMC-001, AMC-004 has five datasets, coronals, CT FUSION,

THORAX 1.0 B45f, WB MAC P690, and WB NAC P690. All of these datasets have

average edge stability measurements greater than 0.300 with values of 0.496, 0.429,

0.332, 0.381, and 0.451 respectively. Therefore, CALIC is the selected method for all

of these datasets. The first three datasets, coronals, CT FUSION, and

THORAX 1.0 B45f, have minor percent differences between Match and CALIC of

-2.834%, 1.703%, and-1.064%. Therefore, both methods perform nearly identical

and thus either method selected would be accurate. However, WB MAC P690 and

WB NAC P690, have larger percent differences of -6.612% and -8.104% respectively.

Due to the larger percent differences, CALIC is the method that results in better

compression and is thus properly predicted.

AMC-005 also contains five datasets, CHEST 1.0 B45f, CHEST 2.0 coronal,

CHEST 2.0 Sagittal, CHEST 5.0 B31f, and CHEST 7.0 MIP Axia. The first and

fourth datasets have minor percent differences of -1.818% and -2.779% and thus

whichever method is selected is accurate. CHEST 1.0 B45f has an average edge sta-

bility measurement of 0.171 and Match will be chosen. CHEST 5.0 B31f, on the

other hand, has an average edge stability measurement of 0.496 and therefore CALIC

is selected for this dataset. The second and third datasets, CHEST 2.0 coronal and

CHEST 2.0 Sagittal, are both best compressed with CALIC as Match under-performs

by -12.838% and -10.936% respectively. Their corresponding average edge stability

measurements are 0.596 and 0 312 and therefore it’s accurately predicted that CALIC

should be the selected method. Unlike the other datasets, CHEST 7.0 MIP Axia is

best compressed with Match as it slightly outperforms CALIC by 6.725%. It’s aver-

age edge stability measurement was calculated to be 0.157, which is less than 0.300

and thus accurately predicts that Match is the best method for this dataset.

122

Similar to AMC-003, AMC-006 also has seven datasets, AP MM, CORONAL AP,

CT images, LUNG 1MM, PET BODY CTAC, PET BODY NO AC, and

ST CAP 5MM. Three of these datasets, AP 1MM, PET BODY CTAC, and

ST CAP 5MM all have minor percent differences between Match and CALIC with

corresponding percentages of 1.517%, -2.083%, and 0.621%. Therefore, the prediction

method for these three datasets will be accurate no matter which method is selected.

Their average edge quality measurements were calculated to be 0.236, 0.220, and

0.345 respectively. Since the first two datasets have measurements less than 0.300,

they will be compressed with Match and the last dataset will be compressed with

CALIC. Match under-performs CALIC for two of the datasets, CORONAL AP and

PET BODY NO AC by -9.179% and -6.828% respectively. Their corresponding av-

erage edge quality measurements were calculated to be 0.540 and 0.234; therefore the

first method is correctly predicted as the value is greater than 0.300, but the sec-

ond is incorrect as Match would be the selected method. Match outperforms CALIC

for two remaining datasets, CT images and LUNG 1MM, with corresponding per-

cent increases of 6.758% and 20.365%. The average edge quality measurement for

CT images was calculated to be 0.350; since it’s greater than 0.300, it’s improperly

predicted that CALIC will result in a larger compression ratio. On the other hand,

the averages edge quality measurement for LUNT 1MM was calculated to be 0.135

and is therefore accurately predicted.

The remaining ACM dataset, AMC-007, has five datasets: THORAX 1.0 B45f,

Thorax 2.0 SPO cor, Thorax 2.0 SP sag, Thorax 5.0 B31f, and Thorax 7.0 MIP ax.

Their average edge quality measurements were calculated to be 0.167, 0.699, 0.274,

0.412, and 0.382 respectively. Therefore, Thorax 2.0 SPO cor, Thorax 5.0 B31f, and

Thorax 7.0 MIP ax will be compressed with CALIC as their measurements are greater

than 0.300. This prediction is accurate for all three of theses datasets as

123

Thorax 2.0 SPO cor has a percent difference of -8.571% while the other two have mi-

nor percent differences of -1.183% and 2.506% respectively. Due to the minor percent

difference for the last two datasets, either method selected would be accurate. The re-

maining two datasets, THORAX 1.0 B45f and Thorax 2.0 SP sag, have average edge

quality measurements less than 0.300, therefore Match would be the selected method.

This prediction is inaccurate for Thorax 2.0 SP sag as Match under-performs CALIC

by -8.217%. However, the prediction is accurate for THORAX 1.0 B45f as the percent

difference between the two methods is minimal at -2.097%.

Table 6.12 contains the edge quality measurements between each frame in the C.T.

datasets under 4D-Lung, where the far right column is the average measurement. For

all but one of these datasets, 60, have minor percent differences less than |5|%.

In order, excluding 60, the percent differences were found to be 4.250%, 3.891%,

3.064%, 3.286%, 3.146%, 3.615%, -3.340%, 4.488%, and 4.731%. All of these datasets

but 70 have edge quality measurements less than 0.300 with exact values of 0.199,

0.201, 0.187, 0.194, 0.196, 0.190, 0.190, and 0.193 respectively; therefore, Match is the

predicted method for these datasets. Dataset 70, on the other hand, has an average

edge quality measurement of 0.301 and therefore would be compressed with CALIC.

Match outperforms the remaining dataset, 60, by 22.975% and has an edge quality

measurement of 0.150 which accurately predicts that Match is the method that would

result in the best compression.

124

Dataset 1-0 2-1 3-2 4-3 5-4 Average

1

WB NAC P690 0.447 0.586 0.411 0.328 0.376 0.430
WB MAC P690 0.540 0.591 0.419 0.424 0.390 0.473
CT FUSION 0.446 0.462 0.436 0.410 0.413 0.433

coronals 0.648 0.680 0.641 0.624 0.638 0.646
CHST 1.25MM SHARP 0.268 0.265 0.271 0.268 0.267 0.268

2
CHEST 1.0 B45f 0.136 0.127 0.131 0.134 0.134 0.132

coronals 0.369 0.362 0.413 0.467 0.439 0.410

3

CORONAL MPR 2MM 0.487 0.463 0.488 0.556 0.568 0.512
CT FUSION 0.349 0.352 0.322 0.322 0.330 0.335

CTAC 0.244 0.238 0.231 0.228 0.236 0.235
THORAX LUNG 1MM 0.166 0.180 0.174 0.180 0.175 0.175
THORAX LUNG 2MM 0.166 0.180 0.174 0.180 0.175 0.175

WB MAC P690 0.103 0.180 0.067 0.077 0.114 0.108
WB NAC P690 0.205 0.289 0.168 0.000 0.180 0.168

4

coronals 0.489 0.499 0.486 0.491 0.516 0.496
CT FUSION 0.449 0.432 0.416 0.420 0.428 0.429

THORAX 1.0 B45f 0.383 0.334 0.306 0.317 0.321 0.332
WB MAC P690 0.181 0.759 0.510 0.119 0.335 0.381
WB NAC P690 0.783 0.546 0.374 0.268 0.285 0.451

5

CHEST 1.0 B45f 0.178 0.167 0.163 0.180 0.165 0.171
CHEST 2.0 coronal 0.470 0.586 0.593 0.589 0.741 0.596
CHEST 2.0 Sagittal 0.294 0.322 0.300 0.313 0.328 0.312
CHEST 5.0 B31f 0.473 0.513 0.494 0.507 0.493 0.496

CHEST 7.0 MIP Axia 0.169 0.170 0.161 0.153 0.134 0.157

6

AP 1MM 0.231 0.239 0.230 0.239 0.242 0.236
CORONAL AP 0.455 0.348 0.495 0.707 0.698 0.540

CT images 0.352 0.356 0.332 0.343 0.365 0.350
LUNG 1MM 0.168 0.165 0.170 0.000 0.171 0.135

PET BODY CTAC 0.215 0.204 0.197 0.266 0.220 0.220
PET BODY NO AC 0.287 0.158 0.251 0.276 0.195 0.234

ST CAP 5MM 0.335 0.368 0.329 0.352 0.338 0.345

7

THORAX 1.0 B45f 0.175 0.174 0.165 0.164 0.160 0.167
Thorax 2.0 SPO cor 0.683 0.717 0.721 0.700 0.674 0.699
Thorax 2.0 SP sag 0.294 0.285 0.269 0.263 0.262 0.274
Thorax 5.0 B31f 0.422 0.434 0.405 0.389 0.407 0.412

Thorax 7.0 MIP ax 0.405 0.356 0.390 0.376 0.381 0.382

Table 6.11: Edge Quality Measurement of AMC C.T. Datasets

125

Dataset 1-0 2-1 3-2 4-3 5-4 Average
0 0.186 0.195 0.209 0.199 0.207 0.199
10 0.189 0.190 0.208 0.208 0.208 0.201
20 0.177 0.181 0.191 0.195 0.192 0.187
30 0.179 0.189 0.197 0.204 0.200 0.194
40 0.188 0.188 0.201 0.204 0.202 0.196
50 0.179 0.181 0.198 0.195 0.195 0.190
60 0.167 0.169 0.226 0.000 0.188 0.150
70 0.177 0.174 0.443 0.349 0.364 0.301
80 0.178 0.182 0.193 0.200 0.199 0.190
90 0.185 0.185 0.191 0.198 0.206 0.193

Table 6.12: Edge Quality Measurement of 4D-Lung C.T. Datasets

The edge quality measurements for the four datasets under CMB-CRC-MSB-

02381 are in Table 6.13 and are titled as Body 5.000CE 1, Body 5.000CE 2,

Body 5.0CE 1, and Body 5.0CE 2. Each of these datasets have average edge quality

measurements that are greater than 0.300 with values of 0.533, 0.427, 0.394, and 0.494

respectively. For this batch of C.T. scans, the average edge quality measurement

accurately predicts that all these datastes should be compressed with CALIC. For

the first two datasets, Body 5.000CE 1 and Body 5.000CE 2, Match slighly under-

performs CALIC by -6.317%, and -5.100%. For the last two datasets, Body 5.0CE 1

and Body 5.0CE 2; on the other hand, Match and CALIC result in nearly identi-

cal compression as the percent difference between the two are 1.486%, and -1.295%

respectively.

Dataset 1-0 2-1 3-2 4-3 5-4 Average
Body 5.000CE 1 0.540 0.524 0.516 0.548 0.538 0.533
Body 5.000CE 2 0.413 0.394 0.426 0.433 0.467 0.427
Body 5.0CE 1 0.378 0.359 0.372 0.433 0.426 0.394
Body 5.0 CE 2 0.498 0.501 0.487 0.490 0.496 0.494

Table 6.13: Edge Quality Measurement of CMB-CRC-MSB-02381 C.T. Datasets

126

The final batch of medical images are the 17 M.R.I. datasets; their edge qual-

ity measurements between frames as well as the average of those measurements are

listed in Table 6.14. All but two of the datasets, ACRIN-6698 DWI MASK and

ISPY2 multiphase384, have edge quality measurements greater than 0.300 and there-

fore it’s predicted that CALIC should be the compression method used. ACRIN-

6698 DWI MASK is the only medical dataset that follows the trend of the video

datasets as it’s average edge quality measurement is less than 0.100 with a value

of 0.086 and Match outperforms CALIC by 39.267%. ISPY2 multiphase384, on

the other hand, has an average edge stability measurement of 0.262, however the

percent difference between Match and CALIC is minimal at -3.592% and there-

fore either Match or CALIC could be chosen and the result is accurate. Predict-

ing CALIC for the remaining datasets is accurate for all but one of the datasets,

ISPY2 Volser SER, as it’s average edge quality measurement is 0.422 but Match

outperforms CALIC by 7.389%. Five of the CALIC predicted datasets, ACRIN-

6698 ADC, ISPY2 VOLSER DCE, ISPY2 VOLSER PE2, ISPY2 VOLSER PE6, and

ISPY2 Water T2fseidealarc BP, have minor percent differences of 0.136%, -3.626%,

,-1.623%, -3.565%, and -4.933% respectively. Their corresponding average edge qual-

ity measurements are 0.314, 0.418, 0.370, 0.466, and 0.616. Due to the small percent

differences for these datases, either method predicted results in an accurate predic-

tion. Nine of the datasets where CALIC is predicted accurately predict that CALIC

will result in the best compression. These datasets are ACRIN-6698 4bval, ACRIN-

6698 DWI TRACE, ISPY2 3 Plane Scout, ISPY2 Fat T2fseidealarc BP,

ISPY2 Fieldmap, ISPY2 IP T2fseidealarc BP, ISPY2 OP T2fseidealarc BP,

ISPY2 T2fseidealarc BP, and ISPY2 WATER T2 fseidealarc BP. Their correspond-

ing average edge quality measurements were calculated to be 0.428, 0.588, 0.391,

0.387, 0.781, 0.420, 0.391, 0.611, and 0.606. For each of these ten datsets, Match

127

under-performed CALIC by -7.346%, -5.948%, -10.691%, -7.303%, -14.997%, -7.888%,

-5.645%, -5.896%, and -5.896% respectively.

Dataset 1-0 2-1 3-2 4-3 5-4 Average
ACRIN-6698 4bval 0.406 0.409 0.467 0.469 0.391 0.428
ACRIN-6698 ADC 0.329 0.301 0.309 0.321 0.309 0.314

ACRIN-6698 DWI MASK 0.017 0.076 0.121 0.070 0.144 0.086
ACRIN-6698 DWI TRACE 0.451 0.581 0.461 0.711 0.736 0.588

ISPY2 3 Plane Scout 0.420 0.320 0.356 0.414 0.445 0.391
ISPY2 Fat T2fseidealarc BP 0.369 0.380 0.393 0.414 0.378 0.387

ISPY2 Fieldmap 0.796 0.718 0.838 0.798 0.754 0.781
ISPY2 IP T2fseidealarc BP 0.396 0.406 0.438 0.454 0.404 0.420

ISPY2 multiphase384 0.230 0.234 0.265 0.260 0.321 0.262
ISPY2 OP T2fseidealarc BP 0.388 0.373 0.392 0.420 0.384 0.391
ISPY2 T2fseidealarc BP 0.580 0.593 0.618 0.724 0.540 0.611
ISPY2 VOLSER DCE 0.454 0.500 0.488 0.493 0.471 0.481
ISPY2 VOLSER PE2 0.404 0.367 0.254 0.402 0.421 0.370
ISPY2 VOLSER PE6 0.366 0.400 0.446 0.506 0.613 0.466
ISPY2 Volser SER 1.000 0.000 0.303 0.431 0.374 0.422

ISPY2 WATER T2 fseidealarc BP 0.574 0.736 0.580 0.604 0.537 0.606
ISPY2 Water T2fseidealarc BP 0.608 0.711 0.579 0.603 0.580 0.616

Table 6.14: Edge Quality Measurement of M.R.I. Datasets

When using the average edge quality measurement to predict which method,

Match or CALIC, results in the best compression, a threshold of 0.100 is best for

video datasets while a threshold of 0.300 is needed for the medical images. This is so

because the videos have more clean, hard lines, while the medical images have soft

edges and thus it’s more difficult to find them. When looking at the detected edges

for each of the images in Figures 6.7 and 6.8, there’s no visible differences between the

edge images for Crowd Run, however there were visible differences in the edge images

for WB MAC P690. Implementing the two thresholds results in seven of the datasets

being improperly predicted, therefore using the average edge quality measurement

results in 93.269% accuracy.

Using the structural similarity between the frames of videos, or medical images,

128

to predict which method to use resulted in an accuracy of 86.539% using a threshold

of 0.82. On the other hand, using an edge quality measurement between these frames

results in an accuracy of 93.269% when using a threshold of 0.100 for the videos and

0.300 for the medical images. If we were to combine the SSIM and average edge

quality measurements by using the SSIM to predict the videos and the edge quality

to predict the medical images, only one prediction would change: Aspen. This would

then raise the prediction accuracy to 94.231%, which isn’t worth the added complexity.

Therefore, it’s best to use the edge quality measurement to determine which method,

Match or CALIC, should be used to compress each dataset.

129

Chapter 7: Conclusion

There are two kinds of compression, lossy and lossless. Lossy compression allows

for data to be lost but visually the compressed image looks the same. Lossless, on

the other hand, requires that no data be lost to maintain the quality of the image.

There are many image compression standards, such as JPEG and Portable Network

Graphics (PNG). Typically JPEG is a lossy compression while PNG is a common

lossless compression method.

A new lossless video compression technique, Match, was investigated. Match uses

the similarity between the frames of a video or the slides of medical images to find

a prediction for the current pixel, which makes it a non-linear prediction method. A

portion of the previous frame is searched to find a matching context some distance

centered on the current location. The best distance to use for each dataset is found

experimentally. The matching context refers to the neighborhood of w, nw, n, and ne,

where the pixel in the previous frame with the closest matching context becomes the

prediction. From the prediction, the error is then calculated, remapped and encoded

using adaptive arithmetic encoding. Match’s resulting compression ratio is compared

to that of CALIC’s, where the larger the compression ratio the more efficient the

method. Match was used to compress twenty-two video datasets of varying resolu-

tions as well as 65 C.T. scans and 17 M.R.I. scans. Not only was Match used to

compress videos as well as medical images, but it was also run on four datsets that

130

had varying resolutions to see how resolution affected Match. Unfortunately, out of

the four datasets, there were three different trends, thus there’s no clear conclusion

to how Match is affected by resolution. It’s assumed that as the frame rate increases

Match’s compression ratio will also increase which is shown in a single dataset. There-

fore, no clear conclusion can be stated on how frame rate affects Match. There are

three possible results when comparing Match to CALIC: Match outperforms CALIC,

CALIC outperforms Match, and both result in nearly identical compression ratios.

To determine which method to use, the structural similarity was examined as well as

the edge quality measurements. Using the structural similarity with a threshold of

0.820 resulted in 86.538% accuracy. On the other hand, using the edge quality mea-

surement with a threshold of 0.100 for the videos and 0.300 for the medical images

resulted in 93.269% accuracy for predicting which method to use.

Match is similar to some of the other compression methods that have been dis-

cussed as it encodes the residual errors from the prediction of the pixels. However,

Match is a non-linear prediction method that depends on the similarity between

frames. Most predictive compression methods depends strictly on the neighboring

pixels of the current pixel being encoded while Match depends on a portion of the

previous frame to find a matching context within some threshold.

Videos and images contain different qualities that can affect the compression ratio

depending on the compression method. With Match, the larger the structural similar-

ity is the better the compression while the smaller the edge quality measurement the

larger the compression ratio is. Therefore, it’s useful to use external measurements

to determine which method should be selected to compress a dataset.

131

Bibliography

[1] Camera Obscura, https://www.nga.gov/press/exh/2866/camera-obscura.html

(accessed Sep. 4, 2023).

[2] “Camera Obscura: Ancestor Of Modern Photography,” Encyclopedia.com,

https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-

and-maps/camera-obscura-ancestor-modern-photography (accessed Sep. 13,

2023).

[3] “Camera Obscura,” Wikipedia, https://en.wikipedia.org/wiki/Camera obscura#

/media/File:Pinhole-camera.svg (accessed Oct. 24, 2023).

[4] T. Gregory and Carlosmary, “The first camera ever made: A history of cameras,”

History Cooperative, https://historycooperative.org/first-camera-the-history-of-

cameras/ (accessed Sep. 5, 2023).

[5] “The Daguerreotype Medium,” The Library of Congress,

https://www.loc.gov/collections/daguerreotypes/articles-and-essays/the-

daguerreotype-medium/ (accessed Sep. 5, 2023).

[6] “Original Kodak Camera, serial no. 540,” National Museum of American

History, https://americanhistory.si.edu/collections/search/object/nmah 760118

(accessed Sep. 18, 2023).

132

[7] “Kodak 35,” Wikipedia, https://en.wikipedia.org/wiki/Kodak 35 (accessed Sep.

18, 2023).

[8] The Print Collector/Heritage Images/SCIENCE PHOTO LI-

BRARY, “Photographic gun designed by Etienne Jules Marey,

1882 - stock image - C042/3142,” Science Photo Library,

https://www.sciencephoto.com/media/979649/view/photographic-gun-

designed-by-etienne-jules-marey-1882 (accessed Sep. 18, 2023).

[9] “Chronophotographic gun,” Wikipedia, https://en.wikipedia.org/wiki/Chronoph-

otographic gun (accessed Sep. 18, 2023).

[10] B. Javier, “#entertainmenttech: The history of the Kineto-

graph, the world’s First Motion Picture Camera,” iTech Post,

https://www.itechpost.com/articles/109598/20220316/entertainmenttech-

history-kinetograph-worlds-first-motion-picture-camera.htm (accessed Sep. 18,

2023).

[11] “The time-travelling camera: A short history of digital

photo manipulation,” National Science and Media Museum,

https://www.scienceandmediamuseum.org.uk/objects-and-stories/digital-

photo-manipulation-history (accessed Sep. 27, 2023).

[12] “The evolution of digital camera timeline.,” Timetoast timelines,

https://www.timetoast.com/timelines/evolution-of-digital-camera (accessed

Sep. 29, 2023).

[13] “What is ISO? (And Why ISO Matters in Photography),” ExpertPhotog-

raphy, https://expertphotography.com/understand-iso-4-simple-steps/ (accessed

Sep. 29, 2023).

133

[14] J. Gray, “Apple’s 29-year-old landmark quicktake 100 camera falters

in 2023,” PetaPixel, https://petapixel.com/2023/03/03/apples-29-year-old-

landmark-quicktake-100-camera-falters-in-2023/ (accessed Sep. 29, 2023).

[15] “Quick Review Ricoh RDC-i700 Image Capturing Devices,”

https://www.imaging-resource.com/PRODS/I700/I70A.HTM (accessed Sep.

29, 2023).

[16] “History of digital camera timeline.,” Timetoast timelines,

https://www.timetoast.com/timelines/history-of-digital-camera (accessed

Oct. 3, 2023).

[17] R. Skibba, “A new 3,200-megapixel camera has astronomers salivat-

ing,” Wired, https://www.wired.com/story/a-new-3200-megapixel-camera-has-

astronomers-salivating/ (accessed Oct. 3, 2023).

[18] P. Rhodes, “At 70 trillion fps, this is the world’s fastest camera,” RedShark

News - Video technology news and analysis, https://www.redsharknews.com/at-

70-trillion-fps-this-is-the-worlds-fastest-camera (accessed Oct. 3, 2023).

[19] Amazon.com : Nikon Cookpix B600 Digital Camera (black)

(26528..., https://www.amazon.com/Nikon-COOLPIX-Digital-Flexible-

Cleaning/dp/B0BZT1PLQB (accessed Oct. 3, 2023).

[20] J. Estrin, “Kodak’s first digital moment,” The New York Times,

https://archive.nytimes.com/lens.blogs.nytimes.com/2015/08/12/kodaks-

first-digital-moment/ (accessed Oct. 3, 2023).

[21] “DSLR cameras,” Nikon, https://www.nikonusa.com/en/nikon-products/dslr-

cameras/index.page (accessed Oct. 3, 2023).

134

[22] S. Andriani, G. Calvagno, and G. A. Mian, “Lossless video compression using a

spatio-temporal optimal predictor,” 2005.

[23] Y. Li and K. Sayood, “Lossless video sequence compression using adaptive pre-

diction,” IEEE Transactions on Image Processing, vol. 16, no. 4, pp. 997–1007,

Apr. 2007, doi: 10.1109/TIP.2006.891336.

[24] K. H. Yang and A. F. Faryar, “A context-based predictive coder for lossless and

near-lossless compression of video,” in IEEE International Conference on Image

Processing, 2000, vol. 1, pp. 144–147. doi: 10.1109/icip.2000.900915.

[25] J. Kim and C. M. Kyung, “A lossless embedded compression using signifi-

cant bit truncation for hd video coding,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 20, no. 6, pp. 848–860, Jun. 2010, doi:

10.1109/TCSVT.2010.2045923.

[26] J. A. Choi and Y. S. Ho, “Efficient residual data coding in CABAC for HEVC

lossless video compression,” Signal Image Video Process, vol. 9, no. 5, pp.

1055–1066, Jul. 2015, doi: 10.1007/s11760-013-0545-z.

[27] “How medical imaging and scans work: Blog,” Loyola Medicine,

https://www.loyolamedicine.org/about-us/blog/how-medical-imaging-scans-

work (accessed Oct. 24, 2023).

[28] Taquet, J., and Labit, C. (2012). Hierarchical oriented predictions for resolu-

tion scalable lossless and near-lossless compression of CT and MRI biomed-

ical images. IEEE Transactions on Image Processing, 21(5), 2641–2652.

https://doi.org/10.1109/TIP.2012.2186147

135

[29] Anusuya, V., Raghavan, V. S., & Kavitha, G. (2014). Lossless Compres-

sion on MRI Images Using SWT. Journal of Digital Imaging, 27(5), 594–600.

https://doi.org/10.1007/s10278-014-9697-9

[30] Philips, W., Van Assche, S., De Rycke, D., & Denecker, K. (n.d.). State-

of-the-art techniques for lossless compression of 3D medical image sets.

www.elsevier.com/locate/compmedimag

[31] E. H. Sibley, I. H. Willen, R. M. Neal, and J. G. Cleary, “COMPUTING PRAC-

TICES ARITHMETIC CODING FOR DATA COIUPRESSION.”

[32] H. Hu, “A Study of CALIC,” 2004.

[33] K. Sayood, “Introduction to Data Compression,” 5th ed. 2018. doi:

10.1016/c2015-0-06248-7.

[34] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-

ment: From error visibility to structural similarity,” IEEE Transactions on Image

Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004, doi: 10.1109/TIP.2003.819861.

[35] B. Sankur, “Statistical evaluation of image quality measures,” J Electron Imag-

ing, vol. 11, no. 2, p. 206, Apr. 2002, doi: 10.1117/1.1455011.

[36] Babacan, Ş. D., & Sayood, K. (2004). Predictive Image Compression Us-

ing Conditional Averages. Data Compression Conference Proceedings, 524.

https://doi.org/10.1109/dcc.2004.1281500

[37] Xiph.org video test media [derf’s collection]. Xiph.org. (n.d.). Retrieved April

19, 2023, from https://media.xiph.org/video/derf/

[38] “IDC.” https://portal.imaging.datacommons.cancer.gov/explore/ (accessed Feb.

12, 2023).

136

[39] “CT Scan,” Mayo Foundation for Medical Education and Research, Jan.

06, 2022. https://www.mayoclinic.org/tests-procedures/ct-scan/about/pac-

20393675#: :text=A%20computerized%20tomography%20(CT)%20scan,than%20

plain%20X%2Drays%20do. (accessed Feb. 12, 2023).

[40] U.S. Department of Health and Human Services. (n.d.). Magnetic Resonance

Imaging (MRI). National Institute of Biomedical Imaging and Bioengineer-

ing. Retrieved March 27, 2023, from https://www.nibib.nih.gov/science-

education/science-topics/magnetic-resonance-imaging-

mri#:∼:text=projects%20in%20MRI%3F-,What%20is%20MRI%3F

,%2C%20diagnosis%2C%20and%20treatment%20monitoring.

137

Appendix A: C.T. Scans

Figure A.1: Match CRs with Varying Distance - Miscellaneous C.T. Scans

138

Distance 4D Lung TCGA NLST LSS CT WB MAC WB NAC
1 5.026 1.776 1.725 4.607 8.023 3.456
2 5.226 1.847 1.754 4.714 9.316 4.025
3 5.277 1.892 1.766 4.747 10.364 4.504
4 5.294 1.924 1.770 4.756 10.988 4.805
5 5.301 1.950 1.772 4.761 11.347 4.998
6 5.300 1.969 1.773 4.765 11.586 5.139
7 5.300 1.985 1.773 4.769 11.765 5.238
8 5.299 1.998 1.773 4.770 11.927 5.349
9 5.297 2.008 1.773 4.768 12.060 5.416
10 5.295 2.016 1.772 4.767 12.168 5.481
11 5.292 2.023 1.771 4.763 12.280 5.558
12 5.285 2.029 1.770 4.763 12.364 5.589
13 5.283 2.034 1.769 4.761 12.467 5.646
14 5.283 2.038 1.768 4.759 12.544 5.675
15 5.278 2.041 1.768 4.757 12.597 5.692

Table A.1: Match CRs with Varying Distance - Miscellaneous C.T. Scans

Figure A.2: CALIC’s CR Compared to Match’s CR - Miscellaneous C.T. Scans

Method 4D Lung TCGA NLST LSS CT WB MAC
CALIC 5.057 1.792 2.142 4.574 12.826
Match 5.304 2.041 1.773 4.769 12.597

Percent Difference 4.821 13.873 -17.187 4.266 -1.785

Table A.2: CALIC’s CR Compared to Match’s CR - Miscellaneous C.T. Scans

139

Figure A.3: Match CRs with Varying Distance - LIDC-IRDI C.T. Scans

D 1 2 3 4 5 6 7 8 9 10
1 2.219 2.123 2.111 2.320 2.291 2.548 2.556 2.127 3.615 2.765
2 2.311 2.152 2.183 2.335 2.453 2.773 2.560 2.198 3.639 2.791
3 2.349 2.162 2.214 2.340 2.539 2.842 2.561 2.223 3.644 2.795
4 2.368 2.169 2.229 2.343 2.573 2.878 2.561 2.236 3.648 2.795
5 2.377 2.173 2.236 2.344 2.5922 2.905 2.560 2.242 3.649 2.795
6 2.382 2.175 2.240 2.345 2.604 2.923 2.559 2.246 3.649 2.795
7 2.384 2.177 2.242 2.344 2.611 2.936 2.558 2.248 3.650 2.794
8 2.386 2.178 2.243 2.344 2.616 2.944 2.557 2.248 3.650 2.794
9 2.386 2.179 2.243 2.343 2.621 2.952 2.556 2.248 3.650 2.793
10 2.387 2.179 2.244 2.342 2.623 2.956 2.555 2.249 3.651 2.782
11 2.386 2.179 2.244 2.342 2.625 2.959 2.554 2.249 3.650 2.792
12 2.385 2.179 2.243 2.341 2.627 2.962 2.553 2.248 3.650 2.791
13 2.384 2.178 2.243 2.341 2.629 2.965 2.552 2.248 3.650 2.789
14 2.383 2.178 2.243 2.340 2.629 2.967 2.552 2.247 3.649 2.789
15 2.381 2.177 2.242 2.340 2.630 2.969 2.551 2.247 3.648 2.789

Table A.3: Match CRs with Varying Distance - LIDC-IRDI C.T. Scans

1 2 3 4 5 6 7 8 9 10
C 2.376 2.182 2.246 2.350 2.637 2.932 2.516 2.241 3.596 2.781
M 2.387 2.179 2.244 2.345 2.630 2.969 2.561 2.249 3.651 2.795
D 0.464 -0.117 -0.090 -0.212 -0.248 1.254 1.784 0.366 1.523 0.502

Table A.4: CALIC’s CR Compared to Match’s CR - LIDC-IRDI C.T. Scans

140

Figure A.4: CALIC’s CR Compared to Match’s CR - LIDC-IRDI C.T. Scans

Figure A.5: Match CRs with Varying Distance - AMC-001 C.T. Scans

141

Distance WB NAC P690 WB MAC P690 CT FUSION Coronals CHST
1 3.456 8.023 4.607 2.134 2.402
2 4.025 9.346 4.714 2.206 2.413
3 4.504 10.364 4.747 2.244 2.415
4 4.805 10.988 4.756 2.270 2.418
5 4.998 11.347 4.761 2.291 2.418
6 5.139 11.586 4.765 2.305 2.418
7 5.238 11.765 4.769 2.315 2.417
8 5.416 11.927 4.769 2.321 2.417
9 5.416 12.060 4.768 2.325 4.417
10 5.481 12.168 4.767 2.328 2.416
11 5.558 12.280 4.764 2.331 2.415
12 5.589 12.364 4.763 2.333 2.414
13 5.646 12.467 4.761 2.333 2.414
14 5.675 12.544 4.789 2.334 2.413
15 5.692 12.597 4.757 2.336 2.413

Table A.5: Match CRs with Varying Distance - AMC-001 C.T. Scans

Figure A.6: CALIC’s CR Compared to Match’s CR - AMC-001 C.T. Scans

Method WB NAC P690 WB MAC P690 CT FUSION Coronals CHST
CALIC 6.438 12.826 4.574 2.329 2.195
Match 5.692 12.597 4.770 2.336 2.418
Percent

Difference
-11.587 -1.785 4.266 0.285 10.181

Table A.6: CALIC’s CR Compared to Match’s CR - AMC-001 C.T. Scans

142

Figure A.7: Match CRs with Varying Distance - AMC-002 C.T. Scans

Distance CHEST 1.0 B45f Coronals
1 2.010 1.785
2 2.085 1.960
3 2.103 2.101
4 2.116 2.198
5 2.123 2.257
6 2.128 2.296
7 2.130 2.324
8 2.133 2.344
9 2.134 2.359
10 2.136 2.370
11 2.137 2.378
12 2.137 2.386
13 2.138 2.391
14 2.138 2.395
15 2.139 2.399

Table A.7: Match CRs with Varying Distance - AMC-002 C.T. Scans

Method CHEST 1.0 B45f Coronals
CALIC 2.162 2.546
Match 2.139 2.399

Percent Difference -1.096 -5.809

Table A.8: CALIC’s CR Compared to Match’s CR - AMC-002 C.T. Scans

143

Figure A.8: CALIC’s CR Compared to Match’s CR - AMC-002 C.T. Scans

Figure A.9: Match CRs with Varying Distance - AMC-003 C.T. Scans

144

Distance CORONAL CT FUSION CTAC 1MM 2MM MAC NAC
1 1.722 7.903 15.000 2.139 2.139 11.087 5.300
2 1.855 8.058 15.220 2.242 2.242 12.630 6.123
3 1.960 8.084 15.209 2.267 2.267 13.694 6.813
4 2.043 8.087 15.161 2.282 2.282 14.284 7.222
5 2.102 8.077 15.153 2.292 2.292 14.6231 7.472
6 2.137 8.074 15.134 2.298 2.298 14.862 7.641
7 2.162 8.071 15.123 2.302 2.302 15.037 7.746
8 2.181 8.069 15.108 2.305 2.305 15.207 7.905
9 2.195 8.068 15.098 2.308 2.308 15.321 7.971
10 2.207 8.066 15.084 2.309 2.309 15.418 8.041
11 2.217 8.604 15.073 2.311 2.311 15.120 8.152
12 2.226 8.055 15.062 2.311 2.311 15.595 8.172
13 2.232 8.052 15.045 2.312 2.312 15.686 8.255
14 2.238 8.050 15.038 2.313 2.313 15.727 8.270
15 2.243 8.047 15.027 2.314 2.314 15.766 8.271

Table A.9: Match CRs with Varying Distance - AMC-003 C.T. Scans

Figure A.10: CALIC’s CR Compared to Match’s CR - AMC-003 C.T. Scans

Method CORONAL CT FUSION CTAC 1MM 2MM MAC NAC
CALIC 2.415 7.669 13.979 2.314 2.314 16.241 8.578
Match 2.243 8.087 15.220 2.314 2.314 15.766 8.271
%D -7.117 5.445 8.879 0.001 0.001 -2.925 -3.574

Table A.10: CALIC’s CR Compared to Match’s CR - AMC-003 C.T. Scans

145

Figure A.11: Match CRs with Varying Distance - AMC-004 C.T. Scans

D Coronals CT FUSION THORAX WB MAC P690 WB NAC P690
1 1.969 3.686 1.655 7.936 3.446
2 2.082 3.739 1.668 9.300 4.006
3 2.157 3.758 1.670 10.355 4.468
4 2.201 3.762 1.672 10.989 4.756
5 2.231 3.762 1.673 11.275 4.933
6 2.251 3.763 1.673 11.488 5.058
7 2.265 3.763 1.673 11.672 5.146
8 2.275 3.762 1.673 11.859 5.244
9 2.282 3.761 1.673 11.995 5.302
10 2.288 3.759 1.673 12.106 5.354
11 2.291 3.758 1.673 12.226 5.418
12 2.293 3.756 1.673 12.321 5.447
13 2.294 3.755 1.672 12.424 5.499
14 2.295 3.754 1.672 12.479 5.529
15 2.297 3.753 1.672 12.528 5.545

Table A.11: Match CRs with Varying Distance - AMC-004 C.T. Scans

Method Coronals FUSION THORAX WB MAC P690 WB NAC P690
CALIC 2.364 3.700 1.691 13.415 6.034
Match 2.297 3.763 1.673 12.528 5.545
Percent

Difference
-2.851 1.690 -1.044 -6.613 -8.107

Table A.12: CALIC’s CR Compared to Match’s CR - AMC-004 C.T. Scans

146

Figure A.12: CALIC’s CR Compared to Match’s CR - AMC-004 C.T. Scans

Figure A.13: Match CRs with Varying Distance - AMC-005 C.T. Scans

147

Distance B45f Coronal Saggital B31f Axial
1 1.791 2.111 2.272 1.933 3.615
2 1.822 2.190 2.400 2.035 3.811
3 1.828 2.233 2.481 2.096 3.923
4 1.831 2.265 2.534 2.134 3.977
5 1.834 2.293 2.571 2.161 4.004
6 1.8.5 2.319 2.596 2.182 4.013
7 1.836 2.349 2.614 2.197 4.017
8 1.835 2.379 2.629 2.209 4.015
9 1.836 2.407 2.638 2.217 4.012
10 1.836 2.431 2.644 2.223 4.009
11 1.836 2.451 2.650 2.228 4.005
12 1.836 2.470 2.655 2.232 4.002
13 1.836 2.486 2.658 2.235 3.998
14 1.836 2.500 2.661 2.237 3.994
15 1.835 2.512 2.663 2.239 3.990

Table A.13: Match CRs with Varying Distance - AMC-005 C.T. Scans

Figure A.14: CALIC’s CR Compared to Match’s CR - AMC-005 C.T. Scans

Method B45f Coronal Saggital B31f Axial
CALIC 1.870 2.882 2.990 2.303 3.792
Match 1.836 2.512 2.663 2.239 4.017

Percent Difference -1.788 -12.835 -10.937 -2.750 5.938

Table A.14: CALIC’s CR Compared to Match’s CR - AMC-005 C.T. Scans

148

Figure A.15: Match CRs with Varying Distance - AMC-006 C.T. Scans

Distance AP CORONAL CT 1MM CTAC NO AC ST CAP
1 3.514 7.555 8.254 2.500 5.899 2.972 3.718
2 3.660 7.714 8.695 2.557 6.715 3.330 3.918
3 3.696 7.845 8.855 2.566 7.570 3.715 4.020
4 3.710 7.972 8.914 2.571 8.338 4.075 4.079
5 3.721 8.096 8.920 2.570 8.939 4.390 4.119
6 3.729 8.228 8.926 2.568 9.320 4.621 4.147
7 3.734 8.343 8.926 2.564 9.649 4.813 4.167
8 3.738 8.446 8.921 2.561 9.948 5.007 4.180
9 3.741 8.536 8.919 5.557 10.182 5.144 4.189
10 3.743 8.608 8.918 2.554 10.353 5.254 4.195
11 3.745 8.670 8.915 2.550 10.508 5.343 4.200
12 3.746 8.715 8.907 2.546 10.906 5.463 4.205
13 3.747 8.764 8.904 2.542 10.813 5.536 4.208
14 3.747 8.803 8.900 2.539 10.884 5.594 4.211
15 3.748 8.836 8.900 2.536 10.954 5.636 4.213

Table A.15: Match CRs with Varying Distance - AMC-006 C.T. Scans

Method AP CORONAL CT 1MM CTAC NO AC ST CAP
CALIC 3.692 9.729 8.361 2.136 11.187 6.049 4.187
Match 3.748 8.836 8.926 2.571 10.954 5.636 4.213
Percent

Difference
1.518 -9.189 6.751 20.363 -2.076 -6.825 0.631

Table A.16: CALIC’s CR Compared to Match’s CR - AMC-006 C.T. Scans

149

Figure A.16: CALIC’s CR Compared to Match’s CR - AMC-006 C.T. Scans

Figure A.17: Match CRs with Varying Distance - AMC-007 C.T. Scans

150

Distance B45f SPO cor sag B31f ax
1 1.782 2.125 2.216 2.296 2.848
2 1.805 2.219 2.359 2.418 2.907
3 1.811 2.278 2.430 2.493 2.945
4 1.816 2.329 2.466 2.542 2.966
5 1.819 2.378 2.490 2.576 2.976
6 1.820 2.423 2.504 2.602 2.980
7 1.821 2.468 2.514 2.622 2.985
8 1.822 2.514 2.522 2.636 2.986
9 1.822 2.556 2.528 2.647 2.985
10 1.822 2.593 2.534 2.655 2.985
11 1.822 2.623 2.540 2.661 2.984
12 1.822 2.647 2.545 2.666 2.982
13 1.822 2.665 2.550 2.669 2.981
14 1.821 2.678 2.554 2.672 2.980
15 1.821 2.688 2.558 2.673 2.978

Table A.17: Match CRs with Varying Distance - AMC-007 C.T. Scans

Figure A.18: CALIC’s CR Compared to Match’s CR - AMC-007 C.T. Scans

Distance B45f SPO cor sag B31f ax
CALIC 1.860 2.940 2.787 2.705 2.913
Match 1.822 2.688 2.558 2.673 2.986

Percent Difference -2.026 -8.581 -8.225 -1.205 2.493

Table A.18: CALIC’s CR Compared to Match’s CR - AMC-007 C.T. Scans

151

Figure A.19: Match CRs with Varying Distance - 4D-Lung C.T. Scans

D 0 10 20 30 40 50 60 70 80 90
1 4.174 1.448 4.037 3.998 3.974 3.979 4.717 3.385 4.082 4.122
2 4.287 4.232 4.147 4.102 4.082 4.084 4.829 3.459 4.181 4.222
3 4.293 4.244 4.162 4.117 4.096 4.097 4.844 3.468 4.191 4.228
4 4.290 4.456 4.162 4.117 4.098 4.099 4.839 3.470 4.187 4.222
5 4.287 4.242 4.161 4.118 4.098 4.096 4.831 3.471 4.177 4.217
6 4.285 4.239 4.159 4.116 4.098 4.096 4.826 3.472 4.175 4.214
7 4.283 4.239 4.158 4.115 4.098 4.093 4.824 3.473 4.173 4.210
8 4.278 4.237 4.155 4.113 4.097 4.089 4.817 3.473 4.168 4.207
9 4.275 4.235 4.152 4.111 4.096 4.086 4.810 3.471 4.164 4.204
10 4.270 4.233 4.151 4.108 4.092 4.084 4.806 3.470 4.159 4.202
11 4.269 4.228 4.147 4.106 4.088 4.081 4.800 3.468 4.158 4.198
12 4.265 4.222 4.144 4.103 4.084 4.077 4.783 3.467 4.154 4.195
13 4.263 4.220 4.139 4.100 4.079 4.074 4.786 3.465 4.151 4.190
14 4.259 4.215 4.137 4.098 4.075 4.069 4.780 3.464 4.147 4.186
15 4.257 4.211 4.133 4.04 4.073 4.065 4.776 3.462 4.144 4.181

Table A.19: Match CRs with Varying Distance - 4D-Lung C.T. Scans

Method 0 10 20 30 40
CALIC 4.118 4.086 4.014 3.987 3.973
Match 4.293 4.245 4.137 4.118 4.098

Percent Difference 4.244 3.890 3.698 3.285 3.143

Table A.20: CALIC’s CR Compared to Match’s CR - 4D-Lung C.T. Scans

152

Figure A.20: CALIC’s CR Compared to Match’s CR - 4D-Lung C.T. Scans

Method 50 60 70 80 90
CALIC 3.956 3.939 3.563 4.011 4.037
Match 4.099 4.844 3.473 4.191 4.228

Percent Difference 3.624 22.981 -3.341 4.472 4.715

Table A.21: CALIC’s CR Compared to Match’s CR - 4D-Lung C.T. Scans

Figure A.21: Match CRs with Varying Distance - CMB-CRC-MSB-02381 C.T. Scans

153

Distance Body 5.000CE 1 Body 5.000CE 2 Body 5.0CE 1 Body 5.0CE 2
1 1.645 2.525 5.002 2.846
2 1.744 2.638 5.274 3.005
3 1.820 2.708 5.388 3.108
4 1.876 2.757 5.436 3.166
5 1.915 2.792 5.467 3.201
6 1.943 2.819 5.486 3.225
7 1.962 2.839 5.498 3.240
8 1.976 2.855 5.507 3.251
9 1.994 2.867 5.513 3.258
10 1.994 2.875 5.519 3.262
11 2.000 2.884 5.523 3.2267
12 2.005 2.889 5.525 3.271
13 2.010 2.895 5.527 3.274
14 2.013 2.899 5.528 3.275
15 2.017 2.903 5.531 3.277

Table A.22: Match CRs with Varying Distance - CMB-CRC-MSB-02381 C.T. Scans

Figure A.22: CALIC’s CR Compared to Match’s CR - CMB-CRC-MSB-02381 C.T.
Scans

154

Method Body 5.000CE 1 Body 5.000CE 2 Body 5.0CE 1 Body 5.0CE 2
CALIC 2.153 3.059 5.450 3.320
Match 2.017 2.903 5.531 3.277
Percent

Difference
-6.353 -5.122 1.487 -1.280

Table A.23: CALIC’s CR Compared to Match’s CR - CMB-CRC-MSB-02381 C.T.
Scans

155

Appendix B: Code

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 #include <opencv2/ core / core . hpp>

5 #include <opencv2/ h ighgu i / h ighgu i . hpp>

6 #include <opencv2/opencv . hpp>

7 #include <iostream>

8

9 #include < t i f f i o . h>

10 #include < t i f f . h>

11

12 #include <math . h>

13

14 #include ” encoder . cpp”

15 #include ”decoder . cpp”

16 #include ” c a l i c . cpp”

17

18 using namespace cv ;

19 using namespace std ;

20

21 u in t 32 t h , w, x , y ;

22 u i n t 8 t z , c ;

23 Mat decodedImage , prevDecodedImage , decodedImage0 , decodedImage1 ,

decodedImage2 , decodedImage3 , decodedImage4 , decodedImage5 ;

24 u in t 64 t f i l e L o c a t i o n ;

25 u in t 64 t f i l e S i z e ;

26 u in t 64 t maxFileLocation ;

156

27 u in t 32 t fileByteRW = 32768;

28 u in t 32 t maxCount = 16383 ;

29

30 u in t 32 t matrix [2 5 6] [3 0 0 1] = {0} ;

31 FILE * s t a t i s t i c s = NULL;

32

33

34 int main () {

35 i n t 6 4 t i = 0 , j = 0 , k = 0 , l = 0 , m = 0 ;

36 u in t 16 t symbol ;

37 Mat image , image0 , image1 , image2 , image3 , image4 , image5 ;

38 Vec3b pro c e s s i ng ;

39 int proce s s ;

40 Vec3b NorthNorth , NorthNorthEast , NorthWest , North , NorthEast , WestWest ,

West , P ixe l ;

41 Vec3b prevNorthNorth , prevNorthNorthEast , prevNorthWest , prevNorth ,

prevNorthEast , prevWestWest , prevWest , p revPixe l ;

42

43 // Images

44 image0 = imread (”/path/ to / f i l e / image0 . png” , IMREADUNCHANGED) ;

45 image1 = imread (”/path/ to / f i l e / image1 . png” , IMREADUNCHANGED) ;

46 image2 = imread (”/path/ to / f i l e / image2 . png” , IMREADUNCHANGED) ;

47 image3 = imread (”/path/ to / f i l e / image3 . png” , IMREADUNCHANGED) ;

48 image4 = imread (”/path/ to / f i l e / image4 . png” , IMREADUNCHANGED) ;

49 image5 = imread (”/path/ to / f i l e / image5 . png” , IMREADUNCHANGED) ;

50

51 i f (image0 . empty () | | image1 . empty () | | image2 . empty () | | image3 . empty () | |

image4 . empty () | | image5 . empty ()) {

52 per ro r (”Error with imread”) ;

53 return =1;

54 }

55 else {

56 p r i n t f (”The image has been s u c c e s s f u l l y opened . \n”) ;

57 }

58

59 Mat d i f f e r e n c e 1 ;

60 a b s d i f f (image1 , image0 , d i f f e r e n c e 1) ;

157

61 imwrite (”m i s s am d i f f e r en c e . jpg ” , d i f f e r e n c e 1) ;

62

63 //Now to f i nd the width and h e i g h t o f the image us ing opencv s t u f f

64 S i z e s = image0 . s i z e () ;

65 h = s . he ight ;

66 w = s . width ;

67 int c ;

68 c = image0 . channe l s () ;

69 p r i n t f (”The s i z e o f the image i s : [%d , %d , %d]\n” , h , w, c) ;

70

71 // I n i t i a l i z e Encoder s t u f f

72 output a r ray e = (u i n t 8 t *) mal loc (fileByteRW* s izeof (u i n t 8 t)) ; //Right now

t h i s i s h*w*3

73

74 //open the output f i l e

75 encodedFi l e = fopen (”encoded . bin ” , ”w”) ;

76

77 // i n i t i a l i z e the t a b l e s t h a t t r a n s l a t e between symbol indexes and charac t e r s

78 for (i = 0 ; i < 256 ; i++){

79 p i x t o i nd e x e [i] = i +1;

80 i n d e x t o p i x e [i + 1] = i ;

81 }

82

83 // i n i t i a l i z e the symbol counts and cummulative counts

84 for (i = 0 ; i <= 256 ; i ++){

85 symbol count e [i] = 1 ;

86 cum count e [i] = 256 = i ;

87 }

88

89 symbol count e [0] = 0 ; // count [0] must not be the same as count [1]

90

91 //Onto Match

92 u i n t 8 t th r e sho ld = 0 ;

93 i n t 1 6 t i n i t i a l P r e d i c t i o n ;

94 i n t 1 6 t e r r o r ;

95 u i n t 8 t remap ;

96 u in t 16 t d i s t anc e = 1 ;

158

97 Mat img1 , img2 ;

98 img1 . c r e a t e (h ,w, image0 . type ()) ;

99 img2 . c r e a t e (h ,w, image0 . type ()) ;

100 Mat e r r o r s po s , e r r o r s neg , e r r o r s ;

101 u i n t 8 t f l a g = 0 ;

102 i n t 1 6 t Xdi f f , Yd i f f ;

103 u in t 16 t Xadd , Yadd ;

104 i n t 1 6 t o f f s e t ;

105

106 // encode image0 us ing CALIC

107 for (y = 0 ; y < h ; y++){

108 for (x = 0 ; x < 2 ; x++){

109 for (z = 0 ; z < c ; z++){

110 pro c e s s i ng = image0 . at<Vec3b>(y , x) ;

111 proce s s = proc e s s i ng . va l [z] ;

112 symbol = p i x t o i nd e x e [p roce s s] ; // t r a n s l a t e to an index

113 encode (symbol) ;

114 }

115 }

116 }

117

118 for (x = 2 ; x < w; x++){

119 for (y = 0 ; y < 2 ; y++){

120 for (z = 0 ; z < c ; z++){

121 pro c e s s i ng = image0 . at<Vec3b>(y , x) ;

122 proce s s = proc e s s i ng . va l [z] ;

123 symbol = p i x t o i nd e x e [p roce s s] ; // t r a n s l a t e to an index

124 encode (symbol) ;

125 }

126 }

127 }

128

129 for (y = 2 ; y < h ; y++){

130 for (x = 2 ; x < w; x++){

131 for (z = 0 ; z < c ; z++){

132 NorthNorth = image0 . at<Vec3b>(y = 2 , x) ;

133 NorthWest = image0 . at<Vec3b>(y = 1 , x = 1) ;

159

134 North = image0 . at<Vec3b>(y=1,x) ;

135 WestWest = image0 . at<Vec3b>(y , x = 2) ;

136 West = image0 . at<Vec3b>(y , x = 1) ;

137 Pixe l = image0 . at<Vec3b>(y , x) ;

138 i f (x == w=1){

139 NorthNorthEast = 0 ;

140 NorthEast = 0 ;

141 }

142 else {

143 NorthNorthEast = image0 . at<Vec3b>(y = 2 , x + 1) ;

144 NorthEast = image0 . at<Vec3b>(y = 1 , x + 1) ;

145 }

146

147 i n i t i a l P r e d i c t i o n = u in t 16 t (i n i t i a l l y p r e d i c t (NorthNorth . va l [z] ,

NorthNorthEast . va l [z] , NorthWest . va l [z] , North . va l [z] , NorthEast . va l [

z] ,WestWest . va l [z] ,West . va l [z])) ;

148 e r r o r = u in t 16 t (P ixe l . va l [z]) = u in t 16 t (i n i t i a l P r e d i c t i o n) ;

149

150 //Remap so t ha t a l l t he error va l u e s are p o s i t i v e and wi th in the range

0=255

151 remap = Remap(er ror , i n i t i a l P r e d i c t i o n) ;

152 symbol = p i x t o i nd e x e [remap] ;

153 encode (symbol) ;

154 }

155 }

156 }

157

158 //Encode the r e s t o f the images us ing on ly Match

159 Mat errorImg ;

160 errorImg . c r e a t e (h ,w, image0 . type ()) ;

161

162 for (int imageCount = 1 ; imageCount < 6 ; imageCount++){//6

163 p r i n t f (”ImageCount : %d\n” , imageCount) ;

164 i f (imageCount == 1) {

165 img1 = image0 ;

166 img2 = image1 ;

167 }

160

168 else i f (imageCount == 2) {

169 img1 = image1 ;

170 img2 = image2 ;

171 }

172 else i f (imageCount == 3) {

173 img1 = image2 ;

174 img2 = image3 ;

175 }

176 else i f (imageCount == 4) {

177 img1 = image3 ;

178 img2 = image4 ;

179 }

180 else i f (imageCount == 5) {

181 img1 = image4 ;

182 img2 = image5 ;

183 }

184

185 // encode f i r s t two rows and columns

186 u in t 16 t symbol ;

187 for (y = 0 ; y < h ; y++){

188 for (x = 0 ; x < 2 ; x++){

189 for (z = 0 ; z < c ; z++){

190 pro c e s s i ng = img2 . at<Vec3b>(y , x) ;

191 proce s s = proc e s s i ng . va l [z] ;

192 symbol = p i x t o i nd e x e [p roce s s] ; // t r a n s l a t e to an index

193 encode (symbol) ;

194 }

195 }

196 }

197

198 for (x = 2 ; x < w; x++){

199 for (y = 0 ; y < 2 ; y++){

200 for (z = 0 ; z < c ; z++){

201 pro c e s s i ng = img2 . at<Vec3b>(y , x) ;

202 proce s s = proc e s s i ng . va l [z] ;

203 symbol = p i x t o i nd e x e [p roce s s] ; // t r a n s l a t e to an index

204 encode (symbol) ;

161

205 }

206 }

207 }

208

209 // onto Match

210 for (y = 2 ; y < h ; y++){

211 for (x = 2 ; x < w; x++){

212 for (z = 0 ; z < c ; z++){

213 NorthNorth = img2 . at<Vec3b>(y = 2 , x) ;

214 NorthWest = img2 . at<Vec3b>(y = 1 , x = 1) ;

215 North = img2 . at<Vec3b>(y=1,x) ;

216 WestWest = img2 . at<Vec3b>(y , x = 2) ;

217 West = img2 . at<Vec3b>(y , x = 1) ;

218 Pixe l = img2 . at<Vec3b>(y , x) ;

219 i f (x == w=1){

220 NorthNorthEast = 0 ;

221 NorthEast = 0 ;

222 }

223 else {

224 NorthNorthEast = img2 . at<Vec3b>(y = 2 , x + 1) ;

225 NorthEast = img2 . at<Vec3b>(y = 1 , x + 1) ;

226 }

227

228 // look f o r an exac t match in a fram around the image

229 Ydi f f = y = d i s t ance ;

230 Xdi f f = x = d i s t ance ;

231 Yadd = y + d i s t anc e ;

232 Xadd = x + d i s t anc e ;

233

234 i f (Yd i f f < 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

235 for (j = 2 ; j < Yadd ; j++){

236 for (i = 2 ; i < Xadd ; i++){

237 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

238 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

239 prevNorth = img1 . at<Vec3b>(j =1, i) ;

240 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

241 prevWest = img1 . at<Vec3b>(j , i = 1) ;

162

242 prevPixe l = img1 . at<Vec3b>(j , i) ;

243 i f (x == w=1){

244 prevNorthNorthEast = 0 ;

245 prevNorthEast = 0 ;

246 }

247 else {

248 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

249 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

250 }

251 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

252 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

253 f l a g = 1 ;

254 goto f i n i s h 1 ;

255 }

256 }

257 }

258 }

259 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd <= h && Xadd >= w) {

260 for (j = 2 ; j < Yadd ; j++){

261 for (i = 2 ; i < w; i++){

262 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

263 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

264 prevNorth = img1 . at<Vec3b>(j =1, i) ;

265 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

266 prevWest = img1 . at<Vec3b>(j , i = 1) ;

267 prevPixe l = img1 . at<Vec3b>(j , i) ;

268 i f (x == w=1){

269 prevNorthNorthEast = 0 ;

270 prevNorthEast = 0 ;

271 }

272 else {

273 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

274 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

275 }

163

276 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

277 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

278 f l a g = 1 ;

279 goto f i n i s h 1 ;

280 }

281 }

282 }

283 }

284 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

285 for (j = 2 ; j < h ; j++){

286 for (i = 2 ; i < Xadd ; i++){

287 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

288 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

289 prevNorth = img1 . at<Vec3b>(j =1, i) ;

290 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

291 prevWest = img1 . at<Vec3b>(j , i = 1) ;

292 prevPixe l = img1 . at<Vec3b>(j , i) ;

293 i f (x == w=1){

294 prevNorthNorthEast = 0 ;

295 prevNorthEast = 0 ;

296 }

297 else {

298 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

299 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

300 }

301 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

302 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

303 f l a g = 1 ;

304 goto f i n i s h 1 ;

305 }

306 }

164

307 }

308 }

309 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

310 for (j = 2 ; j < h ; j++){

311 for (i = 2 ; i < w; i++){

312 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

313 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

314 prevNorth = img1 . at<Vec3b>(j =1, i) ;

315 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

316 prevWest = img1 . at<Vec3b>(j , i = 1) ;

317 prevPixe l = img1 . at<Vec3b>(j , i) ;

318 i f (x == w=1){

319 prevNorthNorthEast = 0 ;

320 prevNorthEast = 0 ;

321 }

322 else {

323 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

324 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

325 }

326 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

327 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

328 f l a g = 1 ;

329 goto f i n i s h 1 ;

330 }

331 }

332 }

333 }

334 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

335 for (j = 2 ; j < Yadd ; j++){

336 for (i = Xd i f f ; i < x + d i s t ance ; i++){

337 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

338 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

339 prevNorth = img1 . at<Vec3b>(j =1, i) ;

340 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

165

341 prevWest = img1 . at<Vec3b>(j , i = 1) ;

342 prevPixe l = img1 . at<Vec3b>(j , i) ;

343 i f (x == w=1){

344 prevNorthNorthEast = 0 ;

345 prevNorthEast = 0 ;

346 }

347 else {

348 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

349 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

350 }

351 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

352 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

353 f l a g = 1 ;

354 goto f i n i s h 1 ;

355 }

356 }

357 }

358 }

359 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

360 for (j = 2 ; j < Yadd ; j++){

361 for (i = Xd i f f ; i < w; i++){

362 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

363 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

364 prevNorth = img1 . at<Vec3b>(j =1, i) ;

365 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

366 prevWest = img1 . at<Vec3b>(j , i = 1) ;

367 prevPixe l = img1 . at<Vec3b>(j , i) ;

368 i f (x == w=1){

369 prevNorthNorthEast = 0 ;

370 prevNorthEast = 0 ;

371 }

372 else {

373 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

374 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

166

375 }

376 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

377 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

378 f l a g = 1 ;

379 goto f i n i s h 1 ;

380 }

381 }

382 }

383 }

384 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

385 for (j = 2 ; j < h ; j++){

386 for (i = Xd i f f ; i < Xadd ; i++){

387 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

388 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

389 prevNorth = img1 . at<Vec3b>(j =1, i) ;

390 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

391 prevWest = img1 . at<Vec3b>(j , i = 1) ;

392 prevPixe l = img1 . at<Vec3b>(j , i) ;

393 i f (x == w=1){

394 prevNorthNorthEast = 0 ;

395 prevNorthEast = 0 ;

396 }

397 else {

398 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

399 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

400 }

401 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

402 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

403 f l a g = 1 ;

404 goto f i n i s h 1 ;

405 }

167

406 }

407 }

408 }

409 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd >= w) {

410 for (j = 2 ; j < h ; j++){

411 for (i = Xd i f f ; i < w; i++){

412 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

413 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

414 prevNorth = img1 . at<Vec3b>(j =1, i) ;

415 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

416 prevWest = img1 . at<Vec3b>(j , i = 1) ;

417 prevPixe l = img1 . at<Vec3b>(j , i) ;

418 i f (x == w=1){

419 prevNorthNorthEast = 0 ;

420 prevNorthEast = 0 ;

421 }

422 else {

423 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

424 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

425 }

426 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

427 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

428 f l a g = 1 ;

429 goto f i n i s h 1 ;

430 }

431 }

432 }

433 }

434 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

435 for (j = Yd i f f ; j < Yadd ; j++){

436 for (i = 2 ; i < Xadd ; i++){

437 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

438 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

439 prevNorth = img1 . at<Vec3b>(j =1, i) ;

168

440 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

441 prevWest = img1 . at<Vec3b>(j , i = 1) ;

442 prevPixe l = img1 . at<Vec3b>(j , i) ;

443 i f (x == w=1){

444 prevNorthNorthEast = 0 ;

445 prevNorthEast = 0 ;

446 }

447 else {

448 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

449 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

450 }

451 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

452 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

453 f l a g = 1 ;

454 goto f i n i s h 1 ;

455 }

456 }

457 }

458 }

459 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd >= w) {

460 for (j = Yd i f f ; j < Yadd ; j++){

461 for (i = 2 ; i < w; i++){

462 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

463 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

464 prevNorth = img1 . at<Vec3b>(j =1, i) ;

465 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

466 prevWest = img1 . at<Vec3b>(j , i = 1) ;

467 prevPixe l = img1 . at<Vec3b>(j , i) ;

468 i f (x == w=1){

469 prevNorthNorthEast = 0 ;

470 prevNorthEast = 0 ;

471 }

472 else {

473 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

169

474 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

475 }

476 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

477 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

478 f l a g = 1 ;

479 goto f i n i s h 1 ;

480 }

481 }

482 }

483 }

484 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

485 for (j = Yd i f f ; j < h ; j++){

486 for (i = 2 ; i < Xadd ; i++){

487 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

488 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

489 prevNorth = img1 . at<Vec3b>(j =1, i) ;

490 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

491 prevWest = img1 . at<Vec3b>(j , i = 1) ;

492 prevPixe l = img1 . at<Vec3b>(j , i) ;

493 i f (x == w=1){

494 prevNorthNorthEast = 0 ;

495 prevNorthEast = 0 ;

496 }

497 else {

498 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

499 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

500 }

501 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

502 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

503 f l a g = 1 ;

504 goto f i n i s h 1 ;

170

505 }

506 }

507 }

508 }

509 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

510 for (j = Yd i f f ; j < h ; j++){

511 for (i = 2 ; i < w; i++){

512 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

513 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

514 prevNorth = img1 . at<Vec3b>(j =1, i) ;

515 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

516 prevWest = img1 . at<Vec3b>(j , i = 1) ;

517 prevPixe l = img1 . at<Vec3b>(j , i) ;

518 i f (x == w=1){

519 prevNorthNorthEast = 0 ;

520 prevNorthEast = 0 ;

521 }

522 else {

523 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

524 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

525 }

526 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

527 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

528 f l a g = 1 ;

529 goto f i n i s h 1 ;

530 }

531 }

532 }

533 }

534 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

535 for (j = Yd i f f ; j < Yadd ; j++){

536 for (i = Xd i f f ; i < Xadd ; i++){

537 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

538 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

171

539 prevNorth = img1 . at<Vec3b>(j =1, i) ;

540 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

541 prevWest = img1 . at<Vec3b>(j , i = 1) ;

542 prevPixe l = img1 . at<Vec3b>(j , i) ;

543 i f (x == w=1){

544 prevNorthNorthEast = 0 ;

545 prevNorthEast = 0 ;

546 }

547 else {

548 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

549 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

550 }

551 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

552 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

553 f l a g = 1 ;

554 goto f i n i s h 1 ;

555 }

556 }

557 }

558 }

559 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

560 for (j = Yd i f f ; j < Yadd ; j++){

561 for (i = Xd i f f ; i < w; i++){

562 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

563 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

564 prevNorth = img1 . at<Vec3b>(j =1, i) ;

565 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

566 prevWest = img1 . at<Vec3b>(j , i = 1) ;

567 prevPixe l = img1 . at<Vec3b>(j , i) ;

568 i f (x == w=1){

569 prevNorthNorthEast = 0 ;

570 prevNorthEast = 0 ;

571 }

572 else {

172

573 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

574 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

575 }

576 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

577 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

578 f l a g = 1 ;

579 goto f i n i s h 1 ;

580 }

581 }

582 }

583 }

584 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

585 for (j = Yd i f f ; j < h ; j++){

586 for (i = Xd i f f ; i < Xadd ; i++){

587 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

588 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

589 prevNorth = img1 . at<Vec3b>(j =1, i) ;

590 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

591 prevWest = img1 . at<Vec3b>(j , i = 1) ;

592 prevPixe l = img1 . at<Vec3b>(j , i) ;

593 i f (x == w=1){

594 prevNorthNorthEast = 0 ;

595 prevNorthEast = 0 ;

596 }

597 else {

598 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

599 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

600 }

601 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

602 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

603 f l a g = 1 ;

173

604 goto f i n i s h 1 ;

605 }

606 }

607 }

608 }

609 else { // i f (Yd i f f >= 0; Xd i f f >= 0; Yadd >= h ; Xadd >=w)

610 for (j = Yd i f f ; j < h ; j++){

611 for (i = Xd i f f ; i < w; i++){

612 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

613 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

614 prevNorth = img1 . at<Vec3b>(j =1, i) ;

615 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

616 prevWest = img1 . at<Vec3b>(j , i = 1) ;

617 prevPixe l = img1 . at<Vec3b>(j , i) ;

618 i f (x == w=1){

619 prevNorthNorthEast = 0 ;

620 prevNorthEast = 0 ;

621 }

622 else {

623 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

624 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

625 }

626 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

627 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

628 f l a g = 1 ;

629 goto f i n i s h 1 ;

630 }

631 }

632 }

633 }

634 f i n i s h 1 :

635

636 //No match i s found , so we have to go through and f i nd the b e s t

match

174

637 i f (f l a g == 0) {

638 th r e sho ld ++;

639 while (1) {

640 i f (Yd i f f < 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

641 for (j = 2 ; j < Yadd ; j++){

642 for (i = 2 ; i < Xadd ; i++){

643 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

644 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

645 prevNorth = img1 . at<Vec3b>(j =1, i) ;

646 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

647 prevWest = img1 . at<Vec3b>(j , i = 1) ;

648 prevPixe l = img1 . at<Vec3b>(j , i) ;

649 i f (x == w=1){

650 prevNorthNorthEast = 0 ;

651 prevNorthEast = 0 ;

652 }

653 else {

654 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

655 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

656 }

657 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

658 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

659 goto f i n i s h 2 ;

660 }

661 }

662 }

663 }

664 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd <= h && Xadd >= w) {

665 for (j = 2 ; j < Yadd ; j++){

666 for (i = 2 ; i < w; i++){

667 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

668 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

669 prevNorth = img1 . at<Vec3b>(j =1, i) ;

175

670 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

671 prevWest = img1 . at<Vec3b>(j , i = 1) ;

672 prevPixe l = img1 . at<Vec3b>(j , i) ;

673 i f (x == w=1){

674 prevNorthNorthEast = 0 ;

675 prevNorthEast = 0 ;

676 }

677 else {

678 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

679 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

680 }

681 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

682 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

683 goto f i n i s h 2 ;

684 }

685 }

686 }

687 }

688 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

689 for (j = 2 ; j < h ; j++){

690 for (i = 2 ; i < Xadd ; i++){

691 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

692 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

693 prevNorth = img1 . at<Vec3b>(j =1, i) ;

694 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

695 prevWest = img1 . at<Vec3b>(j , i = 1) ;

696 prevPixe l = img1 . at<Vec3b>(j , i) ;

697 i f (x == w=1){

698 prevNorthNorthEast = 0 ;

699 prevNorthEast = 0 ;

700 }

701 else {

702 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

176

703 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

704 }

705 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

706 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

707 goto f i n i s h 2 ;

708 }

709 }

710 }

711 }

712 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

713 for (j = 2 ; j < h ; j++){

714 for (i = 2 ; i < w; i++){

715 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

716 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

717 prevNorth = img1 . at<Vec3b>(j =1, i) ;

718 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

719 prevWest = img1 . at<Vec3b>(j , i = 1) ;

720 prevPixe l = img1 . at<Vec3b>(j , i) ;

721 i f (x == w=1){

722 prevNorthNorthEast = 0 ;

723 prevNorthEast = 0 ;

724 }

725 else {

726 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

727 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

728 }

729 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

730 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

731 goto f i n i s h 2 ;

177

732 }

733 }

734 }

735 }

736 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

737 for (j = 2 ; j < Yadd ; j++){

738 for (i = Xd i f f ; i < x + d i s t ance ; i++){

739 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

740 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

741 prevNorth = img1 . at<Vec3b>(j =1, i) ;

742 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

743 prevWest = img1 . at<Vec3b>(j , i = 1) ;

744 prevPixe l = img1 . at<Vec3b>(j , i) ;

745 i f (x == w=1){

746 prevNorthNorthEast = 0 ;

747 prevNorthEast = 0 ;

748 }

749 else {

750 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

751 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

752 }

753 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

754 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

755 goto f i n i s h 2 ;

756 }

757 }

758 }

759 }

760 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

761 for (j = 2 ; j < Yadd ; j++){

762 for (i = Xd i f f ; i < w; i++){

763 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

764 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

178

765 prevNorth = img1 . at<Vec3b>(j =1, i) ;

766 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

767 prevWest = img1 . at<Vec3b>(j , i = 1) ;

768 prevPixe l = img1 . at<Vec3b>(j , i) ;

769 i f (x == w=1){

770 prevNorthNorthEast = 0 ;

771 prevNorthEast = 0 ;

772 }

773 else {

774 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

775 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

776 }

777 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

778 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

779 goto f i n i s h 2 ;

780 }

781 }

782 }

783 }

784 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

785 for (j = 2 ; j < h ; j++){

786 for (i = Xd i f f ; i < Xadd ; i++){

787 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

788 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

789 prevNorth = img1 . at<Vec3b>(j =1, i) ;

790 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

791 prevWest = img1 . at<Vec3b>(j , i = 1) ;

792 prevPixe l = img1 . at<Vec3b>(j , i) ;

793 i f (x == w=1){

794 prevNorthNorthEast = 0 ;

795 prevNorthEast = 0 ;

796 }

797 else {

179

798 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

799 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

800 }

801 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

802 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

803 goto f i n i s h 2 ;

804 }

805 }

806 }

807 }

808 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd >= w) {

809 for (j = 2 ; j < h ; j++){

810 for (i = Xd i f f ; i < w; i++){

811 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

812 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

813 prevNorth = img1 . at<Vec3b>(j =1, i) ;

814 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

815 prevWest = img1 . at<Vec3b>(j , i = 1) ;

816 prevPixe l = img1 . at<Vec3b>(j , i) ;

817 i f (x == w=1){

818 prevNorthNorthEast = 0 ;

819 prevNorthEast = 0 ;

820 }

821 else {

822 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

823 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

824 }

825 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

826 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

180

827 goto f i n i s h 2 ;

828 }

829 }

830 }

831 }

832 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

833 for (j = Yd i f f ; j < Yadd ; j++){

834 for (i = 2 ; i < Xadd ; i++){

835 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

836 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

837 prevNorth = img1 . at<Vec3b>(j =1, i) ;

838 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

839 prevWest = img1 . at<Vec3b>(j , i = 1) ;

840 prevPixe l = img1 . at<Vec3b>(j , i) ;

841 i f (x == w=1){

842 prevNorthNorthEast = 0 ;

843 prevNorthEast = 0 ;

844 }

845 else {

846 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

847 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

848 }

849 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

850 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

851 goto f i n i s h 2 ;

852 }

853 }

854 }

855 }

856 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd >= w) {

857 for (j = Yd i f f ; j < Yadd ; j++){

858 for (i = 2 ; i < w; i++){

859 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

181

860 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

861 prevNorth = img1 . at<Vec3b>(j =1, i) ;

862 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

863 prevWest = img1 . at<Vec3b>(j , i = 1) ;

864 prevPixe l = img1 . at<Vec3b>(j , i) ;

865 i f (x == w=1){

866 prevNorthNorthEast = 0 ;

867 prevNorthEast = 0 ;

868 }

869 else {

870 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

871 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

872 }

873 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

874 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

875 goto f i n i s h 2 ;

876 }

877 }

878 }

879 }

880 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

881 for (j = Yd i f f ; j < h ; j++){

882 for (i = 2 ; i < Xadd ; i++){

883 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

884 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

885 prevNorth = img1 . at<Vec3b>(j =1, i) ;

886 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

887 prevWest = img1 . at<Vec3b>(j , i = 1) ;

888 prevPixe l = img1 . at<Vec3b>(j , i) ;

889 i f (x == w=1){

890 prevNorthNorthEast = 0 ;

891 prevNorthEast = 0 ;

892 }

182

893 else {

894 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

895 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

896 }

897 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

898 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

899 goto f i n i s h 2 ;

900 }

901 }

902 }

903 }

904 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

905 for (j = Yd i f f ; j < h ; j++){

906 for (i = 2 ; i < w; i++){

907 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

908 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

909 prevNorth = img1 . at<Vec3b>(j =1, i) ;

910 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

911 prevWest = img1 . at<Vec3b>(j , i = 1) ;

912 prevPixe l = img1 . at<Vec3b>(j , i) ;

913 i f (x == w=1){

914 prevNorthNorthEast = 0 ;

915 prevNorthEast = 0 ;

916 }

917 else {

918 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

919 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

920 }

921 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

183

922 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

923 goto f i n i s h 2 ;

924 }

925 }

926 }

927 }

928 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

929 for (j = Yd i f f ; j < Yadd ; j++){

930 for (i = Xd i f f ; i < Xadd ; i++){

931 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

932 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

933 prevNorth = img1 . at<Vec3b>(j =1, i) ;

934 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

935 prevWest = img1 . at<Vec3b>(j , i = 1) ;

936 prevPixe l = img1 . at<Vec3b>(j , i) ;

937 i f (x == w=1){

938 prevNorthNorthEast = 0 ;

939 prevNorthEast = 0 ;

940 }

941 else {

942 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

943 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

944 }

945 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

946 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

947 goto f i n i s h 2 ;

948 }

949 }

950 }

951 }

952 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

953 for (j = Yd i f f ; j < Yadd ; j++){

954 for (i = Xd i f f ; i < w; i++){

184

955 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

956 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

957 prevNorth = img1 . at<Vec3b>(j =1, i) ;

958 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

959 prevWest = img1 . at<Vec3b>(j , i = 1) ;

960 prevPixe l = img1 . at<Vec3b>(j , i) ;

961 i f (x == w=1){

962 prevNorthNorthEast = 0 ;

963 prevNorthEast = 0 ;

964 }

965 else {

966 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

967 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

968 }

969 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

970 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

971 goto f i n i s h 2 ;

972 }

973 }

974 }

975 }

976 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

977 for (j = Yd i f f ; j < h ; j++){

978 for (i = Xd i f f ; i < Xadd ; i++){

979 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

980 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

981 prevNorth = img1 . at<Vec3b>(j =1, i) ;

982 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

983 prevWest = img1 . at<Vec3b>(j , i = 1) ;

984 prevPixe l = img1 . at<Vec3b>(j , i) ;

985 i f (x == w=1){

986 prevNorthNorthEast = 0 ;

987 prevNorthEast = 0 ;

185

988 }

989 else {

990 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

991 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

992 }

993 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

994 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

995 goto f i n i s h 2 ;

996 }

997 }

998 }

999 }

1000 else { // i f (Yd i f f >= 2; Xd i f f >= 2; Yadd >= h ; Xadd >=w)

1001 for (j = Yd i f f ; j < h ; j++){

1002 for (i = Xd i f f ; i < w; i++){

1003 prevNorthNorth = img1 . at<Vec3b>(j = 2 , i) ;

1004 prevNorthWest = img1 . at<Vec3b>(j = 1 , i = 1) ;

1005 prevNorth = img1 . at<Vec3b>(j =1, i) ;

1006 prevWestWest = img1 . at<Vec3b>(j , i = 2) ;

1007 prevWest = img1 . at<Vec3b>(j , i = 1) ;

1008 prevPixe l = img1 . at<Vec3b>(j , i) ;

1009 i f (x == w=1){

1010 prevNorthNorthEast = 0 ;

1011 prevNorthEast = 0 ;

1012 }

1013 else {

1014 prevNorthNorthEast = img1 . at<Vec3b>(j = 2 , i + 1) ;

1015 prevNorthEast = img1 . at<Vec3b>(j = 1 , i + 1) ;

1016 }

1017 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

186

th r e sho ld) {

1018 i n i t i a l P r e d i c t i o n = prevPixe l . va l [z] ;

1019 goto f i n i s h 2 ;

1020 }

1021 }

1022 }

1023 }

1024 th r e sho ld ++;

1025 }

1026 }

1027 f i n i s h 2 :

1028

1029 e r r o r = i n t 1 6 t (P ixe l . va l [z]) = i n t 1 6 t (i n i t i a l P r e d i c t i o n) ;

1030 //Remap so t ha t a l l t he error va l u e s are p o s i t i v e and wi th in the

range 0=255

1031 remap = Remap(er ror , i n i t i a l P r e d i c t i o n) ;

1032 symbol = p i x t o i nd e x e [remap] ;

1033 encode (symbol) ;

1034

1035 f l a g = 0 ;

1036 th r e sho ld = 0 ;

1037 }

1038 }

1039 }

1040 }

1041

1042 sendLowerLimit () ;

1043

1044 //Free up the encoded a l l o c a t e d memory

1045 f r e e (output a r ray e) ;

1046 p r i n t f (”The f i l e has been encoded\n”) ;

1047 cout << ”The f i n a l output b i t l o c a t i o n i s : ” << outputBi tLocat ion e << endl

;

1048 f c l o s e (encodedFi l e) ;

1049

1050 //Now we need to open and read from the encoded f i l e l i t t l e by l i t t l e

1051 encodedFi l e = fopen (”encoded . bin ” , ” rb”) ;

187

1052

1053 // f i nd the s i z e o f the f i l e

1054 f s e e k (encodedFi le , 0 ,SEEK END) ;

1055 f i l e S i z e = f t e l l (encodedFi l e) ;

1056 maxFileLocation = f i l e S i z e / fileByteRW ;

1057 rewind (encodedFi l e) ;

1058

1059 f i l e L o c a t i o n = 1 ;

1060 f r ead (toDecode , 1 , fileByteRW , encodedFi l e) ;

1061 tag = (toDecode [0] << 8) | toDecode [1] ;

1062 f s e e k (encodedFi le , fileByteRW* f i l e L o c a t i o n ,SEEK SET) ;

1063 f i l e L o c a t i o n++;

1064

1065 // i n i t i a l i z e decodedImages

1066 prevDecodedImage . c r e a t e (h ,w, image0 . type ()) ;

1067 decodedImage . c r e a t e (h ,w, image0 . type ()) ;

1068 decodedImage0 . c r e a t e (h ,w, image0 . type ()) ;

1069 decodedImage1 . c r e a t e (h ,w, image1 . type ()) ;

1070 decodedImage2 . c r e a t e (h ,w, image2 . type ()) ;

1071 decodedImage3 . c r e a t e (h ,w, image3 . type ()) ;

1072 decodedImage4 . c r e a t e (h ,w, image4 . type ()) ;

1073 decodedImage5 . c r e a t e (h ,w, image5 . type ()) ;

1074

1075 // i n i t i a l i z e the t a b l e s t h a t t r a n s l a t e between symbol indexes and charac t e r s

1076 for (int i = 0 ; i < 256 ; i++){

1077 p i x t o i ndex d [i] = i + 1 ;

1078 i nd ex t o p i x d [i + 1] = i ;

1079 }

1080

1081 // i n i t i a l i z e the symbol counts and cummulative counts

1082 for (int i = 0 ; i <= 256 ; i ++){

1083 symbol count d [i] = 1 ;

1084 cum count d [i] = 256 = i ;

1085 }

1086 symbol count d [0] = 0 ; // count [0] must not be the same as count [1]

1087

1088 decode (h , w, c) ;

188

1089

1090 i n t 1 6 t decodedPred ict ion ;

1091 u i n t 8 t p ixe lVa l ;

1092 i n t 1 6 t e ;

1093 Vec3b decodedImagePixel ;

1094

1095 // f i r s t image was encoded us ing CALIC.

1096 for (y = 2 ; y < h ; y++){

1097 for (x = 2 ; x < w; x++){

1098 for (z = 0 ; z < c ; z++){

1099 NorthNorth = decodedImage0 . at<Vec3b>(y = 2 , x) ;

1100 NorthWest = decodedImage0 . at<Vec3b>(y = 1 , x = 1) ;

1101 North = decodedImage0 . at<Vec3b>(y=1,x) ;

1102 WestWest = decodedImage0 . at<Vec3b>(y , x = 2) ;

1103 West = decodedImage0 . at<Vec3b>(y , x = 1) ;

1104

1105 i f (x == w=1){

1106 NorthNorthEast = 0 ;

1107 NorthEast = 0 ;

1108 }

1109 else {

1110 NorthNorthEast = decodedImage0 . at<Vec3b>(y = 2 , x + 1) ;

1111 NorthEast = decodedImage0 . at<Vec3b>(y = 1 , x + 1) ;

1112 }

1113

1114 decodedImagePixel = decodedImage0 . at<Vec3b>(y , x) ;

1115 decodedPred ic t ion = i n i t i a l l y p r e d i c t (NorthNorth . va l [z] , NorthNorthEast

. va l [z] , NorthWest . va l [z] , North . va l [z] , NorthEast . va l [z] ,WestWest .

va l [z] ,West . va l [z]) ;

1116 e = (signed i n t 1 6 t) undoRemapping (decodedImagePixel . va l [z] ,

decodedPred ic t ion) ;

1117 decodedImage0 . at<Vec3b>(y , x) [z] = decodedPred ic t ion + e ;

1118 }

1119 }

1120 }

1121

1122 for (int imageCount = 1 ; imageCount < 6 ; imageCount++){

189

1123 i f (imageCount == 1) {

1124 prevDecodedImage = decodedImage0 ;

1125 decodedImage = decodedImage1 ;

1126 }

1127 else i f (imageCount == 2) {

1128 prevDecodedImage = decodedImage1 ;

1129 decodedImage = decodedImage2 ;

1130 }

1131 else i f (imageCount == 3) {

1132 prevDecodedImage = decodedImage2 ;

1133 decodedImage = decodedImage3 ;

1134 }

1135 else i f (imageCount == 4) {

1136 prevDecodedImage = decodedImage3 ;

1137 decodedImage = decodedImage4 ;

1138 }

1139 else i f (imageCount == 5) {

1140 prevDecodedImage = decodedImage4 ;

1141 decodedImage = decodedImage5 ;

1142 }

1143

1144

1145 for (y = 2 ; y < h ; y++){

1146 for (x = 2 ; x < w; x++){

1147 for (z = 0 ; z < c ; z++){

1148 NorthNorth = decodedImage . at<Vec3b>(y = 2 , x) ;

1149 NorthWest = decodedImage . at<Vec3b>(y = 1 , x = 1) ;

1150 North = decodedImage . at<Vec3b>(y=1,x) ;

1151 WestWest = decodedImage . at<Vec3b>(y , x = 2) ;

1152 West = decodedImage . at<Vec3b>(y , x = 1) ;

1153

1154 i f (x == w=1){

1155 NorthNorthEast = 0 ;

1156 NorthEast = 0 ;

1157 }

1158 else {

1159 NorthNorthEast = decodedImage . at<Vec3b>(y = 2 , x + 1) ;

190

1160 NorthEast = decodedImage . at<Vec3b>(y = 1 , x + 1) ;

1161 }

1162

1163 decodedImagePixel = decodedImage . at<Vec3b>(y , x) ;

1164

1165 // look f o r an exac t match in a fram around the image

1166 Ydi f f = y = d i s t ance ;

1167 Xdi f f = x = d i s t ance ;

1168 Yadd = y + d i s t anc e ;

1169 Xadd = x + d i s t anc e ;

1170

1171 i f (Yd i f f < 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

1172 for (j = 2 ; j < Yadd ; j++){

1173 for (i = 2 ; i < Xadd ; i++){

1174 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1175 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1176 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1177 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1178 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1179 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1180 i f (x == w=1){

1181 prevNorthNorthEast = 0 ;

1182 prevNorthEast = 0 ;

1183 }

1184 else {

1185 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1186 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1187 }

1188 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1189 decodedPred ict ion = prevPixe l . va l [z] ;

1190 f l a g = 1 ;

1191 goto f i n i s h 3 ;

1192 }

191

1193 }

1194 }

1195 }

1196 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd <= h && Xadd >= w) {

1197 for (j = 2 ; j < Yadd ; j++){

1198 for (i = 2 ; i < w; i++){

1199 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1200 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1201 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1202 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1203 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1204 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1205 i f (x == w=1){

1206 prevNorthNorthEast = 0 ;

1207 prevNorthEast = 0 ;

1208 }

1209 else {

1210 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1211 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1212 }

1213 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1214 decodedPred ict ion = prevPixe l . va l [z] ;

1215 f l a g = 1 ;

1216 goto f i n i s h 3 ;

1217 }

1218 }

1219 }

1220 }

1221 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

1222 for (j = 2 ; j < h ; j++){

1223 for (i = 2 ; i < Xadd ; i++){

1224 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1225 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

192

1226 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1227 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1228 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1229 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1230 i f (x == w=1){

1231 prevNorthNorthEast = 0 ;

1232 prevNorthEast = 0 ;

1233 }

1234 else {

1235 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1236 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1237 }

1238 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1239 decodedPred ict ion = prevPixe l . va l [z] ;

1240 f l a g = 1 ;

1241 goto f i n i s h 3 ;

1242 }

1243 }

1244 }

1245 }

1246 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

1247 for (j = 2 ; j < h ; j++){

1248 for (i = 2 ; i < w; i++){

1249 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1250 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1251 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1252 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1253 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1254 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1255 i f (x == w=1){

1256 prevNorthNorthEast = 0 ;

1257 prevNorthEast = 0 ;

1258 }

193

1259 else {

1260 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1261 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1262 }

1263 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1264 decodedPred ict ion = prevPixe l . va l [z] ;

1265 f l a g = 1 ;

1266 goto f i n i s h 3 ;

1267 }

1268 }

1269 }

1270 }

1271 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

1272 for (j = 2 ; j < Yadd ; j++){

1273 for (i = Xd i f f ; i < x + d i s t ance ; i++){

1274 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1275 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1276 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1277 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1278 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1279 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1280 i f (x == w=1){

1281 prevNorthNorthEast = 0 ;

1282 prevNorthEast = 0 ;

1283 }

1284 else {

1285 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1286 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1287 }

1288 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

194

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1289 decodedPred ict ion = prevPixe l . va l [z] ;

1290 f l a g = 1 ;

1291 goto f i n i s h 3 ;

1292 }

1293 }

1294 }

1295 }

1296 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

1297 for (j = 2 ; j < Yadd ; j++){

1298 for (i = Xd i f f ; i < w; i++){

1299 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1300 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1301 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1302 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1303 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1304 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1305 i f (x == w=1){

1306 prevNorthNorthEast = 0 ;

1307 prevNorthEast = 0 ;

1308 }

1309 else {

1310 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1311 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1312 }

1313 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1314 decodedPred ict ion = prevPixe l . va l [z] ;

1315 f l a g = 1 ;

1316 goto f i n i s h 3 ;

1317 }

1318 }

1319 }

1320 }

195

1321 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

1322 for (j = 2 ; j < h ; j++){

1323 for (i = Xd i f f ; i < Xadd ; i++){

1324 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1325 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1326 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1327 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1328 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1329 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1330 i f (x == w=1){

1331 prevNorthNorthEast = 0 ;

1332 prevNorthEast = 0 ;

1333 }

1334 else {

1335 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1336 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1337 }

1338 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1339 decodedPred ict ion = prevPixe l . va l [z] ;

1340 f l a g = 1 ;

1341 goto f i n i s h 3 ;

1342 }

1343 }

1344 }

1345 }

1346 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd >= w) {

1347 for (j = 2 ; j < h ; j++){

1348 for (i = Xd i f f ; i < w; i++){

1349 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1350 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1351 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1352 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1353 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

196

1354 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1355 i f (x == w=1){

1356 prevNorthNorthEast = 0 ;

1357 prevNorthEast = 0 ;

1358 }

1359 else {

1360 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1361 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1362 }

1363 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1364 decodedPred ict ion = prevPixe l . va l [z] ;

1365 f l a g = 1 ;

1366 goto f i n i s h 3 ;

1367 }

1368 }

1369 }

1370 }

1371 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

1372 for (j = Yd i f f ; j < Yadd ; j++){

1373 for (i = 2 ; i < Xadd ; i++){

1374 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1375 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1376 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1377 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1378 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1379 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1380 i f (x == w=1){

1381 prevNorthNorthEast = 0 ;

1382 prevNorthEast = 0 ;

1383 }

1384 else {

1385 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

197

1386 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1387 }

1388 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1389 decodedPred ict ion = prevPixe l . va l [z] ;

1390 f l a g = 1 ;

1391 goto f i n i s h 3 ;

1392 }

1393 }

1394 }

1395 }

1396 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd >= w) {

1397 for (j = Yd i f f ; j < Yadd ; j++){

1398 for (i = 2 ; i < w; i++){

1399 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1400 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1401 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1402 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1403 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1404 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1405 i f (x == w=1){

1406 prevNorthNorthEast = 0 ;

1407 prevNorthEast = 0 ;

1408 }

1409 else {

1410 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1411 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1412 }

1413 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1414 decodedPred ict ion = prevPixe l . va l [z] ;

1415 f l a g = 1 ;

198

1416 goto f i n i s h 3 ;

1417 }

1418 }

1419 }

1420 }

1421 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

1422 for (j = Yd i f f ; j < h ; j++){

1423 for (i = 2 ; i < Xadd ; i++){

1424 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1425 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1426 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1427 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1428 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1429 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1430 i f (x == w=1){

1431 prevNorthNorthEast = 0 ;

1432 prevNorthEast = 0 ;

1433 }

1434 else {

1435 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1436 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1437 }

1438 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1439 decodedPred ict ion = prevPixe l . va l [z] ;

1440 f l a g = 1 ;

1441 goto f i n i s h 3 ;

1442 }

1443 }

1444 }

1445 }

1446 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

1447 for (j = Yd i f f ; j < h ; j++){

1448 for (i = 2 ; i < w; i++){

199

1449 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1450 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1451 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1452 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1453 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1454 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1455 i f (x == w=1){

1456 prevNorthNorthEast = 0 ;

1457 prevNorthEast = 0 ;

1458 }

1459 else {

1460 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1461 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1462 }

1463 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1464 decodedPred ict ion = prevPixe l . va l [z] ;

1465 f l a g = 1 ;

1466 goto f i n i s h 3 ;

1467 }

1468 }

1469 }

1470 }

1471 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

1472 for (j = Yd i f f ; j < Yadd ; j++){

1473 for (i = Xd i f f ; i < Xadd ; i++){

1474 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1475 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1476 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1477 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1478 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1479 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1480 i f (x == w=1){

1481 prevNorthNorthEast = 0 ;

200

1482 prevNorthEast = 0 ;

1483 }

1484 else {

1485 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1486 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1487 }

1488 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1489 decodedPred ict ion = prevPixe l . va l [z] ;

1490 f l a g = 1 ;

1491 goto f i n i s h 3 ;

1492 }

1493 }

1494 }

1495 }

1496 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

1497 for (j = Yd i f f ; j < Yadd ; j++){

1498 for (i = Xd i f f ; i < w; i++){

1499 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1500 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1501 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1502 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1503 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1504 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1505 i f (x == w=1){

1506 prevNorthNorthEast = 0 ;

1507 prevNorthEast = 0 ;

1508 }

1509 else {

1510 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1511 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1512 }

201

1513 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1514 decodedPred ict ion = prevPixe l . va l [z] ;

1515 f l a g = 1 ;

1516 goto f i n i s h 3 ;

1517 }

1518 }

1519 }

1520 }

1521 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

1522 for (j = Yd i f f ; j < h ; j++){

1523 for (i = Xd i f f ; i < Xadd ; i++){

1524 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1525 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1526 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1527 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1528 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1529 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1530 i f (x == w=1){

1531 prevNorthNorthEast = 0 ;

1532 prevNorthEast = 0 ;

1533 }

1534 else {

1535 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1536 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1537 }

1538 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1539 decodedPred ict ion = prevPixe l . va l [z] ;

1540 f l a g = 1 ;

1541 goto f i n i s h 3 ;

1542 }

202

1543 }

1544 }

1545 }

1546 else { // i f (Yd i f f >= 2; Xd i f f >= 2; Yadd >= h ; Xadd >=w)

1547 for (j = Yd i f f ; j < h ; j++){

1548 for (i = Xd i f f ; i < w; i++){

1549 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1550 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1551 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1552 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1553 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1554 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1555 i f (x == w=1){

1556 prevNorthNorthEast = 0 ;

1557 prevNorthEast = 0 ;

1558 }

1559 else {

1560 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i + 1)

;

1561 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1562 }

1563 i f (abs (prevWest . va l [z] = West . va l [z]) == thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) == thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) == thre sho ld && abs (

prevNorthEast . va l [z] = NorthEast . va l [z]) == thre sho ld) {

1564 decodedPred ict ion = prevPixe l . va l [z] ;

1565 f l a g = 1 ;

1566 goto f i n i s h 3 ;

1567 }

1568 }

1569 }

1570 }

1571 f i n i s h 3 :

1572

1573 //No match i s found , so we have to go through and f i nd the b e s t

match

1574 i f (f l a g == 0) {

203

1575 th r e sho ld ++;

1576 while (1) {

1577 i f (Yd i f f < 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

1578 for (j = 2 ; j < Yadd ; j++){

1579 for (i = 2 ; i < Xadd ; i++){

1580 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1581 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1582 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1583 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1584 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1585 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1586 i f (x == w=1){

1587 prevNorthNorthEast = 0 ;

1588 prevNorthEast = 0 ;

1589 }

1590 else {

1591 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1592 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1593 }

1594 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1595 decodedPred ic t ion = prevPixe l . va l [z] ;

1596 f l a g = 1 ;

1597 goto f i n i s h 4 ;

1598 }

1599 }

1600 }

1601 }

1602 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd <= h && Xadd >= w) {

1603 for (j = 2 ; j < Yadd ; j++){

1604 for (i = 2 ; i < w; i++){

1605 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1606 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

204

1607 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1608 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1609 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1610 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1611 i f (x == w=1){

1612 prevNorthNorthEast = 0 ;

1613 prevNorthEast = 0 ;

1614 }

1615 else {

1616 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1617 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1618 }

1619 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1620 decodedPred ic t ion = prevPixe l . va l [z] ;

1621 f l a g = 1 ;

1622 goto f i n i s h 4 ;

1623 }

1624 }

1625 }

1626 }

1627 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

1628 for (j = 2 ; j < h ; j++){

1629 for (i = 2 ; i < Xadd ; i++){

1630 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1631 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1632 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1633 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1634 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1635 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1636 i f (x == w=1){

1637 prevNorthNorthEast = 0 ;

1638 prevNorthEast = 0 ;

205

1639 }

1640 else {

1641 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1642 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1643 }

1644 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1645 decodedPred ic t ion = prevPixe l . va l [z] ;

1646 f l a g = 1 ;

1647 goto f i n i s h 4 ;

1648 }

1649 }

1650 }

1651 }

1652 else i f (Yd i f f < 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

1653 for (j = 2 ; j < h ; j++){

1654 for (i = 2 ; i < w; i++){

1655 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1656 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1657 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1658 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1659 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1660 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1661 i f (x == w=1){

1662 prevNorthNorthEast = 0 ;

1663 prevNorthEast = 0 ;

1664 }

1665 else {

1666 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1667 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1668 }

206

1669 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld &&

abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld &&

abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1670 decodedPred ic t ion = prevPixe l . va l [z] ;

1671 f l a g = 1 ;

1672 goto f i n i s h 4 ;

1673 }

1674 }

1675 }

1676 }

1677 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

1678 for (j = 2 ; j < Yadd ; j++){

1679 for (i = Xd i f f ; i < x + d i s t ance ; i++){

1680 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1681 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1682 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1683 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1684 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1685 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1686 i f (x == w=1){

1687 prevNorthNorthEast = 0 ;

1688 prevNorthEast = 0 ;

1689 }

1690 else {

1691 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1692 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1693 }

1694 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1695 decodedPred ic t ion = prevPixe l . va l [z] ;

1696 f l a g = 1 ;

207

1697 goto f i n i s h 4 ;

1698 }

1699 }

1700 }

1701 }

1702 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

1703 for (j = 2 ; j < Yadd ; j++){

1704 for (i = Xd i f f ; i < w; i++){

1705 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1706 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1707 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1708 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1709 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1710 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1711 i f (x == w=1){

1712 prevNorthNorthEast = 0 ;

1713 prevNorthEast = 0 ;

1714 }

1715 else {

1716 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1717 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1718 }

1719 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1720 decodedPred ic t ion = prevPixe l . va l [z] ;

1721 f l a g = 1 ;

1722 goto f i n i s h 4 ;

1723 }

1724 }

1725 }

1726 }

1727 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

1728 for (j = 2 ; j < h ; j++){

208

1729 for (i = Xd i f f ; i < Xadd ; i++){

1730 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1731 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1732 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1733 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1734 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1735 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1736 i f (x == w=1){

1737 prevNorthNorthEast = 0 ;

1738 prevNorthEast = 0 ;

1739 }

1740 else {

1741 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1742 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1743 }

1744 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1745 decodedPred ic t ion = prevPixe l . va l [z] ;

1746 f l a g = 1 ;

1747 goto f i n i s h 4 ;

1748 }

1749 }

1750 }

1751 }

1752 else i f (Yd i f f < 2 && Xdi f f >= 2 && Yadd >= h && Xadd >= w) {

1753 for (j = 2 ; j < h ; j++){

1754 for (i = Xd i f f ; i < w; i++){

1755 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1756 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1757 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1758 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1759 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1760 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

209

1761 i f (x == w=1){

1762 prevNorthNorthEast = 0 ;

1763 prevNorthEast = 0 ;

1764 }

1765 else {

1766 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1767 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1768 }

1769 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1770 decodedPred ic t ion = prevPixe l . va l [z] ;

1771 f l a g = 1 ;

1772 goto f i n i s h 4 ;

1773 }

1774 }

1775 }

1776 }

1777 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd < w) {

1778 for (j = Yd i f f ; j < Yadd ; j++){

1779 for (i = 2 ; i < Xadd ; i++){

1780 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1781 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1782 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1783 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1784 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1785 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1786 i f (x == w=1){

1787 prevNorthNorthEast = 0 ;

1788 prevNorthEast = 0 ;

1789 }

1790 else {

1791 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

210

1792 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1793 }

1794 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1795 decodedPred ic t ion = prevPixe l . va l [z] ;

1796 f l a g = 1 ;

1797 goto f i n i s h 4 ;

1798 }

1799 }

1800 }

1801 }

1802 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd < h && Xadd >= w) {

1803 for (j = Yd i f f ; j < Yadd ; j++){

1804 for (i = 2 ; i < w; i++){

1805 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1806 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1807 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1808 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1809 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1810 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1811 i f (x == w=1){

1812 prevNorthNorthEast = 0 ;

1813 prevNorthEast = 0 ;

1814 }

1815 else {

1816 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1817 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1818 }

1819 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

211

1820 decodedPred ic t ion = prevPixe l . va l [z] ;

1821 f l a g = 1 ;

1822 goto f i n i s h 4 ;

1823 }

1824 }

1825 }

1826 }

1827 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd < w) {

1828 for (j = Yd i f f ; j < h ; j++){

1829 for (i = 2 ; i < Xadd ; i++){

1830 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1831 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1832 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1833 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1834 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1835 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1836 i f (x == w=1){

1837 prevNorthNorthEast = 0 ;

1838 prevNorthEast = 0 ;

1839 }

1840 else {

1841 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1842 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1843 }

1844 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1845 decodedPred ic t ion = prevPixe l . va l [z] ;

1846 f l a g = 1 ;

1847 goto f i n i s h 4 ;

1848 }

1849 }

1850 }

1851 }

212

1852 else i f (Yd i f f >= 2 && Xdi f f < 2 && Yadd >= h && Xadd >= w) {

1853 for (j = Yd i f f ; j < h ; j++){

1854 for (i = 2 ; i < w; i++){

1855 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1856 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1857 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1858 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1859 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1860 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1861 i f (x == w=1){

1862 prevNorthNorthEast = 0 ;

1863 prevNorthEast = 0 ;

1864 }

1865 else {

1866 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1867 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1868 }

1869 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1870 decodedPred ic t ion = prevPixe l . va l [z] ;

1871 f l a g = 1 ;

1872 goto f i n i s h 4 ;

1873 }

1874 }

1875 }

1876 }

1877 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd < w) {

1878 for (j = Yd i f f ; j < Yadd ; j++){

1879 for (i = Xd i f f ; i < Xadd ; i++){

1880 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1881 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1882 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1883 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

213

1884 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1885 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1886 i f (x == w=1){

1887 prevNorthNorthEast = 0 ;

1888 prevNorthEast = 0 ;

1889 }

1890 else {

1891 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1892 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1893 }

1894 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1895 decodedPred ic t ion = prevPixe l . va l [z] ;

1896 f l a g = 1 ;

1897 goto f i n i s h 4 ;

1898 }

1899 }

1900 }

1901 }

1902 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd < h && Xadd >= w) {

1903 for (j = Yd i f f ; j < Yadd ; j++){

1904 for (i = Xd i f f ; i < w; i++){

1905 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1906 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1907 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1908 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1909 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1910 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1911 i f (x == w=1){

1912 prevNorthNorthEast = 0 ;

1913 prevNorthEast = 0 ;

1914 }

1915 else {

214

1916 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1917 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1918 }

1919 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1920 decodedPred ic t ion = prevPixe l . va l [z] ;

1921 f l a g = 1 ;

1922 goto f i n i s h 4 ;

1923 }

1924 }

1925 }

1926 }

1927 else i f (Yd i f f >= 2 && Xdi f f >= 2 && Yadd >= h && Xadd < w) {

1928 for (j = Yd i f f ; j < h ; j++){

1929 for (i = Xd i f f ; i < Xadd ; i++){

1930 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1931 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1932 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1933 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1934 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1935 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1936 i f (x == w=1){

1937 prevNorthNorthEast = 0 ;

1938 prevNorthEast = 0 ;

1939 }

1940 else {

1941 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1942 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1943 }

1944 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

215

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1945 decodedPred ic t ion = prevPixe l . va l [z] ;

1946 f l a g = 1 ;

1947 goto f i n i s h 4 ;

1948 }

1949 }

1950 }

1951 }

1952 else { // i f (Yd i f f >= 2; Xd i f f >= 2; Yadd >= h ; Xadd >=w)

1953 for (j = Yd i f f ; j < h ; j++){

1954 for (i = Xd i f f ; i < w; i++){

1955 prevNorthNorth = prevDecodedImage . at<Vec3b>(j = 2 , i) ;

1956 prevNorthWest = prevDecodedImage . at<Vec3b>(j = 1 , i = 1) ;

1957 prevNorth = prevDecodedImage . at<Vec3b>(j =1, i) ;

1958 prevWestWest = prevDecodedImage . at<Vec3b>(j , i = 2) ;

1959 prevWest = prevDecodedImage . at<Vec3b>(j , i = 1) ;

1960 prevPixe l = prevDecodedImage . at<Vec3b>(j , i) ;

1961 i f (x == w=1){

1962 prevNorthNorthEast = 0 ;

1963 prevNorthEast = 0 ;

1964 }

1965 else {

1966 prevNorthNorthEast = prevDecodedImage . at<Vec3b>(j = 2 , i

+ 1) ;

1967 prevNorthEast = prevDecodedImage . at<Vec3b>(j = 1 , i + 1) ;

1968 }

1969 i f (abs (prevWest . va l [z] = West . va l [z]) <= thre sho ld && abs (

prevNorthWest . va l [z] = NorthWest . va l [z]) <= thre sho ld

&& abs (prevNorth . va l [z] = North . va l [z]) <= thre sho ld

&& abs (prevNorthEast . va l [z] = NorthEast . va l [z]) <=

thre sho ld) {

1970 decodedPred ic t ion = prevPixe l . va l [z] ;

1971 f l a g = 1 ;

1972 goto f i n i s h 4 ;

1973 }

1974 }

216

1975 }

1976 }

1977 th r e sho ld ++;

1978 }

1979 }

1980 f i n i s h 4 :

1981

1982 e = (signed i n t 1 6 t) undoRemapping (decodedImagePixel . va l [z] ,

decodedPred ic t ion) ;

1983 p ixe lVa l = decodedPred ict ion + e ;

1984 decodedImage . at<Vec3b>(y , x) [z] = u i n t 8 t (p ixe lVa l) ;

1985

1986 f l a g = 0 ;

1987 th r e sho ld = 0 ;

1988 }

1989 }

1990 }

1991 i f (imageCount == 1) {

1992 decodedImage1 = decodedImage ;

1993 }

1994 else i f (imageCount == 2) {

1995 decodedImage2 = decodedImage ;

1996 }

1997 else i f (imageCount == 3) {

1998 decodedImage3 = decodedImage ;

1999 }

2000 else i f (imageCount == 4) {

2001 decodedImage4 = decodedImage ;

2002 }

2003 else i f (imageCount == 5) {

2004 decodedImage5 = decodedImage ;

2005 }

2006 }

2007

2008 Vec3b o r i g ;

2009 Vec3b decoded ;

2010 Vec3b t e s t ;

217

2011 for (int imageCount = 0 ; imageCount < 6 ; imageCount ++){

2012 for (y = 0 ; y < h ; y++){

2013 for (x = 0 ; x < w; x++){

2014 i f (imageCount == 0) {

2015 o r i g = image0 . at<Vec3b>(y , x) ;

2016 decoded = decodedImage0 . at<Vec3b>(y , x) ;

2017 }

2018 else i f (imageCount == 1) {

2019 o r i g = image1 . at<Vec3b>(y , x) ;

2020 decoded = decodedImage1 . at<Vec3b>(y , x) ;

2021 }

2022 else i f (imageCount == 2) {

2023 o r i g = image2 . at<Vec3b>(y , x) ;

2024 decoded = decodedImage2 . at<Vec3b>(y , x) ;

2025 }

2026 else i f (imageCount == 3) {

2027 o r i g = image3 . at<Vec3b>(y , x) ;

2028 decoded = decodedImage3 . at<Vec3b>(y , x) ;

2029 }

2030 else i f (imageCount == 4) {

2031 o r i g = image4 . at<Vec3b>(y , x) ;

2032 decoded = decodedImage4 . at<Vec3b>(y , x) ;

2033 }

2034 else i f (imageCount == 5) {

2035 o r i g = image5 . at<Vec3b>(y , x) ;

2036 decoded = decodedImage5 . at<Vec3b>(y , x) ;

2037 }

2038 for (z = 0 ; z < c ; z++){

2039 i f (o r i g . va l [z] != decoded . va l [z]) {

2040 p r i n t f (” image \%d\n” , imageCount) ;

2041 p r i n t f (”\%d != \%d . You messed up at (\%d , \%d , \%d) (\%d , \%d , \%

d) => (\%d , \%d , \%d) \n” , decoded . va l [z] , o r i g . va l [z] , x , y ,

z , decoded . va l [0] , decoded . va l [1] , decoded . va l [2] , o r i g . va l

[0] , o r i g . va l [1] , o r i g . va l [2]) ;

2042 return =1;

2043 }

2044 }

218

2045 }

2046 }

2047 }

2048

2049 p r i n t f (”CONGRADULATIONS! YOU DID IT ! \n”) ;

2050 return 0 ;

2051 }

Listing B.1: Match - main.cpp

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <iostream>

4 #include <f stream>

5 #include <s t r i ng>

6 #include <math . h>

7 #include < i t e r a t o r>

8 #include <vector>

9

10 #include <opencv2/ core / core . hpp>

11 #include <opencv2/ h ighgu i / h ighgu i . hpp>

12 #include <iostream>

13

14 #include <math . h>

15

16 using namespace cv ;

17 using namespace std ;

18

19 u in t 32 t symbol count e [2 5 7] = {0} ; // [9] = {0} ; // [257] = {0} ;

20 u in t 32 t cum count e [2 5 7] = {0} ; // [9] = {0} ; // [257] = {0} ;

21 extern u in t 32 t maxCount ;

22

23 u in t 16 t p i x t o i nd e x e [2 5 6] = {0} ; // [8] = {0} ; // [256] = {0} ;

24 u in t 16 t i nd e x t o p i x e [2 5 7] = {0} ; // [9] = {0} ; // [257] = {0} ;

25

26 u in t 16 t l e = 0 , u e = 65535 ;

27 u in t 32 t s c a l e 3 e = 0 ;

28

219

29 unsigned long outputBi tLocat ion e = 0 ;

30

31 extern u in t 32 t fileByteRW ;

32 u in t 64 t s i z eOfArray e = fileByteRW *8 ;

33 u in t 64 t index e = 0 ;

34 u i n t 8 t * output a r ray e ;

35 FILE * encodedFi l e = NULL;

36

37 void setBitArray (u in t 64 t b i tLoca t i on) {

38 int byteLocat ion = b i tLoca t i on >> 3 ;

39 *(output a r ray e + byteLocat ion) |= (0 x01 << (7 = (b i tLoca t i on & 0x07))) ;

40 i ndex e ++;

41 outputBi tLocat ion e ++;

42

43 i f (index e == s izeOfArray e) {

44 //Write the f i r s t array to the f i l e

45 fw r i t e (output array e , s izeof (u i n t 8 t) , fileByteRW , encodedFi le) ;

46 i ndex e = 0 ;

47 }

48 }

49

50 void c l ea rB i tArray (u i n t 64 t b i tLoca t i on) {

51 int byteLocat ion = b i tLoca t i on >> 3 ;

52 *(output a r ray e + byteLocat ion) &= ˜ (0 x01 << (7 = (b i tLoca t i on & 0x07)))

;

53 i ndex e ++;

54 outputBi tLocat ion e ++;

55 i f (index e == s izeOfArray e) {

56 //Write the f i r s t array to the f i l e

57 fw r i t e (output array e , s izeof (u i n t 8 t) , fileByteRW , encodedFi l e) ;

58 i ndex e = 0 ;

59 }

60 }

61

62 void updateLimits e (u i n t 16 t symbol) {

63 u in t 16 t low = l e ;

64 l e = l e + (((u e = l e + 1) * cum count e [symbol]) / cum count e [0]) ;

220

65 u e = low + (((u e = low + 1) * cum count e [symbol = 1]) / cum count e [0]) =

1 ;

66 }

67

68 void checkLimits () {

69 u i n t 8 t lB i t e , uBi t e ;

70 l B i t e = ((u in t 16 t) l e >> 15) & 0x01 ;

71 uBit e = ((u i n t 16 t) u e >> 15) & 0x01 ;

72 while (l B i t e == uBit e) {

73 l e = l e << 1 ;

74 u e = (u e << 1) | 0x01 ;

75

76 i f (l B i t e == 0) {

77 c l ea rB i tArray (index e) ;

78 i f (s c a l e 3 e > 0) {

79 for (u i n t 32 t k = 0 ; k < s c a l e 3 e ; k++){

80 setBitArray (index e) ;

81 }

82 s c a l e 3 e = 0 ;

83 }

84 }

85

86 else i f (l B i t e == 1) {

87 setBitArray (index e) ;

88 i f (s c a l e 3 e > 0) {

89 for (u i n t 32 t k = 0 ; k < s c a l e 3 e ; k++){

90 c l ea rB i tArray (index e) ;

91 }

92 s c a l e 3 e = 0 ;

93 }

94 }

95

96 l B i t e = ((u in t 16 t) l e >> 15) & 0x01 ;

97 uBit e = ((u i n t 16 t) u e >> 15) & 0x01 ;

98 }

99 }

100

221

101 void E3Check () {

102 u in t 16 t l sMSB e , u sMSB e ;

103 l sMSB e = l e & 0x4000 ;

104 u sMSB e = u e & 0x4000 ;

105 while ((l sMSB e == 0x4000) && (u sMSB e == 0)) {

106 s c a l e 3 e ++;

107 l e = l e << 1 ;

108 u e = (u e << 1) | 0x01 ;

109 u e |= 0x8000 ;

110 l e &= 0x7FFF ;

111 l sMSB e = l e & 0x4000 ;

112 u sMSB e = u e & 0x4000 ;

113 }

114 }

115

116 void updateCounts e (u i n t 16 t symbol) {

117 int i ; //new index f o r symbol

118

119 //See i f f requency counts are at the maximum

120 i f (cum count e [0] == maxCount) {

121 // ha l v e a l l o f the counts (keep ing them non=zero)

122 int cum ;

123 cum = 0 ;

124 for (i = 256 ; i >= 0 ; i ==){

125 symbol count e [i] = (symbol count e [i] + 1) / 2 ;

126 cum count e [i] = cum ;

127 cum += symbol count e [i] ;

128 }

129 symbol count e [0] = 0 ;

130 }

131

132 // f i nd the symbols new index

133 i = symbol ;

134 while (i > 0) {

135 i f (symbol count e [i] != symbol count e [i =1]){

136 break ;

137 }

222

138 i==;

139 }

140

141 // update the t r a n s l a t i o n t a b l e s i f the symbol has moved

142 i f (i < symbol) {

143 int p i x i , p ix symbol ;

144 p i x i = i nd e x t o p i x e [i] ;

145 pix symbol = i nd ex t o p i x e [symbol] ;

146 i n d e x t o p i x e [i] = pix symbol ;

147 i n d e x t o p i x e [symbol] = p i x i ;

148 p i x t o i nd e x e [p i x i] = symbol ;

149 p i x t o i nd e x e [pix symbol] = i ;

150 }

151 else {

152 i = symbol ;

153 }

154

155 // increment the count f o r the symbol and update the cumula t ive counts

156 symbol count e [i] += 1 ;

157 // i = symbol ;

158 while (i > 0) {

159 i ==;

160 cum count e [i] += 1 ;

161 }

162 }

163

164 void encode (u i n t 16 t byte) {

165 updateLimits e (byte) ;

166 checkLimits () ;

167 E3Check () ;

168 updateCounts e (byte) ;

169

170 //Double check the l im i t s to ensure i t ’ s working

171 i f (u e <= 0) {

172 cout << ”Error . The upper l im i t i s ma l funct ion ing ” << endl ;

173 }

174 i f (l e >= 65535) {

223

175 cout << ”Error . The lower l im i t i s ma l funct ion ing ” << endl ;

176 }

177 }

178

179 void sendLowerLimit (void) {

180 u in t 16 t l b i n a r y ;

181 for (int j = 0 ; j < 16 ; j++){

182 l b i n a r y =((u in t 16 t) l e >> (15= j)) & 0x01 ;

183

184 i f (l b i n a r y == 1) {

185 setBitArray (index e) ;

186 i f (s c a l e 3 e > 0) {

187 for (u i n t 32 t k = 0 ; k < s c a l e 3 e ; k++){

188 c l ea rB i tArray (index e) ;

189 }

190 s c a l e 3 e = 0 ;

191 }

192 }

193 else {

194 c l ea rB i tArray (index e) ;

195 i f (s c a l e 3 e > 0) {

196 for (u i n t 32 t k = 0 ; k < s c a l e 3 e ; k++){

197 setBitArray (index e) ;

198 }

199 s c a l e 3 e = 0 ;

200 }

201 }

202 }

203 i f (index e >0){

204 fw r i t e (output array e , 1 , ((index e + 7) >> 3) , encodedFi le) ;

205 }

206 }

Listing B.2: Adaptive Arithmetic Encoder

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <iostream>

224

4 #include <f stream>

5 #include <s t r i ng>

6 #include <math . h>

7

8 #include < i t e r a t o r>

9 #include <vector>

10

11 #include <opencv2/ core / core . hpp>

12 #include <opencv2/ h ighgu i / h ighgu i . hpp>

13

14 using namespace cv ;

15 using namespace std ;

16

17 //#inc l ude ” encoder . cpp”

18

19 u in t 32 t symbol count d [2 5 7] = {0} ;

20 u in t 32 t cum count d [2 5 7] = {0} ;

21 extern u in t 32 t maxCount ;

22

23 u in t 16 t p i x t o i nd ex d [2 5 6] = {0} ;

24 u in t 16 t i nd ex t o p i x d [2 5 7] = {0} ;

25

26 u in t 16 t l d = 0 , u d = 65535;

27 u in t 16 t tag ;

28 u in t 16 t tB i t ;

29 u in t 64 t t ;

30 u in t 16 t byte d ;

31

32 extern u in t 32 t fileByteRW ;

33 u i n t 8 t toDecode [3 2768] = {0} ; // [3981068] = {0} ;

34 u in t 64 t index d = 16 ;

35 u in t 32 t s i zeOfArray d = fileByteRW *8 ;

36 u i n t 8 t f l a g d = 0 ;

37 u i n t 8 t f l a g r ows = 0 , f l a g c o l s = 0 ;

38 u in t 32 t x d = 0 , y d = 0 ;

39

40 extern u in t 64 t f i l e S i z e ;

225

41 extern u in t 64 t f i l e L o c a t i o n ;

42 extern u in t 64 t maxFileLocation ;

43 extern u in t 32 t h , w, x , y ;

44 extern u i n t 8 t z , c ;

45 extern Mat decodedImage , decodedImage0 , decodedImage1 , decodedImage2 ,

decodedImage3 , decodedImage4 , decodedImage5 ;

46

47 void updateLimits d (u i n t 16 t symbol) {

48 u in t 16 t low = l d ;

49 l d = low + (((u d = low + 1) * cum count d [symbol]) / cum count d [0]) ;

50 u d = low + (((u d = low + 1) * cum count d [symbol = 1]) / cum count d [0]) =

1 ;

51 }

52

53 void l imitCheck () {

54 u in t 16 t lB i t d , uBit d , newBit ;

55 lB i t d = ((u in t 16 t) l d >> 15) & 0x01 ;

56 uBit d = ((u in t 16 t) u d >> 15) & 0x01 ;

57 while (lB i t d == uBit d) {

58 l d = l d << 1 ;

59 u d = (u d << 1) | 0x01 ;

60 byte d = index d >> 3 ;

61 newBit = (toDecode [byte d] >> (7 = (index d & 0x07))) & 0x01 ;

62 tag = (tag << 1) | newBit ;

63 index d++;

64 i f (index d == sizeOfArray d) {

65 index d = 0 ;

66 i f (f l a g d == 0) {

67 //Read in next b i t o f f i l e

68 f r ead (toDecode , 1 , fileByteRW , encodedFi l e) ;

69 f s e e k (encodedFi le , fileByteRW* f i l e L o c a t i o n ,SEEK SET) ;

70 f i l e L o c a t i o n ++;

71 i f (f i l e L o c a t i o n > maxFileLocation) {

72 f l a g d = 1 ;

73 }

74 }

75 else {

226

76 //Read in the l a s t b i t o f the f i l e

77 f r ead (toDecode , 1 , (f i l e S i z e = (fileByteRW*maxFileLocation)) ,

encodedFi l e) ;

78 }

79 }

80 lB i t d = ((u in t 16 t) l d >> 15) & 0x01 ;

81 uBit d = ((u in t 16 t) u d >> 15) & 0x01 ;

82 }

83 }

84

85 void E3Check d () {

86 u in t 16 t l sMSB d , u sMSB d ;

87 u i n t 8 t newBit ;

88 l sMSB d = l d & 0x4000 ;

89 u sMSB d = u d & 0x4000 ;

90 while ((l sMSB d == 0x4000) && (u sMSB d == 0)) {

91 l d = l d << 1 ;

92 u d = (u d << 1) | 0x01 ;

93 u d |= 0x8000 ;

94 l d &= 0x7FFF ;

95 l sMSB d = l d & 0x4000 ;

96 u sMSB d = u d & 0x4000 ;

97 //Deal ing wi th the tag

98 tB i t = tag & 0x4000 ;

99 i f (tB i t == 0) {

100 byte d = index d >> 3 ;

101 newBit = (toDecode [byte d] >> (7 = (index d & 0x07))) & 0x01 ;

102 tag = (tag << 1) | newBit ;

103 tag |= 0x8000 ;

104 }

105 else { // t b i t = 1

106 byte d = index d >> 3 ;

107 newBit = (toDecode [byte d] >> (7 = (index d & 0x07))) & 0x01 ;

108 tag = (tag << 1) | newBit ;

109 tag &= 0x7FFF ;

110 }

111

227

112 index d++;

113 i f (index d == sizeOfArray d) {

114 index d = 0 ;

115 i f (f l a g d == 0) {

116 //Read in next b i t o f f i l e

117 f r ead (toDecode , 1 , fileByteRW , encodedFi l e) ;

118 f s e e k (encodedFi le , fileByteRW* f i l e L o c a t i o n ,SEEK SET) ;

119 f i l e L o c a t i o n ++;

120 i f (f i l e L o c a t i o n > maxFileLocation) {

121 f l a g d = 1 ;

122 }

123 }

124 else {

125 //Read in l a s t b i t o f the f i l e

126 f r ead (toDecode , 1 , (f i l e S i z e = (fileByteRW*maxFileLocation)) , encodedFi l e

) ;

127 }

128 }

129 }

130 }

131

132 void updateCounts d (u i n t 16 t symbol) {

133 int i ; //new index f o r symbol

134

135 //See i f f requency counts are at the maximum

136 i f (cum count d [0] == maxCount) {

137 // ha l v e a l l o f the counts (keep ing them non=zero)

138 int cum ;

139 cum = 0 ;

140 for (i = 256 ; i >= 0 ; i ==){

141 symbol count d [i] = (symbol count d [i] + 1) / 2 ;

142 cum count d [i] = cum ;

143 cum += symbol count d [i] ;

144 }

145 symbol count d [0] = 0 ;

146 }

147

228

148 // f i nd the symbols new index

149 i = symbol ;

150 while (i > 0) {

151 i f (symbol count d [i] != symbol count d [i =1]){

152 break ;

153 }

154 i==;

155 }

156

157 // update the t r a n s l a t i o n t a b l e s i f the symbol has moved

158 i f (i < symbol) {

159 int p i x i , p ix symbol ;

160 p i x i = index t o p i x d [i] ;

161 pix symbol = index t o p i x d [symbol] ;

162 i nd ex t o p i x d [i] = pix symbol ;

163 i nd ex t o p i x d [symbol] = p i x i ;

164 p i x t o i ndex d [p i x i] = symbol ;

165 p i x t o i ndex d [pix symbol] = i ;

166 }

167 else {

168 i = symbol ;

169 }

170

171 // increment the count f o r the symbol and update the cumula t ive counts

172 symbol count d [i] += 1 ;

173 while (i > 0) {

174 i ==;

175 cum count d [i] += 1 ;

176 }

177 }

178

179

180 void decode (int height , int width , int channe l s) {

181 Vec3b NorthNorth , NorthNorthEast , NorthWest , North , NorthEast , WestWest ,

West , decodedImagePixel ;

182 i n t 1 6 t e ;

183 u in t 16 t decodedPred ic t ion ;

229

184 h = he ight ;

185 w = width ;

186 c = channe l s ;

187 z = 0 ;

188 y d = 0 ;

189 x d = 0 ;

190

191 u i n t 8 t pix ;

192 u in t 16 t symbol ;

193 u i n t 8 t imageCount = 0 ;

194

195 while (imageCount < 6) {

196 t = (((tag = l d + 1) * cum count d [0] = 1) /(u d = l d + 1)) ;

197 // f i nd symbol :

198 for (symbol = 1 ; cum count d [symbol] > t ; symbol ++) ;

199 // t r a n s l a t e to a charac t e r

200 pix = index t o p i x d [symbol] ;

201

202 // p lug the decoded symbol i n t o the matrix :

203 i f (f l a g r ows == 0) {

204 i f (imageCount == 0) {

205 decodedImage0 . at<Vec3b>(y d , x d) [z] = pix ;

206 }

207 else i f (imageCount == 1) {

208 decodedImage1 . at<Vec3b>(y d , x d) [z] = pix ;

209 }

210 else i f (imageCount == 2) {

211 decodedImage2 . at<Vec3b>(y d , x d) [z] = pix ;

212 }

213 else i f (imageCount == 3) {

214 decodedImage3 . at<Vec3b>(y d , x d) [z] = pix ;

215 }

216 else i f (imageCount == 4) {

217 decodedImage4 . at<Vec3b>(y d , x d) [z] = pix ;

218 }

219 else i f (imageCount == 5) {

220 decodedImage5 . at<Vec3b>(y d , x d) [z] = pix ;

230

221 }

222 z ++;

223 i f (z == 3) {

224 z = 0 ;

225 x d ++;

226 i f (x d == 2) {

227 x d = 0 ;

228 y d ++;

229 i f (y d == h) {

230 y d = 0 ;

231 x d = 2 ;

232 f l a g r ows = 1 ;

233 }

234 }

235 }

236 }

237 else i f (f l a g r ows == 1 && f l a g c o l s == 0) {

238 i f (imageCount == 0) {

239 decodedImage0 . at<Vec3b>(y d , x d) [z] = pix ;

240 }

241 else i f (imageCount == 1) {

242 decodedImage1 . at<Vec3b>(y d , x d) [z] = pix ;

243 }

244 else i f (imageCount == 2) {

245 decodedImage2 . at<Vec3b>(y d , x d) [z] = pix ;

246 }

247 else i f (imageCount == 3) {

248 decodedImage3 . at<Vec3b>(y d , x d) [z] = pix ;

249 }

250 else i f (imageCount == 4) {

251 decodedImage4 . at<Vec3b>(y d , x d) [z] = pix ;

252 }

253 else i f (imageCount == 5) {

254 decodedImage5 . at<Vec3b>(y d , x d) [z] = pix ;

255 }

256 z++;

257 i f (z == 3) {

231

258 z = 0 ;

259 y d ++;

260 i f (y d == 2) {

261 y d = 0 ;

262 x d ++;

263 i f (x d == w) {

264 y d = 2 ;

265 x d = 2 ;

266 f l a g c o l s = 1 ;

267 }

268 }

269 }

270 }

271 else {

272 i f (imageCount == 0) {

273 decodedImage0 . at<Vec3b>(y d , x d) [z] = pix ;

274 }

275 else i f (imageCount == 1) {

276 decodedImage1 . at<Vec3b>(y d , x d) [z] = pix ;

277 }

278 else i f (imageCount == 2) {

279 decodedImage2 . at<Vec3b>(y d , x d) [z] = pix ;

280 }

281 else i f (imageCount == 3) {

282 decodedImage3 . at<Vec3b>(y d , x d) [z] = pix ;

283 }

284 else i f (imageCount == 4) {

285 decodedImage4 . at<Vec3b>(y d , x d) [z] = pix ;

286 }

287 else i f (imageCount == 5) {

288 decodedImage5 . at<Vec3b>(y d , x d) [z] = pix ;

289 }

290 z ++;

291 i f (z == 3) {

292 z = 0 ;

293 x d ++;

294 i f (x d == w) {

232

295 x d = 2 ;

296 y d ++;

297 i f (y d == h) {

298 f l a g c o l s = 0 ;

299 f l a g r ows = 0 ;

300 x d = 0 ;

301 y d = 0 ;

302 z = 0 ;

303 imageCount ++;

304 }

305 }

306 }

307 }

308

309 //Update the l im i t s

310 updateLimits d (symbol) ;

311 //Check the b i t s

312 l imitCheck () ;

313 //Check the E3 cond i t i on

314 E3Check d () ;

315 //Update the Count

316 updateCounts d (symbol) ;

317 }

318 }

Listing B.3: Adaptive Arithmetic Decoder

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 #include <opencv2/ core / core . hpp>

5 #include <opencv2/ h ighgu i / h ighgu i . hpp>

6 #include <iostream>

7

8 #include <math . h>

9

10 using namespace cv ;

11 using namespace std ;

233

12

13 //Find the i n i t i a l p r e d i c t i on

14 u in t 16 t i n i t i a l l y p r e d i c t (u i n t 8 t NN, u i n t 8 t NNE, u i n t 8 t NW, u i n t 8 t N,

u i n t 8 t NE, u i n t 8 t WW, u in t 8 t W) {

15 int hd i f f e r en c e , v d i f f e r e n c e ;

16 u i n t 8 t x hat ;

17 int p r ed i c t edP ix e l ;

18

19 //Finding the h o r i z on t a l d i f f e r e n c e = |W =WW| + |N = NW| + |NE = N |

20 hd i f f e r e n c e = abs (W =WW) + abs (N = NW) + abs (NE = N) ;

21

22 //Find the v e r t i c a l d i f f e r e n c e = |W = NW| + |N = NN| + |NE = NNE|

23 vd i f f e r e n c e = abs (W = NW) + abs (N = NN) + abs (NE = NNE) ;

24

25 //Now to determine the i n i t i a l p r e d i c t i on o f the P i x e l

26 i f (h d i f f e r e n c e = vd i f f e r e n c e > 80) {

27 p r ed i c t edP ix e l = N;

28 }

29 else i f (v d i f f e r e n c e = hd i f f e r e n c e > 80) {

30 p r ed i c t edP ix e l = W;

31 }

32 else {

33 p r ed i c t edP ix e l = ((N + W) / 2) + ((NE = NW) / 4) ;

34 i f (h d i f f e r e n c e = vd i f f e r e n c e > 32) {

35 p r ed i c t edP ix e l = (p r ed i c t edP ix e l + N) / 2 ;

36 }

37 else i f (v d i f f e r e n c e = hd i f f e r e n c e > 32) {

38 p r ed i c t edP ix e l = (p r ed i c t edP ix e l + W) / 2 ;

39 }

40 else i f (h d i f f e r e n c e = vd i f f e r e n c e > 8 && hd i f f e r e n c e = vd i f f e r e n c e < 32) {

41 p r ed i c t edP ix e l = ((3 * p r ed i c t edP ix e l) + N) / 4 ;

42 }

43 else i f (v d i f f e r e n c e = hd i f f e r e n c e > 8 && vd i f f e r e n c e = hd i f f e r e n c e < 32) {

44 p r ed i c t edP ix e l = ((3 * p r ed i c t edP ix e l) + W) / 4 ;

45 }

46 }

47 return p r ed i c t edP ix e l ;

234

48 }

49

50 //Remapping so t ha t a l l t he er ror va l u e s are p o s i t i v e and wi th in the range

0=255

51 u i n t 8 t Remap(i n t 1 6 t e , i n t 1 6 t p r ed i c t i on) {

52 u i n t 8 t r ;

53

54 i f (p r ed i c t i on <= 127) {

55 i f (abs (e) <= pred i c t i on) {

56 i f (e <= 0) {

57 r = 2 * (abs (e)) ;

58 }

59 else {

60 r = (2 * e) = 1 ;

61 }

62 }

63 else {

64 r = e + pr ed i c t i on ;

65 }

66 }

67 else {

68 i f (abs (e) <= (256 = 1 = p r ed i c t i on)) {

69 i f (e <= 0) {

70 r = 2 * (abs (e)) ;

71 }

72 else {

73 r = (2 * e) = 1 ;

74 }

75 }

76 else {

77 r = abs (e) + (256 = 1 = p r ed i c t i o n) ;

78 }

79 }

80 return r ;

81 }

82

83 i n t 1 6 t undoRemapping (u i n t 8 t remapped , i n t 1 6 t p r ed i c t i on) {

235

84 i n t 1 6 t o r i g i n a lE r r o r ;

85

86 i f (p r ed i c t i on <= 127) {

87 i f (remapped <= 2 * p r ed i c t i o n) {

88 i f (remapped % 2 == 0) {

89 o r i g i n a lE r r o r = = (remapped / 2) ;

90 }

91 else {

92 o r i g i n a lE r r o r = (remapped + 1) / 2 ;

93 }

94 }

95 else {

96 o r i g i n a lE r r o r = remapped = p r ed i c t i o n ;

97 }

98 }

99 else {

100 i f (remapped <= 2*(256 = 1 = p r ed i c t i on)) {

101 i f (remapped % 2 == 0) {

102 o r i g i n a lE r r o r = = remapped / 2 ;

103 }

104 else {

105 o r i g i n a lE r r o r = (remapped + 1) / 2 ;

106 }

107 }

108 else {

109 o r i g i n a lE r r o r = = remapped + (256 = 1 = p r ed i c t i on) ;

110 }

111 }

112 return (signed i n t 1 6 t) o r i g i n a lE r r o r ;

113 }

Listing B.4: CALIC

1 de f compare images (imageA , imageB) :

2 # compute the mean squared e r r o r and s t r u c t u r a l s im i l a r i t y

3 # index for the images

4 m = mse(imageA , imageB)

5 s = ssim (imageA , imageB)

236

6 return m, s

7

8 image0 = cv2 . imread (”/path/ to / f i l e ” , 0))

9 image1 = cv2 . imread (”/path/ to / f i l e ” , 0))

10 image2 = cv2 . imread (”/path/ to / f i l e ” , 0))

11 image3 = cv2 . imread (”/path/ to / f i l e ” , 0))

12 image4 = cv2 . imread (”/path/ to / f i l e ” , 0))

13 image5 = cv2 . imread (”/path/ to / f i l e ” , 0))

14

15 MeanSquaredError1 , S t r u c t u r a l S im i l a r i t y 1 = compare images (image0 , image1)

16 MeanSquaredError2 , S t r u c t u r a l S im i l a r i t y 2 = compare images (image1 , image2)

17 MeanSquaredError3 , S t r u c t u r a l S im i l a r i t y 3 = compare images (image2 , image3)

18 MeanSquaredError4 , S t r u c t u r a l S im i l a r i t y 4 = compare images (image3 , image4)

19 MeanSquaredError5 , S t r u c t u r a l S im i l a r i t y 5 = compare images (image4 , image5)

20

21 pr in t (S t ru c tu r a l S im i l a r i t y 1 , S t r u c tu r a l S im i l a r i t y 2 , S t r u c tu r a l S im i l a r i t y 3 ,

S t r u c tu r a l S im i l a r i t y 4 , S t r u c t u r a l S im i l a r i t y 5)

Listing B.5: SSIM (Python)

1 de f edgeDetect ion (img , sigma , h , w) :

2 #We need to f i nd the thresho ld , in which the th r e sho ld = 0 . 1 (Cmax = Cmin)

+ Cmin

3 #s t a r t by f i nd i n g Cmax and Cmin which denote the maximum and minimum

va lues o f the norm of the g rad i en t output

4 #use sobe l f i l t e r s to c a l c u l a t e g rad i en t

5 dx = [[=1/8 , 0 , 1/8] , [=2/8 , 0 , 2/8] , [=1/8 , 0 , 1 / 8]]

6 dy = [[1 / 8 , 2/8 , 1/8] , [0 , 0 , 0] , [=1/8 , =2/8, =1/8]]

7

8 gx = s i g n a l . convolve2d (img , dx)

9 gy = s i g n a l . convolve2d (img , dy)

10

11 gx norm = ((gx = gx . min ()) / (gx .max() = gx . min ()))

12 gy norm = ((gy = gy . min ()) / (gy .max() = gy . min ()))

13

14 C = np . hypot (gx , gy)

15 C = (C / C.max()) #needs to be between 0 and 1

16 Cmax = C.max()

237

17 Cmin = C.min ()

18

19 #now that we have Cmax and Cmin , we can c a l c u l a t e the th r e sho ld

20 T = (0 . 1 * (Cmax = Cmin)) + Cmin

21

22 #blur the image with Gaussian

23 blur = cv2 . GaussianBlur (C, (5 , 5) , sigma)

24

25 E = np . z e ro s ((h ,w) , dtype=np . f loat)

26

27 for i in range (0 , h) :

28 for j in range (0 , w) :

29 i f (C[i , j] > T) :

30 E[i , j] = 1

31 else :

32 E[i , j] = 0

33 return E

34

35 de f edgeStabi l i tyMap (E1 , E2 , E3 , E4 , E5 , h , w) :

36 Q = np . z e ro s ((h ,w) , dtype=np . f loat)

37 count = 0

38

39 for i in range (0 , h) :

40 for j in range (0 ,w) :

41 i f E1 [i , j] == 1 and E2 [i , j] == 1 and E3 [i , j] == 1 and E4 [i , j] == 1

and E5 [i , j] == 1 :

42 Q[i , j] = 1

43 count = count + 1

44 else :

45 Q[i , j] = 0

46 i f count == 0 :

47 count = 1

48 return Q, count

49

50 image0 = cv2 . imread (”/path/ to / f i l e ” , 0))

51 image1 = cv2 . imread (”/path/ to / f i l e ” , 0))

52 image2 = cv2 . imread (”/path/ to / f i l e ” , 0))

238

53 image3 = cv2 . imread (”/path/ to / f i l e ” , 0))

54 image4 = cv2 . imread (”/path/ to / f i l e ” , 0))

55 image5 = cv2 . imread (”/path/ to / f i l e ” , 0))

56

57 #Find s i z e o f the image

58 dimensions = image1 . shape

59 he ight = image0 . shape [0]

60 width = image0 . shape [1]

61

62 E1 = edgeDetect ion (image0 , 1 . 19 , he ight , width)

63 E2 = edgeDetect ion (image0 , 1 . 44 , he ight , width)

64 E3 = edgeDetect ion (image0 , 1 . 68 , he ight , width)

65 E4 = edgeDetect ion (image0 , 2 . 0 , he ight , width)

66 E5 = edgeDetect ion (image0 , 2 . 38 , he ight , width)

67 Q0, count0 = edgeStabi l i tyMap (E1 , E2 , E3 , E4 , E5 , height , width)

68

69 E1 = edgeDetect ion (image1 , 1 . 19 , he ight , width)

70 E2 = edgeDetect ion (image1 , 1 . 44 , he ight , width)

71 E3 = edgeDetect ion (image1 , 1 . 68 , he ight , width)

72 E4 = edgeDetect ion (image1 , 2 . 0 , he ight , width)

73 E5 = edgeDetect ion (image1 , 2 . 38 , he ight , width)

74 Q1, count1 = edgeStabi l i tyMap (E1 , E2 , E3 , E4 , E5 , height , width)

75

76 E1 = edgeDetect ion (image2 , 1 . 19 , he ight , width)

77 E2 = edgeDetect ion (image2 , 1 . 44 , he ight , width)

78 E3 = edgeDetect ion (image2 , 1 . 68 , he ight , width)

79 E4 = edgeDetect ion (image2 , 2 . 0 , he ight , width)

80 E5 = edgeDetect ion (image2 , 2 . 38 , he ight , width)

81 Q2, count2 = edgeStabi l i tyMap (E1 , E2 , E3 , E4 , E5 , height , width)

82

83 E1 = edgeDetect ion (image3 , 1 . 19 , he ight , width)

84 E2 = edgeDetect ion (image3 , 1 . 44 , he ight , width)

85 E3 = edgeDetect ion (image3 , 1 . 68 , he ight , width)

86 E4 = edgeDetect ion (image3 , 2 . 0 , he ight , width)

87 E5 = edgeDetect ion (image3 , 2 . 38 , he ight , width)

88 Q3, count3 = edgeStabi l i tyMap (E1 , E2 , E3 , E4 , E5 , height , width)

89

239

90 E1 = edgeDetect ion (image4 , 1 . 19 , he ight , width)

91 E2 = edgeDetect ion (image4 , 1 . 44 , he ight , width)

92 E3 = edgeDetect ion (image4 , 1 . 68 , he ight , width)

93 E4 = edgeDetect ion (image4 , 2 . 0 , he ight , width)

94 E5 = edgeDetect ion (image4 , 2 . 38 , he ight , width)

95 Q4, count4 = edgeStabi l i tyMap (E1 , E2 , E3 , E4 , E5 , height , width)

96

97 E1 = edgeDetect ion (image5 , 1 . 19 , he ight , width)

98 E2 = edgeDetect ion (image5 , 1 . 44 , he ight , width)

99 E3 = edgeDetect ion (image5 , 1 . 68 , he ight , width)

100 E4 = edgeDetect ion (image5 , 2 . 0 , he ight , width)

101 E5 = edgeDetect ion (image5 , 2 . 38 , he ight , width)

102 Q5, count5 = edgeStabi l i tyMap (E1 , E2 , E3 , E4 , E5 , height , width)

103

104 #Calcu la te the edge s t a b i l i t y mean squared error between Frames

105 sum0 = 0

106 for i in range (0 , he ight) :

107 for j in range (0 , width) :

108 i f (Q0 [i , j] == 1) :

109 sum0 = sum0 + (Q0 [i , j] = Q1[i , j]) **2

110 ESMSE1 = (sum0 / count0)

111

112 sum1 = 0

113 for i in range (0 , he ight) :

114 for j in range (0 , width) :

115 i f (Q1 [i , j] == 1) :

116 sum1 = sum1 + (Q1 [i , j] = Q2[i , j]) **2

117 ESMSE2 = (sum1 / count1)

118

119 sum2 = 0

120 for i in range (0 , he ight) :

121 for j in range (0 , width) :

122 i f (Q2 [i , j] == 1) :

123 sum2 = sum2 + (Q2 [i , j] = Q3[i , j]) **2

124 ESMSE3 = (sum2 / count2)

125

126 sum3 = 0

240

127 for i in range (0 , he ight) :

128 for j in range (0 , width) :

129 i f (Q3 [i , j] == 1) :

130 sum3 = sum3 + (Q3 [i , j] = Q4[i , j]) **2

131 ESMSE4 = (sum3 / count3)

132

133 sum4 = 0

134 for i in range (0 , he ight) :

135 for j in range (0 , width) :

136 i f (Q4 [i , j] == 1) :

137 sum4 = sum4 + (Q4 [i , j] = Q5[i , j]) **2

138 ESMSE5 = (sum4 / count4)

139

140 pr in t (ESMSE1, ESMSE2, ESMSE3, ESMSE4, ESMSE5)

Listing B.6: Edge Quality (Python)

	An Investigation of Match for Lossless Video Compression
	

	List of Figures
	List of Tables
	Introduction
	Related Work
	Preliminary Information
	Adaptive Arithmetic Coding
	Context-Based Adaptive Lossless Image Compression
	Structural Similarity
	Edge Stability

	Match
	Results
	176 Resolution
	720 Resolution
	1080 Resolution
	4k Resolution
	C.T. Scans
	M.R.I. Scans
	Resolution
	Frame Rate

	Determining Which Method to Use
	Structural Similarity
	Edge Stability

	Conclusion
	Bibliography
	C.T. Scans
	Code

