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Simple Summary: Prostate cancer (PCa) is the most lethal cancer among African men. Extracel-
lular vesicles (EVs), including exosomes, are released from cancer cells as a form of intercellular
communication that can promote cancer growth, increasing invasion and metastasis. EVs are nano-
sized vesicles that contain cargo such as microRNA (miRNA), mRNA, and proteins. miRNAs are
non-coding RNA that regulate gene expression and are partly responsible for the cancer-promoting
function of EVs. As PCa is more aggressive in African populations, it is vital to know which miRNAs
are within the EVs of these patients. In this study, we identify and quantify the EV miRNAs in
blood plasma from South African patients with low and high Gleason score PCa (an indication of
cancer’s aggressive nature). In addition, we use quantitative PCR to evaluate the EV miRNA levels
in benign prostatic hyperplasia (BPH) compared to PCa to identify putative biomarkers for the South
African population.

Abstract: Prostate cancer (PCa) is the most common cause of cancer death among African men.
The analysis of microRNAs (miRNAs) in plasma extracellular vesicles (EVs) can be utilized as a
non-invasive tool for the diagnosis of PCa. In this study, we used small RNA sequencing to profile
miRNAs cargo in plasma EVs from South African PCa patients. We evaluated the differential
expression of miRNAs between low and high Gleason scores in the plasma EVs of South African
patients and in the prostatic tissue from data available in the Cancer Genome Atlas (TCGA) Data
Portal. We identified 7 miRNAs differently expressed in both EVs and prostatic tissues. We evaluated
their expression using qPCR in a larger cohort of 10 patients with benign prostatic hyperplasia (BPH)
and 24 patients with PCa. Here, we reported that the ratio between two of these miRNAs (i.e.,
miR-194-5p/miR-16-5p) showed a higher concentration in PCa compared to BPH and in metastatic
PCa compared to localized PCa. We explored for the first time the profiling of miRNAs cargo in
plasma EVs as a tool for the identification of putative markers in the South African population. Our
finding indicated the ratio miR-194-5p/miR-16-5p as a non-invasive marker for the evaluation of
PCa aggressiveness in this population.

Keywords: prostate cancer; extracellular vesicles; exosomes; miRNA; miR-194-5p; miR-16-5p;
South Africa
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1. Introduction

Prostate cancer (PCa) is the most prevalent cancer among men worldwide, with more
than 375,000 deaths per year [1], and is particularly more aggressive among African men [2].
However, it is unclear whether African patients harbor inherently biologically aggressive
diseases, as has been described in migrant populations of African descent, or whether
they have simply presented late diagnosis, which may impact disease management. A few
studies have been conducted to understand the different genomic [3], proteomic [4,5], and
metabolomic [6] profiles in PCa patients with African ancestry.

Diagnosis and monitoring of disease progression are dependent on intrusive pro-
cedures like tissue biopsies, which are painful and uncomfortable for the patient. The
Gleason score is the most used grading system to determine the aggressiveness of PCa
based on the histological appearance of the prostate tissue. Higher grades correspond
with the increasing abnormality and dysregulation of cellular processes involved in cancer
progression. The transformation from well-differentiated to poorly differentiated cells is
indicative of underlying pathophysiological changes that drive the progression of cancer,
such as genetic mutation, angiogenesis, hormonal changes, invasion, and metastasis.

Prostate-specific antigen (PSA) is currently used for PCa screening [7], and together
Gleason scores to plan the most appropriate course of treatment [8]. Although PSA has
a high sensitivity for detecting PCa, its specificity is low [9,10]. Therefore, diagnosis
needs to be confirmed with needle biopsies. Additionally, PSA screening also leads to the
overdiagnosis of clinically insignificant PCa and the subsequent overtreatment thereof [11].
Subsequently, there is a need for new and better biomarkers for the diagnosis, treatment
monitoring, and prognosis of PCa. Although extensive research into prognostic biomarkers
is ongoing abroad, it is still being determined whether these will be applicable to the
African population.

Extracellular vesicles (EVs) are nano-sized bilayer lipid vesicles released by almost
all cell types, including cancer cells [12–14]. EVs include several types of vesicles, such
as exosomes (formed in the endosome), microvesicles (formed by the outward budding
and fission of the plasma membrane), and apoptotic bodies (released during apoptosis).
EVs have been recently applied as a non-invasive tool for patient stratification. EVs play a
major role in intercellular communication because they transport protein, DNA, mRNA,
miRNA, and lipid molecules between cells [15,16]. EVs contain proteins that function in
penetration, invasion, and fusion events, such as tetraspanins (CD9, CD63, CD81, CD82);
proteins participate in antigen binding and presentation, such as heat shock proteins
(HSP70, HSP90); and including membrane transport and fusion proteins (annexins and
Rab) [17]. These proteins enable the uptake of EVs by other cells. Enriched proteins such as
TSG101, HSP70, CD81, and CD63 are also commonly used as EV markers [18].

More EVs are released from cancer cells than normal cells, and these EVs contain
cancer-related molecules, such as mRNA, miRNA, long non-coding RNA, proteins, and
metabolites [19]. Previous studies have investigated EV cargo as biomarkers for the diag-
nosis and prognosis of different cancer types, including PCa [20–22]. Studies have shown
blood and urinary EVs from PCa patients possess PCa-specific components, which can
serve as biomarkers for the diagnosis of PCa metastasis [23,24]. We previously reported
that miR-424-positive EVs are found at a higher frequency in patients with metastatic
prostate cancer compared to primary tumors and benign prostatic hyperplasia (BPH) [25].
Our finding showed the role of EV miR-424 in promoting normal prostate epithelial cells to
develop stem-like traits and tumor-initiating properties.

Most biomarker discovery studies are conducted among Western populations, and
studies in African populations are sparse. In this work, we used small RNA sequencing to
identify and quantify the miRNA cargo in plasma EVs from South African PCa patients.
We then selected seven miRNAs differentially expressed between low and high Gleason
both plasma EVs and prostatic tissue. Finally, we validated the seven miRNAs in a large
cohort of 34 patients using qPCR.
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2. Materials and Methods
2.1. Patient Cohort

The ethical approval was received from the Human Research Ethics Committee,
Faculty of Health Sciences, University of Cape Town (HREC 454/2012). Informed written
consent was obtained from each participant. The study participants were recruited from
Groote Schuur and New Somerset Hospitals in Western Cape province, South Africa.
Patients scheduled for prostatectomy or Transurethral resection of the prostate (TURP)
diagnosed with either BPH or PCa were approached. In this study, we enrolled 24 PCa
and 10 BPH patients. We collected about 6 mL of blood in VACUETTE® EDTA tubes
(Kremsmünster, Austria) from each participant. Plasma was collected by centrifuging
1000× g for 10 min at 4 ◦C and stored at −80 ◦C.

2.2. Extracellular Vesicle Isolation and Characterization

EVs were isolated from 1 mL of plasma using the Invitrogen Total Exosome Isolation
Kit (from plasma) [cat. #4484450, Waltham, MA, USA] following the manufacturer’s
guidelines for isolation with Proteinase K treatment. In short, cell debris was removed
with two 20 min room temperature centrifugation steps, first at 2000× g and then at
10,000× g. The plasma was diluted with PBS in a 2:1 ratio, and proteins were digested
with 0.05 volumes of Proteinase K for 10 min at 37 ◦C. Exosome Precipitation Reagent
(0.2 volume) was added to the digested sample before incubating the mixture on ice for
30 min. The EVs were collected with centrifugation at 10,000× g for 5 min. The EVs were
resuspended in 100 µL PBS (137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl; pH 7.4) and
stored at −80 ◦C. We used transmission electron microscopy (TEM) imaging to characterize
the morphology of isolated EVs. EVs sample was diluted 1:100 with double deionized
water, and 5 µL was applied on a discharged copper grid for one minute. Excess liquid
was removed by blotting the copper grid with filter paper and washing twice with 5 µL
of double-deionized water. The grid was stained with 5 µL of 2% Uranyl acetate for one
minute and viewed on an FEI T20 Transmission Electron Microscope (Hillsborough, OR,
USA). Ten photos were taken randomly across the quadrants of the grid. EVs protein
was quantified by Bradford reagent (BioRad, Hercules, CA, USA; Cod. 5000006) using
BSA as the standard, and equal amounts of proteins were analyzed by SDS-PAGE (12.5%
acrylamide, Bio-Rad, Cod. 1610158). Western blot analysis was done as described in our
previously published articles using 30 µg of EV proteins [26,27]. The primary antibodies
used was anti-CD63 (cat. #ab217345; Abcam, Cambridge, UK), anti-CD9, anti-CD81 (cat.
#ab125011; Abcam), and anti-Calnexin (cat. #ab179467; Abcam).

2.3. TEM Image Analysis

TEM images saved in TIFF format (grayscale, 2048 × 2048 pixels) were analyzed
using the R package EBImage(version 4.42.0). The images were imported into the R
environment using the function readImage. After a normalization step, the EVs were
identified using the Otsu algorithm [28], and holes were filled using the function fillHull.
Overlapped EVs were separated, performing a watershed transformation and watershed-
based object detection using the function watershed. The features of shape were quantified
for each object in the processed image. Only objects with a ratio standard deviation/mean
of the radius below 0.15 were selected. The R code is freely available on GitHub (http:
//github.com/tkcaccia/EVs-by-TEM, accessed on 15 July 2023).

2.4. Small RNA Sequencing in Plasma EVs

Extraction of total RNA was done using 500 µL each of isolated EVs using the Invitro-
gen Total Exosome RNA & Protein Isolation Kit (cat. #4478545). Extracted RNA was eluted
in 50 µL nuclease-free water and stored at −80 ◦C. Sample quality control for total EV RNA
was done using the Agilent Technologies 2100 Bioanalyzer with the High Sensitivity RNA
Analysis kit (per manufacturer protocol). The sequencing library preparation was prepared
from 10 ng of total EV RNA using the SMARTer smRNA-Seq Kit. Small RNA sequencing

http://github.com/tkcaccia/EVs-by-TEM
http://github.com/tkcaccia/EVs-by-TEM
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was performed on Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA) with
pair-end reads. Sequenced data did each paired and singleton read were concatenated in a
single file per library, and overlapping paired-end reads were merged with the Bbmerge
from BBMap package (version 39.00) [29]. FASTAQ files were uploaded for annotation
using the OASIS web tool and reference genome (Homo sapiens—hg38) [30]. Identifiers of
mature miRNA were mapped to their stem-loop sequence using the Bioconductor package
miRBaseConverter (version 1.12.0). miRNA read counts were normalized for the library
size using Trimmed Mean of M-values (TMM) scaling implemented in the function norm-
LibSizes of the Bioconductor package edgeR [31] followed by transformation into log2
counts per million.

2.5. TCGA Prostatic Tissue miRNA

Tissue miRNA profiling data and the corresponding clinical information were obtained
from The Cancer Genome Atlas (TCGA) repository using The Broad Institute Firehose
pipeline (http://gdac.broadinstitute.org, accessed on 10 July 2023). Primary samples from
the prostate adenocarcinoma (PRAD) dataset were inferred using the TCGA sample code
“01A”, which is the two-digit code following the TCGA legacy sample name (limiting the
analysis to a sample for each patient).

2.6. MicroRNA Enrichment

The MIENTURNET (microRNA Enrichment TURned NETwork) web tool [32] was
used to perform miRNA-target enrichment analysis and regulatory network in order to
investigate genes targeted by the miRNAs. The regulatory network includes strong and
weak interactions between miRNAs and their targets, as defined by Licursi et al. [32]. Strong
interactions are interactions validated by “strong” experimental evidence (e.g., Luciferase
assay, Western); weak interactions consider weaker experimental evidence (e.g., CLIP).
Functional enrichment analysis of miRNA targets was obtained using the WikiPathways
gene set [33]. The over-represented analysis was done using miEAA2.0 [34]. The cellular
location of the miRNAs was predicted using miRNALoc [35], and FANTOM5 mammalian
expression miRNA atlas [36] was used to predict the cellular origin. The immunological
features of TCGA-PRAD prostatic tissue obtained using CIBERSORT [37] and pathological
tissue analysis were retrieved from [38].

2.7. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

We performed qPCR to evaluate the expression levels in a larger cohort from 26 Pca and
10 BPH EV RNA samples. Complementary DNA (cDNA) was prepared using Qiagen miR-
CURY LNA RT Kit (Hilden, Germany; cat. #339340) following the manufacturer’s protocol.
This was followed by a real-time PCR expression analysis of the miRNAs identified at the
initial experimental phase. The miRCURY LNA miRNA PCR Assay used are commercially
available from Qiagen: (hsa-miR-16-5p, stock code: QIA/339306_YP00205702; hsa-miR-10a-
5p, Stock code: QIA/339306_YP00204778; hsa-miR-194-5p, stock code: QIA/339306_YP0020
4080; hsa-miR-144-5p stock code: QIA/339306_YP00204670; hsa-miR-93-5p, stock code:
QIA/339306_YP00204715; hsa-miR-326, stock code: QIA/339306_YP00204512; hsa-miR-221-
3p, stock code: QIA/339306_YP00204532; hsa-miR-21-5p, stock code: QIA/339306_YP00204
230). Real-time PCR was performed on the LightCycler480 system (Roche Diagnostics,
Mannheim, Germany) using the absolute quantification method. The absolute copy number
of cDNA was calculated using the standard curve prepared with qPCR experiments.

2.8. Statistical Analysis

The negative binomial differential expression method edgeR was used to identify
differentially expressed genes [31]. Differences in numerical covariates were evaluated
using Wilcoxon and Kruskal–Wallis rank-sum test. Differences between categorical vari-
ables (e.g., ethnicity) were assessed using Fisher’s exact test. The correlation coefficient
(rho) between miRNA concentrations and other biological features (e.g., genes and im-

http://gdac.broadinstitute.org
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munological features) was calculated using Spearman’s rank test. p values were adjusted
for multiple testing with the Benjamini–Hochberg correction, and a false discovery rate
(FDR) cutoff of 0.1 was used. The statistical analysis was facilitated using the KODAMA
R package [39]. Receiver operating characteristic (ROC) curve analysis to evaluate the
sensitivity of biomarkers was performed using the pROC R package.

3. Results
3.1. Sequencing of EV miRNA from Prostate Cancer Samples

EVs from a cohort of South African patients with PCa were isolated from plasma
samples. The isolation EV protocol was validated using multiple techniques [25]. TEM
imaging indicated that the isolated EV morphology is consistent with small EVs (Figure 1A).
Further image analysis of TEM images (Figure 1B) reveals that more than 90% of EVs have
a diameter ranging between 15 nm and 29 nm. We found no statistically significant changes
in the dimension of EVs between BPH and PCa. Western blot analysis confirmed the
expression of EV-positive markers CD9, CD63, and CD81 and the absence of EV-negative
markers ApoE and calnexin (Figure 1C).
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Figure 1. Characterization of EVs derived from patient plasma. (A) TEM image of EVs from a
representative PCa. EV samples were diluted 1:100, and the imaging was performed with the FEI T20
transmission electron microscope. (B) Digital analysis of a TEM image to profile the morphology of
EVs. (C) Western blot analysis of the EV-positive and -negative markers. The EV-positive markers,
CD9, CD63, and CD81, and the EV-negative markers, calnexin, and APOE, were evaluated by
immunoblotting using specific antibodies. We used 30 µg of protein per sample. The total cell lysates
from a DU145 cell line culture were used as a control. PCa, Prostate cancer; BPH, Benign prostatic
hyperplasia; TEM, transmission electron microscopy; EV, Extracellular vesicles. See Supplementary
Material File S1 for the original image of the Western Blot.

To have insights into the miRNA expression profile, we sequenced the EV miRNA
from 3 patients with low Gleason scores (<8) and 3 patients with high Gleason scores (≥8).
The clinical data of these patients are shown in Table 1.

Table 1. Clinical data from Prostate cancer patients used for miRNA profiling.

Samples Age
(Year)

PSA
(ng/mL) Ethnicity Gleason Score Clinical Stage NCCN

Classification

SAPC0164 74.2 2.5 Black 3 + 3 T1a Very low
SAPC0203 66.8 18.6 Coloured 3 + 3 cT2a Intermediate
SAPC0238 92.5 24.4 Coloured 3 + 3 T1a High
SAPC0185 69.0 18.0 Coloured 4 + 5 T2c High
SAPC0195 87.2 26.5 Black 4 + 5 T3 Very high
SAPC0180 58.1 >5000 Black 5 + 5 T3/T4 Very high

PSA, Prostate-Specific Antigen; NCCN, National Comprehensive Cancer Network.
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A total of 868 miRNAs were identified, of which 298 have average read counts above
10. The differential analysis between low and high Gleason scores identified 65 miRNAs
as statistically significantly different (Supplementary Table S1). Using literature searches,
we identified 49 miRNAs that have been previously associated with African ancestry in
PCa (Supplementary Table S2). None of these overlaps with the 65 deregulated miRNAs
identified by this study. This emphasizes the uniqueness of the population and the urgent
need for studies like the current one in African populations.

EVs have been implicated in the intercellular transfer of miRNA into extracellular
space. EVs are secreted by almost all cell types; in plasma, EVs are mainly derived from
blood cells, such as platelets, T-cells, and B cells [40]. In order to identify deregulated
miRNA possibly originating in the prostatic cancer tissue, we retrieved miRNA expression
profiles of 479 prostatic tumor tissue from data available in the TCGA-PRAD dataset,
including 284 with low Gleason scores (<8) and 195 with high Gleason scores (≥8). A total of
185 miRNAs were found deregulated in tissues with higher Gleason scores (Supplementary
Table S3). Only seven miRNAs were similarly deregulated in both cohorts (Table 2). A
summary of the approach employed in this study is demonstrated in Figure 2.

Table 2. Significant deregulated miRNA commonly expressed in the same direction between TCGA
miRNA and EV miRNA.

EV miRNA TCGA PCa Tissue miRNA

LogFC p-Value FDR LogFC p-Value FDR

hsa-miR-10a-5p 9.21 2.78 × 10−4 2.92 × 10−3 0.30 9.52 × 10−5 1.11 × 10−3

hsa-miR-194-5p 3.45 5.11 × 10−3 3.34 × 10−2 0.25 3.41 × 10−6 5.95 × 10−5

hsa-miR-144-5p 2.30 5.72 × 10−3 3.56 × 10−2 0.27 7.70 × 10−3 4.91 × 10−2

hsa-miR-16-5p 1.89 1.67 × 10−2 8.05 × 10−2 0.19 4.42 × 10−6 7.34 × 10−5

hsa-miR-221-5p −2.08 1.83 × 10−2 8.51 × 10−2 −0.55 1.55 × 10−12 6.77 × 10−11

hsa-miR-326 −2.15 1.84 × 10−2 8.51 × 10−2 −0.33 5.26 × 10−4 4.83 × 10−3

hsa-miR-93-5p 1.67 1.85 × 10−2 8.51 × 10−2 0.35 9.74 × 10−9 2.55 × 10−7

EV, Extracellular vesicle; FDR, False Discovery Rate; LogFC, Log fold change; PCa, prostate cancer; TCGA, The
Cancer Genome Atlas.
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Figure 2. Outline of the differential expression analysis. Differential expression was assessed between low
and high Gleason groups in the TCGA prostate cancer tissue miRNA database and extracellular vesicle
miRNA sequencing data from the South African cohort. Venn diagram indicated the shared miRNA
between the two analyses. TCGA-PRAD, the Cancer Genome Atlas Prostate Adenocarcinoma.
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3.2. Identification of EV miRNA Target Genes

We used MIENTURNET’s network analysis [32] to assess the relationships between
miRNAs and target genes. miRNA target interaction network and functional enrichment
analysis were conducted to assess the biological relevance. We reported 364 candidate
targeted genes (p-value < 0.05; FDR < 0.1) for the seven previously identified miRNAs
(Supplementary Table S4).

A network of experimentally validated miRNA–target strong interactions was con-
structed from the seven selected miRNAs (Figure 3A). Three miRNAs, miR-16-5p, miR-
93-5p, and miR-10a-5p, were characterized by a high number of interactions (1557, 1220,
and 463, respectively). miR-326, miR-221-5p, miR-194-5p, and miR-144-5p showed respec-
tively 144, 138, 93, and 36 interactions. All strong and weak interactions are reported in
Supplementary Table S5. The functional enrichment analysis of the Wiki pathways for the
seven is reported in Figure 3B, highlighting a modulation of the androgen receptor (AR)
signaling, PI3k-Akt signaling, and inflammation-related pathways (e.g., Il-7 and TNF-alpha
signaling). Although not highlighted, AR signaling has also been recently associated with
both miR-194-5p [41] and miR-221-5p [42].
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enrichment analysis for the genes with a strong interaction with the selected miRNAs. (C) miEAA2.0
enrichment analysis of the selected miRNA. (D) FANTOM5 enrichment score plot of miR-194-5p for
epithelial cells. (E) Correlation map between the selected miRNA and target gene with strong and
weak interaction and immunological tumor features.

The miEAA2.0 analysis [34] yielded 397 enriched subcategories for the seven identified
miRNAs (Supplementary Table S6). Figure 3C summarizes the first 20 most significantly
enriched subcategories for the seven miRNAs. From this analysis, we reported a possible
modulation of Caspase recruitment domain (CARD) signaling and T-cell activation. The
analysis corroborated the previous findings that inflammatory pathways are targeted by
these miRNAs.

We also identified that pathways related to the metabolism of lipids (e.g., cholesterol
and fatty acids) are also targeted by these miRNAs. Fatty Acid Synthase (FASN), a key en-
zyme in the de novo synthesis of fatty acids [43] and the lipogenic phenotype of PCa [44,45],
was indeed targeted by four out of seven identified miRNAs (i.e., miR-326, miR-10a-5p,
miR-93-5p, miR-16-5p).

FANTOM5 mammalian expression miRNA atlas [36] was used to predict the cellular
origin of the seven identified miRNAs (Supplementary Table S7). Leukocyte, neutrophil,
myeloid and hematopoietic cells were the putative primary source of miR-144-5p, miR-
16-5p, miR-221-5p, and miR-326. The analysis suggested that miR-194-5p, miR-10a-5p,
and miR-93-5p were of epithelial origin and may be promising candidates for future
investigation as prostatic epithelial tissue-related miRNAs. The highest association with
epithelial cells was reported for miR-194-5p (Figure 3D).

The miRNA locations were predicted using miRNALoc [35]. Most of the miRNAs
were predicted as expected to be localized in exosomes, including miR-10a-5p, miR-194-5p,
miR-144-5p, and miR-326. miR-93-5p and miR-16-5p were predicted to be localized in
extracellular vesicle and miR-221-5p in microvescicle (Supplementary Table S8). Gene
expression data from the prostatic cancer cohort in TCGA was used to investigate the
correlation between the targeted gene and miRNA (Figure 3E). The correlation between
miRNA and immunological features was also analyzed (Figure 3E), reporting a strong
negative correlation between the Th1 cell population and the miR-194-5p precursors, miR-
194-1 and miR-194-2.

3.3. Validation of miRNA Expression by RT-qPCR Analysis

To validate our findings, we quantified the expression of the seven miRNAs in a
larger cohort of 24 PCa and 10 BPH patients. The latter was included as a control in order
to identify changes cancer-specific comparing a benign condition of the prostate with a
malignant one. The clinical data from all patients are summarized in Table 3. Additional
details are provided in Supplementary Table S9.

Table 3. Clinical data from patients used for qPCR.

Feature BPH
(n = 10)

Low GS
(n = 12)

High GS
(n = 7)

Metastatic
(n = 5) p-Value

Age (year), median [IQR] 68 (66–74) 67 (62–71) 81 (76–84) 63 (62–75) 3.66 × 10−2

PSA (ng/mL), median [IQR] 5.3 (3.9–11.3) 11.1 (6.5–18.7) 39.3 (22.5–109) 1070 (576–5000) 2.25 × 10−4

Ethnicity 1.50 × 10−1

Black, n (%) 6 (60.0) 1 (8.3) 3 (42.9) 2 (40.0)
Coloured, n (%) 4 (40.0) 9 (75.0) 3 (42.9) 2 (40.0)
White, n (%) 0 (0.0) 2 (16.7) 1 (14.3) 1 (20.0)

CRP (ng/mL), median [IQR] - 5.9 (4.2–8.4) 5.8 (4.3–7.9) 291 (62–405) 1.89 × 10−2

IQR, interquartile range; BPH, benign prostatic hyperplasia; GS, Gleason Score; CRP, C-reactive protein; PSA,
prostatic specific antigen.
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The analysis between the severity of PCa and absolute values of extracellular vesicle
miRNA did not show a clear trend (Supplementary Figure S1). Ratios between miRNA pairs
were calculated (Supplementary Table S10). Using miR-16-5p as an endogenous reference
gene for the normalization of extracellular vesicles miRNA expression, miR-194-5p showed
the highest correlation with the severity of PCa (rho = 43.3; p-value = 0.00955) in Figure 4A.
A strong correlation was also reported for PSA (Figure 4B) and CRP (Figure 4C). The sample
size of this cohort is limited, and no statistically significant change was reported for the
age (Figure 4D). In addition, a lower miR-194-5p value was observed in the Black patients
with PCa (p-value < 0.05). ROC curves (Figure 5) showed a good prediction of the ratio
miR-194-5p/miR-16-5p when comparing BPH with PCa (Figure 5A) and non-metastatic
with metastatic PCa (Figure 5C).
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4. Discussion

Following FDA breakthrough device designation approval of the first EV cargo diag-
nostic test, ExoDx Prostate Intelliscore (EPI), EV markers are increasingly being explored
for their diagnostic and prognostic potential [46]. For PCa, both urinary and blood EV
cargo are exploited for their prostate-cancer-specific contents [23,24]. Noticeably miRNA
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cargo was found to be promising putative diagnostic and prognostic markers for PCa [47].
This study aimed to explore EV miRNA cargo in the South African PCa population. We
isolated the EVs from the plasma and assessed their morphological characterization with
TEM image analysis. Although the majority of EVs isolated by our protocol range between
15 nm and 29 nm, a quantitative technique, such as Dynamic Light Scattering, may improve
the EV size characterization.

We identified 65 miRNAs deregulated in EVs of PCa patients with high Gleason scores
that have not previously been reported to be associated with PCa in patients with African
ancestry. Some of them were associated with other oncological diseases, which emphasizes
the unique contribution of our study to PCa literature on the African population. In this
study, we compared our plasma EV miRNA sequenced data and prostate tissue miRNA
data in the TCGA database. We found seven differentially expressed miRNAs in both EVs
and prostate tissue. It is well-known that around 90% of patients recruited in the TCGA
have a predominant European ancestry. The selection of shared deregulated miRNAs in
our and TCGA cohorts may have led to excluding miRNAs deregulated only in the South
African population. On the other hand, this approach may lead to the identification of
putative biomarkers that show high accuracy in more heterogeneous populations.

The role of AR receptor in PCa progression is well-establish [48]. All seven miRNAs
were associated with AR signaling. Growing evidence indicates that the tumor microenvi-
ronment contributes to antiandrogen resistance [49]. Considering that the putative primary
source for four of the seven identified miRNAs is immune cells, we speculate on the tumor
microenvironment’s possible role in regulating the AR signaling through EVs released by
non-epithelial cells. The deregulation of AR signaling could, in part, justify the link with
the other pathways identified as targets. Androgens, mediated by the AR, stimulate the
expression and activity of FASN [50] and are linked to a rearrangement of the metabolic
pathways [44].

We assessed the miRNA expression in EVs isolated from the blood of additional
patients to validate the miRNAs identified by sequencing. We found that the miR-194-
5p/miR-16-5p expression ratio correlates with the disease severity to serve as potential
biomarkers for PCa diagnosis. The miR-194-5p/miR-16-5p ratio significantly separates
BPH samples from low Gleason score PCa samples and metastatic PCa from low and high
Gleason score PCa.

According to previous research, miR-194 is a good candidate marker for high-risk and
metastatic prostate cancer [51–53], which suggests our experimental approach was valid
and robust. The literature reports that higher levels of miR-194 regulate cancer by increasing
migration, invasion, and epithelial-mesenchymal transition [51,52]. In cell lines, ectopic
delivery of miR-194 results in increased migration, invasion, and epithelial–mesenchymal
transition. Stable miR-194 overexpression led to metastasis of intravenous and intraprostatic
tumor xenografts [51]. Localized PCa patients have significantly lower serum levels of
miR-194 compared with metastatic castrate-resistant prostate patients [54]. Additionally,
miR-194 is a driver for metastasis in PCa [51] and is associated with poor outcomes. It is
also a marker for biochemical recurrence following radical prostatectomy [54].

miR-16 has been used as an endogenous marker to normalize qPCR results in many
studies [55–60]. Normalization is required as the EV concentration in the plasma of patients
differs. Many research papers report an increase in the concentration of plasma EVs in
cancer patients compared to healthy people and with the disease severity [61–64]. This
could possibly explain why the ratio of miR-194-5p/miR-16 was better in distinguishing
BPH from PCa patients than the single miRNAs. However, other authors report that
miR-16-5p is associated with PCa disease severity [65,66]. It was shown that miR-16-5p is
upregulated in PCa patients and that this is associated significantly with high-risk Gleason
scores and with PSA levels [65]. Increased levels of miR-16-5p were reported in advanced
PCa compared to localized PCa and BPH. Additionally, miR-16-5p was incorporated into
a model along with three other miRNAs (miR-375, miR-33a-5p, and miR-409-3p) and
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PSA that can predict the outcome of transrectal ultrasound-guided biopsies better that
PSA alone [66].

Regarding racial disparities, it was reported that miR-194 has higher expression
levels in Nigerian women with breast cancer than in the British Caucasian, British Black,
and Indian groups [67]. A systematic review and meta-analysis of the miR-16 family
found that ethnicity may influence miRNA concentration; unfortunately, data from African
patients were unavailable, and only Asian and Caucasian groups were assessed [68]. Our
study observed lower miR-194-5p levels in the Black ethnic group. This emphasizes the
importance of our research, as the genetic composition of populations will influence the
robustness of biomarkers. Unfortunately, African populations are frequently ignored in
research even though Africa has the lion’s share of PCa deaths.

5. Conclusions

Studies have demonstrated the correlation between miR-194 and metastasis, poor
outcomes, and recurrence, and miR-16 as an endogenous marker used to normalize qPCR
results in PCa. However, the combination of these two miRNAs as potential biomarkers for
PCa, most notably in an African population, is new. Our study expands the understanding
of the potential of EV miRNA cargo as diagnostic and prognostic markers for PCa. The
identification of specific miRNAs, such as miR-194-5p/miR-16-5p ratio, provides valuable
insights for developing improved diagnostic tools and personalized treatment strategies for
PCa patients. Furthermore, our research highlights the importance of inclusive research that
considers diverse populations, including African populations, to ensure the effectiveness
and applicability of biomarkers across different genetic backgrounds.
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