
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Biological Systems Engineering: Papers and 
Publications Biological Systems Engineering 

12-2023 

AICropCAM: Deploying classification, segmentation, detection, AICropCAM: Deploying classification, segmentation, detection, 

and counting deep-learning models for crop monitoring on the and counting deep-learning models for crop monitoring on the 

edge edge 

Nipuna Chamara 
nabeysingheherathm2@huskers.unl.edu 

Geng (Frank) Bai 
University of Nebraska - Lincoln, gbai2@unl.edu 

Yufeng Ge 
University of Nebraska - Lincoln, yge2@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/biosysengfacpub 

 Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, Environmental 

Engineering Commons, and the Other Civil and Environmental Engineering Commons 

Chamara, Nipuna; Bai, Geng (Frank); and Ge, Yufeng, "AICropCAM: Deploying classification, segmentation, 
detection, and counting deep-learning models for crop monitoring on the edge" (2023). Biological 
Systems Engineering: Papers and Publications. 881. 
https://digitalcommons.unl.edu/biosysengfacpub/881 

This Article is brought to you for free and open access by the Biological Systems Engineering at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems 
Engineering: Papers and Publications by an authorized administrator of DigitalCommons@University of Nebraska - 
Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/biosysengfacpub
https://digitalcommons.unl.edu/biosysengfacpub
https://digitalcommons.unl.edu/agbiosyseng
https://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1056?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/257?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengfacpub/881?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages


Computers and Electronics in Agriculture 215 (2023) 108420

Available online 16 November 2023
0168-1699/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

AICropCAM: Deploying classification, segmentation, detection, and 
counting deep-learning models for crop monitoring on the edge 

Nipuna Chamara a, Geng Bai a, Yufeng Ge a,b,* 

a Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA 
b Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA   

A R T I C L E  I N F O   

Keywords: 
Artificial intelligence 
Computer vision 
Edge computing 
Internet of things 
LoRaWAN 
Precision agriculture 

A B S T R A C T   

Precision Agriculture (PA) promises to meet the future demands for food, feed, fiber, and fuel while keeping their 
production sustainable and environmentally friendly. PA relies heavily on sensing technologies to inform site- 
specific decision supports for planting, irrigation, fertilization, spraying, and harvesting. Traditional point- 
based sensors enjoy small data sizes but are limited in their capacity to measure plant and canopy parame-
ters. On the other hand, imaging sensors can be powerful in measuring a wide range of these parameters, 
especially when coupled with Artificial Intelligence. The challenge, however, is the lack of computing, electric 
power, and connectivity infrastructure in agricultural fields, preventing the full utilization of imaging sensors. 
This paper reported AICropCAM, a field-deployable imaging framework that integrated edge image processing, 
Internet of Things (IoT), and LoRaWAN for low-power, long-range communication. The core component of 
AICropCAM is a stack of four Deep Convolutional Neural Networks (DCNN) models running sequentially: 
CropClassiNet for crop type classification, CanopySegNet for canopy cover quantification, PlantCountNet for 
plant and weed counting, and InsectNet for insect identification. These DCNN models were trained and tested 
with >43,000 field crop images collected offline. AICropCAM was embodied on a distributed wireless sensor 
network with its sensor node consisting of an RGB camera for image acquisition, a Raspberry Pi 4B single-board 
computer for edge image processing, and an Arduino MKR1310 for LoRa communication and power manage-
ment. Our testing showed that the time to run the DCNN models ranged from 0.20 s for InsectNet to 20.20 s for 
CanopySegNet, and power consumption ranged from 3.68 W for InsectNet to 5.83 W for CanopySegNet. The 
classification model CropClassiNet reported 94.5 % accuracy, and the segmentation model CanopySegNet re-
ported 92.83 % accuracy. The two object detection models PlantCountNet and InsectNet reported mean average 
precision of 0.69 and 0.02 for the test images. Predictions from the DCNN models were transmitted to the 
ThingSpeak IoT platform for visualization and analytics. We concluded that AICropCAM successfully imple-
mented image processing on the edge, drastically reduced the amount of data being transmitted, and could 
satisfy the real-time need for decision-making in PA. AICropCAM can be deployed on moving platforms such as 
center pivots or drones to increase its spatial coverage and resolution to support crop monitoring and field 
operations.   

1. Introduction 

The demands for food, feed, fiber, and fuel increase rapidly due to 
the fast expansion of the global population, income growth, techno-
logical advancement, and transport and logistics improvements (van 
Dijk et al., 2021). Precision agriculture (PA), which seeks to apply the 
right amount of inputs (fertilizers, irrigation water, pesticides, and other 
chemicals) in the right location at the right time, is essential to meet the 

requirements of future global food production, as well as environmental 
sustainability and climate resilience. PA is predicated on accurate sensor 
measurements, timely and sound decision-making, and automated ac-
tuators. The backbone of PA is the Internet of Things (IoT) technology 
that automates data collection, data analytics, data presentation, con-
trol, and efficient data communication (Chamara et al., 2022). 

Imaging sensors or digital cameras are essential for PA as they can 
capture more information than traditional scalar or vector sensors. 
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Images can capture crop phenology for precise decision-making (Taylor 
and Browning, 2022, Tian et al., 2020). Cyclic events such as vegetative 
growth, flowering, leaf count and color change, maturation, and 
senescence are studied in crop phenology, which is essential to PA as it 
determines the management inputs required by crops. Moreover, images 
have rich information on the scene that allows for pest pressure evalu-
ation. At present, a limited number of sensors are available for pest 

identification and pest pressure estimation. Among them, imaging sen-
sors provide the most promising solution. 

Conventional (handcrafted feature extraction) and Artificial Intelli-
gence (AI)-based image processing are the two branches of image pro-
cessing. Traditional approaches extract image features defined by shape, 
texture, and color (Anubha et al., 2019; Yuan et al., 2019). The AI-based 
methods use Convolutional Neural Networks (CNN) to extract features 

Fig. 1. Steps of edge image processing program deployment on the embedded system (edge devices).  

Fig. 2. Left: An Illustration of how AICropCAM was set up in the field for image collection. In addition to the camera, other components such as the solar panel and 
data logger were also shown. Right: A close-up view of AICropCAM and its hardware components. 
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from images (Luis et al., 2020). CNN models with multiple hidden layers 
for feature extraction and learning are considered Deep Convolutional 
Neural Networks (DCNN) (LeCun et al., 1998). 

Conventional imaging platforms in PA store images locally using 
onboard storage memories. Post processing refers to the processing of 
images stored at the central data storage in batches at a later time to 
extract useful information (Aasen et al., 2020). Imaging platforms that 
can access the internet through a stable connection with high bandwidth 
can automatically upload images to Cloud data storage. The vast ma-
jority of farmlands worldwide are in rural and remote areas with poor 
access to electric power and internet connectivity. This represents a big 
challenge for camera systems deployed in rural farmlands for high-speed 
image processing, data transmission, and low-latency decision-making 
(Richardson, 2019). Post-processing of crop images has been used for 
the estimation of leaf area index (Aasen et al., 2020), growth rate 
(Sakamoto et al., 2012), leaf chlorophyll and nitrogen content (Wang 
et al., 2014), fruit counts (Wang et al., 2014), and plant height (Sritar-
apipat et al., 2014). Further post-image processing allows for the 
assessment of biotic stress, such as pest density (Barbedo, 2014; Park 
et al., 2007) and weed pressure (Wang et al., 2019), as well as abiotic 
stress, such as nutrient deficiency (Ghorai et al., 2021). 

Richardson (2019) suggested that deep learning-based methods have 
the potential to facilitate the extraction of more sophisticated pheno-
logical data from both new and previously archived camera imagery 
compared to conventional image processing. Semantic segmentation- 
based canopy coverage (CC) estimation (Chamara et al., 2021; Liang 
et al., 2023), image classification-based crop identification (Anubha 
et al., 2019), disease identification (Sharma et al., 2020), growth stage 
prediction (Yasrab et al., 2021) and object detection-based plant feature 
identification (A. Wang et al., 2019) are examples of DCNN applications 
in agriculture. Conventional image processing requires less computa-
tional power and less energy, but they are limited in adaption to new 
scenarios, while deep learning requires high computational power and 
consumes more energy. DCNN models require large memory due to the 
large number of parameters these models hold. Therefore, it is not easy 
to implement these models practically in embedded systems that have 

less memory and computation power. These models also require a large 
amount of data to train to predict with high accuracy. Therefore, it is 
resource intensive. 

Edge image processing is the image processing done on image- 
capturing devices. The main advantage of edge image computing is 
that it lowers the high throughput data transmission requirement over a 
wireless IoT-enabled imaging network (Cao et al., 2020). Wang et al. 
(2022a) demonstrated the capability of identifying potted flowers with 
precision above 89 % in real-time in a Jetson TX 2 computing module 
based on a DCNN algorithm. These authors suggested that a cloud-edge 
collaborative framework could achieve real-time and automatic 
learning for the DCNN model they have developed. Wang et al. (2022b) 
proposed a real-time weed detection model run on Jetson AGX Xavier 
for field robots. The authors proved it was possible to do real-time weed 
detection with a precision above 90 % yet required expensive hardware. 
Wang et al. (2022a) reviewed Raspberry Pi single-board computer-based 
real-time image processing applications. They concluded that Raspberry 
Pi (Datasheet Raspberry Pi Model B, 2019) is a cost-effective edge 
computing unit that could potentially be used as an edge image pro-
cessing unit, and the capability of integrating it with IoT was also dis-
cussed. Zualkernan et al. (2022) demonstrated an edge image processing 
platform for the classification of animals and transmitting the identified 
animal and time of identification via LoRa for a camera trap. 

Past literature on IoT and image processing applications in agricul-
ture has highlighted a research gap in edge image processing with IoT- 
enabled crop monitoring cameras. In-field crop cameras are expected to 
make real-time crop management decisions based on real-time image 
processing; however, poor internet connectivity in agricultural fields 
severely limits their capability. To address this gap, we have developed a 
novel imaging platform named AICropCAM that extracts plant and crop 
canopy level parameters through DCNN and uploads them to the Cloud 
via low-power, low-throughput communication protocols. We also 
demonstrated AICropCAM on an IoT-enable wireless sensor network in 
corn and soybean fields. 

A technology that addresses image processing at the lowest level 
(edge) and transmits only useful information can revolutionize real-time 

Table 1 
Annotation criteria used to generate labels from the images to train and test the four deep convolutional neural network models in AICropCAM.  

Labeling Type Class Description 

Image classification (CropClassiNet) Rejected Images were labeled as rejected due to multiple reasons: blurred images caused by water droplets on the lens; the cameras 
turned away from the targeted crop; crops growing up to the camera blocking the view or capturing only a few leaves; people 
present in the images; lens covered with different stuff; and the camera was not installed in the field. 

Corn Images entirely covered by corn plants at different growth stages. 
Soybean Images entirely covered by soybean plants at different growth stages. 
Grass/ 
Weed 

Images only comprise grass/weed plants at different growth stages. 

Night Images captured under low lighting conditions. Most of the cameras were not programmed to stop collecting images under low 
light. 

Crop canopy and background 
(CanopySegNet) 

Canopy Pixel labeling was done on the crop canopy. We used assisted freehand tool and the superpixel option in the MATLAB image 
labeler. 

Background Pixel labeling was done on the crop canopy. We used assisted freehand tool and the superpixel option in the MATLAB image 
labeler. 

Plant-type (PlantCountNet) Weed Weed present in the image was labeled using bounding boxes. It was challenging to locate the weed after the corn or soybean 
canopy was closed. 

Soybean Soybean plants present in the image were labeled using bounding boxes. 
Insects (InsectNet) Insects During the labeling process, without distinguishing insects based on their type, all the insects present in the images were 

labeled using bounding boxes.  

Table 2 
DCNN model image allocation and image augmentation.  

Model Number of images Data Augmentation Techniques 

Total Training Validation Test 

CropClassiNet 43,611 30,528 9,810 3,273 Random rotation, random X  and Y reflection 
CanopySegNet 51 31 10 10 Transformation (random left/right reflection and random X/Y translation of ±10 pixels) 
PlantCountNet 110 88 11 11 Transformation (same as CanopySegNet) 
InsectNet 542 326 108 108 Transformation (same as CanopySegNet)  
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decision-making in PA. Therefore, the main objective of this paper is to 
demonstrate AICropCAM to perform edge image processing and low- 
throughput, low-power, and long-range data transmission through IoT 
technology. In this novel AICropCAM platform, multiple DCNN image 
processing algorithms run in series to extract plant-level and canopy- 
level features in an embedded system. Image classification, object 
detection with classification, and image segmentation are the three 
major applications of DCNN image processing, and all three are included 
in AICropCAM to demonstrate the capabilities of DCNN for image pro-
cessing in PA. AICropCAM has trained models for canopy segmentation, 
crop classification, plant growth stage identification, plant counting, 
weed counting, and plant type identification. All the protocols that 
transmit data from AICropCAM to the Cloud were custom designed. 
AICropCAM sends the generated data to a cloud platform for logging, 
visualization, and analysis. Furthermore, this paper explains the DCNN 
model training process, model performance, and test results. We re-
ported the model training comprehensively because it was essential for 
AICropCAM development. 

2. Materials and methods 

Essential activities in this research were data/image collection and 
preprocessing, hardware design for AICropCAM, software design for 
data transmission between the edge and the Cloud, deep learning model 
design, and model training and optimization (Fig. 1). AICropCAM was 
implemented in a corn and soybean field at the field phenotyping facility 
in Mead, Nebraska, USA (Bai et al., 2019). We demonstrated the training 
of the following DCNNs: CropClassiNet for classifying images based on 
image quality and crop type, CanopySegNet for segmenting crop canopy 
from the background, PlantCountNet for classifying and counting soy-
bean and weed plants, and InsectNet for identifying insects and counting 
them. 

2.1. Image collection, annotation, preprocessing, and augmentation 

Image collection for DCNN model training occurred in four growing 
seasons using three different types of cameras: (i) commercially 

Fig. 3. DCNN model selection process during the training and testing by attempting different model architectures, model backdone weights, and input image sizes.  

Table 3 
Hyperparameter values and training options for the best models (SGDM - stochastic gradient descent with momentum, RMSProp - Root mean square propagation).  

Training option and the function/Hyperparameters Values for CropClassiNet Values for CanopySegNet Values for InsectNet 
(320 × 320 × 3) 

Values for PlantCountNet (320 × 320 × 3) 

Optimizer SGDM SGDM SGDM RMSProp 
Momentum 0.9 0.9 0.99 NA 
Initial learning rate 0.001 0.001 0.001 0.001 
Learn rate schedule Piecewise Piecewise Piecewise Piecewise 
Learn rate drop period 10 10 10 10 
Learn rate drop factor 0.3 0.3 0.1 0.3 
Minibatch size 16 4 16 32 
L2Regularization NA 0.005 0.005 0.005 
Validation frequency 3 3 3 10 
Shuffle Every epoch Every epoch Every epoch Every epoch 
Validation patience 4 10 10 10 
Max epochs 100 300 1000 100 
Execution environment Multi GPU Multi GPU GPU GPU  
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available Meidas SL122 trail cameras in 2019 (Meidas Trail Cameras, 
2022), (ii) OV5642 imaging sensors with ArduCAM camera shields in 
2020, and (iii) Raspberry Pi Camera Module V2 with Raspberry Pi Zero 
in 2021 and 2022 (Chamara, 2021). All the cameras were mounted on 
the bars horizontally extended and fixed on stationary poles erected 

vertically in the fields, as shown in Fig. 2A. The distance between the 
crop canopy and the cameras was maintained between 0.5 and 1.5 m 
throughout the growing seasons. Images used for training the InsectNet 
were also captured with smartphones as we could not collect enough 
images with insects from the three types of cameras mentioned above. 

Fig. 4. Hardware overview of AICropCAM and data flow.  

Fig. 5. Overall sequential image processing and data generation flow chart.  

N. Chamara et al.                                                                                                                                                                                                                               
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All three standard image annotation techniques in deep learning 
model training were utilized: (1) folder labeling for the image classifi-
cation models, (2) pixel-level annotation for the semantic segmentation 
model, and (3) bounding boxes for object detection models. Images 
belonging to the same class were grouped into a single folder, and five 
distinct classes (or folders) were created: rejected, corn, soybean, grass, 
and night. Separating the crop canopy from the soil was done with pixel- 
level annotation and semantic segmentation. Bounding boxes, the 
smallest rectangle around an object, were drawn for corn plants, soy-
bean plants, weed plants, and insects. Table 1 explains each type of 
annotation used in the model training. 

Image preprocessing is necessary for DCNN model training and real- 
time edge image processing. Differences in the input layer size in 
different DCNN models demand that images be resized before passing 
through the model for training or prediction purposes. High-resolution 
images improve accuracy but require more computational power. For 
specific applications, labeled datasets were only limitedly available. 
Therefore, image augmentation techniques were used to increase the 
number of image data sets, including scaling, flipping, cropping, rota-
tion, color transformation, PCA color augmentation, and noise rejection 
(Paymode and Malode, 2022). Multiple augmentation techniques were 
used for each model, as detailed in Table 2. Additionally, Table 2 pro-
vides the numbers of images in training, validation, and testing for the 
four DCNN models. 

Our main objective was not to make the most accurate prediction for 
the DCNN models but to demonstrate the concept of implementing edge 
image processing and transmitting the results to the Cloud for decision- 
making. Therefore, we selected a limited number of images for Can-
opySegNet, PlantCountNet, and InsectNet, which were sufficient to train 
models with a reasonable degree of accuracy. 

2.2. DCNN model architecture selection, training, evaluation, and 
deployment on the edge device 

The steps to select model architecture/model backbone weights and 
image input sizes to train the best model for CropClassiNet, Can-
opySegNet, PlantCountNet, and InsectNet are summarized in Fig. 3. 
Unlike many DCNN applications that prioritize higher accuracy, our 
application focused on finding the balance between accuracy and model 
deployability on the edge device. 

For example, in the development of CropSegNet (Segmentation), we 
selected DeepLabv3+ (Firdaus-Nawi et al., 2018) with weights initial-
ized from pre-trained networks of ResNet18 (He et al., 2016), ResNet50, 
Xception, InceptionresnetV2, and MobileNetV2. The input image sizes 
tested were 512 × 512 × 3 and 256 × 256 × 3, and training options were 
kept constant to find the best-performing networks, which should also 
be deployable to Raspberry Pi 4B. This process identified DeepLabv3 +
with ResNet50 as the most suitable model for CropSegNet, with an input 
image size of 512 × 512 × 3. Table 3 summarizes the hyperparameter 
values and training options for the final DCNN models deployed to the 
edge device. 

Accuracy =
Number of accurate predictions

Total images in test dataset
× 100% (1)  

Precision =
True positive

True positive + False positive
(2)  

Recall =
True positive

True positive + False negative
(3)  

F1 Score =
2 × precision × recall
(recall + precision)

(4)  

Jaccard index =
|Target ∩ Prediction|
|Target ∪ Prediction|

(5)  

Intersection over union(IoU) =
Intersection area

Union area
(6)  

Mean Average Precision =
1
n
∑k=n

k=1
APk (7) 

The performance of the four DCNN models was evaluated using the 
indices calculated from Eq. (1) to (7). Accuracy, Precision, Recall, F1 
score, and Jaccard index were used for the classification models Crop-
ClassiNet and CropSegNet, whereas IoU and mAP (Mean Average Pre-
cision) were used for PlantCountNet and InsectNet. Jaccard index gives 
the proportion of correctly predicted labels to the total number of labels. 
Model training was performed on an NVIDIA GeForce GTX 1650 Ti 
Mobile processor, a dedicated mid-range graphics card with 4 GB 
GDDR6 memory on a Dell XPS 15 9500 Laptop. The laptop had an Intel 
Core i7-10750H 10th Gen processor,16 GB DDR4 RAM, and 1 TB SSD 
hard disk. 

2.3. Hardware and software of AICropCAM 

The IoT data transmission and edge image processing hardware 
comprised the following major components: a Raspberry Pi 4B single- 
board computer, an Arduino MKR1310 development board, an Ardu-
ino MKR Relay Proto Shield, and a Dragino OLG02 outdoor dual chan-
nels LoRa Gateway (Fig. 4). The 12 V 8Ah battery powered the 
Raspberry Pi 4B, controlled through the relay shield managed by the 
Arduino MKR1310. A 3.7 V lithium polymer battery powered the 
Arduino MKR1310 board. There are two advantages of having a separate 
Arduino board. First, the Arduino board consumes less power than the 
Raspberry Pi 4B module. It can be switched on and off according to user 
requirements. Second, it allows uninterrupted communication between 
the edge node and the Cloud with low power. 

AICropCAM required programming on two hardware platforms. 
Arduino was programmed using C++ in Arduino’s Integrated Devel-
opment Environment. Raspberry Pi imaging and image processing pro-
gram was developed in MATLAB and deployed onto the Raspberry Pi 4B 
using the MATLAB Coder and MATLAB Compiler. A python program 
was designed to read the saved data in the Raspberry Pi 4B and serially 
communicate to the Arduino MKR1310. The primary functions of the 
MRK1310 program were to (1) turn on the Raspberry Pi 4B module 
based on the user-defined time intervals, (2) get the processed data, 
including the results of DCNN model predictions, through serial 
communication from the Raspberry Pi 4B, and (3) transmit the data to 
the ThingSpeak Cloud channel through the LoRa gateway. All the DCNN 
models were trained using the MATLAB deep learning toolbox. In the 
edge deployment, a MATLAB program runs multiple models logically 
depending on the prediction result of the previous model estimation, as 
shown in Fig. 5. MATLAB coder generated the C and C++ code derived 
from the program we developed to run on the Raspberry Pi. MATLAB 
Compiler generated the standalone application on the Raspberry Pi (The 
MathWorks, 2022). 

Table 4 
List of parameters used to represent information in the images.  

Parameter Abbreviation Represent information 

Image location LOC Node ID manually entered/Global positioning 
system location coordinates 

Image orientation IO Accelerometer/Manually feed/Gravity switch 
Image quality/ 

Crop type 
CT Image classification based on image quality 

and the crop type 
Plant count/Weed 

count 
PC/WC Multiclass object detection/classification 

Crop canopy 
coverage 

CC Semantic segmentation 

Pest count PstC Multiclass object detection/classification  
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Fig. 6. Examples of message generation and data size reduction for LoRa transmission.  
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Table 4 lists the parameters generated by the models in AICropCAM. 
The abbreviations in Table 4 are fields holding data in the program to 
reduce the complexity of system development and maintain a common 
standard among different platforms. Fig. 6 shows the data generation 
from images. According to Fig. 6, the size of the images were around 2 
MB before being fed into the image processing pipeline. The output 
message contains the crop type (CT), plant count (PC), weed count (WC), 
canopy coverage (CC), and pest count (PstC). The resulting message is 
typically less than 100 bytes. This represents a substantial reduction of 
memory size with the output being 0.00005 times the size of the original 
image. Consequently, this message can be transmitted in a single mes-
sage via LoRa as the maximum LoRa packet size is around 256 bytes. 

2.4. Data transmission, visualization, and storage 

The data generated after image processing were saved on the Rasp-
berry Pi 4B SD card, allowing access to the data remotely or through 

manual retrieval during field visits. Two options for transmitting the 
collected data to the ThingSpeak IoT platform are available. Firstly, the 
data can be uploaded directly from the Raspberry Pi 4B if internet 
connectivity is available for growers with Wi-Fi access. Secondly, the 
Raspberry Pi 4B transmits the recently acquired data to the Arduino 
MKR1310. The Arduino MKR1310 decodes the data received from the 
Raspberry Pi 4B and forwards it to the ThingSpeak. The second method 
is for low-rate, long-range communication beyond the limit of Wi-Fi. 

A single message receivable to the ThingSpeak server includes data 
for eight fields. In our demonstration, a single message was enough to 
transmit the data generated. Fields 1 and 2 are reserved for geographic 
coordinates (namely, latitude and longitude) to represent the device’s 
location. The third field was for camera orientation. Image quality/crop 
type, plant count, weed count, insect count, and crop canopy coverage 
were allocated from fields four to eight. ThingSpeak supports eight 
channels per gateway. If additional data is generated in the future, we 
have to create new channels to accommodate them. However, only data 
in a single channel can be passed through a single message. The Arduino- 
LoRa library was used to prepare the LoRa messages forwarded to the 
gateway (Mistry, 2016). The message generated from the Arduino 
MKR1310 includes the device identification number and the data with 
the field number. Once the gateway receives this message, it adds the 
target client ID (generated by ThingSpeak when defining a device), host 
address (mqtt://mqtt3.thingspeak.com), server port number, username 
and password, channel ID, and the data in each field according to the 
Message Queuing Telemetry Transport (MQTT) protocol. Username and 
password ensure that only authorized devices can transmit data to the 
ThingSpeak platform. 

ThingSpeak provides two ways to interact with its platform, REST 
(Representative State Transfer) and MQTT protocols. The advantages of 
using MQTT over REST protocol are that it supports ThingSpeak data 
publishing, including immediate and minimum power consumption and 
data transmission over limited bandwidth, which encouraged us to 
select the MQTT protocol in our demonstration. 

3. Results and discussion 

3.1. DCNN model performance 

CropClassiNet had a test accuracy of 91.26 %, a Jaccard Index of 
0.77, and an F1-score of 0.91; the confusion matrix is given in Fig. 7. The 
highest precision is for the “grass” class (100 %), and the lowest is for 
“soybean” (92.0 %). The highest recall is for the “corn” class (99.9 %), 
and the lowest is for “grass” (67.1 %). The primary goal of CropClassiNet 

Fig. 7. Confusion matrix for test images by CropClassiNet.  

Fig. 8. An image of soybean crop and the segmentation result by CropSegNet to calculate canopy coverage.  
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is to determine the quality of new images and direct them for subsequent 
processing (Fig. 5). This step has never been executed in an image-based 
crop monitoring platform before. Further, CropClassiNet can eliminate 
erroneous images when humans are present in the camera’s field of view 
or when the camera is misaligned due to external factors. AICropCAM 
can send maintenance requests through IoT analytics if rejected images 
are continuously generated. 

CanopySegNet on the test images achieved a global accuracy of 0.93, 
a weighted IoU of 0.87, and a mean BF score of 0.73. Fig. 8 shows an 
example of an original soybean image and the corresponding segmen-
tation result by CanopySegNet, which estimated CC to be 18.72 %. 
Season-long, time-series images can be fed into CanopySegNet to 
generate diurnal and seasonal curves of crop CC, as shown in Fig. 9. 

According to Fig. 9, canopy coverage percentage variation is low 
during the daytime and reaches zero at night. This verifies the need to 
eliminate low-light images before segmenting. As shown in Fig. 5, it is 
possible to eliminate the generation of false values when the camera 
captures images under low light conditions by halting the process of 
running CanopySegNet. There are three diurnal variation series on 6/8/ 
2021, 6/26/2021, and 7/12/2021 in Fig. 9. The CC increased from 8 % 
to 95 % between 6/8/2021 to 7/12/2021. The seasonal trend showed 
that the CC reached a maximum around 7/8/2021. These results suggest 
that the proposed stacked models can track the daily and seasonal CC 

variation and eliminate the effect of lighting conditions on false value 
generation.  

The overall performance of the PlantCountNet and InsectNet is given 
in Table 5. Fig. 10(A) and 10(B) show the result obtained by Plant-
CountNet for a soybean image at an early vegetative stage (V3). 
Meanwhile Fig. 10(C) and 10(D) shows the result at a reproductive stage 
(R1). It can be seen that, at V3 stage, the model outputs matched the 
labels of soybean and weed plants well, indicating a level of high 
accuracy. 

The size of insects is very small compared to the size of images 
(Fig. 11), which is the main reason for the low mAP for InsectNet 
(Table 5). Increasing input image resolution beyond 480 × 480 × 3 is 
impractical as it exceeds the memory limitation to load models into 
Raspberry Pi 4B. A potential solution could be to increase the resolution 
of the region of interest by splitting the original image while keeping the 
resolution the same. Also, we suggest using the approach recommended 
by Tetila et al. (2020) in the future on Raspberry Pi model 4B. As 
technology advances, we expect the memory capacities will increase for 
edge computing units. At the same time, the state-of-the-art object 
detection algorithms will improve the accuracy for small object 
detection. 

3.2. Power consumption for Raspberry Pi 4B 

Since edge cameras in farmlands have limited access to electric 
power, information on their power consumption is essential for 
designing IoT devices and systems. AICropCAM is designed to be ener-
gized by solar power. It runs on a rechargeable battery when there is no 
solar power. We monitored the maximum energy consumption of each 
task performed by AICropCAM, and the result is presented in Table 6. 
Four main strategies are available for the power management of IoT 
edge devices: Selecting power-efficient hardware, maintaining low 
power modes, dynamic power management, and cloud-based manage-
ment. Raspberry Pi 4B is an affordable power-efficient single-board 
computer suitable for our application, but it does not naturally support 
low-power modes. Therefore, we introduced the Arduino MKR1310 

Fig. 9. Examples of diurnal and seasonal variations of canopy coverage as computed by CropSegNet.  

Table 5 
Performance of PlantCountNet and InsectNet on the test image set (Root mean 
square error (RMSE)/Final validation loss (FVL)).  

Model Name Architecture Input 
size 

Validation 
RMSE/FVL 

Mean 
average 
precision 

Object 
class 

PlantCountNet YOLOv2 320 ×
320 ×
3 

0.888 
(RMSE)  

0.66 Soybean  
0.86 Weed 

InsectNet YOLOv4 320 ×
320 ×
3 

26.2 (FVL)  0.02 Insect  
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LoRa module for the Raspberry Pi 4B dynamic power management. 
Furthermore, this Arduino module allows us to perform cloud-based 
central management independently. 

For our measurements, we used a Raspberry Pi 4B with 8 GB of RAM, 
connected to an HDMI monitor, a USB keyboard, and a USB mouse, and 
ran a MathWorks® Raspbian image (file used to boot the Raspberry Pi 
4B). The Raspberry Pi 4B was operated at room temperature and con-
nected to a wireless LAN access point and a laptop via an Ethernet cable. 
The electric current consumption for running each DCNN model was 
recorded during the test. CropClassiNet had the highest current con-
sumption, while the PlantCountNet and InsectNet models had the 
lowest. As for LoRa transmission, we could not measure its current 
consumption because the lowest value our instrument could measure 
was 0.01A. Based on the manufacturer’s specifications, the Arduino 
MKR1310 consumes 104 uA at 5 V. 

The average time to run the DCNN models is essential to estimate the 
energy consumed for each prediction. These parameters listed in Table 7 
provide essential guidelines for designing IoT sensor nodes with suitable 
batteries and power sources. We also noticed that typically the first 
prediction of a model took the longest time, but the rest take a consid-
erably shorter time to predict. 

Semantic segmentation was the most power-demanding activity, 
while insect detection was the least. Changing the order of the image 
processing models and adding new models or dropping existing models 
is possible during regular operation. It enables dynamic power man-
agement within the Raspberry Pi module. 

The main advantage of AICropCAM is that it implements a stack of 
four DCNN-based image processing models with multiple objectives. To 
the best of our knowledge, this is the first time such a system has been 
developed for a field crop monitoring camera. AICropCAM has 

applications such as setting up smart in-field or greenhouse IoT camera 
networks with edge computing capability, monitoring crops by attach-
ing them to sprinkler irrigation systems (pivots and linear moves), or 
collecting crop information through ground or aerial mobile robots. The 
relatively short time to run each DCNN model makes the system suitable 
for real-time applications, including variable rate irrigation, fertiliza-
tion, and spraying. For example, a pivot irrigated multi-cropping system 
with AICropCAM can automate irrigation or fertigation transition be-
tween different crops or crops at different growth stages by automati-
cally providing the crop type or growth stage information to the 
irrigation controller. Additionally, existing herbicide or pesticide 
sprayers can get the feedback of the PlantCountNet and InsectNet in the 
AICropCAM for precision spraying. 

4. Conclusion and future perspectives 

This paper outlines the essential components of constructing a 
functional edge image processing framework for real-time crop moni-
toring. From a software standpoint, CropClassiNet can categorize 
captured images according to image quality and detect the presence of 
specific crop types for further processing. CanopySegNet can further 
quantify the degree of canopy coverage; PlantCountNet can count the 
number of plants and weeds in the image; and finally, InsectNet can 
count the number of insects in the image. These four DCNN models, 
when implemented on edge devices, can extract an array of important 
crop and canopy parameters from field images and enable real-time, 
low-latency decision making and applications. 

Deep learning-based image processing on the edge has excellent 
potential in PA. Applications of AICropCAM are not limited to image 
classification, segmentation, plant counting, or weed counting. Potential 

Fig. 10. The result of PlantCountNet for soybean and weed counting: Manually annotated vs. model-predicted bounding boxes at V3 growth stage (A and B); 
manually annotated vs. model-predicted bounding boxes at R1 growth stage (C and D). 
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future applications include insect classification and crop damage esti-
mation, weed classification and pressure estimation, fruit identification 
and yield estimation, decision on replanting (Whigham et al., 2000), and 
disease identification and disease damage estimation in real time using 
actual field images collected by AICropCAM. 

AICropCAM shows excellent potential in enhancing crop manage-
ment through crop monitoring. However, the current demonstration 
requires significant improvements on both hardware and software 
fronts. Customized circuitry and modular design are required to put 

AICropCAM in commercial farm applications. The full potential of the 
AICropCAM can be achieved by putting this camera on a moving plat-
form like a center pivot with a GPS receiver to generate spatiotemporal 
data. Crop classification must include more crop types, and segmenta-
tion models need training data from other crop types. The DCNN models 
for weed and insect identification require the capability to identify 

Fig. 11. The result of InsectNet for insect counting in soybean. The top row shows a situation of high false positives and low false negatives: (A) and (B) are manually 
annotated and model-predicted insect labels, respectively. The bottom row shows a situation of low false positive and high false negative: (C) and (D) are manually 
annotated and model-predicted insect labels. 

Table 6 
Electrical power consumption of the Raspberry Pi 4B and the Arduino MKR1310 
during edge image processing.  

Device Activity The maximum current range and the 
voltage recorded 

Raspberry Pi 4B Idle run 5.25 V × (0.45 – 0.53) A 
Image classification 5.25 V × (0.97 – 1.04) A 
Image segmentation 5.25 V × (0.98 – 1.11) A 
Weed and plant 
detection 

5.25 V × (0.62 – 0.70) A 

Insect detection 5.25 V × (0.62 – 0.70) A 
Arduino 

MKR1310 
Sleep mode <0.01A 
Serial communication <0.01A 
LoRa transmission <0.01A  

Table 7 
Time duration needed for the selected DCNN models deployed in the Raspberry 
Pi 4B.  

Model/Task Input 
image 
size 

Time for 
predicting 
results 
(s) 

The maximum 
power demand for 
the activity (W) 

CropClassiNet/Image quality 
evaluation and crop 
classification 

224 ×
224 × 3  

6.44  5.46 

CanopySegNet/Semantic 
segmentation to separate 
canopy from background 

512 ×
512 × 3  

20.20  5.83 

PlantCountNet/Weed and 
plant detection, 
classification, and counting 

320 ×
320 × 3  

14.38  3.68 

InsectNet/Insect detection 320 ×
320 × 3  

0.20  3.68  
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different weed types, their growth stage, different insect types, and their 
growth stages to generate effective pest control decisions. 

Additionally, improving the models’ accuracy in image classifica-
tion, segmentation, and object detection is crucial. It can be achieved by 
increasing the number of training image data sets. We also planned to 
expand the research for multiple edge architecture evaluation. Archi-
tectures such as a high-performance edge computer that accepts images 
from multiple edge devices through short-range, high-speed communi-
cation (e.g., Wi-Fi) and can run more accurate deep learning models 
with higher numbers of parameters, might be a better solution for the 
primary objectives addressed in this paper. We aim to expand the 
AICropCAM applications to other crops beyond corn and soybean. By 
making these improvements, AICropCAM will become a more effective 
tool for crop management, potentially revolutionizing how we grow and 
manage crops. 
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