

Supplementary materials

Developing a slow-release permanganate composite for degrading aquaculture antibiotics

Chainarong Sakulthaew¹, Chanat Chokejaroenrat^{2,*}, Sidaporn Panya², Apisit Songsasen³, Kitipong Poomipuen¹, Saksit Imman⁴, Nopparat Suriyachai⁴, Torpong Kreetachat⁴ and Steve Comfort⁵

> 10 Figures 4 Tables - 15 pages –

Figure S1. Temporal changes in antibiotic relative concentrations (**A**; Sulfadimethoxine, SDM 161.12 μ M, **B**; Ormetoprim, OMP 36.45 μ M, **C**; Trimethoprim, TMP 34.44 μ M) following treatment with varying MnO₄⁻ concentrations (0.315 to 5.033 mM for SDM or 0.189 to 27.181 mM for OMP or TMP) and loss of initial concentrations of antibiotics (**D**; SDM 16.11 to 161.12 μ M, **E**; OMP 4.56 to 72.91 μ M, **F**; TMP 4.56 to 72.91 μ M) when treated with MnO₄⁻ at 1.133 mM.

MDPI

Figure S2. Observed kinetic rate constant (k_{obs}) of each antibiotic degradation (A; Sulfadimethoxine, SDM, B; Ormetoprim, OMP, or C; Trimethoprim, TMP) with presence of different synergetic antibiotics (as individual, SDM+OMP, or SDM+TMP) following treatment with MnO_{4^-} at 180 mg L⁻¹.

Figure S3. Permanganate release concentration [Mixing ratio: Set A]; **(A)** Weight composition of SR-MnO₄⁻ per batch (3.3 g) at different natural wax percentages. (B–E) Permanganate concentrations of each type of SR-MnO₄⁻ at different natural wax percentages (20–100%) and at different timelines (0.25, 7, 28, and 56d). Graphs **(B–E)** represent different types of natural wax in the mixture: **(B)** synthetic paraffin, **(C)** soy wax, **(D)** rice bran wax, and **(E)** beeswax.

🤵 antibiotics

Figure S4. Permanganate concentrations of each type of SR-MnO₄⁻ with different formulations of natural wax, synthetic paraffin, and chemical addition (TKPP or SHMP) for different timelines: **(A)** 0.25 day, **(B)** 15 day, and **(C)** 56 day.

Figure S5. X-ray diffraction analysis of different types of slow-release beewax (SRB) before and after soaking in SDM solution for 7 d. (Bee: beewax, PM: permanganate, TKPP: Tetrapotassium pyrophosphate, SDM: Sulfadimethoxine, DI: distilled water)

Figure S6. Temporal changes in MnO₄⁻ concentration from each type of SR-MnO₄⁻: (A) soy wax; (B) rice bran wax (C) beeswax; and (D) paraffin. The explanation of slow-release sample abbreviation (e.g., SC0, ST1, etc.) is provided in the Figure S4.

Figure S7. Release pattern of MnO₄⁻ concentration of each type of SR-MnO₄⁻ plotted for Higuchi releasing model with all selected data (t < 60 d): (**A**) soy wax; (**B**) rice bran wax (**C**) beeswax; and (**D**) paraffin. Hatched boxes represented range of time that data may be fitted in linear regression. The explanation of slow-release sample abbreviation (e.g., SC0, ST1, etc.) is provided in the Figure S4.

Figure S8. Linear regression of each type of SR-MnO₄⁻ using Higuchi releasing model with selected data from t < 8 d: (A) soy wax; (B) rice bran wax (C) beeswax; and (D) paraffin. The explanation of slow-release sample abbreviation (e.g., SC0, ST1, etc.) is provided in the Figure S4.

Figure S9. Release pattern of MnO₄⁻ concentration of each type of SR-MnO₄⁻ plotted for Noyes-Whitney releasing model: **(A)** soy wax; **(B)** rice bran wax **(C)** beeswax; and **(D)** paraffin. Hatched boxes represent range of time that data may be fitted in linear regression. The explanation of slow-release sample abbreviation (e.g., SC0, ST1, etc.) is provided in the Figure S4.

Figure S10. Linear regression of each type of slow-release permanganate using Weibul releasing model: **(A)** soy wax; **(B)** rice bran wax **(C)** beeswax; and **(D)** paraffin. The explanation of slow-release sample abbreviation (e.g., SC0, ST1, etc.) is provided in the Figure S4.

		5						
Antimicrobial; Abbreviation (CAS Number)	Chemical Struc- ture	Molecular Formula	MW (g/mol)	Water Solubility at 25ºC (mg/L)	Henry's Con- stant (atm-m ³ ⋅mol ⁻¹)	Log K _{ow}	рК _{а1} (рК _{а2})	Wavelength (nm)
Sulfadimethox- ine;SDM ^a (122-11-2)	H2N H	$C_{12}H_{14}N_4O_4S$	310.33	343	1.30 × 10 ⁻¹⁴	1.63	2.4 (6.0)	270 ^e
Ormetoprim; OMP ^a (6981-18-6)	H ₂ N NH ₂ CH ₃ CH ₃ CH ₃	$C_{14}H_{18}N_4O_2$	274.32	1,540	4.45 × 10 ⁻¹³	1.23	7	270 ^e
Trimethoprim; TMP ^b (738-70-5)	H2N N C	$C_{14}H_{18}N_4O_3$	290.32	400	1.32 × 10 ⁻⁶ (Vapor pres- sure) ^c	0.91	3.2 (6.7) ^d	230°
<i>References</i> : ^a Sanders et al. [1]; ^b Straub, [2]; ^c Gros et al. [3]; ^d Qiang and Adams [4]; ^e Samuelsen et al. [5]								

Table S1. Physiochemical characteristics of antibiotics.

Table S2. Properties of TKPP and SHMP (Chokejaroenrat et al. [6])

Chemical	Molecular Structure	Molecular Formula	Description	M.W. (g mol ⁻¹)	Density (g cm ⁻³)	Solubility (mg L ⁻¹)	Manufacturer
Sodium hex- ameta-phos- phate(SHMP)	Na ⁺ ⁻ O O O Na ⁺ O=P O P=O O P O P=O Na ⁺ ⁻ O O P O P Na ⁺ ⁻ O O O O Na ⁺	(NaPO₃)₀	Dispersing agent	611.77	2.484	Soluble	Sigma Aldrich
Tetrapotassium pyrophosphate (TKPP)	О О КО-Р-О-Р-ОК ОК ОК	$K_4P_2O_7$	Dispersing agent	330.34	-	Highly sol- uble	Carus Corpo- ration

Parameter	Unit	Value
рН	-	7.91
Turbidity	NTU	84
Conductivity	µS cm⁻¹	141
Total kjeldahl nitrogen (TKN)	mgL⁻¹	7.68
Nitrate	mgL⁻¹	0.1
Sulfate	mgL⁻¹	6.03
Chloride	mgL⁻¹	110.83
Phosphate	mg-P L ⁻¹	7.45
Salinity	PSU	0.7
Total phosphorus	mgL⁻¹	0.46
Ammonia-nitrogen (mg/l)	mgL⁻¹	0.89
Dissolved oxygen	mgL⁻¹	8.8
Total alkalinity	mgL⁻¹ as CaCO₃	31.6
Total suspended solid	mgL⁻¹	282
Total dissolve solid (TDS)	mgL⁻¹	147
Total organic carbon (TOC)	mg-C L ⁻¹	62.4
Biological oxygen demand (BOD)	mgL⁻¹	22.6
Chemical oxygen demand (COD)	mgL⁻¹	225

 Table S3. Physicochemical properties of aquaculture discharge wastewater.

antibiotics

Table S4. Weight composition of SR-MnO₄^{\cdot} with chemical addition (Tetrapotassium pyrophosphate, TKPP, or Sodium hexametaphosphate, SHMP) per SR (0.75 g) [Mixing ratio: Set B].

	Weight ratio (per slow-release) (g)							
SR-MINO4	KMnO₄	Biowax	Paraffin	TKPP	SHMP			
XC0	0.525	0.135	0.090	-	-			
XT1	(70.0%) 0.525	(18.0%) 0.125	(12.0%) 0.090	0.010	-			
XT2	(70.0%) 0.525	(16.7%) 0.115	(12.0%) 0.090	(0.0%) 0.020	-			
XT3	(70.0%) 0.525	(15.3%) 0.095	(12.0%) 0.090	(1.3%) 0.040	-			
XT4	(70.0%) 0.525	(12.7%) 0.055	(12.0%) 0.090	(2.7%) 0.080	-			
XS1	(70.0%) 0.525	(7.3%) 0.135	(12.0%) 0.090	(5.3%)	0.010			
XS2	(70.0%) 0.525	(18.0%) 0.125	(12.0%) 0.090	-	(0.0%) 0.020			
XS3	(70.0%) 0.525	(16.7%) 0.115	(12.0%) 0.090	-	(1.3%) 0.040			
XS4	(70.0%) 0.525	(15.3%) 0.095	(12.0%) 0.090	-	(2.7%) 0.080			
	(70.0%)	(12.7%)	(12.0%)		(5.3%)			

Remark

First letter of each slow-release PM (X) represents the type of wax (P = paraffin; S = soy wax; R = rice bran, wax; B = Beeswax)

2. Percentages in parentheses were calculated based on amount of component in one slow-release PM (0.75 g).

Reference

- [1] Sanders, S.; Srivastava, P.; Feng, Y.; Dane, J.; Basile, J.; Barnett, M. Sorption of the Veterinary Antimicrobials Sulfadimethoxine and Ormetoprim in Soil. *Journal of environmental quality* **2008**, *37*, 1510-1518, doi:10.2134/jeq2007.0215.
- [2] Straub, J.O. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters. *Antibiotics* (*Basel*) **2013**, *2*, 115-162, doi:10.3390/antibiotics2010115.
- [3] Gros, M.; Petrović, M.; Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. *Talanta* **2006**, *70*, 678-690, doi:10.1016/j.talanta.2006.05.024.
- [4] Qiang, Z.; Adams, C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. *Water Research* **2004**, *38*, 2874-2890, doi:https://doi.org/10.1016/j.watres.2004.03.017.
- [5] Samuelsen, O.B.; Lunestad, B.T.; Ervik, A.; Fjelde, S. Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. *Aquaculture* 1994, 126, 283-290, doi:https://doi.org/10.1016/0044-8486(94)90044-2
- [6] Chokejaroenrat, C.; Comfort, S.; Sakulthaew, C.; Dvorak, B. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate. *J. Hazard. Mater.* **2014**, *268*, 177–184, https://doi.org/10.1016/j.jhaz-mat.2014.01.007.