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The study of matrix factorizations began when they were introduced by Eisenbud;

they have since been an important topic in commutative algebra. Results by Eisen-

bud, Buchweitz, and Yoshino relate matrix factorizations to maximal Cohen-Macaulay

modules over hypersurface rings. There are many important properties of the cate-

gory of matrix factorizations, as well as tensor product and hom constructions. More

recently, Backelin, Herzog, Sanders, and Ulrich used a generalization of matrix fac-

torizations – so called N -fold matrix factorizations – to construct Ulrich modules over

arbitrary hypersurface rings. In this dissertation we build up the theory of N -fold

matrix factorizations, proving analogues of many known properties of the classical

setting. We also obtain tensor product and internal hom constructions using a spe-

cial type of roots of unity and combinatorial results from Heller and Stephan. Finally,

we prove generalizations of two of Eisenbud’s landmark results for the classical setting

in the context of 3-fold matrix factorizations.
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Chapter 1

Introduction

Commutative Algebra is the branch of algebra studying commutative rings and their

modules. There are many special classes of rings whose associated categories of

modules are of interest to describe, such as regular rings, hypersurface rings, or more

generally complete intersections. Further, there are many special classes of modules

whose properties are of particular importance.

One such class of modules are Maximal Cohen-Macaulay (MCM) modules. While

these are defined using the abstract notions of depth and dimension, the following

central result of Eisenbud (see [5], [4], [14]) relates the category of MCM modules

over a hypersurface ring to the more concrete notion of matrix factorizations over

a related regular ring – that is, a finitely generated projective Z/2Z-graded module

over a regular ring Q equipped with a degree 1 endomorphism d satisfying d2 = f · id

for f a non-zero-divisor. Matrix factorizations in fact form a category, MF(Q, f),

with morphisms taken to be degree preserving Q-linear maps that commute with the

differential.



2

Theorem (Eisenbud (1980)). Let Q be a regular ring, f a non-zero divisor, and

R = Q/(f). Let MCM(R) denote the category of MCM modules over R.

There exists an equivalence of categories between (a suitable quotient of) MF(Q, f)

and MCM(R) given by (d1, d2) 7→ coker(d1).

Further, this induces an equivalence between the homotopy category of MF(Q, f)

and the stable category of MCM(R).

This led to the study of matrix factorizations in their own right. The second part of

the above theorem requires a notion of homotopy equivalence in MF(Q, f), which turns

out to coincide with the definition one expects from viewing a matrix factorization

as a “complex-like” object. Similarly, when Q is local there is an obvious notion of

minimality, and just as for complexes, matrix factorizations can be decomposed into

a direct sum of contractible and minimal parts.

This close connection between matrix factorizations and complexes leads to other

familiar constructions involving matrix factorizations. Given matrix factorizations

C,D of f and g, respectively, one can construct the objects Hom(C,D) ∈ MF(Q, g−f)

and C ⊗ D ∈ MF(Q, f + g) (see, e.g., [15]). Further, these constructions preserve

contractibility and form an adjoint pair.

Additionally, the category MF(Q, f) is known to be Frobenius ([11]) and the Krull-

Schmidt theorem holds in MF(Q, f) ([15]).

Within the class of MCM modules there is a subclass called Ulrich modules –

MCM modules with minimal number of generators equal to multiplicity (also called

Maximally Generated or Linear MCM modules) – which are of particular interest to

us. First introduced by Ulrich in [13], the existence of Ulrich modules over a ring

has some unexpected applications, though the question of whether or not a ring has

an Ulrich module has proven difficult. For example, the existence of Ulrich modules
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over homogeneous hypersurface rings implies that every homogeneous polynomial f in

k[X1, ..., Xn] has a power fm which is the determinant of a matrix with linear entries

(see [3], [2]). Though in general existence of Ulrich modules over arbitrary rings is

unknown, it is known through the series of papers ([2], [1], [3]) that all hypersurface

rings have Ulrich modules. These proofs relied on a construction generalizing matrix

factorizations – so called N -fold matrix factorizations – with special properties.

In chapter 2, we develop the theory of N -fold matrix factorizations. Foremost,

we focus on generalizing known results for classical matrix factorizations. Central to

many of the results is the appropriate generalization of homotopy equivalence and

contractibility discussed in sections 2.2 and 2.6, especially the characterization of

contractible objects below.

Theorem. Let (Q,m, k) be a regular local ring and f ∈ m a non-zero-divisor. An

object P in N-MF(Q, f) is contractible if and only if P is isomorphic to a direct sum

of discs; that is, P ∼=
N−1⊕
n=0

Dn(f)mn for some nonnegative integers mn.

A notion of homotopy equivalence encourages us to consider the homotopy cate-

gory of N -fold matrix factorizations. In particular, in section 2.4 we define an internal

Hom construction whose homology relates to the homotopy category. In section 2.5,

we discuss a tensor product construction which is adjoint to the internal Hom and

preserves homotopy equivalence.

Focusing on the local case, we find multiple candidates for a notion of minimal

N -fold matrix factorizations. We discuss the two extremes, which we call “weakly”

and “strongly” minimal, in section 2.7. Weak minimality exhibits the expected de-

composition property – that every object decompose into a direct sum of minimal

and contractible objects. Strongly minimal objects are more difficult to find, al-

though these are the N -fold matrix factorizations arising in [2], [1], and [3] when
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constructing Ulrich modules over hypersurface rings.

We conclude the chapter with two significant properties of the category N-MF(Q, f)

when Q is local. In section 2.8, we characterize the projective and injective objects,

concluding that N-MF(Q, f) is a Frobenius category and showing that the stable

category coincides with the homotopy category. In section 2.9, we turn to unique

decomposition, and find that under the additional assumption that Q be Henselian,

the category N-MF(Q, f) is a Krull-Schmidt category, and hence has unique direct

sum decompositions into indecomposable objects.

Finally, in chapter 3 we restrict our attention to the case N = 3. Section 3.1 is

devoted to the following analogue of Eisenbud’s correspondence stated above.

Theorem. Let Q be a regular ring (not necessarily local), f ∈ Q a non-zero-divisor,

and R = Q/(f).

There exists an equivalence of additive categories between (a suitable quotient

of) 3-MF(Q, f) and E(MCM(R)), the category of short exact sequences of MCM R-

modules.

Moreover, this induces an equivalence between the homotopy category of 3-MF(Q, f)

and the stable category of E(MCM(R)).

In section 3.2 we focus on a related result of Eisenbud in [5], his theory of “higher

homotopies.” We generalize this to a method of constructing a 3-fold matrix fac-

torization from a short exact sequence of arbitrary R-modules and a chosen free

resolution.
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Chapter 2

N-Fold Matrix Factorizations

In this chapter, we develop the category of N -fold matrix factorizations, and extend

many well known properties of Eisenbud’s classical matrix factorizations to this set-

ting. Throughout, Q will be a regular ring, f a non-zero-divisor, and R the quotient

ring Q/(f).

We will be examining a class of Z/NZ-graded objects in this chapter. Recall

that a module M over a graded ring S is graded if there is an abelian group direct

sum decomposition M =
⊕

Mi satisfying SiMj ⊆ Mi+j, where the index set is any

monoid.

The primary scenario in this paper will be when S = Q is trivially graded (that is,

all elements of Q are homogeneous of degree 0) and the graded index set is the group

Z/NZ. In this case, M is a finite direct sum of abelian groups (in fact, of Q-modules).

We will still index graded pieces in Z with the identification that Mi = Mj when i ≡ j

mod N .

Degree i morphisms of Z/NZ-graded modules are then Q-linear maps sending

homogeneous elements degree m to homogeneous elements of degree m+ i. Here we

allow i to be any integer, and use the identification of graded pieces modulo N as

before.
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2.1 The Category of N-fold Matrix Factorizations

Definition 2.1.1 ([3]). Let Q be a regular ring and f ∈ Q. An N-fold matrix fac-

torization of f is a finitely generated projective Z/NZ-graded Q-module P equipped

with a degree 1 endomorphism (the differential) dP satisfying dNP = f · id.

Alternatively, one can view an N -fold matrix factorization as a collection of N

finitely generated projective modules P1, ..., PN and maps di : Pi → Pi+1 and dN :

PN → P1 satisfying

f · id = dN · · · · · d1 = dN−1 · · · · · d1 · dN = · · · = d1 · dN · · · · · d2.

Definition 2.1.2. The category of N-fold matrix factorizations of f , denoted N-MF(Q, f),

can be constructed with objects as defined above and morphisms α being degree 0

Q-linear maps satisfying αd = dα.

2.2 Homotopy

The appropriate notion of homotopy in N-MF(Q, f) is somewhat more complex than

the classical case. We follow the similar situation found in [6].

Definition 2.2.1. A morphism α : P →M in N-MF(Q, f) is null homotopic if there

exists a degree 1 map h : P →M such that

α =
N−1∑
i=0

dN−1−iM hdiP .

Pictorially, α is the sum of every possible route from Pi to Mi using the differentials

d and homotopy map h in the diagram below.
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· · · P1 P2 · · · PN−1 PN P1 · · ·

· · · M1 M2 · · · MN−1 MN M1 · · ·

d d d d d d d

d d d d d d d

h

α
α αα

α

α
α αα

α

We say two maps α, β are homotopic, denoted α ∼ β, if β − α is null homotopic.

The following two lemmas show that there is a well defined notion of a homotopy

category.

Lemma 2.2.2. Homotopy is an equivalence relation.

Proof. It is clear that α ∼ α by h = 0. If α ∼ β with homotopy h, then β ∼ α with

homotopy −h. Finally, if α ∼ β with homotopy h1 and β ∼ γ with homotopy h2,

then α ∼ β with homotopy h1 + h2, noticing that α− γ = (α− β) + (β − γ).

Lemma 2.2.3. Composition respects homotopy – precisely, if α1 ∼ β1 and α2 ∼ β2

then α1α2 ∼ β1β2.

Proof. We first notice that if α ∼ β with homotopy h, then αγ ∼ βγ with homotopy

hγ (because γ commutes with d) and γα ∼ γβ with homotopy γh.

Then α1α2 ∼ α1β2 ∼ β1β2.

Definition 2.2.4. The homotopy category of N-fold matrix factorizations of f , de-

noted by N-MF(Q, f) is formed from N-MF(Q, f) as follows: the objects are left

unchanged, while the set of morphisms is defined to be the quotient of the set of

morphisms in N-MF(Q, f) by the homotopy equivalence relation.
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That is, for objects P,M ∈ N-MF(Q, f),

HomN-MF(Q,f)(P,M) :=
HomN-MF(Q,f)(P,M)

∼
.

Along with this definition of homotopy comes the natural notion of contractibility.

Definition 2.2.5. An N -fold matrix factorization P is contractible if idP ∼ 0.

2.3 Distinguished Primitive Roots of Unity

When defining the tensor product (and internal Hom) of complexes and classical

matrix factorizations, the definitions use a sign (see [15]). In this section, we generalize

this to an appropriate root of unity and outline many of the needed combinatorial

results. For completeness, we record the necessary definitions and lemmas from Heller

and Stephan ([8]), including some proofs omitted in their paper.

Definition 2.3.1 ([8], 3.1). Let S be any commutative unital ring, and fix ζ ∈ S.

Let [·]ζ : N→ S denote the function [n]ζ =
n−1∑
k=0

ζk with the convention that [0]ζ = 0.

The ζ-factorial [n]ζ ! of n is defined by

[n]ζ ! =
n∏
k=1

[k]ζ .

For integers n ≥ m ≥ 0, the ζ-binomial coefficient
(
n
m

)
ζ
∈ S is defined inductively

by 
(
n
0

)
ζ

=
(
n
n

)
ζ

= 1(
n+1
m+1

)
ζ

=
(
n
m

)
ζ

+ ζm+1
(

n
m+1

)
ζ

for n− 1 ≥ m ≥ 0

.

Note 2.3.2. In the case S = Z, ζ = 1, the map [·]ζ : N→ Z is the inclusion, and the

ζ-factorial and ζ-binomial coefficients coincide with ordinary factorial and binomial

coefficients, respectively.
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Definition 2.3.3 ([8], 3.3). A distinguished primitive N th root of unity of S is an

element ζ ∈ S such that [N ]ζ = 0 and [n]ζ is invertible for all 1 ≤ n ≤ N − 1.

Note that if ζ 6= 1, such an element is indeed a primitive Nth root of unity, as

ζn − 1 = (ζ − 1)(ζn−1 + ζn−2 + · · ·+ ζ0) = (ζ − 1)[n]ζ

which is 0 for n = N and nonzero for 1 ≤ n ≤ N − 1.

Example 2.3.4. If S contains an algebraically closed field whose characteristic does

not divide N , then the distinguished primitive Nth roots of unity in S coincide with

the ordinary primitive Nth roots of unity – those elements s for which i = N is the

smallest power of s for which si = 1.

If N = p a prime, and S has characteristic p, then ζ = 1 is a distinguished

primitive Nth root of unity.

If N = pm for some prime p and integer m > 1, and S has characteristic p, then

S has no distinguished primitive Nth roots of unity, because [p]ζ = 0 for all ζ ∈ S.

Lemma 2.3.5 ([8], 3.5). Let S be a commutative unital ring and let ζ be a distin-

guished primitive N th root of unity of S. Then(
n

m

)
ζ

=
[n]ζ !

[n−m]ζ ![m]ζ !

for all N ≥ n ≥ m ≥ 0 with the convention that
[N ]ζ !

[N ]ζ !
= 1.
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Proof. For m = n and m = 0, we certainly have
(
n
m

)
ζ

= 1. Then by induction,(
n+ 1

m+ 1

)
ζ

=

(
n

m

)
ζ

+ ζm+1

(
n

m+ 1

)
ζ

=
[n]ζ !

[n−m]ζ ![m]ζ !
+ ζm+1 [n]ζ !

[n−m− 1]ζ ![m+ 1]ζ !

=
[n]ζ !

[n−m− 1]ζ ![m]ζ !

(
1

[n−m]ζ
+ ζm+1 1

[m+ 1]ζ

)
=

[n]ζ !

[n−m− 1]ζ ![m]ζ !

(
[m+ 1]ζ + ζm+1[n−m]ζ

[n−m]ζ [m+ 1]ζ

)
=

[n]ζ !

[n−m]ζ ![m+ 1]ζ !

(
m∑
k=0

ζk +
n∑

k=m+1

ζk

)

=
[n+ 1]ζ !

[n−m]ζ ![m+ 1]ζ !
.

Lemma 2.3.6. Let S be a commutative unital ring and let ζ be a distinguished prim-

itive N th root of unity of S. Then(
N − 1

m

)
ζ

= (−1)mζ−(m+1
2 )

for all 0 ≤ m ≤ N − 1

Proof. We proceed by induction on m. The case m = 0 trivially holds.

For m > 0, by definition,(
N − 1

m

)
ζ

= ζ−m

((
N

m

)
ζ

−
(
N − 1

m− 1

)
ζ

)
.

By Lemma 2.3.5,
(
N
m

)
ζ

= 0. Applying our inductive hypothesis then gives us(
N − 1

m

)
ζ

= −ζ−m
(

(−1)m−1ζ−(m2 )
)

= (−1)mζ−(m+1
2 ).
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The case ζ = 1, S = Z of the following identity is a form of the Chu-Vandermonde

identity.

Lemma 2.3.7 ([8], 3.6). Let S be a commutative unital ring and let ζ be a distin-

guished primitive N th root of unity of S. For all 0 ≤ s ≤ t < u the identity

ζ(s+1)t

t∑
i=s

(
u− 1− i
u− 1− t

)
ζ

(
i

s

)
ζ

ζ−i(s+1) =

(
u

u+ s− t

)
ζ

holds.

Proof. Fix an s.

If t = s, then the identity holds trivially for any u.

We prove the case u = t + 1 by induction on t. The base case t = s is already

satisfied. We seek to prove

t∑
i=s

(
i

s

)
ζ

ζ(t−i)(s+1) =

(
t+ 1

s+ 1

)
ζ

.

Indeed,

t∑
i=s

(
i

s

)
ζ

ζ(t−i)(s+1) =

(
t

s

)
ζ

+
t−1∑
i=s

(
i

s

)
ζ

ζ(t−i)(s+1)

=

(
t

s

)
ζ

+ ζs+1

t−1∑
i=s

(
i

s

)
ζ

ζ(t−1−i)(s+1)

=

(
t

s

)
ζ

+ ζs+1

(
t

s+ 1

)
ζ

=

(
t+ 1

s+ 1

)
ζ

.

Now we prove the identity for any u > t + 1 and t > s, assuming it holds for both

(u− 1, t) and (u− 1, t− 1).
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ζ(s+1)t
t∑
i=s

(
u− 1− i
u− 1− t

)
ζ

(
i

s

)
ζ

ζ−i(s+1)

= ζ(s+1)t

((
t

s

)
ζ

ζ−t(s+1)

+

t−1∑
i=s

((
u− 2− i
u− 2− t

)
ζ

+ ζu−1−t
(
u− 2− i
u− 1− t

)
ζ

)(
i

s

)
ζ

ζ−i(s+1)

)

= ζ(s+1)t

(
t∑
i=s

(
u− 2− i
u− 2− t

)
ζ

(
i

s

)
ζ

ζ−i(s+1)

+
t−1∑
i=s

ζu−1−t
(
u− 2− i
u− 1− t

)
ζ

(
i

s

)
ζ

ζ−i(s+1)

)

=

(
u− 1

u− 1 + s− t

)
ζ

+ ζu−t+s
(

u− 1

u+ s− t

)
ζ

=

(
u

u+ s− t

)
ζ

.

2.4 An Internal Hom

Our first use of the distinguished primitive roots of unity comes in defining an internal

Hom for the category N-MF(Q, f).

Definition 2.4.1. Let Q be a regular ring (not necessarily local), f, g ∈ Q non-zero-

divisors, and ζ ∈ Q a distinguished primitive Nth root of unity. Let C and D be

objects in N-MF(Q, f) and N-MF(Q, g), respectively. We define an internal Hom as

the Z/NZ-graded projective module

Homζ(C,D) :=
N−1∏
i=0

HomQ(C,D)i

where HomQ(C,D)i denotes the graded module homomorphisms of degree i, with

differential ∂ given on homogeneous α by

∂(α) = dDα− ζ |α|αdC .
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Lemma 2.4.2. As defined above, Homζ(C,D) is in N-MF(Q, g − f).

Proof. We claim that

∂k(α) =
k∑

m=0

(−1)k−mζ(k−m2 )+(k−m)|α|
(
k

m

)
ζ

dmDαd
k−m
C

for all k ≥ 0.

We proceed by induction on k. When k = 0, we have ∂0(α) = α as required. Now

suppose the formula holds for k − 1. Then

∂k(α) = ∂ ◦ ∂k−1(α)

= ∂

(
k−1∑
m=0

(−1)k−1−mζ(
k−1−m

2 )+(k−1−m)|α
(
k − 1

m

)
ζ

dmDαd
k−1−m
C

)

=

k−1∑
m=0

(−1)k−1−mζ(
k−1−m

2 )+(k−1−m)|α|
(
k − 1

m

)
ζ

dm+1
D αdk−1−mC

− ζ |α|+k−1
k−1∑
m=0

(−1)k−1−mζ(
k−1−m

2 )+(k−1−m)|α|
(
k − 1

m

)
ζ

dmDαd
k−m
C

=
k∑

m=1

(−1)k−mζ(
k−m

2 )+(k−m)|α|
(
k − 1

m− 1

)
ζ

dmDαd
k−m
C

+

k−1∑
m=0

(−1)k−mζ(
k−1−m

2 )+k−1−m+(k−m)|α|ζm
(
k − 1

m

)
ζ

dmDαd
k−m
C

= dkDα+ (−1)kζ(
k
2)+k|α|αdkC

+
k−1∑
m=1

(−1)k−mζ(
k−m

2 )+(k−m)|α|
(
k

m

)
ζ

dmDαd
k−m
C

=

k∑
m=0

(−1)k−mζ(
k−m

2 )+(k−m)|α|
(
k

m

)
ζ

dmDαd
k−m
C

which proves the claim.
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Now setting k = N , and using Lemma 2.3.5, we find that

∂N(α) = gα + 0 + (−1)Nζ(N2 )+N |α|αf.

By Lemma 2.3.6, ζ(N2 ) = (−1)N−1 ·
(
N−1
N−1

)−1
ζ

= (−1)N−1.

Therefore, (−1)Nζ(N2 ) = −1 and hence ∂N(α) = (g − f)α.

In fact,Homζ(C,−) andHomζ(−, D) are additive functors between the appropriate

categories of N -fold matrix factorizations, which follows from the same property of

the Hom functor of Q-modules.

Discussion of the internal Hom naturally leads to the scenario in the following

lemma – objects in N-MF(Q, 0). N -fold matrix factorizations of 0 are a special col-

lection of N -complexes (see, e.g. [6]) with projective modules and a Z/NZ-grading.

For N -complexes – sequences of Q-modules and Q-linear maps d satifying dN = 0 –

there are N − 1 possible notions of boundaries, cycles, and homology.

Definition 2.4.3 ([6]). Let P be anN -complex with differential d. For t = 1, 2, ..., N−

1 we define the following collections of modules:

The amplitude t cycles in degree n, denoted tZn(P ), is the submodule ker(dt) of

Pn.

The amplitude t boundaries in degree n, denoted tBn(P ), is the submodule im(dt)

of Pn.

The amplitude t homology in degree n, denoted tHn(P ), is the quotient tZn(P )/N−tBn(P ).

While there are relationships between different amplitude homology modules, es-

pecially on their vanishing, discussed in [6], we will focus our attention only on the

case t = 1. In this case, we will simplify notation, using Zn(P ), Bn(P ), and Hn(P )

to denote the cycles, boundaries, and homology, respectively, in degree n.
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Using the preceding notation, the following lemma shows one way in which the

behavior of the internal Hom mirrors the case of the internal Hom of chain complexes.

Lemma 2.4.4. Let C,D be objects in N-MF(Q, f), so that Homζ(C,D) ∈ N-MF(Q, 0).

Then Z0

(
Homζ(C,D)

)
is HomN-MF(Q,f)(C,D) and B0

(
Homζ(C,D)

)
is the set of all

null homotopic maps from C to D. Therefore, H0

(
Homζ(C,D)

)
is HomN-MF(Q,f)(C,D),

the morphisms in the homotopy category.

Proof. The first claim is clear, as for α ∈ ker(∂) of degree 0, we have dDα−αdC = 0,

which exactly gives the definition of morphisms in N-MF(Q, f).

Now suppose α is a boundary of degree 0. That is, there is some β of degree

−N + 1 ≡ 1 mod N such that α = ∂N−1(β). Using the formula for ∂k in Lemma

2.4.2, we have

α =
N−1∑
m=0

(−1)N−1−mζ(N−1−m
2 )+(N−1−m)(−N+1)

(
N − 1

m

)
ζ

dmDβd
N−1−m
C .

Applying Lemma 2.3.6,

α =
N−1∑
m=0

(−1)N−1ζ(N−1−m
2 )+(N−1−m)(−N+1)−(m+1

2 )dmDβd
N−1−m
C .

Straightforward simplification of the exponent of ζ yields

α =
N−1∑
m=0

(−1)N−1ζ−(N2 )dmDβd
N−1−m
C .

Again applying Lemma 2.3.6, and noticing that
(
N−1
N−1

)
ζ

= 1 yields

α =
N−1∑
m=0

dmDβd
N−1−m
C

so α is null homotopic with homotopy given by β.
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Finally, we will need to know that the internal Hom preserves contractibility.

Lemma 2.4.5. If X ∈ N-MF(Q, f) is contractible, then Homζ(X,P ) and Homζ(P,X)

are contractible for any P ∈ N-MF(Q, g).

Proof. Suppose idX =
N−1∑
i=0

dN−1−ihdi for some h. Then since Homζ(P,−) is additive,

the induced map Homζ(P, h) : Homζ(P,X)→ Homζ(P,X) shows idHomζ(P,X) ∼ 0.

Similarly, the induced map Homζ(h, P ) shows idHomζ(X,P ) ∼ 0.

2.5 Tensor Product

Similarly, we can define a tensor product of N -fold matrix factorizations.

Definition 2.5.1. Let Q be a regular ring (not necessarily local), f, g ∈ Q non-zero-

divisors, and ζ ∈ Q a distinguished primitive Nth root of unity. Let C and D be

objects in N-MF(Q, f), and N-MF(Q, g), respectively. Let ζ be a distinguished prim-

itive Nth root of unity. We define a tensor product as the Z/NZ-graded projective

module given in degree i by

(C ⊗ζN-MF(Q) D)i :=
⊕

a+b≡i mod N

Ca ⊗Q Db

with differential ∂ given on homogeneous simple tensors (x⊗ y) by

∂(x⊗ y) = dC(x)⊗ y + ζ |x|x⊗ dD(y).

When the context is clear, we will use ⊗ζ to denote this tensor product, for

simplicity.
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Lemma 2.5.2. As defined above, C ⊗ζ D is in N-MF(Q, f + g).

Proof. We claim that

∂k(x⊗ y) =
k∑

m=0

ζ |x|(k−m)

(
k

m

)
q

dmC (x)⊗ dk−mD (y)

for all k ≥ 0 and simple tensors of homogeneous elements x⊗ y.

We proceed by induction on k. When k = 0, we have ∂0(x⊗y) = x⊗y as required.

Now suppose the formula holds for k − 1. Then

∂k(x⊗ y) = ∂ ◦ ∂k−1(x⊗ y)

= ∂

(
k−1∑
m=0

ζ |x|(k−1−m)

(
k − 1

m

)
ζ

dmC (x)⊗ dk−1−mD (y)

)

=
k−1∑
m=0

ζ |x|(k−1−m)

(
k − 1

m

)
ζ

dm+1
C (x)⊗ dk−1−mD (y)

+
k−1∑
m=0

ζ |x|+mζ |x|(k−1−m)

(
k − 1

m

)
ζ

dmC (x)⊗ dk−mD (y)

=
k∑

m=1

ζ |x|(k−m)

(
k − 1

m− 1

)
ζ

dmC (x)⊗ dk−mD (y)

+
k−1∑
m=0

ζmζ |x|(k−m)

(
k − 1

m

)
ζ

dmC (x)⊗ dk−mD (y)

= dkC(x) + ζ |x|kdkD(y)

+
k−1∑
m=1

ζ |x|(k−m)

((
k − 1

m− 1

)
ζ

+ ζm
(
k − 1

m

)
ζ

)
dmC (x)⊗ dk−mD (y)

=
k∑

m=0

ζ |x|(k−m)

(
k

m

)
ζ

dmC (x)⊗ dk−mD (y)

verifying the claim.
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Now setting k = N and noticing that
(
N
m

)
ζ

= 0 for 1 ≤ m ≤ N − 1 by Lemma

2.3.5, we have

∂N (x⊗ y) = dN (x)⊗ y + ζN |x|x⊗ dN (y) = f(x⊗ y) + g(x⊗ y) = (f + g)(x⊗ y).

Having verified that the tensor product is well defined, we first verify that the

tensor product preserves homotopy equivalence.

Proposition 2.5.3. Let C,C ′ be objects in N-MF(Q, f) and D in N-MF(Q, g). Sup-

pose two maps α, β : C → C ′ are homotopy equivalent with homotopy h. Then

α⊗ζ D, β ⊗ζ D : C ⊗ζ D → C ′⊗ζ D are homotopy equivalent with homotopy h⊗ζ D.

Proof. We need to show for homogeneous x, y

N−1∑
i=0

dN−1−i
C′⊗ζD (h⊗ζ D) diC⊗ζD(x⊗ y) = α(x)⊗ y − β(x)⊗ y.

Working from the left hand sum and applying the formula in Lemma 2.5.2 yields

N−1∑
i=0

N−1−i∑
m=0

i∑
n=0

ζe(x,i,m,n)
(
i

n

)
ζ

(
N − 1− i

m

)
ζ

dmC′ h d
n
C(x)⊗ dN−1−m−nD (y)

where e(x, i,m, n) = |x|(i− n) + (|x|+ n+ 1)(−1− i−m). Then interchanging the

order of summation, we have

N−1∑
n=0

N−1−n∑
m=0

N−1−m∑
i=n

ζe(x,i,m,n)
(
i

n

)
ζ

(
N − 1− i

m

)
ζ

dmC′ h d
n
C(x)⊗ dN−1−m−nD (y).

Applying Lemma 2.3.7 with s = n, t = N−1−m, u = N−1 to the inner sum yields

N−1∑
n=0

N−1−n∑
m=0

ζ |x|(N−1−m−n)
(

N

n+m+ 1

)
ζ

dmC′ h d
n
C(x)⊗ dN−1−m−nD (y).
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When m < N − 1 − n then n + m + 1 < N . Applying Lemma 2.3.5 in this case

along with the facts that [N ]ζ = 0 and [·]ζ is invertible for smaller inputs yields(
N

n+m+1

)
ζ

= 0. Therefore, the inner sum has only one non-zero term, leaving us with

N−1∑
n=0

ζ0
(
N

N

)
ζ

dN−1−nC′ h dnC(x)⊗ d0D(y) =
N−1∑
n=0

dN−1−nC′ h dnC(x)⊗ y.

Finally, we apply the homotopy equivalence of α and β via h to obtain the desired

result.

A similar result holds for D⊗ζ α,D⊗ζ β with the homotopy given by the formula

x⊗ y 7→ ζ |x|x⊗ h(y).

Finally, we note the expected relationship between Homζ and ⊗ζ .

Proposition 2.5.4. The functors − ⊗ζ C and Homζ(C,−) form an adjoint pair.

That is, for B ∈ N-MF(Q, f), C ∈ N-MF(Q, g), and D ∈ N-MF(Q, h), there is an

isomorphism

Homζ(B ⊗ζ C,D) ∼= Homζ(B,Homζ(C,D))

as objects in N-MF(Q, h − g − f), and this isomorphism is natural in all three argu-

ments.

Proof. We first notice that the underlying module structure for⊗ζ andHomζ are given

by the module tensor and Hom functors. Thus, classical Hom-tensor adjunction holds.

Recall in the classical case the isomorphism ϕ is given by taking a morphism α in

Homζ(B⊗ζ C,D) and mapping to the morphism β in Homζ(B,Homζ(C,D)) given by

β(b)(c) = α(b⊗ c).

Notice that this isomorphism in fact preserves the Z/NZ-grading, yielding ad-

jointness of the corresponding Z/NZ-graded module functors.
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Finally, by unpacking the definition of the differentials of both objects, one can

see that the isomorphism ϕ commutes with the differentials, yielding an isomorphism

in the category N-MF(Q, h− g − f) as required.

Naturality similarly follows from the module setting.

2.6 Contractibility

We now return our attentions to contractible matrix factorizations using the tools

developed in sections 2.4 and 2.5. For the remainder of this chapter, we will require

(Q,m, k) to be a regular local ring with maximal ideal m and residue field Q/m = k,

f ∈ m a non-zero-divisor, and ζ ∈ Q a distinguished primitive Nth root of unity.

We first cite the following technical result of Tribone on the structure of N-MF(Q, f).

Proposition 2.6.1 ([12], §2). The category N-MF(Q, f) is an exact category, with

exact structure defined as follows: a short exact sequence in N-MF(Q, f) is a sequence

P ′
α−→ P

β−→ P ′′

of matrix factorizations and morphisms so that the induced sequences

0→ P ′i
αi−→ Pi

βi−→ P ′′ → 0

are short exact sequences of projective Q-modules for each i. The maps α and β form

the kernel-cokernel pairs of the exact structure.

With this exact category structure, we can examine projective and injective ob-

jects.
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Lemma 2.6.2. If P in N-MF(Q, f) is contractible, then P is projective in N-MF(Q, f).

Proof. We need to show HomN-MF(Q,f)(P,−) is exact. In particular, given a short

exact sequence

C ′ → C → C ′′

in N-MF(Q, f), we need to show the induced map

HomN-MF(Q,f)(P,C)→ HomN-MF(Q,f)(P,C
′′)

is surjective. Using Lemma 2.4.4, we realize this as showing the map

Z0

(
Homζ(P,C)

)
→ Z0

(
Homζ(P,C ′′)

)
is surjective, where as before Z0 = 1Z0 denotes the amplitude 1 cycles in degree 0.

By Lemma 2.4.5, Homζ(P,C ′′) is contractible in N-MF(Q, 0).

We claimHomζ(P,C ′′) is exact, in the sense thatBi

(
Homζ(P,C ′′)

)
= Zi

(
Homζ(P,C ′′)

)
for all i (in fact, this holds for each amplitude t cycles and boundaries). The con-

tainment im ∂N−1 ⊆ ker ∂ is clear because ∂N = 0. And if x ∈ ker ∂, then by the

definition of contractibility,

x =
N−1∑
i=0

∂N−1−ih∂i(x) = ∂N−1h(x)

so indeed, x ∈ im ∂N−1.

Finally, the underlying short exact sequence of modules

0→ C ′ → C → C ′′ → 0

is split because C ′′ is a projective module. Further, Hom(P,−) is additive, so the

map Hom(P,C)→ Hom(P,C ′′) is surjective.
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We combine these facts in a simple diagram chase using the below commutative

diagram to construct an element in Z0

(
Homζ(P,C)

)
which maps to any arbitrarily

chosen element of Z0

(
Homζ(P,C ′′)

)
as required. Given α ∈ Z0

(
Homζ(P,C ′′)

)
, this

lifts (along two maps) to an element of Homζ(P,C)−N+1. Applying ∂N−1 constructs

the desired element of Z0

(
Homζ(P,C)

)
.

Homζ(P,C)−N+1 Z0

(
Homζ(P,C)

)
Homζ(P,C ′′)−N+1 Z0

(
Homζ(P,C ′′)

)
0

0

∂N−1

∂N−1

Lemma 2.6.3. If P in N-MF(Q, f) is contractible, then P is injective in N-MF(Q, f).

Proof. We need to show HomN-MF(Q,f)(−, P ) is exact. We proceed as in Lemma 2.6.2,

showing for any short exact sequence

C ′ → C → C ′′

in N-MF(Q, f) the induced map

HomN-MF(Q,f)(C,P )→ HomN-MF(Q,f)(C
′, P )

is surjective. Following the arguments of Lemma 2.6.2, this leads us to the following

commutative diagram and an equivalent diagram chase.

Homζ(C,P )−N+1 Z0

(
Homζ(C,P )

)
Homζ(C ′, P )−N+1 Z0

(
Homζ(C ′, P )

)
0

0

∂N−1

∂N−1
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We use this result and the following definition to characterize the contractible

objects in N-MF(Q, f).

Definition 2.6.4. The disc Dn(f), for 1 ≤ n ≤ N , is the object in N-MF(Q, f)

defined as a Z/NZ-graded Q-module P with graded pieces Pi = Q and differential di

defined by

di : Pi → Pi+1 =


id, i 6= n

f · id, i = n

.

For example, DN(f) is pictured below.

· · · P1 P2 · · · PN−1 PN P1 · · ·

=

Q

=

Q
=

Q

=

Q

=

Q

f id id id id f id

Note 2.6.5. Each disc Dn(f) is contractible, with contracting homomorphism given

on graded pieces by

hi : Pi → Pi+1 =


0, i 6= n

id, i = n

.

We also record the following results of Gillespie from [6], where S is any commu-

tative unital ring.

Lemma 2.6.6 ([6], 3.2). Suppose we have a map g : X → Y of S-modules having a

“splitting” s : Y → X satisfying gsg = g. Then X = ker g⊕im sg. Moreover, the pair

of maps (g, s) restrict to an isomorphism pair g : im sg → im g and s : im g → im sg.
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Theorem 2.6.7 ([6], 3.3). A contractible N-complex (that is, a contractible object in

N-MF(S, 0)) with differential d and contracting homotopy s has the form

ker(d)⊕
N−2⊕
i=0

dis(ker(d)).

Moreover, the differential d restricts to isomorphisms of the direct summands as fol-

lows:

d : dis(ker(d))
∼=−−→ di+1s(ker(d)) 0 ≤ i ≤ N − 3

d : dN−2s(ker(d))
∼=−−→ ker(d).

Using these results, we show the following.

Theorem 2.6.8. Let (Q,m, k) be a regular local ring and f ∈ m a non-zero-divisor.

An object P in N-MF(Q, f) is contractible if and only if P is isomorphic to a direct

sum of discs; that is, P ∼=
N−1⊕
n=0

Dn(f)mn for some nonnegative integers mn.

Proof. The ⇐ direction is clear by Note 2.6.5.

Now suppose P 6= 0 is contractible with contracting homotopy h. Reducing

modulo m gives us P a contractible object in N-MF(k, 0). Then Theorem 2.6.7 gives

us

P ∼= ker(d)⊕
N−2⊕
i=0

d
i
h(ker(d)).

Since P is nonzero by Nakayama’s Lemma, we may choose some x0 ∈ h ker(d) of

degree ` for some `. Then the isomorphisms given in Theorem 2.6.7 give us that

xj := d
j
(x0) are nonzero for 0 ≤ j ≤ N − 2. Therefore, Nakayama’s Lemma allows

us to lift x0 ∈ Pi to x0 ∈ Pi, and each xj ∈ Pi+j to an element xj = dj(x0) ∈ Pi+j

which is part of a basis for the free Q-module Pi+j.

We define a map P → Di(f) by xj 7→ 1 and all other basis elements in each degree
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mapping to 0. This is clearly a surjective morphism in N-MF(Q, f). By Lemma 2.6.2,

Di(f) is projective, so this map splits P ∼= Di(f)⊕P ′. Iterating this process yields a

decomposition of P into a direct sum of discs, which is contractible by Note 2.6.5.

2.7 Minimality

In the case N = 2 for matrix factorizations, or even more classically for chain com-

plexes, there is a notion of minimality when Q is local – that the differential be

contained in the maximal ideal. It can be shown that any 2-fold matrix factorization

or chain complex decomposes as a direct sum of minimal and contractible matrices.

Further, the constructions of N -fold matrix factorizations for the purpose of con-

structing Ulrich modules in [2], [1], [3] involve objects of this type. In fact, they

construct matrix factorizations P whose differential generates mP , a condition even

stronger than simply minimality.

In the case of N -fold matrix factorizations, there are unfortunately multiple no-

tions of minimality, and the stronger notion seems to impose a strictness making

it difficult to produce strongly minimal matrix factorizations. In this section, we

examine the two extreme notions of minimality and their properties.

Definition 2.7.1. An object P in N-MF(Q, f) is said to be strongly minimal if

im d ⊆ mP .

Similarly, P is said to be weakly minimal if im dN−1 ⊆ mP .

Proposition 2.7.2. Let (Q,m, k) be a regular local ring and f ∈ m a non-zero-

divisor. An object P in N-MF(Q, f) is weakly minimal if and only if it has no non-zero

contractible direct summands.
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Proof. If P has a non-zero contractible summand, then by Theorem 2.6.8 it in fact

has a summand of the form Dn(f) for some n. Since Dn(f) is clearly not weakly

minimal, so also P is not weakly minimal.

Conversely, suppose P is not weakly minimal. Then we have, for some n, dN−1(Pn) 6⊆

mPn+N−1. By Nakayama’s Lemma, there is a basis of Pn with an element e such that

diP (e) is part of a basis for Pn+i for 0 ≤ i ≤ N − 1. We define a map g : P → Dn(f)

by mapping diP (e) to 1 and all other basis elements in each degree to 0.

This is a surjective homomorphism of graded modules which clearly satisfies the

commutativity condition of morphisms of matrix factorizations except for the basis

element dN−1P (e) ∈ Pn+N−1. The necessary condition holds in this case as well:

gdP (dN−1P (e)) = gdNP (e) = g(fe) = fg(e) = f = dDi(f)(1) = dDi(f)g(dN−1P (e)).

By Note 2.6.5 and Lemma 2.6.2, Dn(f) is projective, so this surjection g splits,

exhibiting a contractible summand of P .

Corollary 2.7.3. Any object P in N-MF(Q, f) can be written as M ⊕ C with M

weakly minimal and C contractible.

Proof. Factor out of P all contractible summands by the process in the proof of 2.7.2.

The direct sum of these summands is C, and the complementary summand M has

no contractible summands, hence is weakly minimal.

Corollary 2.7.4. The only weakly minimal and contractible object in N-MF(Q, f) is

the zero object.

One might hope that weakly minimal matrix factorizations could be further de-

composed into a strongly minimal summand and a not-strongly minimal summand

in some meaningful way. The following example presents an obstruction to this goal.
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Example 2.7.5. Let Q = kJxK with k a field, and f = x3. The following is a 3-fold

matrix factorization of f which is weakly but not strongly minimal.

Q2

1 0

0 x


−−−−→ Q2

x2 0

x x


−−−−−→ Q2

 x 0

−x x


−−−−−−→ Q2

One might naturally hope for this to decompose as the direct sum of 3-fold matrix

factorizations with a strongly minimal summand as shown below.

Q
1−→ Q

x2−→ Q
x−→ Q

⊕

Q
x−→ Q

x−→ Q
x−→ Q

However, straightforward (albeit tedious) computations show that no invertible degree

0 morphism of the underlying graded module can commute with the differentials.

2.8 Frobenius Category

Proposition 2.6.1 states that N-MF(Q, f) is an exact category. Further, Lemmas

2.6.2 and 2.6.3 exhibits a class of matrix factorizations which are both projective and

injective. This leads to a natural question: do the classes of projectives and injectives

coincide in N-MF(Q, f)? This fact, along with N-MF(Q, f) having enough projectives

and injectives would yield that N-MF(Q, f) is a Frobenius category.

Tribone answers these questions in the affirmative in [12], Proposition 2.14 and

Theorem 2.15. He further shows in Proposition 2.16 of [12] that the stable category

of N-MF(Q, f) coincides with the homotopy category N-MF(Q, f).

The results in this section were developed independently of Tribone, and the proofs

presented are distinct from those in [12].
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Lemma 2.8.1. The category N-MF(Q, f) has enough projectives.

Proof. Let M be any object in N-MF(Q, f) with differential d whose graded pieces

are free modules of rank m. By Lemma 2.6.2 and Theorem 2.6.8, we know that direct

sums of discs are projective. Let

P =
⊕

n∈Z/NZ

Dn(f)m.

We can then define a map P → M by first defining a map Dn(f)m → M for each

n. We define the map αn+1 in degree n + 1 by sending a basis of Dn(f)m in degree

n+ 1 to a basis of M in degree n+ 1. Then define αn+1+i := dαn+i for i = 1, ..., N −

1. This ensures the required commutativity to define a morphism of N -fold matrix

factorizations.

Clearly, the constructed map P →M is surjective as required.

Lemma 2.8.2. The category N-MF(Q, f) has enough injectives.

Proof. As in 2.8.1, let M be any object in N-MF(Q, f) with differential d whose graded

pieces are free modules of rank m. By Lemma 2.6.3 and Theorem 2.6.8, we know

that direct sums of discs are injective. Let

I =
⊕

n∈Z/NZ

Dn(f)m.

We define a map M → I by first defining maps M → Dn(f)m for each n, then

summing. We define this map αn in degree n by sending a basis of Mn to the

standard basis of Qm. Then define αn−i := αn−1+id for i = 1, ..., N − 1. This ensures

the required commutativity to define a morphism of N -fold matrix factorizations.

The map M → I defined in this way is clearly injective as required.

See also [12], 2.11 for alternate proofs of Lemmas 2.8.1 and 2.8.2.
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Using these lemmas, the following theorem provides a characterization of the

projective and injective objects of N-MF(Q, f).

Theorem 2.8.3. Let Q be a regular local ring and f ∈ Q a non-zero-divisor. For an

object P in N-MF(Q, f), the following are equivalent:

(i) P is contractible.

(ii) P is projective.

(iii) P is injective.

Proof. An alternate proof of the equivalence of (ii) and (iii) may be found in [12],

2.14.

(i)⇒ (ii) is Lemma 2.6.2.

(ii) ⇒ (i): Suppose P is projective. Then by the proof of Lemma 2.8.1, there

is a surjection C → P with C contractible. In particular, P is a direct summand

of a contractible matrix factorization. By Corollary 2.7.3, C has no weakly minimal

summands, so also P has no weakly minimal summands, so applying Corollary 2.7.3

again shows that P is contractible.

(i)⇒ (iii) is Lemma 2.6.3.

(iii) ⇒ (i): Similar to the proof of (ii) ⇒ (i), we can inject P → C with C

contractible by Lemma 2.8.2, showing P is a direct summand of a contractible matrix

factorization, and hence contractible by the same argument.
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Corollary 2.8.4. Let Q be a regular local ring and f ∈ Q a non-zero-divisor. The

category N-MF(Q, f) is Frobenius, and the stable category of N-MF(Q, f) coincides

with the homotopy category N-MF(Q, f).

Proof. By definition, a Frobenius category is an exact category with enough pro-

jectives (and injectives) in which the class of projective and injective objects coin-

cides. Proposition 2.6.1, Lemma 2.8.2, and Theorem 2.8.3 provide these results for

N-MF(Q, f). Finally, we observe further by Theorem 2.8.3 that the projective objects

are the contractible objects, giving the stated equality of categories.

The final result of this section is true more generally of the stable category of any

Frobenius category, and applies both statements of the previous corollary.

Corollary 2.8.5 ([7], 2.6). The homotopy category N-MF(Q, f) has a canonical tri-

angulated structure.

2.9 Krull-Schmidt

Finally, we turn our attention to direct sum decompositions in N-MF(Q, f). Recall

that a Krull-Schmidt category is a category in which every object decomposes into a

finite direct sum of objects with (non-commutative) local endomorphism rings. In this

section, we show that, under a mild additional assumption on the ring Q, the category

N-MF(Q, f) is Krull-Schmidt, and deduce the analogue of the Krull-Remak-Schmidt

Theorem.

Definition 2.9.1. An object P ∈ N-MF(Q, f) is indecomposable if, whenever P ∼=

M ⊕N for objects M,N ∈ N-MF(Q, f), either M or N is the zero object.

Definition 2.9.2. A (not necessarily commutative) ring is local if the set of non-units

forms a two-sided ideal.
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The following result holds more generally for any additive category, see e.g. [10],

1.1. We provide the argument in this setting for completeness.

Lemma 2.9.3. Let P ∈ N-MF(Q, f) be an object whose endomorphism ring EndN-MF(Q,f)(P )

is local. Then P is indecomposable.

Proof. Suppose P has a nontrivial decomposition P ∼= M ⊕ N , and consider the

endomorphisms (idM , 0) and (0, idN) of P . These are nontrivial idempotent elements,

and hence non-units. However, their sum is idP , so EndN-MF(Q,f)(P ) is not local.

We adopt the following definition of Henselian from Leuschke and Wiegand and

cite a helpful lemma, including the proof for completeness.

Definition 2.9.4 ([10], §1.2). A local ring S is Henselian if, for every (not necessarily

commutative) module finite S-algebra Λ, each idempotent of Λ/J (Λ) lifts to an

idempotent of Λ (where J (−) denotes the Jacobson radical).

Note that every complete local ring is Henselian (Hensel’s lemma, [10] 1.9).

Lemma 2.9.5 ([10], 1.7). Let (S, n) be a commutative ring and Λ a (not necessarily

commutative) module-finite S-algebra. Then nΛ ⊆ J (Λ).

Proof. Let f ∈ nΛ. Certainly, for any λ ∈ Λ, (1−λf)+(λf) = 1, so (1−λf)Λ+nΛ =

Λ. By Nakayama’s lemma, (1− λf)Λ = Λ for all λ ∈ Λ, so the result holds.

Adding the Henselian assumption, we now give the final steps to show that

N-MF(Q, f) is a Krull-Schmidt category.
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Proposition 2.9.6. Let (Q,m, k) be a Henselian regular local ring and f ∈ m a

non-zero-divisor, and P ∈ N-MF(Q, f) indecomposable. Then the endomorphism ring

E := EndN-MF(Q,f)(P ) is local.

Proof. Note that E is a subring of the endomorphism ring EndQ(P ) of the underlying

module. Since EndQ(P ) is a module-finite Q-algebra, so also E is a module finite Q-

algebra.

By Lemma 2.9.5, E/J (E) is a finite dimensional k-algebra. Therefore, E/J (E) is

a semisimple Artinian ring, so by the Artin-Wedderburn structure theorem, E/J (E)

is a product of division rings.

Now P indecomposable implies E has no nontrivial idempotents. Therefore,

E/J (E) also has no nontrivial idempotents by the Henselian assumption. Thus

we in fact have E/J (E) is a division ring, so E is local.

Corollary 2.9.7. When Q is a Henselian regular local ring, the category N-MF(Q, f)

is a Krull-Schmidt category.

Proof. The underlying module structure of every object in N-MF(Q, f) is a finitely

generated free module. So the process of decomposing into proper direct summands

must terminate after a finite number of steps. Therefore, every object decomposes

into a finite direct sum of indecomposable objects, which by Proposition 2.9.6 have

local endomorphism rings.

The final corollary holds more generally for any Krull-Schmidt category by [9],

4.2 and following.

Corollary 2.9.8. When Q is a Henselian regular local ring, every object in N-MF(Q, f)

can be written uniquely (up to permutation and isomorphism) as a direct sum of in-

decomposable objects in N-MF(Q, f).
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Chapter 3

3-Fold Matrix Factorizations

In this chapter we change our focus from the general case of N -fold matrix factoriza-

tions to the case N = 3. We return to the setting from the beginning of Chapter 2,

with Q a regular (not necessarily local) ring, f a non-zero divisor, and R the quotient

ring Q/(f).

3.1 Generalizing Eisenbud’s Correspondence

We seek to generalize Eisenbud’s correspondence between (2-fold) matrix factoriza-

tions of f and MCM modules over R to the case of 3-fold matrix factorizations. We

will first set up some notation.

Definition 3.1.1. Let E(MCM(R)) denote the category of short exact sequences of

MCM R-modules, with morphisms defined to be triples of R-linear maps making the

obvious diagrams commute.

Similarly, let E(PROJ(R)) denote the collection of short exact sequences of pro-

jective R-modules.

In this section, we will frequently refer to a 3-fold matrix factorization simply as a

collection of maps. In particular, the matrix factorization with graded pieces Pi and

differential di : Pi → Pi+1 will be notated by the ordered triple (d1, d2, d3).
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The following definition generalizes the discs of Definition 2.6.4 to the non-local

setting.

Definition 3.1.2. Let T1, T2, T3 denote the collections of ”trivial objects” in

3-MF(Q, f) – objects isomorphic to (f, id, id), (id, f, id), (id, id, f), respectively, with

Pi projective.

For example, objects in T1 are isomorphic to an object of the form

· · · P1 P2 P3 P1 · · ·

=
P1

=

P1

id f id id f

with P1 any projective Q-module.

We also want to briefly discuss quotient categories, using the definition of Yoshino

in [14].

Definition 3.1.3. Let C be an additive category, and let B be a set of objects in C.

We define the quotient category C/B to be the category whose objects are the same

as C, and morphisms from A to B in C/B are elements of

HomC(A,B)/B(A,B)

where B(A,B) is the subgroup generated by all morphisms A to B which factor

through direct sums of objects in B.

Notice that all objects in B become isomorphic to the zero object in C/B.

With all of the necessary notation in place, we can now state the following gener-

alization of Eisenbud’s correspondence.
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Theorem 3.1.4. Let Q be a regular ring (not necessarily local), f ∈ Q a non-zero-

divisor, and R = Q/(f). There exists an equivalence of additive categories

Ψ : 3-MF(Q, f)/{T3} → E(MCM(R))

given on objects by

Ψ(d1, d2, d3) =
(

0→ coker d1 → coker d2d1 → coker d2 → 0
)

and on morphisms by the obvious induced maps between respective cokernels.

Moreover, this induces an equivalence

Ψ : 3-MF(Q, f)/{T1,T2,T3} → E(MCM(R))/{E(PROJ(R))}.

Before proving the theorem, we record some intermediate results necessary for

verifying the functor Ψ is well-defined.

Lemma 3.1.5. Given a 3-fold matrix factorization (d1, d2, d3) of f , each of the cok-

ernels coker(d1), coker(d2), coker(d2d1) are MCM R-modules.

Proof. Notice that (d1, d3d2), (d2, d1d3), and (d3, d2d1) are each 2-fold matrix factor-

izations of f . Therefore, Eisenbud’s correspondence gives that each cokernel is an

MCM R-module.

Lemma 3.1.6. Given a 3-fold matrix factorization (d1, d2, d3) of f , there is a short

exact sequence

0→ coker(d1)→ coker(d2d1)→ coker(d2)→ 0.
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Proof. Consider the commutative diagram with exact rows below.

P1 P2 coker(d1) 0

0 P3 P3 0

d1

id

d2d1 d2

The Snake Lemma gives an exact sequence

ker(d2d1)→ ker(d2)→ coker(d1)→ coker(d2d1)→ coker(d2)→ 0.

Since f is a non-zero divisor, f = d3d2d1 is injective, so also d2 and d2d1 are injective,

causing the above exact sequence to be the desired short exact sequence.

Proof of Theorem 3.1.4. Lemmas 3.1.5 and 3.1.6 show that the functor Ψ is well-

defined. We will show that Ψ is essentially surjective, full, and faithful.

Essentially Surjective: Given a short exact sequence of MCM R-modules

M : 0→M ′ →M →M ′′ → 0

we construct a 3-fold matrix factorization P so that Ψ(P ) =M.

Recall that pdQ(M) = 1 for any MCM R-module M , as a consequence of the

Auslander-Buchsbaum formula. So we can choose free resolutions F ′• of M ′, F ′′• of

M ′′ of length one, and construct a free resolution F• of M using the horseshoe lemma

to obtain the commutative diagram below with exact rows and columns.
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0 0 0

0 F ′1 F1 F ′′1 0

0 F ′0 F0 F ′′0 0

0 M ′ M M ′′ 0

0 0 0

ι′

π′

ι

π

ι′′

π′′

α1 β1

α0 β0

α−1 β−1

First, we claim the submodule α0(F
′
0) + ι(F1) of F0 is a projective Q-module.

In fact, we claim it is the kernel of the surjective composition π′′β0 : F0 → M ′′.

Assuming this holds, then there is a short exact sequence

(†) 0→ α0(F
′
0) + ι(F1)→ F0 →M ′′ → 0

and α0(F
′
0) + ι(F1) is projective because M ′′ has projective dimension 1 over Q.

The claim is verified by a diagram chase. Let x ∈ F0 such that π′′β0(x) = 0. By

the exactness of the right column, there exists a y′′ ∈ F ′′1 so that ι′′(y′′) = β0(x). This

lifts to an element y ∈ F1 with β0ι(y) = β0(x). Then x − ι(y) ∈ ker(β0), so there

is some z ∈ F ′0 with α0(z) = x − ι(y). Rearranging yields x ∈ α0(F
′
0) + ι(F1), so

ker(π′′β0) ⊆ α0(F
′
0) + ι(F1).
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Conversely, if x = α0(a) + ι(b) ∈ α0(F
′
0) + ι(F1) then

π′′β0(x) = π′′β0(α0(a) + ι(b)) = π′′β0ι(b) = β−1πι(b) = 0

so ker(π′′β0) = α0(F
′
0) + ι(F1) as claimed.

We can now define P to have graded pieces P1 = F1, P2 = α0(F
′
0)+ι(F1), P3 = F0.

We define the maps d1 to be ι composed with the inclusion and d2 the inclusion into

F0. The map d3 : F0 → F1 is constructed as the unique lifting of the map of short

exact sequences given by multiplication by f below.

0 F1 F0 M 0

0 F1 F0 M 0

f f f=0

ι π

ι π

d3

We now examine Ψ(P ). We need to show Ψ(P ) ∼=M in E(MCM(R)). In partic-

ular, we need to show coker(d1) ∼= M ′, coker(d2) ∼= M ′′, and coker(d2d1) ∼= M . The

second isomorphism was shown in (†), and the third is clear because F• is a resolution

of M . The first isomorphism follows from the sequence of isomorphisms below.

α0(F
′
0) + ι(F1)

ι(F1)
∼=

α0(F
′
0)

α0(F ′0) ∩ ι(F1)
∼=
F ′0
F ′1
∼= M ′

Finally, it is clear that these isomorphisms commute with the maps in the short exact

sequences, forming the required isomorphism in E(MCM(R)).

Full: Suppose β ∈ HomE(MCM(R)) (Ψ(P ),Ψ(P ′)). That is, we have a commutative

diagram of the form below.

0 coker(d1) coker(d2d1) coker(d2) 0

0 coker(d′1) coker(d′2d
′
1) coker(d′2) 0

β1 β3 β2
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We need to construct a morphism α ∈ Hom3-MF(Q,f)(P, P
′) with Ψ(α) = β. To

this end, consider the commutative diagram of Q-modules with exact rows below.

Define α3 to be a lifting of β3. This determines α1 by restriction.

0 P1 P3 coker(d2d1) 0

0 P ′1 P ′3 coker(d′2d
′
1) 0

α1 α3 β3

Since α3 is also a lifting of β2 as in the diagram below, we also can define α2 by

restriction.

0 P2 P3 coker(d2) 0

0 P ′2 P ′3 coker(d′2) 0

α2 α3 β2

It remains to show that this choice of Q-module homomorphisms α1, α2, α3 forms

a morphism of matrix factorizations. Precisely, we need to show αi+1di = d′iαi for

i = 1, 2, 3.

For i = 1, we first notice that α2d1 = d′1α1 if and only if d′2α2d1 = d′2d
′
1α1 because

d′2 is injective. By construction, d′2α2 = α3d2, so the required result holds if and only

if α3d2d1 = d′2d
′
1α1. The final equality is true by construction.

This holds for i = 2 by construction.

For i = 3, we have α1d3 = d′3α3 if and only if d′2d
′
1α1d3 = d′2d

′
1d
′
3α3 because d′2d

′
1 is

injective. Now d′2d
′
1d
′
3 = f ·id by definition, and multiplication by f commutes with α3,

so the result holds if and only if d′2d
′
1α1d3 = α3f . By construction, d′2d

′
1α1 = α3d2d1,

so the result holds if and only if α3d2d1d3 = α3f , which holds by definition.
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Faithful: Suppose α ∈ Hom3-MF(Q,f)(P, P
′) and Ψ(α) = 0. That is, im(α2) ⊆

im(d′1) and im(α3) ⊆ im(d′2d
′
1) ⊆ im(d′1). Then α factors through the trivial matrix

factorization (id, id, f) with graded pieces P ′3 as shown below.

P1 P2 P3 P1

P3 P3 P3 P3

P ′1 P ′2 P ′3 P ′1

d1 d2 d3

d′1 d′2 d′3

α1 α2 α3 α1
d2d1 d2 id d2d1

d′−1
1 d′−1

2 α3 d′−1
2 α3 α3 d′−1

1 d′−1
2 α3

id id f

To see the induced equivalence, we notice the following:

Ψ(id, f, id) = 0→ 0→ P3 → P3 → 0

Ψ(f, id, id) = 0→ P2 → P2 → 0→ 0.

Further, any short exact sequence of projectives splits as

0→ P ′ → P → P ′′ → 0 =
0→ P ′ → P ′ → 0→ 0

⊕
0→ 0→ P ′′ → P ′′ → 0

so the images of T1 and T2 generate precisely E(PROJ(R)).

3.2 Higher Homotopies

In [5], Eisenbud developed a theory of “higher homotopies”, which may be used to

construct a matrix factorization from an arbitrary R-module. In this section, we

generalize this to a method of constructing a 3-fold matrix factorization from an

arbitrary short exact sequence of R-modules.
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Throughout, we will continue to have Q a regular ring, f ∈ Q a non-zero-divisor,

and R = Q/(f). We begin with notation and definitions.

Definition 3.2.1. Let E(R −mod) denote the category of short exact sequences of

R-modules, with morphisms defined to be triples of R-linear maps making the obvious

diagrams commute.

Similarly, let E(Ch(R)) denote the category of short exact sequences of chain

complexes of R-modules. A morphism of degree i in E(Ch(R)) is defined to be a triple

of morphisms of chain complexes of degree i which is also degree-wise a morphism of

short exact sequences of R-modules.

Theorem 3.2.2. Let Q be a regular ring, f ∈ Q a non-zero-divisor, R = Q/(f), and

let

M : 0→M ′ ι−1−−→M
π−1−−→M ′′ → 0

be a short exact sequence of R-modules. If

F• : 0→ F ′•
ι−→ F•

π−→ F ′′• → 0

is a Q-free resolution of M (by which we mean F•, F
′
•, and F ′′• are Q-free resolutions

of M , M ′, and M ′′, respectively, and form a short exact sequence of complexes), then

there exist endomorphisms si of F• of degree 2i− 1 satisfying

(i) s0 is the differential of F•,

(ii) s1s0 + s0s1 = f , and

(iii) for all i > 1,
∑

j+k=i

sjsk = 0.

Proof. We will notate by ιi, πi the maps F ′i → Fi and Fi → F ′′i , respectively. Further,

let the triple δi = (δ′i, δi, δ
′′
i ) denote the differential of F• in degree i and ε = (ε′, ε, ε′′)

denote the augmentation map F• →M, as in the diagram below.
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0 0 0 0

· · · F ′2 F ′1 F ′0 M ′ 0

· · · F2 F1 F0 M 0

· · · F ′′2 F ′′1 F ′′0 M ′′ 0

0 0 0 0

ι−1

π−1

ι0

π0

ι1

π1

ι2

π2

δ′2 δ′1 ε′

δ2 δ1 ε

δ′′2 δ′′1 ε′′

We choose s0 = δ. Since M ′, M , M ′′ are annihilated by f , multiplication by f is

null homotopic on each row of F•. Choose s1 to be a realization of this homotopy on

F•, the resolution of M . This induces maps on the resolutions of M ′ and M ′′ using

the degree-wise short exact sequences

0→ F ′i → Fi → F ′′i → 0,

so that we in fact have s1 is a degree 1 endomorphism of F•. By the definition of null

homotopy, s1 will satisfy condition (ii).

We construct si for i > 1 inductively. Set ei :=
∑

j+k=i
j 6=i
k 6=i

sjsk. We claim eis0 = s0ei.

Indeed, using our inductive hypothesis and condition (ii), as well as multiplication by

f commuting with the Q-linear map si−1, we see
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eis0 =
∑
j+k 6=i
j 6=i
k 6=i

sjsks0

=
i−2∑
j=1

i−1∑
k=i−j

sjsks0 + si−1s1s0

=
i−1∑
j=1

i=1∑
k=i−j

−sj

s0sk +
∑

`+m=k
`6=k
m6=k

s`sm

+ si−1(f − s0s1)

= −(f − s0s1)si−1 +
i−2∑
j=2

i−1∑
k=i−j

∑
`+m=j
`6=j

s`smsk −
i−2∑
j=1

i−1∑
k=i−j

∑
`+m=k
` 6=k
m6=k

sjs`sm

+ si−1f +
∑

`+m=i−1
` 6=i−1

s`sms1

=
∑
j+k 6=i
j 6=i
k 6=i

s0sjsk

= s0ei.

Now notice the induced map

M = coker(δ1)
−ei−−→ coker(δ2i) ⊆ F2i−2

is null homotopic, since M is annihilated by f . So there exists a map si of degree

2i− 1 on F•, which again induces maps on the resolutions of M ′ and M ′′, satisfying

−ei = sis0 + s0si. Rearranging yields the desired result.
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In the setting of Theorem 3.2.2, we then can construct a 3-fold matrix factorization

using the constructed maps si as outlined below.

Construction 3.2.3. We will first define a short exact sequence of (classical) matrix

factorizations. Consider the following two short exact sequences of free modules

Feven : 0→ F ′even → Feven → F ′′even → 0

Fodd : 0→ F ′odd → Fodd → F ′′odd → 0

where Feven, Fodd denote the direct sums of the even degree and odd degree free

modules in the resolution of M , respectively (and similarly for the “primed” versions).

Note that these are short exact sequences of finitely generated free modules because

Q is regular.

We define maps A : Feven → Fodd and B : Fodd → Feven by A =
∑
si = B. By

applying the properties of the family si in Theorem 3.2.2, we see AB = f = BA, so

the pair of maps (A,B) is in fact a short exact sequence of 2-fold matrix factorizations.

The cokernel of B : Fodd → Feven is then, by Eisenbud’s correspondence, a short

exact sequence of MCM modules. Applying the equivalence of Theorem 3.1.4 to this

short exact sequence yields a 3-fold matrix factorization.

Notice that, if M was a short exact sequence of MCM modules already, then s1

and s0 are the only non-zero maps constructed, Fodd = F1, and Feven = F0. In this

case, the construction above gives the map B = s0, so the 3-fold matrix factorization

constructed is precisely one mapping to M under Theorem 3.1.4.
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