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Abstract
Using optical characterization, it is evident that the spin state of the spin crossover molecular
complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2′-bipyridine)
depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene
fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film
is significant but complex. The UV–Vis spectroscopy measurements reveals that room
temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in
bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization.
The retention of voltage-controlled nonvolatile changes to the electronic structure in bilayers of
PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] strongly depends on the thickness of the PVDF-HFP layer.
The PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] interface may affect PVDF-HFP ferroelectric
polarization retention in the thin film limit.
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1. Introduction

Functional spin crossover (SCO) molecular complexes exhib-
iting a spin state transition that can be mediated by external
stimulation such as light, temperature, electric field, and mag-
netic field [1–9], have significant potential for new molecular-
based devices [4, 9–26]. In SCO molecular compounds,
depending on the ligand field strength, the transition metal ion
can adopt two different stable spin states called the low spin
(LS) state and the high spin (HS) state and can be switched
between these two states [1, 2, 8–10]. The transition from HS
to LS state for many spin crossover complexes occurs away
from temperatures. To implement these SCO molecular sys-
tems for device applications, it is crucial to modify their func-
tionalities for use at room temperature. A ferroelectric layer,
capable of changing the polarity of the electric polarization
in the presence of an external electric field, facilitates switch-
ing spin states in SCO molecules at room temperature. Some
SCO molecules such as [Fe{H2B(pz)2}2(bipy)] can be fabric-
ated as a thin film via thermal evaporation under high-vacuum
[14, 15, 27–32], as well as from solution. The transition tem-
perature (T1/2) and hysteresis of the spin state transition for
[Fe{H2B(pz)2}2(bipy)] thin films can vary depending on film
thickness [31], however, even the highest possible T1/2 value
is still far below room temperature, yet when combined with
an organic ferroelectric, isothermal swicthing at room tem-
perature can be made possible. A ferroelectric substrate may
be utilized to facilitate the isothermal spin state switching of
the deposited SCO molecular layer [11], as seen in figure 1,
and variations of the polymer ferroelectric polyvinylidene flu-
oride (PVDF) have proven to be particularly effective [14,
15, 33, 34]. PVDF is a piezoelectric polymer with ferro-
electric characteristics [35, 36]. Yet sensing the ferroelec-
tric polarization in a memory circuit is challenging and thus
combining a ferroelectric with an SCO complex provides a
facile mechanism for sensing the ferroelectric polarization in
a nonvolatile device [11, 14, 15] because of the dramatic con-
ductivity changes that accompany the change in spin state,
shown in figures 1(c) and (d). Indeed, the organic ferro-
electric polyvinylidene fluoride-hexafluoropropylene (PVDF-
HFP) also significantly affects the conductivity of spin cros-
sover films as seen in figure 1. In this paper, the influence
that PVDF-HFP film thickness and the polarity of ferroelec-
tric polarization have on the spin state switching behavior of
[Fe{H2B(pz)2}2(bipy)] at room temperature is investigated.

UV–Vis spectroscopy was employed here to study the
temperature-dependent spin state switching of a single layer
of [Fe{H2B(pz)2}2(bipy)] and the isothermal switching of
bilayer samples of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] with
different PVDF-HFP thicknesses. Switching to different spin

Figure 1. The changes in the x-ray absorption and conductivity for
[Fe{H2B(pz)2}2(bipy)] film on PVDF-HFP, with the changing spin
state. The synchrotron-based x-ray absorption (XAS) spectra of
bilayer PVDF-HFP/ [Fe{H2B(pz)2}2(bipy)] bilayer samples for
ferroelectric PVDF-HFP polarizations (a) up and (b) down, as
discussed in detail elsewhere [14, 15]. The current–voltage
conductance plots for [Fe{H2B(pz)2}2(bipy)] thin films and thin
films on PVDF (c) in the high spin (HS) and (d) in low spin (LS)
states [14, 15]. The transport measurements for HS and LS
[Fe{H2B(pz)2}2(bipy)] thin films were taken at 298 K (red dashed
line in (c)) and 150 K (the blue dashed line in (d)). The transport
measurements at HS and LS for the [Fe{H2B(pz)2}2(bipy)] film on
PVDF-HFP were taken at room temperature when the organic
ferroelectric PVDF-HFP was polarized towards the
[Fe{H2B(pz)2}2(bipy)] film (i.e. HS state denoted by the red solid
line in (c)) and polarized away from the [Fe{H2B(pz)2}2(bipy)] film
(i.e. LS state denoted by the blue solid line in (d)).

states can lead to a change in the optical absorption spec-
trum of [Fe{H2B(pz)2}2(bipy)] [37], the spin crossover com-
plex studied here. The spin state switching of [Fe(tBu2qsal)2]
(FTBQS) has also been seen to lead to changes in optical
absorption [38] and optical absorption has been applied to the
study of other spin crossover complexes [39–43].

2. Materials and methods

The [Fe{H2B(pz)2}2(bipy)] molecules were synthesized
as described in a previous article [44]. Samples for
temperature-dependent SCO transition studies were 300 nm
[Fe{H2B(pz)2}2(bipy)] thin films thermally evaporated
on a glass substrate with an estimated growth rate of
0.2 nm s−1 under ultra high vacuum. Atomic force micro-
scopy and a profilometer were utilized to calibrate the
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growth rate and assess the film thickness ratios. The UV–
Vis spectrometer used was Thermo Fisher Scientific G10S
UV–Vis and the Fourier transform infrared (FTIR) spec-
trometer was a Thermo Fisher Scientific NICOLET iS10.
A lab-built cryo-stage was used for low-temperature UV–
Vis measurements. To study the effect of electric field
on switching the spin state of [Fe{H2B(pz)2}2(bipy)],
bilayer PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] thin films
with different thicknesses of PVDF-HFP were
fabricated.

For bilayer samples, 10 nm of Ti was sputtered on the glass
substrate to act as the bottom electrode. Various thicknesses
of PVDF-HFP were deposited using the Langmuir–Blodgett
(LB) technique. PVDF-HFP in solution was suspended in a
water sub-phase for layer-by-layer LB deposition. A solution
of 0.05% by weight of PVDF-HFP in acetone was made by
mixing 40 mg PVDF-HFP with 100 ml acetone and then heat-
ing it to 90 ◦C until complete solvation was achieved. This
solution was then added to de-ionized water and placed in the
LBmachine reservoir. For these parameters, each dip provides
a thickness of around 0.7 nm. To achieve an optimal β phase
in PVDF-HFP, thin films were annealed at different temperat-
ures and characterized by FTIR spectroscopy. We found out
that samples annealed for 3 h at 140 ◦C lead to a desirable β
phase creation in the PVDF-HFP layer. Post-anneal, a 300 nm
of [Fe{H2B(pz)2}2(bipy)] film was added via thermal evapor-
ation. A lab-built poling device with a removable top electrode
was used to polarize the PVDF-HFP layer for bilayer samples.
Depending on the desired polarity of the PVDF-HFP layer,
a negative or positive voltage of 30 V was applied for 30 s
then the bias voltage was gradually reduced back to zero. The
UV–Vis measurements were done several times on multiple
samples and similar results were acquired.

3. Optical characterization of the spin state change

A representative bond diagram of the [Fe{H2B(pz)2}2(bipy)]
molecule is shown in figure 2(a). The central Fe ion is bonded
to nitrogen atoms from each of its ligands. N1 is the nitrogen of
the bipyridine ligand while N2 and N3 correspond to the nitro-
gen atoms bonding the pyrazole ligands to the central Fe. The
SCO transition for the [Fe{H2B(pz)2}2(bipy)] molecular com-
pound depends upon the changes in the bond length and ligand
angular orientation within the molecule [31, 45]. When the
molecule approaches the transition temperature, some bond
lengths change, and the ligands rotate.

This bond length changes and ligand rotation occur mainly
between the Fe ion and the bipyridine ligand (Fe-N1 lig-
and) [31, 44, 45]. A longer bond length means a weaker
ligand interaction, which tends to favor the HS state with
a total spin S = 2, while a shorter bond length corres-
ponds to a stronger interaction, leading to the LS state with
a total spin S = 0. Figure 2(b) compares the infrared spec-
tra of [Fe{H2B(pz)2}2(bipy)] in powder form with that of a
thermally evaporated 300 nm thin film. A similar infrared

Figure 2. (a) The schematic diagram of the [Fe{H2B(pz)2}2(bipy)]
molecule. N1 is the nitrogen (blue) associated with the bipyridine
ligand and N2 and N3 correspond to the nitrogen atoms in the
pyrazole ligands. (b) The FTIR spectra of powder and 300 nm thin
film [Fe{H2B(pz)2}2(bipy)] molecules. (c) The XRD patterns of
[Fe{H2B(pz)2}2(bipy)] for powder and thin film samples
respectively.

spectrum for both bulk and thin film indicates a success-
ful thermal sublimation without decomposition. The exist-
ence of B-H vibrations in both powder and thin film spec-
tra at 2416 cm−1 and 2277 cm−1, and C-H vibrations
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on 2841 cm−1, 2911 cm−1, and 3097 cm−1 verifies that
[Fe{H2B(pz)2}2(bipy)] molecules maintain integrity after
evaporation. Observing no significant changes in the IR
spectra of powder and the thin film implies that the
[Fe{H2B(pz)2}2(bipy)] is preserved after thin film fabrication
and that similar thermal spin state transition properties are
expected, as has been previously observed [32]. Additionally,
x-ray diffraction (XRD) patterns shown in figure 2(c) confirm
that the thin film sample preserves the [Fe{H2B(pz)2}2(bipy)]
structure however, the molecules of the thin film samples may
have a preferential orientation on the substrate.

The spin transitions of the [Fe{H2B(pz)2}2(bipy)] thin
films stimulated by thermal effects were measured using
UV–Vis spectroscopy. Comparing other methods for char-
acterizing the spin state change, including x-ray absorption
(XAS) and electric transport measurements, UV–Vis spec-
troscopy has some advantages as it avoids potential chal-
lenges due to high-energy x-ray or secondary electron-induced
damage, voltage-induced charge trapping in electric transport
measurements, or effects due to the different electronic struc-
ture at the surface of a molecular film [31].

An optimized film thickness is crucial for the optical
absorption spectrum to become evident, and not perturbed by
surface effects [31]. A 300 nm thick [Fe{H2B(pz)2}2(bipy)]
deposited film provides clear optical absorption spectra while
the sample remains partially transparent, which is necessary
for these UV–Vis measurements. The value in choosing a
300 nm thick [Fe{H2B(pz)2}2(bipy)] deposited film is that in
the optical studies of [Fe{H2B(pz)2}2(bipy)] thin film adja-
cent to an organic ferroelectric (vide infra) the optical absorp-
tion of the [Fe{H2B(pz)2}2(bipy)] thin film dominates over
the much thinner ferroelectric layer. Furthermore, the spin
state switching of a 300 nm thick [Fe{H2B(pz)2}2(bipy)] film
can be compared to prior efforts [31], where the transition
in temperature has been investigated in detail. Figure 3(a)
shows the temperature-dependent optical absorption spectra
of a [Fe{H2B(pz)2}2(bipy)] thin film with a thickness of
300 nm in a wide temperature range from room temperat-
ure to around 120 K. The spectra were normalized for a bet-
ter quantitative comparison. The optical absorption spectra
of [Fe{H2B(pz)2}2(bipy)] molecules change with temperature
and these changes are associated with a change in spin state.

In the HS state at room temperature, a weak absorption fea-
ture over a wide range of wavelengths with a crest of around
530 nm was observed. At the lower temperatures, spectral
absorption intensity is dominated by broad absorption bands
centered at 410 nm, and 570 nm, while the 640 nm band is
much more intense at lower temperatures which correspond
to the LS state. With decreasing temperature, these features
in the UV–Vis spectra at around 410 nm, as well as 570 nm
and 640 nm. These absorption features, representative of the
low spin state, gain significant intensity at about 173 K to
148 K which is around the spin state transition temperature
of 160 K, expected for evaporated thin films [32, 46–51]. As
the sample temperature is reduced to 123 K, the LS state
of [Fe{H2B(pz)2}2(bipy)] dominates, as has been seen else-
where using a number of other techniques [31, 32, 44–48].

Figure 3. (a) The temperature-dependent UV–Vis spectra of a
[Fe{H2B(pz)2}2(bipy)] molecular thin film from room temperature
to low temperatures and (b) the high spin (HS) state fraction of
[Fe{H2B(pz)2}2(bipy)] thin film, determined from the optical
spectroscopy as a function of temperature.

The UV–Vis spectra of the same [Fe{H2B(pz)2}2(bipy)] thin
film show repeatable results when we ramp up the temperat-
ure back to room temperature, as shown in the supplement-
ary file figure (S2), indicating the state switching process seen
in optical spectroscopy results for [Fe{H2B(pz)2}2(bipy)] is
reversible. The thermal hysteresis seen in the optical studies
here compares well with prior magnetic susceptibility results
seen for a 300 nm thick [Fe{H2B(pz)2}2(bipy)] deposited film
[31]. These changes in the optical absorption are far more sig-
nificant than observed for FTBQS which has also been seen to
lead to similar changes in the optical absorption [38].

By analyzing the absorption spectra at the same
wavelength and different temperatures, the HS fraction of
the [Fe{H2B(pz)2}2(bipy)] thin film at different temperatures
was estimated. Figure 3(b) shows the fraction of molecules in
the HS state for thin films of [Fe{H2B(pz)2}2(bipy)] as a func-
tion of temperature. Temperature-dependent UV–Vis spectra
provide a mechanism for the relative HS fraction at different
temperatures to be calculated from the formula [37]:
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γHS(T) =
ODλ(T → 0)

∆ODλ

(
1− ODλ(T)

ODλ(T→ 0)

)
where ODλ is the optical density at λ = 410 nm, selec-
ted as the feature with the strongest temperature response
in the spectra, and ∆ODλ = ODλ(T→0) − ODλ(T→∞),
wherein the normalized data ODλ(T→0) corresponds to the
optical density of at the lowest temperature and ODλ(T→∞)
is the optical density at the highest temperature. The calcu-
lated HS state fraction, with temperature, indicates a trans-
ition temperature, (T1/2), from the HS state to the LS state
occurring around 160 K. This spin state transition temperat-
ure is in agreement with other magnetic susceptibility meas-
urements for [Fe(H2B(pz)2)2(bipy)] [31, 32, 44–48], as well
as Mössbauer spectroscopy and calorimetric measurements
(where T1/2 = 159.5 K) [46].

4. Molecular ferroelectric film thickness
dependence

Voltage-controlled nonvolatile switching of the
[Fe{H2B(pz)2}2(bipy)] electronic structure and spin state
can be achieved well above the intrinsic thermal trans-
ition temperature by combining a [Fe{H2B(pz)2}2(bipy)]
thin film with an organic ferroelectric, like PVDF-HFP
[11, 14, 15]. To explore this isothermal switching of the
molecular bilayer further, we fabricated bilayer samples
of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] to facilitate the iso-
thermal switching at room temperature, by altering the electric
polarization polarity of the PVDF-HFP thin film. The inter-
face of SCO molecules with a substrate can perturb the SCO
functionality and spin state [9, 28, 29, 48–50], and the effect
of an interface with a ferroelectric is particularly profound
[14, 15, 33, 34, 52]. The PVDF-HFP thin films tend to be
mostly in the nonpolar α phase when fabricated at room tem-
perature, whereas the β phase is desirable due to its high elec-
tric polarization. There are several approaches to achieving a
dominant ferroelectric β phase in PVDF. One method is to
use additives such as hydrated ionic salts, clay, PMMA, ZnO,
TiO2, and graphene [53, 54]. In our case, however, a thermal
treatment method of the molecular ferroelectric thin film was
preferred. It has been shown and repeatedly confirmed that
thermal annealing is an effective approach to forming the
ferroelectric β phase crystalline ordering in PVDF-HFP thin
films [55–58].

While for thicker PVDF molecular films, in the range of
microns, XRD is a powerful tool for characterizing the crys-
talline structure, for PVDF-HFP thin films with a thickness in
the range of nanometer, XRD provides a very weak signal. As
here in these studies we are investigating much thinner films,
our approach to the characterization of the different crystalline
phases of the PVDF-HFP thin films was to use FTIR spec-
troscopy. The IR bands at 841 cm−1 and 879 cm−1 corres-
pond to the β phase. Before annealing a PVDF-HFP thin film,
only a very weak signal of β-phase is detected, based on the
data shown in figure 4. The thermal optimization was under-
taken with a series of 150 layer thick PVDF-HFP samples.

Figure 4. The FTIR spectra of 150 layer thick PVDF-HFP thin
films annealed at argon atmosphere for 180 min. A schematic
diagram of PVDF-HFP in the β phase is shown in the inset.

These were annealed at different temperatures (from 120 ◦C
to 150 ◦C) for 180 min in an argon gas atmosphere to bet-
ter optimize the crystal structure of the PVDF-HFP thin films,
as seen in the IR spectra of figure 4. The IR signature of the
PVDF-HFP β-phase improves with annealing, as indicated by
the increase in the β-phase IR features. Clearly, annealing sig-
nificantly improves the β-phase of the PVDF-HFP thin films.
Decreasing the ferroelectric thin film thickness will decrease
the coercive voltage [11, 36], but there must be polarization
retention in the ferroelectric layer for nonvolatile molecu-
lar device applications [11]. To study the effect of PVDF-
HFP polarization and thickness on isothermal switching of
[Fe{H2B(pz)2}2(bipy)] thin films, a series of samples with dif-
ferent layers of PVDF-HFP, ranging from 5 to 25 layers, with
a constant thickness (300 nm) of the [Fe{H2B(pz)2}2(bipy)]
layer were prepared.

The voltage can be applied to the molecular bilayer struc-
ture in the capacitive geometry, as indicated in figures 5(a)
and (b). Figure 6(a) shows the UV–Vis spectra of the bilayer
sample with 5 layers of PVDF-HFP after applying oppos-
ite electric fields at room temperature. These optical meas-
urements show that for the sample with 5 layers of PVDF-
HFP, isothermal voltage-controlled switching between the
[Fe{H2B(pz)2}2(bipy)] spin states does not occur by changing
the applied electric field polarity to the adjacent PVDF-HFP
thin film. Either the voltage applied was not high enough to
overcome the coercive force of the PVDF-HFP layer, so the
polarization was not altered, or the polarization prefers one
direction (i.e. up) and polarization in the opposite direction
(down) is not retained and quickly reverts to the favored polar-
ization direction.

This lack of polarization retention is a common problem
with ferroelectric thin films, in the thin film limit [59, 60].
In the absence of polarization retention, an ‘up’ ferroelectric
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Figure 5. A schematic cross-section diagram of the bilayer the
PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] studied, with the polarization of
PVDF-HFP thin film toward a specific direction, can cause the
upper SCO layer to switch to the (a) high spin (HS) when the
PVDF-HFP layer was polarized upward or (b) the low spin (LS)
states when the PVDF_HFP layer was polarized to the downward,
schematically indicated.

polarization is expected here [61]. The likely problem here
is the polarization retention because the applied electric field
should nominally lead to the reversal of the PVDF-HFP ferro-
electric polarization since the applied voltage is much larger
than the PVDF-HFP coercive voltage for this film thickness
[36] and the coercive voltage scales with film thickness [11,
36]. Furthermore, this voltage does affect the bilayers with
thick PVDF-HFP film thicknesses, where retention is more
likely and the barrier to spontaneous ferroelectric polarization
reversal is higher.

By increasing the thickness of PVDF-HFP thin films
to 15 layers, the spectra taken after applying opposite
applied electric fields to the ferroelectric layer start show-
ing a slight difference as seen in figure 6(b). In terms
of changing the spin state of the [Fe{H2B(pz)2}2(bipy)]
in the PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] bilayer structure,
the best result was achieved for the sample fabricated with
25 layers of PVDF-HFP (figure 6(c)). Reversible voltage-
controlled switching from both the HS and the LS states of
[Fe{H2B(pz)2}2(bipy)] was observed and associated with the
changing polarity of the PVDF-HFP thin films. By polariz-
ing the PVDF-HFP upwards, the [Fe{H2B(pz)2}2(bipy)] HS
optical absorption peak at 530 nm associated with the HS
state was observed. On the other hand, [Fe{H2B(pz)2}2(bipy)]
molecules successfully switched to the LS state when the
PVDF-HFP layers were polarized downward, based on the
optical spectra of figure 6(c). These results agree with pre-
vious experiments, where the spin state and consequently
the conductivity of [Fe{H2B(pz)2}2(bipy)] molecules changed
by altering the electric polarization direction of the adjacent
PVDF-HFP thin films [14, 15]. In other words, a too thin layer
of PVDF-HFP causes the [Fe{H2B(pz)2}2(bipy)] molecules

Figure 6. The room temperature UV–Vis spectra of the bilayer
samples were made with (a) 5 layers (b) 15 layers and (c) 25 layers
of PVDF-HFP substrates polarized toward different directions.

to become locked in the HS state due to the lack of ferro-
electric polarization retention resulting tendency in an ‘up’
ferroelectric polarization [61] where the HS is dominant in
the adjacent [Fe{H2B(pz)2}2(bipy)] layer [15, 52]. Although
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for thicker organic ferroelectric films the coercive force is
larger [35, 36], there is polarization retention, and changing
the ferroelectric polarization leads to clear changes in the
optical spectra reflecting the change in the spin state of the
adjacent [Fe{H2B(pz)2}2(bipy)] layer. Changing in the fer-
roelectric polarization in the thicker PVDF-HFP layer does
not, however, lead to complete isothermal voltage-controlled
switching between the HS and LS states in the adjacent
[Fe{H2B(pz)2}2(bipy)] layer. Comparing the optical spec-
tra results for the bilayer PVDF-HFP/[Fe{H2B(pz)2}2(bipy)]
with the temperature-dependent measurement of single layer
[Fe{H2B(pz)2}2(bipy)] molecular thin film, a smaller por-
tion of [Fe{H2B(pz)2}2(bipy)] molecules switch isotherm-
ally by altering the ferroelectric polarization of the adjacent
PVDF-HFP thin film. From figure 6(c), it is estimated that
for the sample made by 25 layers of PVDF-HFP, around
half (53%–57%) of the adjacent [Fe{H2B(pz)2}2(bipy)]
switched isothermally to the LS spin when the PVDF-
HFP was polarized downward. This incomplete switching
can be due to [Fe{H2B(pz)2}2(bipy)] film thickness. It is
estimated that for 1 to about 20–24 molecular layers of
[Fe{H2B(pz)2}2(bipy)], interface effects lead to nearly com-
plete spin state switching [52], but for 60–75 molecular layers
(65 nm) of [Fe{H2B(pz)2}2(bipy)], the spin state switching in
the [Fe{H2B(pz)2}2(bipy)] due to polarization reversal in the
adjacent PVDF-HFP layer is incomplete [14]. Here we have
a 300 nm thick film of [Fe{H2B(pz)2}2(bipy)] and can safely
surmise that the spin state switching mediated by the adjacent
molecular ferroelectric layer mostly occurs in the molecular
layers closer to the interface with the PVDF-HFP.

Polarization retention in PVDF copolymer films has been
observed in films as thin as 1 nm, indeed in films as thin as
2 molecular layers [36]. The fact that polarization retention
is not seen in the thinnest films studied here indicates that
not only does the PVDF-HFP affect and influence the adja-
cent [Fe{H2B(pz)2}2(bipy)] layer, as discussed at the outset,
but that [Fe{H2B(pz)2}2(bipy)] layer has an influence of the
PVDF-HFP.

5. Conclusion

In this paper, we have demonstrated that optical spectro-
scopy can be used to study the switching of spin states in the
[Fe{H2B(pz)2}2(bipy)] molecular thin film, as has been seen
for other spin crossover molecular systems [42]. Temperature-
dependent UV–Vis measurements confirmed that the trans-
ition temperature, T1/2, of the [Fe{H2B(pz)2}2(bipy)] SCO
molecular thin film from the HS to LS spin state occurs
at around 160 K, consistent with prior studies [31, 32,
44–48]. FTIR spectroscopy of PVDF-HFP revealed that
post-annealing treatments improve the β phase for ferro-
electric PVDF-HFP thin films. A thin film of PVDF-HFP
in the β phase allows isothermal switching of the spin
state of an adjacent [Fe{H2B(pz)2}2(bipy)] thin films at
room temperature to occur. Yet polarization retention is a
problem in ferroelectric PVDF-HFP/[Fe{H2B(pz)2}2(bipy)]
bilayers, so choosing the correct thickness of PVDF-HFP

is crucial. Our experiment indicates that switching differ-
ent spin states of [Fe{H2B(pz)2}2(bipy)] molecules, in a
PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] bilayer structure, is pos-
sible with 25 layers of PVDF-HFP which corresponds to
a thickness of around 20 nm. When the PVDF-HFP fer-
roelectric is too thin, an absence of polarization retention
appears for the bilayer PVDF-HFP/[Fe{H2B(pz)2}2(bipy)].
This is of profound important for device applications as
if there is a limit to the ferroelectric layer thickness in
the PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] bilayer, then there is
a limit to the reduction of the coercive voltage for non-
volatile switching. Other suitable organic ferroelectrics may
need to be investigated, but clearly, the influence of the
organic ferroelectric PVDF-HFP on the adjacent spin cros-
sover [Fe{H2B(pz)2}2(bipy)] thin film in the bilayer structure
is more than simply aiding in the deterministic switching of
the spin state.
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