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Abstract: Spin crossover complexes are a route toward designing molecular devices with a facile read-
out due to the change in conductance that accompanies the change in spin state. Because substrate
effects are important for any molecular device, there are increased efforts to characterize the influence
of the substrate on the spin state transition. Several classes of spin crossover molecules deposited
on different types of surface, including metallic and non-metallic substrates, are comprehensively
reviewed here. While some non-metallic substrates like graphite seem to be promising from experi-
mental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces
will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au
and Cu, tend to suppress changes in spin state and affect the spin state switching process due to
the interaction at the molecule–substrate interface that lock spin crossover molecules in a particular
spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film
depends on the molecular film thickness and perhaps the method used to deposit the molecular film.

Keywords: spin crossover molecules; interfaces; thin films; molecular-based devices

1. Introduction

The development of a molecular-based device is by no means a simple endeavor.
While a typical device will consist of a thin film of molecular material, there is the question
of how that material will interact with the chosen substrate it is deposited on. Furthermore,
the device will likely be attached with electrodes of some kind, in addition to any number of
other parts that might affect functionality. A firm understanding of the interactions between
the various components of a molecular device is essential before it can be fully realized and
implemented. After being touted as possible candidates for molecular electronic devices
for decades [1–6], spin crossover (SCO) molecules have shown potential recently for use in
nonvolatile memory devices [7–9]. The SCO phenomenon is a transition between two spin
states in a 3d transition metal ion coordination complex. The five, normally degenerate,
3d orbitals of the core metal split into three t2g and two eg like orbitals due to the ligand
field [10–12] or due to an intramolecular electron transfer between a redox-active ligand and
the transition metal center, which results in an internal charge redistribution corresponding
to two different electronic isomers [13,14]. In these molecular compounds, depending on
the ligand field strength and via an external stimulus, including light, temperature, electric
field, and pressure, the transition metal ion can exhibit two different spin states dubbed the
low spin (LS) state and the high spin (HS) state [15–35]. Such dynamic switching behavior of
SCO molecular compounds [36–41] makes them candidates for molecular-based electronics
such as sensors and fast optical devices [4,29,37,42–50], but maybe particularly suitable
nanoscale transistors [44] and nonvolatile memory devices [7–9].

Although SCO complexes are promising candidates for use in various molecular-based
devices due to their unique bistability properties, when these molecules are deposited as
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thin films onto a surface, parameters beyond the metal–ligand interaction arise which can
drastically influence spin state switching and, in many cases, cause spin crossover complex
to become locked in a given electronic state [42,51–57]. Thinking in terms of possible
device applications, it is crucial to gain a better understanding of substrate influence. The
interaction between molecular compounds and substrates has historically been among
the most significant topics in material science as well as an abiding concern in device
design [58–61]. It is impossible to make a device without interfaces as both electrodes and
dielectrics are essential. Indeed, Nobel Laureate Herbert Kroemer coined the phrase “The
interface is the device” [62]. For spin crossover complexes, the influence of a substrate can
be highly variable. Substrates like graphite exhibit less influence on the spin state switching
process of sublimated SCO thin films [26,57,63–70], while metallic substrates and some
dielectric substrates can have a major effect on how an SCO molecule behaves [62–77],
which has been revealed by different techniques including scanning tunneling microscopy
(STM), X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD),
X-ray photoelectron spectroscopy (XPS) [44,69,72,73,75–78] and so on. Additionally, oxide
surfaces, due to their propensity for surface defects, may cause a lock in the sublimated SCO
molecule in the specific spin state [5,77]. Some experimental and theoretical work suggest
that a non-metallic coating layer, such as CuN and AlN, in between the SCO molecules
and the metallic substrate reduces the interactions at the SCO-substrate interface [71,79,80].
Such a reduction in the influence of the subtrate may help adsorbed SCO molecules preserve
their functionality.

While interaction of various SCO molecules with different surfaces has been discussed
in prior reviews [5,54,63,64], a comprehensive review that focuses on the effect of different
substrates on the functionality of SCO molecules does not yet exist. Here, the effect
of different substrates on the spin states of different SCO molecules is reviewed more
completely than in prior work. We detail both metallic and non-metallic substrates that
lock the spin state, which is to say substrates that do freeze the spin state occupancy in
one preferential combination of high and low spin states such that the spin state cannot
be changed. Then, we provide counter examples of those substrates that do not lock the
spin state. We also discuss ferroelectric substrate manipulation of spin states, to wit, the
influence of the ferroelectric polarization direction of the spin state of an adjacent spin
crossover molecular film. Moreover, the effect of film thickness, ligand modifications, thin
film deposition method, surface morphology, and probing on substrate interactions is
also discussed. Finally, and due to the fact that very little is well understood about the
SCO-substrate interaction, we examine some insights provided by computational analysis
and modeling. Obviously, with the increasing effort in spin crossover devices, these issues
will have to be revisited if interest in spin crossover molecular thin film devices continues
and understanding grows, but this review provides a start.

2. Metallic Substrates That Lock the Spin State

Metallic substrates tend to lock the spin state of SCO molecular compounds in a
short range near the interface because of the strong coupling between SCO complexes
and high electron density on metallic surfaces [5,81–88]. The coupling between a metallic
substrate and an SCO molecule likely perturbs charges and the spin crossover molecular
dipole. This substrate perturbation accordingly leads to the energy separation between LS
and HS states. Therefore, it is difficult for an external stimulus to overcome the splitting
energy and the molecule, becomes locked into one spin state. Some literature reports that
Au(111) [5,78,82–89], Cu(100) [73,90], and Cu(111) [73] can cause a locking of the spin state
of some SCO molecules. Of all the metallic substrates studied thus far, this locking effect
occurs most prominently with Cu and Au substrates.

Cu is an example of a metallic substrate that typically locks the spin state of adsorbed
SCO molecules, at least for the first molecular layer. [Fe(phen)2)(NCS)2] complexes were
deposited on Cu(100), and the strong coupling between sulfur atoms of the NCS group to
the Cu(100) substrate locked the spin state and prevented switching from HS to LS and
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vice versa [73,91]. On a layer-by-layer growth of [Fe(phen)2)(NCS)2] ultra-thin film on
a Cu(100) substrate, spin-state coexistence was observed for the first monolayer and the
HS/LS proportion was not correlated with molecular coverage. However, the second layer
of [Fe(phen)2)(NCS)2] molecules experienced a weaker potential from the bottom blanket of
phen orbitals produced by the first layer of Fe-phen which lead to a relaxation of any com-
mensurability constraints on the adsorption geometries of [Fe(phen)2)(NCS)2]. The effect
of different metallic substrates including Cu(100), Cu(111), Co/Cu(111), Co(100), Au(100),
and Au(111) on spin state switching of [Fe(phen)2)(NCS)2] SCO molecular compounds
revealed that the strength of the interactions between [Fe(phen)2)(NCS)2] and metallic
substrates play a crucial role in SCO switching. Both LS and HS states could coexist, and
fully switching between spin states was often not possible due to chemisorption [73].

Based on the Kelai et al. study, the transition temperature, the fraction of HS molecules
at low temperature, and the bistability range of [FeII((3,5-(CH3)2pz)3BH)2] SCO thin films
on Cu(111) dramatically depends on the layer thickness (Figure 1) [75]. The thicker the
deposited molecular layer, the lower the HS fraction and the higher the transition tem-
perature. For temperatures lower than 50 K, the increase of the HS fraction is due to soft
X-ray induced excited spin state trapping (SOXIESST) effects, though for thicker films this
effect was found to be reduced significantly. The broadening of the hysteresis for several
deposited layers of FeII((3,5-(CH3)2Pz)3BH)2 revealed that the most striking is for a thermal
hysteresis of 35± 9 K for a 3 molecular monolayer film which represents significant bistabil-
ity for a thin SCO deposited layer of FeII((3,5-(CH3)2Pz)3BH)2. Generally, as the molecular
coverage increases, the temperature region for bistability occurs at larger temperatures,
also indicating a persistent influence of the substrate.
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Figure 1. The HS percentage of FeII((3,5-(CH3)2Pz)3BH)2 as a function of temperature; red, 0.9 ± 0.2
molecular layers; orange, 1.7 ± 0.4 molecular layers; green, 3.0 ± 0.7 molecular layers; blue, 5.3 ± 1.3
molecular layers (acquired from XAS spectra); gray, bulk form (taken from susceptibility measure-
ment). Solid lines are for reference using an error function. Arrows indicate the direction of the chang-
ing temperature (increasing/decreasing temperature). Adapted with permission from reference [75].

A study by Gopakumar et al. [84], in which a few monolayers of [Fe(H2B(pz)2)2(phen)]
(H2B(pz2) = dihydrobis (1-pyrazolyl)-borate), phen = 1,10-phenanthroline), deposited on
an Au(111) substrate at room temperature, exhibited a different electronic structure from
a bulk 6-coordinate complex where the ultra-thin film was not affected by temperature.
Temperature-dependent near-edge X-ray absorption fine structure (NEXAFS) spectroscopy
around the Fe L3 edge (Figure 2) showed that for 0.8 monolayers of [Fe(H2(bpz)2)2(phen)]
on Au(111), the HS state dominated and the SCO molecular film did not undergo a spin
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state transition at low temperatures. However, for 1.6 monolayers, the LS peaks appeared
in the X-ray absorption spectra at around 709.6 eV, which implies Au locks the molecules
mostly in the HS state near the interface, while the molecules further from the surface are
less affected and can undergo a spin state change with temperature.
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and (b) for 0.8 molecular layers of [Fe(H2B(pz)2)2(phen)] on a Au substrate. Adapted with permission
from reference [84].

Comparing the temperature-dependent XAS and XPS spectra of a monolayer ultra-
thin film of [Fe(H2B(pz2)2(TTF)] (TTF = tetrathiafulvalene-fused dipyrido-[3,2-a:2′,3′-c]
phenazine (dppz) ligand, on an Au surface with that of a thicker layer deposited on the
same substrate, strong interactions at the interface to the Au was indicated [78]. The
ultra-thin [Fe(H2B(pz2)2(TTF)] film loses the SCO functionality, with changing temperature,
due to a strong interaction between the gold interface and sulfur atoms in the SCO ligand
while the thick molecular film preserves switching between spin states. This indicates that
metallic substrates tend to only lock the first few layers of the deposited SCO molecules in
a short range near the interface.

In another study of [Fe(H2B(pz)2)2(phen)], a change in the current density of up to
one order of magnitude and occurred over a very broad range of temperatures (100–300 K)
with Au/[Fe(H2B(pz)2)2(phen)])]/GaIn junctions [92], in line with what would be ex-
pected for SCO complexes exhibiting a gradual spin state transition. The origin of this
effect may be due to the strong coupling between the first few monolayers of sublimed
[Fe(H2B(pz)2)2(phen)] thin film and the high electron density on the Au surface, leading to
a spin state coexistence at a broad range of temperatures.

The spin states of [Fe(phen)2)(NCS)2] on Au(111) substrates in the sub-monolayer
regime were mixed in a wide temperature range from 100 K to 300 K [85]. STM images show
that sublimated [Fe(phen)2)(NCS)2] on Au(111) attaches to the Au through the NCS groups
due to the strong affinity of sulfur binding to Au(111) which leads to the phen moieties
pointing away from the Au surface. STM images of sub-monolayer [Fe(phen)2)(NCS)2] on
Au (Figure 3a–d) showed that the [Fe(phen)2)(NCS)2] condenses into islands on the FCC
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sites of Au(111) with portions of the molecules in these regimes in the second layer just
on top of the first layer islands. Compared to the Au surface in Figure 3b, the herringbone
reconstruction is changed.
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Figure 3. (a) A schematic structure of Fe (1,10-phenanthroline)2 (NCS)2([Fe(phen)2)(NCS)2]), re-
ferred in shortened form as Fe-phen. (b) An STM image of the Au(111) surface taken at 300 K.
The ‘herringbone’ shape, typically associated with Au(111), is visible. (c) Approximately 0.3 molec-
ular layers of Fe-phen on Au(111). The molecules look like two-lobe structures in the images.
(d) Approximately full-monolayer coverage of Fe-phen. The above image: A magnified diagram of
a sample area, with a similar structure model of an FCC (111) surface. Molecular rows are aligned
along the (110) direction, with the molecules’ phen groups facing the (112) direction. (e) Histogram of
dphen–phen values, defined in (a) taken from multiple STM images. The histogram seems to indicate a
binary distribution for dphen–phen, for two bin sizes, as shown. A double Gaussian peak is included
for reference. STM scanning parameters: 600 pA, 1 V (c) and 500 pA, 1 V (d), and magnified area [85].

Ultraviolet photoelectron spectroscopy (UPS) measurements of [Fe(H2B(pz)2)2(bipy)]
(bipy = 2,20–bipyridine) films, deposited on an Au(111), showed little evidence that the spin
state occupancy changed at temperatures between 130 K and 300 K and this was attributed
to the molecular packing effects that alter the cooperative effects compared to the bulk
powder [86]. XAS indicated that while both the HS and LS states were represented, the low
spin dominated over a temperature range beyond that associated with the spin transition
of [Fe(H2B(pz)2)2(bipy)] molecules, when deposited on an Au(111) substrate [88]. XAS
spectra of [Fe(H2B(pz)2)2(bipy)] thin films revealed that SCO molecules were in a mixed
spin state at 340 K well above the typical transition temperature. After decreasing the
temperature below the transition temperature, the spin state remained in a mixture of both
HS and LS spin states (Figure 4a). The analysis of the XAS data for [Fe(H2B(pz)2)2(bipy)]
revealed that the orbital occupation of eg and t2g is very sensitive to temperature. However,
the occupation of the eg and t2g for [Fe(H2B(pz)2)2(bipy)], in a molecular bilayer film on
Au(111), is independent of temperature as seen in Figure 4b. Here there is support for
our contention that metals generally “lock” the spin state or mixed spin state and the spin
crossover spin state change is suppressed.

Ossinger et al. [89] utilized two approaches in studying the reaction of the SCO
complexes [Fe(H2B(pz)2)2(phenme4)] (pz = pyrazole, phenme4 = 3,4,7,8-tetramethyl-1,10-
phenanthroline) and [Fe(H2B(pz)2)2(phen)] on Au(111) substrates. Evidence from both
NEXAFS and STM shows that a sub-monolayer of this [Fe(H2B(pz)2)2(phenme4)] deposited
on Au(111) dissociates into a four-coordinate complex, [Fe(H2B(pz)2)2], and phenme4. Sim-
ilarly, the parent molecule [Fe(H2B(pz)2)2(phen)] dissociates into [Fe(H2B(pz)2)2] and phen
on Au(111). For [Fe(H2B(pz)2)2(phenme4)] on Bi(111), a substantial fraction (approximately
50%) of the complex remains intact but remains locked in the high spin state independent
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of temperature [89]. In contrast with results on Au(111), temperature-dependent NEXAFS
measurements of [Fe(H2B(pz)2)2(phenme4)] thin films on Bi(111) substrates show thermal,
light, and X-ray-induced spin state switching.
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Generally, metallic substrates lock at least the first few layers of SCO complexes into a
specific or mixed spin state. However, there are a few reports of SCO molecules deposited
on metallic substrates that can undergo spin state transitions. In such situations, other
parameters beyond the SCO-metal interface interactions, such as high energy X-rays, the
tips used for imaging, film thickness, and different types of ligands may be in play. In
this section, we discuss how these parameters can affect the spin state transition of SCO
molecules at temperatures ranging far from the transition temperature.

Although the conductivity of [Fe(H2B(pz)2)2(phen)] thin films sandwiched between
indium tin oxide (ITO) and Al changes at different temperatures due to external light
irradiation and this conductance change corresponds to a change in the spin state [93],
this change in conductivity cannot confirm a complete switching to the other spin state
or coexistence of HS/LS state. Furthermore, the transition temperature of bulk material
is vastly different from that of thin film. While the bulk powder abruptly switches the
spin state at 165 K, the thin film switches the spin state gradually somewhere between
100 K and 200 K, which could be due to the SCO-substrate interactions. Such a gradual
switching of the spin state over a wide temperature range significantly increases the chance
of HS/LS coexistence. Metallic substrates tend to only lock the first few adjacent layers
of of a molecular SCO thin film at the interface. For the Fe(H2B(pz)2)2(phen)] thin films,
sandwiched between indium tin oxide (ITO) and Al, the thin films were thick enough
(10–100 nm) so at least some of the [Fe(H2B(pz)2)2(phen)] could switch spin state being
located away from the interface [93]. It was claimed that ultra-thin films (5–6 molecular
layers) of [Fe(H2B(pz)2)(phen)] deposited on Au(111) were determined to change from
HS to LS during cooling, observed by UPS [94]. Interface effects can still be extensive.
During cooling from 180 K to 60 K, an increase of the LS feature was observed, however,
the transition temperature for the thin film was significantly lower than for bulk, implying
an influence of substrate on the spin state [94]. In another work, Schleicher et al. [95]



Molecules 2023, 28, 3735 7 of 34

reported that a 42 nm thin film of [Fe(H2B(pz)2(phen)] sandwiched between two 20 nm Au
electrodes showed evidence of a mixture of both HS and LS at room temperature.

The STM images of [Fe(H2B(pz)2(phen)] ultrathin films on Au(111) substrates show
the change in the electronic structure of the second molecular layer that has been attributed
to the transition between LS and HS states [96]. Coverages close to two monolayers of
[Fe(H2bpz)2(phen)] were produced in an ultra-high vacuum environment by deposition
on Au(111) surfaces at room temperature. STM images show that after cooling the sample
to 5 K, the first monolayer orients with three pyrazole groups towards the substrate
and the phenanthroline group away from the substrate. However, the second layer of
[Fe(H2B(pz)2(phen)] molecules exhibits the opposite orientation. Sublimated monolayers
of [Fe(HB(3,5-(CH3)2(pz)3)2] directly deposited on Au(111) revealed mixed spin states at
low temperatures [74]. Although it was shown that a 50 nm [Fe(qnal)2] (qnal = quinoline-
naphthaldehyde) thin film sublimated on an Au substrate behaves similarly to the bulk
form [97], this observation could be due to the thickness of the film as the molecule locks
mostly at the interface with the metallic substrate (as noted above). While based on
temperature-dependent XPS and UPS measurements of a 6.7 nm [Fe(HB(trz)3)2] (HB(trz)3
= tris(1H-1,2,4-triazol-1-yl)borohydride) thin film, on Au it was claimed that the spin state
switches from LS to HS [98], which confirms that Au substrates can mostly lock only the
first few monolayers of the SCO molecules on and near the interface (less than 2 nm)
and a minimum thickness of SCO molecules should be deposited to guarantee some SCO
molecules were not locked into a specific spin state.

Voltage-induced STM spin state switching study of [FeII((3,5(CH3)2Pz)3BH)2] on both
Au(111) and Cu(111) was performed by Tong et al. [99]. On Au(111) surfaces it revealed
that voltage pulses lead to the nonlocal switching of the molecules from HS to LS state
or LS to HS state, even if it was possibly locked initially into a specific spin state due to
strong coupling between SCO molecules and electrons on the metallic surface. However,
on Cu(111) surfaces, [FeII((3,5(CH3)2Pz)3BH)2] molecules maintained their electronic con-
figuration after stimulation by a voltage pulse [99]. For the voltage pulses applied on
molecules adsorbed on Au(111), a series of four consecutive pulses of 0.6 V (for 10 ms) was
applied on four nearby molecules. The STM topographic images (Figure 5) show that the
molecules on which the pulses have been applied are still in their initial state while a defect
of bright molecules has appeared nearby, evidencing a nonlocal switching process. Voltage
pulses lead to the switching of some molecules from the HS state to the LS state, however,
single molecule bistability was not achieved within the 2D network on Au(111) because
the original electronic state was recovered spontaneously (Figure 5a,b). On the contrary,
the bistability of single molecules in the 2D network was noticed on Cu(111) surfaces. In
Figure 5c,d, STM images reveal that all the molecules were switched to the HS state by a
voltage pulse, then one by one, single molecules were switched back by voltage pulses to
the LS state. This implies that not only is an external voltage needed to switch the spin state
on metallic surfaces, but also there is a relatively stronger chemical interaction between
[FeII((3,5(CH3)2pz)3BH)2] and Au(111) substrates compared to Cu(111).

New functional Co-based SCO molecules, inspired by previous studies on Fe-based SCO
molecules, opened another avenue for studying the effects of metallic substrates on the spin
state transition. STM images of [Co(H2B(pz)(pypz))2] (py = pyridine, pz = pyrazole) molecular
thin films deposited on Ag(111) substrates revealed that the molecules aggregate mostly into
tetramers due to a bis (tridentate) coordination sphere [100]. [Co(H2B(pz)(pypz))2] tetramers
on Ag(111) can exhibit a reversible spin transition between HS and LS states and can be
stimulated by passing an external current through them or their neighbors. The current-
voltage graph (Figure 6a) shows two spin states transitions that were measured repeatedly.
While switching occurred at voltages greater than ±1 V, when the voltage was reduced, the
spin state became locked (Figure 6b,c), indicating that a large external voltage stimulus is
required for the spin state to change. Studies with [Fe(H2B-(pyrazole)(pyridylpyrazole))2]
on an Ag(111) surface led to similar results [101,102].
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[Co(H2B(pz)(pypz))2], in a molecular tetramer, on an Ag(111) substrate. 16 different sweeps of the
sample ramping between −1.2 to 1.1 V and back are shown. Quick transitions between the two states
indicated as L and H are seen for |V| > 1 V, leading to a hysteresis. (b) An image of a tetramer before
the application of a bias. (c) An image after applied bias (V = −1 V, I = −18 pA, duration 1 s) to
the molecule denoted with an L in (b). In the H state, the molecule exhibits intramolecular contrast.
Images were taken at −0.5 V and 10 pA. Adapted with permission from reference [100].
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3. Non-Metallic Substrates That Lock the Spin State

There is some evidence that oxides, including NiCo2O4, SiO2, Al2O3, and LMSO
(La0.67Sr0.33MnO3) [103–105] can lock the spin state of SCO molecules, due to surface
defects that can lead to local charges or very strong interactions with the substrate and
consequently may cause a locking of the SCO complex on the top layer. In the following,
we review some of the molecules that were locked on such substrates.

Locking of [Fe(H2B(pz)2)2(bipy)] thin films into the LS spin state was achieved by
sublimating on dielectric substrates, such as Al2O3 and SiO2 [77]. Zhang et al. [77] reported
that while XAS measurements of [Fe(H2B(pz)2)2(bipy)] powder show a successful spin state
change with temperature, however, the 5 nm thin film of [Fe(H2B(pz)2)2(bipy)] sublimated
on SiO2 does not display a thermally induced transition and remains unchanged from
the low temperature up to room temperature, indicating that the film is mostly in LS
at 290 K. Therefore, Si substrates can pin the spin state of [Fe(H2B(pz)2)2(bipy)] on the
LS state for thin layers of 5 nm or less. The same experiment was done on 30 nm of
[Fe(H2B(pz)2)2(bipy)] deposited on Al2O3. The spin state tended to be pinned in the LS
state up to 345 K. Time evolution of the spectra during exposure of the film to X-rays during
XAS at around 290 K shows a systematic behavior reminiscent of the unlocking of the spin
state, allowing a transition to the HS state well above the transition temperature (Figure 7).
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permission from reference [77].

Magnetic oxide substrates have also exhibited a tendency to lock SCO complexes
including [Fe{H2B(pz)2}2(bipy)] in the LS state [103]. A magnetic thin film of NiCo2O4 was
deposited on Al2O3 followed by 10 nm of [Fe(H2B(pz)2)2(bipy)] via thermal evaporation.
XAS data taken at a temperature above the thermal-induced transition temperature showed
that the film was locked in the LS even at RT. With exposure to X-rays, the system switches
from LS to HS and it can be switched back to LS by applying an alternating magnetic field.
Furthermore, a [Fe(H2B(pz)2)2(bipy)] film sublimated on magnetic LMSO films on a SrTiO3
substrate exhibited the same behavior of locking the spin in the LS state (Figure 8).

Many experimental works show that graphite is an excellent substrate choice for pre-
serving the functionality of SCO molecules, however, a few reports show graphite can affect
the behavior of SCO molecular thin films [26]. While complete spin state switching was ob-
served in bulk and in 10 nm thin films of [Fe(H2B(pz)2)2COOC12H25-bipy] on SiOx wafers,
in contrast, a spin-state coexistence of 42% LS and 58% HS was noticed for a 0.4 molecular
layers deposition of the complex at 40 K on graphite. SOXIESST measurements revealed
that cooling the sample to 10 K leads to an increase of the HS fraction to 64%, indicating
the role of [Fe(H2B(pz)2)2COOC12H25-bipy] molecule-graphite interactions in tuning the
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thermal SCO characteristics of the complex. Computational studies show graphite as a 2D
material can be a good substrate choice for SCO devices, however, it is still not entirely
ideal for some SCO molecules as it causes the HS and LS splitting energy gap of specific
SCO molecules to increase [104]. In addition, graphite is relatively expensive. We will
discuss this in more detail later in this paper.
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4. Substrates That Do Not Lock the Spin State

Some substrates including graphite, quartz, glass, CuN, tungsten diselenide (WSe2),
and hafnium disulfide (HfS2) tend not lock adjacent SCO molecules is a specific spin
state. A few of these are reviewed below. As mentioned earlier, there is some evidence
that graphite might perturb the functionality of specific SCO molecules [104], however,
like some other 2D materials graphene generally interacts less with sublimated SCO
thin films [26,57,64,70,105] than most other substrates. Sub-monolayers of [Fe(NCS)2L]
(L = 1-{6-[1,1-di(pyridin-2-yl)ethyl]-pyridin-2-yl}-N,N-dimethylmethanamine) deposited
on graphite were switched repeatedly in a reversible manner between HS and LS by al-
tering the temperature [65]. A carbon-based substrate in direct contact with the molecule
preserves the SCO behavior.

The spin state of [Fe(H2B(pz)2)2(phen)] sublimated on a graphite substrate can be
switched via green light at 6 K and by increasing the temperature to 65 K [106]. A 0.7 sub-
monolayer of [Fe(H2B(pz)2)2(phen)] sublimated on a graphite substrate can be switched
at RT via light just like the bulk form and thick film [107]. Figure 9 demonstrates the
temperature-dependence of absorption spectra at both the L2 and L3 edges of Fe of a
submonolayer of [Fe(H2B(pz)2)2(phen)] on graphite, indicating successful switching be-
tween spin states. Recently [Fe(H2B(pz)2)2(phen)] was used in carbon nanotube nanoscale
transistors [51] due to its functionality on carbon surfaces.

The [Fe(H2B(pz)2)2(bipy)] molecule deposited on a graphite substrate successfully
exhibited a complete thermal and light-induced spin transition at different thicknesses,
with the width of the temperature-induced spin transition curve narrowing as the thickness
was increased. The submonolayer exhibited a non-cooperative behavior, however, the
multilayers exhibited a distinctly cooperative spin switching akin to free molecule behav-
ior [108], including low-temperature light-induced excited spin state trapping (LIESST),
that is to say, light induced excitation from the low spin state to the high spin state, an
excited state where the molecule remains trapped at very low temperatures, as shown in
Figure 10.
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The [Fe(H2B(pz)2)2(bipy)] molecule deposited on a graphite substrate successfully 
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Figure 9. (a) The thermal evolution of the normalized Fe L2,3 edge XAS spectra for a single layer
of [Fe(H2B(pz)2)2(phen)] (empty black dots) together with high-spin Fe(II) (red) and low-spin Fe
(II) (blue) spectra taken from reference [15], used as reference signals for the spectral deconvolution
(green lines). The broken lines are for reference. (b,c) The high-spin Fe(II) thermal distribution profile
(empty circles) was obtained from XAS spectra taken before (b) and after (c) irradiation at 4 K by
laser light. In (b,c) they are given by a Boltzmann distribution fitted line, giving a T1/2 = 168 + 15 K
and T1/2 = 56 + 3 K, respectively. Gathered from reference for comparison is the data measured for
the bulk sample plotted as colored dots. Adapted with permission from reference [107].
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Figure 10. (a) The temperature-dependent spin crossover for different thicknesses of [Fe (bpz)-bipy]
on highly oriented pyrolytic graphite compared to bulk; the dots are experimentally acquired data
while the solid lines are fits that were derived from using the Slichter–Drickamer model. (b) The
light-induced transition from LS to HS at 5 K for the different thicknesses [108].

The magnetic moment of a [Fe(H2B(pz)2(phen)] thin film on a graphite substrate was
changed via illumination by green light at 6 K [106], and by increasing the temperature
up to 300 K. Around 90% of the SCO molecules were thermally induced, indicating that
[Fe(Bpz)2phen] complexes preserve their spin switching when sublimated on a graphite
substrate. Moreover, temperature-dependent XAS on [FeIII(qsal-I)2]NTf2] (qsal-I = 4-iodo-2-
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[(8-quinolylimino) methyl]phenolate) deposited on a layer of graphene confirmed that the
[FeIII(qsal-I)2]NTf2] thin film switches from the HS to the LS state at lower temperatures
when compared to the molecule in the bulk form [109].

It was shown (Figure 11) that both temperature-dependent XAS and X-ray diffraction
(XRD) spectra of [Fe(H2B(pz)2)2(C12-bpy)] thin films sublimated on glass substrates show
the same SCO behavior as the powdered form [110], indicating that not only was the thin
film sublimation a success (Figure 11a), but also the same behavior as the bulk molecule
was witnessed (Figure 11b,c).
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Figure 11. The self-assembly of a [Fe(H2B(pz)2)2(C12-bpy)] thin film. (a) The X-ray diffraction pattern
of a 10 nm [Fe(H2B(pz)2)2(C12-bpy)] film on a quartz substrate with powder form for reference. The
equidistant reflections (001–004) show the lamellar structure of 2.54 nm periodicity for both powder
and film. The broad feature at 17–25◦ is evidence of the scattering signal from the quartz substrate.
(b) The Powder and (c) thin film XAS at the Fe L2,3 edges of [Fe(H2B(pz)2)2(C12-bpy)]. The XAS
spectra were obtained for powder (top) and 10 nm thick film on SiOx (bottom) at 300 K and 100 K.
The dotted lines indicate multiple features at ≈706.8 eV and ≈708.1 eV characteristics of HS and
LS state molecules. The data was acquired in total electron yield mode at normal X-ray incidence
and normalized to the sum of integrals over the Fe L3 and L2 edges. Adapted with permission from
reference [110].

In another study, Naggert et al. [111] showed, by temperature-dependent UV-Vis
spectroscopy, that a 480 nm film of [FeII((H2Bpz)2)2(phen)] deposited on glass can undergo
a change in spin state with changing temperature. [Fe((H2B(pz)2)2(bipy)] evaporated
on glass behaved similarly. These results show that glass can be a proper candidate for
molecular-based devices. Just like its parent molecule ([Fe(H2Bpz)2)2(phen)]) discussed
above, spin state switching of [Fe(H2B(pz)2)2(phenme4)] deposited on quartz was seen to
change spin state in temperature-dependent UV-Vis spectroscopy (Figure 12a) [89]. The
greater crystallinity of quartz, compared to glass, may influence the effective cooperativity
in the SCO film adjacent to the interface [112]. Additionally, the Fourier transform infrared
(FTIR) spectra of [Fe(H2B(pz)2)2(phenme4)] are very similar to the bulk form, indicating
that the molecule maintains its crystalline structure after sublimation (Figure 12b).

[Fe(HB(trz)3)2] spin crossover thin films deposited on silica substrates, with thick-
nesses, 50 nm, 100 nm, and 150 nm, were successfully switched between the two spin states
by altering the temperature [113]. While the transition temperature is well above RT (375 K)
and initially the molecule is in LS, optical absorbance spectra revealed that the molecule
was switched to HS by increasing the temperature. This behavior indicates that switching
is independent of film thickness (Figure 13).



Molecules 2023, 28, 3735 13 of 34

Molecules 2023, 28, x FOR PEER REVIEW 13 of 34 
 

 

were obtained for powder (top) and 10 nm thick film on SiOx (bottom) at 300 K and 100 K. The dotted 
lines indicate multiple features at ≈706.8 eV and ≈708.1 eV characteristics of HS and LS state molecules. 
The data was acquired in total electron yield mode at normal X-ray incidence and normalized to the 
sum of integrals over the Fe L3 and L2 edges. Adapted with permission from reference [110]. 

In another study, Naggert et al. [111] showed, by temperature-dependent UV-Vis 
spectroscopy, that a 480 nm film of [FeII((H2Bpz)2)2(phen)] deposited on glass can undergo 
a change in spin state with changing temperature. [Fe((H2B(pz)2)2(bipy)] evaporated on 
glass behaved similarly. These results show that glass can be a proper candidate for 
molecular-based devices. Just like its parent molecule ([Fe(H2Bpz)2)2(phen)]) discussed 
above, spin state switching of [Fe(H2B(pz)2)2(phenme4)] deposited on quartz was seen to 
change spin state in temperature-dependent UV-Vis spectroscopy (Figure 12a) [89]. The 
greater crystallinity of quartz, compared to glass, may influence the effective cooperativity 
in the SCO film adjacent to the interface [112]. Additionally, the Fourier transform infrared 
(FTIR) spectra of [Fe(H2B(pz)2)2(phenme4)] are very similar to the bulk form, indicating 
that the molecule maintains its crystalline structure after sublimation (Figure 12b). 

 
Figure 12. (a) The temperature-dependent UV-vis of a film of [Fe(H2B(pz)2)2(phenme4)] on a quartz 
disk at 298 K (red line) and 78 K (blue line). Gray: temperatures between 298 K and 78 K (b) The 
Fourier transform infrared (FT-IR) spectra of the bulk material (black dotted line) and the-deposited 
form (red line) of [Fe(H2B(pz)2)2(phenme4)] at 298 K. Adapted with permission from reference [89]. 

[Fe(HB(trz)3)2] spin crossover thin films deposited on silica substrates, with 
thicknesses, 50 nm, 100 nm, and 150 nm, were successfully switched between the two spin 
states by altering the temperature [113]. While the transition temperature is well above RT 
(375 K) and initially the molecule is in LS, optical absorbance spectra revealed that the 
molecule was switched to HS by increasing the temperature. This behavior indicates that 
switching is independent of film thickness (Figure 13). 

Figure 12. (a) The temperature-dependent UV-vis of a film of [Fe(H2B(pz)2)2(phenme4)] on a quartz
disk at 298 K (red line) and 78 K (blue line). Gray: temperatures between 298 K and 78 K (b) The
Fourier transform infrared (FT-IR) spectra of the bulk material (black dotted line) and the-deposited
form (red line) of [Fe(H2B(pz)2)2(phenme4)] at 298 K. Adapted with permission from reference [89].
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Figure 13. (a) The optical absorbance spectra of the 100 nm [Fe(HB(trz)3)2] film were obtained
at specific temperatures between 293 K (LS) and 393 K (HS). Inset: optical density changes
∆OD = OD293K − OD393K of all three films as a function of wavelength. (b) The temperature depen-
dence of the HS fraction for all three films was acquired by varying the optical density at λ = 317
nm during one heating-cooling cycle at a rate of 1 K min−1. The inset displays the derivatives of the
transition curves. Adapted with permission from reference [113].

A study done by Miyamachi et al. revealed that surface interactions can be affected
by having an interfacial layer. A film of [Fe(phen)2)(NCS)2] deposited on a thin interfacial
layer of CuN on a Cu(100) surface significantly decreases the interaction between surface
and molecule and allows the [Fe(phen)2)(NCS)2] to switch from HS to LS and vice versa
due to a reduction of the adsorption energy [71]. By using STM, the stimulus was focused
on the area of current flow which demonstrates electronic switching of the spin state. While
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Fe-phen molecules sublimated onto a Cu(100) surface showed mixed HS and LS states due
to the strong coupling of the NCS group to the substrate, it prevented electronic switching of
the spin state. However, a thin CuN layer deposited on Cu(100) allowed switching between
the HS and the LS state. A monoatomic CuN layer dramatically reduces the adsorption
energy and ensues hybridization, reducing the chemical interaction between molecule and
substrate and weakening the bond of sulfur to the oxidized Cu atoms in the CuN network.
As with Cu(100), STM images (Figure 14), revealed that [Fe(phen)2)(NCS)2] adsorbs with
the NCS groups onto the CuN surface, and two types of molecular conformations (α and
β) were observed. Due to the electronic decoupling of the molecules, the difference in the
molecular shape seen by STM was dramatically smaller when compared with that on bare
Cu. Figure 14h shows two slightly different height profiles in the center region, with type α

higher than that of type β. Figure 14i represents the dI/dV spectra near the Fermi energy
on the center of both types demonstrating a clear Kondo resonance only on type α and also
a weak spectroscopic property on type β. Except for CuN, similar studies show sublimated
SCO complexes on the family surface group like Cu2N preserve their functionality [114].
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measurements demonstrated that the spin state of the [Fe(pypyr(CF3)2)2(phen)] thin film 
deposited on Au(111) was locked. However, a successful transition to the HS state was 
noticed for [Fe(pypyr(CF3)2)2(phen)] deposited on graphite, WSe2, and HfS2 confirming the 
previous results [57]. 

A change in the spin state of an SCO thin film usually causes a noticeable change in 
the electrical conductivity and charge transport properties as well [48]. Generally, glass, 
between interdigitated Au electrodes, seems to be a promising substrate as thin films on 
such substrates tends to not affect the deposited molecule’s ability to switch spin states. 
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temperature is altered [8,115,116]. For the substrates with interdigitated gold electrodes, 

Figure 14. [Fe(phen)2)(NCS)2] SCO molecules deposited on Cu(100). (a) A 3-D image of this Fe-phen
molecule. (b) The LS and HS electronic configurations of the FeII 3d orbitals. (c) An STM image
of Fe-phen molecules on Cu(100) with two forms denoted as I (HS) and II (LS). Image dimensions
are 13 × 13 nm2. (d) The dI/dV spectra taken at the center of type I (HS), type II (LS) molecules,
and the Cu(100) surface. The colors indicate the points where the spectra were acquired and are
marked as colored dots of (e). The black dotted line represents a Fano fit to the Kondo resonance.
(e) An STM image of a pair of type I (HS) and type II (LS) molecules and their (f) related dI/dV map
(bottom) obtained at +10 mV indicating the point of the Kondo resonance at the center of the HS
molecule. Image dimensions are 6.7 × 3.7 nm2. Fe-phen SCO molecules deposited on CuN/Cu(100).
(g) An STM image (3 × 5.5 nm2) of single Fe-phen molecules on the CuN/Cu(100) surface with two
forms listed as α (HS) and β (LS) and (h) line scans across the long axis of the molecules indicating
their difference. (i) The dI/dV spectra taken at the center of the two configurations of the Fe-phen
molecules together with a Fano fit (dotted black line) to the Kondo resonance of type α. The black
line is the spectrum recorded on bare CuN. Adapted with permission from reference [71].

Substrates possessing a lower density of states near the Fermi level can decrease the
van der Waals interaction at the SCO/substrate interface and can preserve the functionality
of the deposited SCO thin films [57,89]. Previously, we saw [Fe(H2B(pz)2)2(phen)] deposited
on Au(111) became pinned in a given spin state, however, a partial spin state switching was
noticed for the same molecule deposited on a Bi(111) substrate [89] which is a semimetal



Molecules 2023, 28, 3735 15 of 34

with a relatively lower density of states than Au(111) at the Fermi level [89]. Investigating
this further, Rohlf et al. [57] deposited [Fe(pypyr(CF3)2)2(phen)] (pypyr = 2-(2′-pyridyl)
pyrrolidine) on the semiconducting layered dichalcogenide materials WSe2 and HfS2, both
of which have a reduced density of states at the Fermi level, and witnessed a full spin state
transition. Then, they compared the HS fraction of [Fe(pypyr(CF3)2)2(phen)] deposited on
Au(111) and graphite, respectively. XAS measurements demonstrated that the spin state
of the [Fe(pypyr(CF3)2)2(phen)] thin film deposited on Au(111) was locked. However, a
successful transition to the HS state was noticed for [Fe(pypyr(CF3)2)2(phen)] deposited on
graphite, WSe2, and HfS2 confirming the previous results [57].

A change in the spin state of an SCO thin film usually causes a noticeable change in
the electrical conductivity and charge transport properties as well [48]. Generally, glass,
between interdigitated Au electrodes, seems to be a promising substrate as thin films on
such substrates tends to not affect the deposited molecule’s ability to switch spin states. The
conductivity of [Fe(HB(pz)3)2] and [Fe(H2B(pz)2)2(bipy)] thin films on such substrates with
gold interdigitated microelectrodes will change spin state occupancy when the temperature
is altered [8,115,116]. For the substrates with interdigitated gold electrodes, the substrate
is only partially occupied with the gold microelectrodes and most SCO molecular thin
film is not in direct contact with the gold. Computational studies show SCO molecules
between interdigitated microelectrodes may not act independently and can couple with
each other, leading to a change in their properties [117]. This will be further discussed
below (vide infra).

Switching of the spin state of [Fe(Htrz)2(trz)](BF4)] by an induced electric field on
Si/SiO2 substrates with interdigitated Au microelectrodes, with an inter-electrode gap of
4 micrometers, has been reported in Lefter et al. [118]. Transmission electron microscope
(TEM) measurements of [Fe(Htrz)2(trz)](BF4)] molecules revealed that the cooperative SCO
behavior of such nanocrystals is altered by changing temperature, which confirms that the
breathing of the crystallographic unit cell shows up at the nanoscale [119]. Beyond that,
probing this length change, the photo-switching dynamics of a single nanoparticle and how
it was affected by the presence of gold nano-rods using an ultrafast transmission electron
microscope (UTEM) revealed that increasing the number of gold nano-rods accelerates the
photo-switching rate.

[Fe(pyrazine)Pt(CN)4] thin films created by laser-mediated evaporation on Si sub-
strates showed an altered SCO behavior going from a sharp transition with temperature
hysteresis of 16 K around room temperature in the nanocrystalline form to a gradual tran-
sition shifted downwards to 170 K in thin film form due to a side effect of laser-induced
desorption. However, XRD and microscopic imaging showed both the nanocrystalline and
thin film forms have similar structures [120]. The light-induced spin transition mechanism,
due to the coupling between [Fe[HB(3,5-(Me)2Pz)3]2] SCO complexes and 2D materials,
allows the efficient optoelectrical detection of the spin transition. It was shown that the
spin state of the [Fe[HB(3,5-(Me)2Pz)3]2] complex in the SCO-graphene substrate interfaces
changes due to electrical detection at the interface [121].

The angle-resolved X-ray photoelectron spectroscopy (ARXPS) measurements of
[FeIII(qsal-I)2]NTf2] SCO complex on a Cu/SLG/[FeIII(qsal-I)2]NTf2]/GaOx/EGaIn SCO
molecular junction device show that the counteranion was adsorbed on the graphene with
the [Fe(qsal-I)2] plus cation on top, which caused the SCO molecule to decouple from the
Cu electrode. XAS and XMCD spectroscopy showed reversible spin state transition in the
molecular junctions. Gakiya-Teruya et al. [122] prepared thin films of the [Fe(tBu2qsal)2]
SCO complex at a sublimation temperature of 423 K and background pressure of 10−8 mbar
onto a Pt/Ti/SiO2/Si(100) substrate. Following frequency-dependent capacitance measure-
ments and a hysteretic spin transition, they concluded that the Pt layer did not affect spin
state switching.

Poggini et al. [98] reported on a 100 nm film of [Fe(HB(tz)3)2] thermally evaporated
on a Kapton substrate, the spin crossover transition is incomplete at 350 K, different
from the switching of bulk [Fe(HB(tz)3)2] with a transition temperature of 326 K. This
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change and gradual spin state transition in the film compared with the bulk material can
be due to the effect of nano-structuration on the compound or even may arise from a
relevant increase of surface energies when going from LS to HS. A successful temperature-
dependent charge transport measurement of a [Fe(HB(tz)3)2] thin film evaporated on
180 nm lithography patterned ITO electrodes on a glass substrate was achieved [123]. For
the different thicknesses of [Fe(HB(tz)3)2], thin film spin transition at different temperatures
occurred, however for the film with 10 nm thickness no spin transition was detected.

5. Ferroelectric Substrate Manipulation of the Spin State

While several methods have been suggested to control switching between spin
states [112,124], it has been found that by changing the ferroelectric polarization, the spin
state occupancy of a very thin spin crossover molecular film can be manipulated [9,125–127].
Thus, one possibility is using a ferroelectric material in the interface [127,128]. Ferroelec-
tric substrates are an option to control the spin state of a particular SCO thin film layer.
In other words, the influence of the substrate, favoring one particular spin state, de-
pends on the ferroelectric polarization. The organic ferroelectrics poly(vinylidene fluoride-
hexafluoropropylene) (PVDF-HFP) and croconic acid can both lock the spin state of the
spin crossover complex [Fe(H2B(pz)2)2(bipy)] thin films depending on the ferroelectric
layer polarity (Figure 15a,b) [9].
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Figure 15. The temperature-driven SCO transition (a) compared to the electric field control of the
spin state of [Fe(H2B(pz)2)2(bipy)] thin films on PVDF-HFP ferroelectric substrates (b). The XAS
reveals that [Fe(H2B(pz)2)2(bipy)] is pinned for the most part in the LS state when the ferroelectric
polarization of PVDF-HFP has pointed away from [Fe(H2B(pz)2)2(bipy)] (PVDF-HFP away) and
converts to the HS state when the ferroelectric polarization of PVDF-HFP is pointing towards
[Fe(H2B(pz)2)2(bipy)] (PVDF-HFP towards). [Fe(H2B(pz)2)2(bipy)] on croconic acid persists in the LS
state, in the absence of an applied voltage (croconic acid). Adapted with permission from reference [9].

The thickness of the PVDF-HFP layer in PVDF-HFP/[Fe(H2B(pz)2)2(bipy)] bilayer
films plays a crucial role in achieving an optimal functionality of switching to different spin
states by altering the polarity [125]. Moreover, the spin state of the [Fe(H2B(pz)2)2(bipy)]
thin film tends to be locked in a specific spin state depending on the direction of the
polarization at the interface with organic ferroelectric PVDF-TrFE (polyvinylidene fluoride
with trifluoroethylene) [126].



Molecules 2023, 28, 3735 17 of 34

[Fe(H2B(pz)2)2(bipy)] complexes deposited on differently poled ferroelectric PMN-
PT ([Pb(Mg1/3Nb2/3)O3]1−x[PbTiO3]x, x = 0.32) characterized by X-ray absorption spec-
troscopy revealed temperature-driven conversion between HS and LS states with no ob-
servable effect of the ferroelectric polarization on the spin state of the molecules down to
100 K [127]. However, at 3 K, large differences were noticed between the two ferroelectric
polarizations. At this temperature, the efficiency of X-rays exciting the molecules to the
HS state was more than an order of magnitude larger when the ferroelectric dipoles of
the substrate were pointing toward the surface, compared to the opposite polarization.
SOXIESST in the thin film samples at 3 K exhibited no SOXIESST on the (−) poled substrate,
whereas on the (+) poled sample, a significant HS fraction appears within minutes of
irradiation. Figure 16a,b display two sequences of six X-ray absorption spectra each on
negative and positive PMN-PT. These results were confirmed in the HS fractions overtime
plot (Figure 16c). Surprisingly, the high spin state of [Fe(H2B(pz)2)2(bipy)] favors the ferro-
electric being poled “up” and the low spin state favors the oxide ferroelectric being poled
down [127], which was also seen for [Fe(H2B(pz)2)2(bipy)] on the organic ferroelectrics
PVDF-HFP and PVDF-TrFE [7–9,126].
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on the ferroelectric oxide (+)- and (-)-PMN-PT. (a,b) A progression of six different spectra on both
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quantity of D = 20 ph nm−2. Spin-state trapping is seen on (+)-PMN-PT, but not on (−)-PMN-PT. The
spectra are normalized for clarity. (c) Time-dependent HS fractions were gathered from the spectra in
(a,b). Adapted with permission from reference [127].

1500 nm thick [Fe(Htrz)2(trz)](BF4)] thin films on PVDF-TrFE polymer were fabricated
as bilayer samples to be used potentially in MEMS devices [128]. A reproducible actuation
near the transition temperature was seen in the composite which proved the conservation
of the thermal actuating characteristics of the nanoparticles in the thin film, which means
PVDF-TrFE can influence SCO samples with thicknesses greater than a micron [128], al-
though this may in effect be a pressure effect, suggesting that magneto-striction could be
very real in such heterolayer devices.

6. Other Parameters That Influence the Spin State Switching

In the simplest picture, it would be expected that the influence of the substrate extends
only to the layer of SCO molecules in direct contact with the substrate, but in reality,
the situation is far more complicated. To better understand how different substrates can
affect the functionality of SCO complexes, careful attention to other parameters that can
potentially perturb SCO molecules should be considered. These include ligand types, film
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thickness, thin film fabrication method, surface properties of the substrates, and the probing
methods used [91,129–138].

Doping SCO complexes with certain chemicals can alter properties such as transition
temperature and conductivity [112,139,140]. Fluorination of specific SCO complexes can
improve their functionality in thin film form [91]. Polymorphism can drastically influence
the crystal packing structure and the physical properties of SCO molecules. A change in
packing mode can lead to a change in intermolecular interactions, and eventually cause
a critical shift in transition temperature [40,129–131]. Recently, chemists have tried to
synthesize new SCO complexes for use in spintronic devices which are compatible with
metallic surfaces such as Au and Ag [141]. Minor ligand modifications in Fe (II) SCO
complexes [Fe(H2B(pz)2)2(L)] can lead to significant changes in the SCO properties of
the molecules. Temperature-dependent UV-Vis spectroscopy on both bulk and thin films
revealed that the transition temperatures of these two phases were different [68], which is
similarly true for other molecules [142].

Beyond regular spin state switching methods in SCO molecules, it is also possible to
switch the spin state by coordination/decoordination of ligands in the molecule [96]. This
has been shown to influence the cooperativity of the deposited SCO complexes [132,143].
Thermal and light-induced [Fe(H2B(bpz)2)2(phen)] complexes and their methylated deriva-
tives on graphite substrates [66] show that while the unmodified complexes potentially
show both thermal and light-induced spin state transition, the addition of a few methyl
groups leads to a loss of the SCO on the surface (Figure 17a–d). Moreover, comparing
angle-dependent measurements of K-edge with calculations leads to the conclusion that
both switchable SCO molecules and those molecules locked in their HS state on the surface
have a similar preferential orientation, but molecules with an incomplete SCO show a
random orientation on the surface.

Molecules 2023, 28, x FOR PEER REVIEW 19 of 34 
 

 

potentially show both thermal and light-induced spin state transition, the addition of a 
few methyl groups leads to a loss of the SCO on the surface (Figure 17a–d). Moreover, 
comparing angle-dependent measurements of K-edge with calculations leads to the 
conclusion that both switchable SCO molecules and those molecules locked in their HS 
state on the surface have a similar preferential orientation, but molecules with an 
incomplete SCO show a random orientation on the surface. 

 
Figure 17. The XAS L3-edge spectra of: (a) 0.4 molecular layers of [Fe(bpz)2(phen)] deposited on 
graphite; (b) 0.4 molecular layers of [Fe(bpz)2(Me2-phen)] on graphite; (c) 0.3 molecular layers of 
[Fe(bpz)2(me4-phen)] on graphite, and (d) 0.6 molecular layers of [Fe(4-Me2-bpz)2(phen)] on 
graphite. The inset of (a) illustrates the high-spin configuration with electrons occupying both the 
eg and t2g levels, while the inset of (b) illustrates the low-spin configuration with the lower t2g level 
fully occupied by electrons. Adapted with permission from reference [66]. 

The method of thin film deposition can significantly affect the functionality of SCO 
complexes [133–137]. An uncontrolled SCO film thickness results in dramatic changes in 
thickness and cooperativity between molecules and consequently, the SCO properties 
may be altered. Precise control of the thickness is crucial as changes in the thickness can 
influence the functionality of the deposited SCO complex, especially for fabricating 2D 
SCO film complexes [144–147]. 

Minimum cooperativity between SCO molecular thin films is desirable for fabricating 
nano sized sensors [148]. An incomplete spin state switching was reported for bulk 
[Fe(H2B(4-CH3-pz)2)2(bipy)] due to intermolecular interactions, however, for vacuum-
deposited thin films a complete switching was seen due to a decrease in intermolecular 
interactions [149]. The film thickness of the [Fe(H2B(pz)2)2(bipy)] molecule plays a crucial 
role in the tunability of the energy barrier between states due to the interactions at the 
[Fe(H2B(pz)2)2(bipy)]/Al2O3 interface. The bistability of the spin state hysteresis for films 
with thicknesses (300 nm and 900 nm) implies that the temperature range of the bistability 
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Layer by layer deposition is one of the methods used to fabricate SCO thin films with 
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Figure 17. The XAS L3-edge spectra of: (a) 0.4 molecular layers of [Fe(bpz)2(phen)] deposited on
graphite; (b) 0.4 molecular layers of [Fe(bpz)2(Me2-phen)] on graphite; (c) 0.3 molecular layers of
[Fe(bpz)2(me4-phen)] on graphite, and (d) 0.6 molecular layers of [Fe(4-Me2-bpz)2(phen)] on graphite.
The inset of (a) illustrates the high-spin configuration with electrons occupying both the eg and
t2g levels, while the inset of (b) illustrates the low-spin configuration with the lower t2g level fully
occupied by electrons. Adapted with permission from reference [66].

The method of thin film deposition can significantly affect the functionality of SCO
complexes [133–137]. An uncontrolled SCO film thickness results in dramatic changes
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in thickness and cooperativity between molecules and consequently, the SCO properties
may be altered. Precise control of the thickness is crucial as changes in the thickness can
influence the functionality of the deposited SCO complex, especially for fabricating 2D
SCO film complexes [144–147].

Minimum cooperativity between SCO molecular thin films is desirable for fabricat-
ing nano sized sensors [148]. An incomplete spin state switching was reported for bulk
[Fe(H2B(4-CH3-pz)2)2(bipy)] due to intermolecular interactions, however, for vacuum-
deposited thin films a complete switching was seen due to a decrease in intermolecular
interactions [149]. The film thickness of the [Fe(H2B(pz)2)2(bipy)] molecule plays a crucial
role in the tunability of the energy barrier between states due to the interactions at the
[Fe(H2B(pz)2)2(bipy)]/Al2O3 interface. The bistability of the spin state hysteresis for films
with thicknesses (300 nm and 900 nm) implies that the temperature range of the bistability
can be broadened for different film thicknesses [132].

Layer by layer deposition is one of the methods used to fabricate SCO thin films with
highly controlled thicknesses in the range of a nanometer [150]. This method was utilized
for fabricating heterostructured SCO thin films that contained a well-defined buffer layer
between the metallic substrates and SCO molecules. The result was a dramatic change in
the SCO transition temperature [136]. The film thickness of crystalline ultrathin films of the
SCO [Fe(py)2[Pt(CN)4] fabricated by the layer-by-layer method significantly affects the spin
transition of the molecule [151]. For ultra-thin films below 10 nm, the functionality of the
SCO complex is harshly affected, however for samples with thicknesses higher than 10 nm
a similar behavior as a bulk complex is noticed. This can be due to an enhancement in
cooperativity between molecules as a result of interparticle interactions. However, for films
below 10 nm, SCO molecules become locked in the HS state as crystallites surrounded by
Fe centers are partially separated [149,151]. STM images that compared to the deposition
by sublimation revealed that the electrospray ionization deposition thin film preparation
method of [Fe(pap)2]+ results in a significantly higher proportion of intact molecules on
the Au(111) surface [77].

[FeII(Htrz)2(trz)](BF4)] molecules spray-coated on SU-8 (an epoxy-based photoresist
designed for micromachining) polymer surfaces in micrometer scale thicknesses result
in smooth and homogenous films that can be used in both microscopic and macroscopic
actuator devices. The thermal hysteresis loop of the composite film with twice as large as
comparing the initial nanoparticles was achieved due to the combined effects of thickness
mechanical interactions in the interface of [FeII(Htrz)2(trz)](BF4)]/SU-8 [152]. The transition
temperature of [Fe(pypyr(CF3)2)2(phen)] drastically decreases by around 60 K in thin
film form on a substrate, compared with the bulk form [72]. Moreover, thin films of
[Fe(pypyr(CF3)2)2(phen)] showed sensitivity to the SOXIESST effect in the temperature
range of 28 K to 90 K with switching from LS to HS state and vice versa drastically improved
due to reducing the internal pressure of the molecule in thin film form.

The effect of surface morphology on the SCO complex [Fe(py)2[Ni(CN)4]] was estab-
lished by comparing the SCO behavior when on annealed and unannealed (as-supplied) Au
substrates [138]. The spin transition curves of [Fe(py)2[Ni(CN)4]] are shown in Figure 18a,b
for thin films on as-supplied substrates and the transition temperature shifted to lower
temperatures with the more imperfect substrate crystallite domain size decreased. On the
other hand, 40-layer and 20-layer thin films deposited on annealed Au substrates showed
no SCO phenomena when changing the temperature.

This phenomenon can be explained by AFM studies (Figure 19a,b). Crystal domains
of {Fe(py)2[Ni(CN)4]} on annealed Au substrates mostly aggregated in comparison with
coarse granular-like particles when on the as-supplied Au substrate, which leads to the
conclusion that the surface microstructure can affect the stabilization spin state, in thin film
form [138]. This lends further support to the fact that Au, as a substrate can lock the spin
state, as discussed above.
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of {Fe(py)2[Ni(CN)4]} on annealed Au substrates mostly aggregated in comparison with 
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Figure 18. Spin crossover behavior for ultrathin [Fe(py)2[Ni(CN)4]] films. (a) The spin transition
curves as a function of temperature for bulk-Ni py and film-Ni py on unannealed/annealed Au
substrates. Triangles and inverted triangles represent heating and cooling processes. (b) The surface
structure guided spin state of films in (i) SCO-inactive HS and (ii) HS states. Adapted with permission
from reference [138].
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Figure 19. The surface morphology of the deposited films. Topographic AFM images were acquired
in tapping mode for (a) 20 layers of film-Nipy and (b) 40 layers of film-Nipy which were grown on a
SAM-anchored Au(111) surface. Images on the left correspond to untreated Au substrates. On the
right, substrates were H2 annealed. Adapted with permission from reference [138].

Sub-monolayers of [Fe(HB(3,5-(CH3)2(pz)3)2] on the metallic substrates Au(111),
Ag(111), and Cu(111) have also been investigated. Zhang et al. [153] proposed a new
mechanism, for the spin state transition of [Fe(HB(3,5-(CH3)2(pz)3)2], based on light ab-
sorption by the substrate that generates vibrational excitations which in turn may lead to
spin state switching in the SCO-metallic substrate interface. They applied both XAS and
STM to study the shape of spectra at the edge of Fe (II) L2,3 and the homogeneity of the film
on different substrates. For all substrates at low temperature, the spectra never showed a
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pure LS state for the thin film, in contrast with the bulk material. A mixture of LS and HS
was observed at 4 K and a pure HS at 290 K. This spin state mixture on a metallic substrate
could be due to the epitaxial constraint imposed by the substrate on the molecular layer.
STM revealed that the spin state mixture is not due to the inhomogeneity of thin films on
the substrate, but rather it is due to the metal–molecule interface. They also observed the
LS state increases after light illumination with samples on Cu(111) and Au(111), but no
such behavior was reported on Ag(111).

Beyond the discussed factors that can affect SCO film functionality, there are other
aspects to consider. These include oxidation, surface packing effects, and changes in
coordination [154]. For thin films deposited via drop casting, the choice of solvent used
can drastically alter SCO properties [139,155]. Molecule size, surface morphology [156,157],
size reduction effects [156,158,159], and the interactions between microcrystals can all
have a major effect on SCO properties [160]. Post-deposition treatments, such as solvent
vapor annealing are a way to improve crystallinity and consequently the properties of the
deposited films [161].

7. Insights from Theory

In this section, we focus on computational and analytical methods applied to study the
interaction between SCO/substrate. While evidence gathered by direct observation using
tools such as STM or XAS can give insight into the behavior of SCO molecules on different
substrates, computational tools can provide a unique and novel perspective, especially
in the case where it is difficult to explain a phenomenon by experiment alone. For some
common substrates that were studied experimentally, parallel theoretical works led to some
intriguing results. Density functional theory (DFT) calculations have been used to predict
the initial spin state of different SCO complexes in different surface environments [114].

Both simulations and experiments show that 2D materials can serve as effective substrates
that preserve the switching behavior of SCO molecules [25,57,104,162]. Zhang et al. [104]
studied the surface effect on the switching mechanism of [Fe(phen)2)(NCS)2] complex on
different metallic and 2D substrates using DFT. Calculations show that the LS state of
[Fe(phen)2)(NCS)2] was locked on Cu(111), Ag(111), and Au(111) metallic substrates due
to conformation changes in the adsorbate [104]. Most likely, due to the strong chemical
interactions of SCO molecules with metal surfaces, metallic substrates cause a locking
of the spin state. STM studies showed that the NCS group of [Fe(phen)2)(NCS)2] easily
adsorbs into Cu substrates and causes a lock in the spin state [73]. Calculated adsorption
energies of [Fe(phen)2)(NCS)2] for both HS and LS states for Cu substrates and others
show that the spin state energy is very sensitive to the SCO-substrate interaction upon spin
conversion. In the case of metallic substrates like Cu(111), Ag(111), and Au(111), based
on Figure 20, the adsorption energies in the LS state are significantly lower compared to
those in the HS state, which can cause the molecules to become locked in a LS ground state.
DFT calculations showed that the [Fe(phen)2)(NCS)2] SCO molecule is preserved on both
hexagonal boron nitride and molybdenum disulfide (MoS2), and the LS states were locked
on Cu(111), Ag(111), and Au(111). On the contrary, [Fe(phen)2)(NCS)2] in contact with a
graphite substrate exhibits a HS ground state. Calculations show that the spin transition
temperature depends critically on surface environments correlated with the modification
of electronic structures and molecular vibrations upon adsorption [104].
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The Van der Waals interaction is the dominating force with 2D materials, which 
causes the differences between energies in LS and HS states not to vary much. With 
graphene, however, this does not hold true. It might explain why very few pieces of 
literature report a locked spin state when graphite is used as a substrate [26]. For the 
substrate 2H-MoS2, the difference between energies in the HS and LS states is less than 
0.03 eV compared to the free molecule, which means an easy thermal spin switching is 
expected. This agrees with experimental results from MoS2/SCO, indicating that the 
sublimated SCO molecules on a MoS2 surface preserve their functionality [25]. Using a 
nanosheet hBN and MoS2 helps spin transition happen and even a single sulfur vacancy 

Figure 20. (a) The adsorption energies of Fe phen molecules for both the HS and LS states deposited
on different substrates: Cu(111), Ag(111), Au(111), graphene, hBN, 2H–MoS2, and MoS2 with
defects (def-MoS2). (b) The correlating spin adiabatic energy difference ∆E of the adsorbed molecule
compared to the free molecule. The highlighted area corresponds to the range of ∆E (0–0.3 eV) for
most SCO-active compounds. Adapted with permission from reference [104].

The Van der Waals interaction is the dominating force with 2D materials, which causes
the differences between energies in LS and HS states not to vary much. With graphene,
however, this does not hold true. It might explain why very few pieces of literature report
a locked spin state when graphite is used as a substrate [26]. For the substrate 2H-MoS2,
the difference between energies in the HS and LS states is less than 0.03 eV compared to the
free molecule, which means an easy thermal spin switching is expected. This agrees with
experimental results from MoS2/SCO, indicating that the sublimated SCO molecules on
a MoS2 surface preserve their functionality [25]. Using a nanosheet hBN and MoS2 helps
spin transition happen and even a single sulfur vacancy in MoS2 can shift the transition
temperature toward higher values in comparison with a perfect surface.

Some experimental studies suggest that a nano-gap gold electrode device will not lock
the spin state of SCO molecules [8,48,115,116,163] but this tends to contradict the obser-
vation that gold substrates in fact lock the spin state, as discussed above. Conductance
calculations for a single SCO molecule between gold electrodes suggest that the spin state
is dependent on the orientation of the SCO molecule [164]. Single-molecule conductance
measurements of [FeIII(EtOSalPet)(NCS)] in the nanogap between gold electrodes demon-
strate that switching occurs at higher temperatures compared to the bulk form due to a
cooperative switching effect loss [163]. However, statistical analysis of the experimental
resistance values, the occupation probabilities, and the lifetimes of the respective spin states
revealed SCO molecules do not act independently and in fact couple to one another [117].
Although coupling between SCO molecules in such devices does not directly deal with the
electrode, the way gold electrodes cause molecules to align in the gap indirectly influences
the coupling between SCO molecules. Figure 21 is a schematic picture of this showing how
[FeIII(EtOSalPet)(NCS)] SCO molecules tend to bond to the Au surface which leads to a
coupling between molecules and consequently affects the spin state. Such single-molecule
conductance calculations are often somewhat suspect because in many cases there is no
locking of the spin state by the gold, and the calculated currents are high, incompatible
with the high resistance of most spin crossover complexes suggestive of unrealistically high
power dissipation through a single molecule.
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Different models such as Ising-like or Slichter-Drickamer mean-field approach were
used to study the effect of cooperativity, both qualitatively and quantitatively [165–170].
Moreover, Monte Carlo simulations based on a 3D mechanoelastic model provided more
detailed and precise features of thermal transition for nucleation-propagation of like-spin
domains of SCO systems, and for SCO molecules deposited on deformable substrates [171].

Monte Carlo simulations can help predict the behavior of the SCO molecules at the
interface of different substrates and model how the thickness change can potentially modify
the SCO transition temperature of the [FeII((3,5-(CH3)2pz)3BH)2] complex [75]. Simulations
show that both film thickness and substrate play a crucial role in the spin state of [FeII((3,5-
(CH3)2pz)3BH)2]. Figure 22a shows that by increasing the number of molecular layers, the
HS fraction of [FeII((3,5-(CH3)2pz)3BH)2] sublimated on a Cu(111) substrate decreases, and
for more than 8 molecular layers of SCO, the LS spin state is predicted. Figure 22b describes
the proportion of molecules in the HS state decomposed in different layers of film to Figure
out how the HS state is distributed in different layers. Based on the simulations, the HS
state is dominant due to the epitaxial constraint forced by the stiffness constant, however,
the interfacial HS proportion decreases by increasing the number of layers. This implies that
the total HS state fraction is a combination of the interfacial constraint and the cooperativity
forced by the other layers. Figure 22c shows that different stiffness constants significantly
alter the HS state fraction of the film on the interface of a metallic surface. For the low
stiffness constant (ks), a complete transition of the interface layer for a three molecular
layer film is the result, however, for larger ks values, the HS state fraction on the first
layer does not dramatically decrease by increasing the thickness as the molecule–substrate
interaction dominates, and the molecular interlayer interaction becomes negligible. This
study revealed that for a strong interaction between the SCO complex and substrate, the
HS state alters with increasing the film thickness.

Beyond this, computational studies explain that mixed-state domains can form due
to extensive intermolecular interactions [172] which introduce another parameter that
affects the functionality of SCO complexes beyond SCO–substrate interaction. Ab initio
calculations verified that adsorption of Fe(-phen)2(NCS)2 on CuN results in less than half
of the value compared to Cu for both HS and LS states which leads to an easier switching
to the other spin state [79] confirming previous experimental results [71].
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Although experimental works show oxidized magnets lock the spin state of SCO
molecules [103], computational studies of Fe(1,10-phenanthroline)2(NCS)2 (Fephen), using
DFT, suggest that some ferromagnetic substrates like cobalt reduce the SCO-substrate
interaction at the interface compared to substrates like Au and Cu. This eases the spin state
switching significantly and might be due to an indirect exchange mechanism (magnetic
coupling) between the Fe atom in the center and Fe-phen and the Co substrate. The
Fephen/substrate interface remains active magnetically due to the presence of magnetic
moments in the NCS group and the center Fe atom [173]. Computational studies on
the effect of other layers like AlN deposited on an Al(100) substrate for this Fe-phen
molecule show that [80] the splitting energy between HS and LS states slightly increases
once deposited on Al(100) and tends to be locked into the LS state, as already observed in
some experimental works [85,88]. A coating layer of AlN reduces the splitting energy as it
promotes molecular adsorption, leading to an easier switching between two spin states [80].

Figure 23a,b show a single Fe-phen molecule on the AlN interface. In Figure 23c two
different paths are studied for the free molecule Fe-phen: one involving an intermediate
spin state, S = 1 (path I), and one with a direct phase transition from HS to LS (path II). The
data plots illustrate that path II is more likely to happen [80]. So, by selecting path II and
comparing the energy paths along with the spin transition of a single-molecule Fephen
deposited on Al(100) and AlN(100) (Figure 23d), the spin transition barriers increased for
both molecules on surfaces compared to the free molecule; however, the HS to LS barrier
on Al(100) is only slightly altered (by 0.01 eV). The energy barrier of the reverse process is
significantly increased (by 0.14 eV). This change in SCO barriers is outstanding in the case
of AlN(100) where the energy barrier is increased by 0.30 eV from HS to LS and 0.09 eV for
the reverse spin transition.

Molecular configurations along the minimum energy path of the Fe-phen complex on
Al and AlN (Figure 24) show that although the structural properties related to the NCS
groups may be modified on different substrates, as compared to the free molecule, the
Fe-N distances are not altered dramatically. Calculations show that the decrease of S–S
distances from HS to LS states is significantly larger than that of the free molecule. Also, the
N-Fe-N angle will not decrease monotonically for molecules on the substrate (mostly AlN)
unlike in the isolated molecule. Different from Al(100), with the AlN(100) surface, the Al-S
bond distances are decreased, evidence of a stronger chemical interaction at the interface.
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Structural relaxations indicate that the Al atoms in contact with S atoms tend to lift up and
out of the substrate to enable molecule-surface coupling. The potential barriers between
phase transitions at the surface seem to be the result of molecular adsorptions. With
changes in the volume of the molecule that occur during phase transition, the adsorption
sites change. It may be that the energy barrier becomes higher in the case of A1N(100) due
to the larger energy required to move the NCS groups.
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Figure 23. (a) The side and (b) top view of the Fe-phen molecule deposited on a surface of AlN(100).
The GGA+U calculated spin transition barrier following the minimum energy path (MEP) between
HS (S = 2) and LS (S = 0) states for (c) the free molecule and (d) the adsorbed molecule on Al(100) and
AlN(100) substrates, acquired from GGA+U. The MEP is ascertained from structural relaxations with
a constraint on S-S distance and the angle between NCS groups. For the free Fe-phen molecule, two
paths are studied: the one including the intermediate-spin state (S = 1) (path I) and the one displaying
a direct HS-LS spin relaxation (path II). For the deposited molecule, only path II is studied. Adapted
with permission from reference [80].
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The energy barrier of surface-enhanced spin transition might result in a wider thermal
hysteresis loop. The thermal hysteresis of [FeH2B(pz)2(bipy)] was demonstrated to be more
pronounced in thinner films deposited on the Al2O3 substrate [132]. This implies that the
cooperative effects, generating the hysteresis, are significantly influenced by molecule-
surface interactions, which correspond with the SCO energy barrier.

The DFT calculations of [Fe(tzpy)2(NCS)2] complex deposited on an Au(100) sub-
strate [174] reveal three important points: First, the complex can be adsorbed on any of
the three different sites with similar energies on the surface, however, the bridge coordi-
nation is energetically a preference, which is seen for other SCO molecules deposited on
metallic substrates. Second, deposition of [Fe(tzpy)2(NCS)2] on Au substrates increases
the splitting energy between HS and LS states by around 15–25%, leading to the SCO
molecule on the interface stabilizing in the LS state in agreement with similar experimental
and computational studies [85,86,175]. And finally, the spin state of the deposited SCO
complex on the substrate can be predicted by simulating a bias voltage of the STM tip,
indicating at low temperatures that the [Fe(tzpy)2(NCS)2] complex coexists in both HS and
LS spin states, as already seen for similar SCO molecules with Fe centers deposited on Au
substrates [85,86,88].

8. Conclusions

There has been much progress in better understanding the various issues related
to the SCO–substrate interaction, but more guidance from theory is essential as there
is still much to be understood about the physical processes involved in SCO–substrate
interactions. Metals can suppress spin state changes due to their robust interaction with
at least a few deposited SCO molecular layers. While metallic substrates tend to cause
spin state locking, both experimental and computational studies verify that 2D substrates
with a lower density of states near the Fermi level are a far better candidate for use in
SCO molecular-based devices. Our review of the literature seems to indicate that among
the various substrates investigated thus far, as a substrate, graphene generally does not
perturb the spin state or spin state changes of an adsorbed SCO molecular layer. So, while
the free electron density may play a significant role in spin state locking, as suggested
by sections two and three, in the meantime, graphene is a gapless semiconductor with
a very low density of states at the Fermi level. While most studies of SCO molecules
with 2D materials have focused on the graphene–SCO interfaces, new experimental and
theoretical efforts have shown that different types of 2D semiconductor materials, such
as MoS2, WSe2, and HfS2 might be promising [25,57,104]. Ferroelectric polarization of the
substrate can favor one spin state over another so under some conditions, spin state in a
SCO film can be manipulated by changing the polarity of the ferroelectric substrate. Just the
same, there remain many fundamental questions that need to be addressed if there is to be
a practical route to scalable devices. There are multiple contributions to the total magnetic
moment and magnetic anisotropy yet to be fully explored theoretically and experimentally,
while estimates of the interaction strength and the nature of the interaction between SCO
molecules and substrates remain in their infancy. While more insight from theory is vital to
gaining a better understanding of the interaction between SCO molecular thin films and
various substrates, surface morphology and the details of the structure are needed as well
for the theory to proceed.
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