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Large and tunable magnetoresistance in van
der Waals ferromagnet/semiconductor
junctions

Wenkai Zhu 1,2,9, Yingmei Zhu3,9, Tong Zhou 4, Xianpeng Zhang5,
Hailong Lin1,2, Qirui Cui3, Faguang Yan1, Ziao Wang1,2, Yongcheng Deng 1,
Hongxin Yang3 , Lixia Zhao1,6 , Igor Žutić 4 , Kirill D. Belashchenko 7 &
Kaiyou Wang 1,2,8

Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets sepa-
rated by a nonmagnetic insulating layer are key building blocks in spintronics
for magnetic sensors and memory. A radically different approach of using
atomically-thin van der Waals (vdW) materials in MTJs is expected to boost
their figure of merit, the tunneling magnetoresistance (TMR), while relaxing
the lattice-matching requirements from the epitaxial growth and supporting
high-quality integration of dissimilar materials with atomically-sharp inter-
faces. We report TMR up to 192% at 10K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2
MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is
realized with a vdW semiconductor GaSe. Integration of semiconductors into
the MTJs offers energy-band-tunability, bias dependence, magnetic proximity
effects, and spin-dependent optical-selection rules. We demonstrate that not
only the magnitude of the TMR is tuned by the semiconductor thickness but
also the TMR sign can be reversed by varying the bias voltages, enabling
modulation of highly spin-polarized carriers in vdW semiconductors.

The traditional path to enhance the TMR1,2 relies on carefully choosing
insulators and common ferromagnets, such as MgO with Fe and Co3,4.
As theMTJ size scales down, this approachposesmany obstacles, from
materials nonuniformity and deteriorating quality to enhanced energy
consumption and reduced stability5. The breakthroughs in vdW
materials and the discovery of two-dimensional (2D) ferromagnets6,7

suggest important opportunities to overcome these problems in all-
vdW MTJs, where realizing a large TMR ~200% could revolutionize
magnetic random-access memories (MRAM)5.

MTJs with both conventional or vdW ferromagnets typically
include an insulating spacer layer instead of the semiconducting barrier
layer, owing to an extensive research on insulators such as Al2O3, MgO,
and hBN. However, a realization of tunable spin-polarized transport
in semiconductors is desirable for many emerging applications1.
Conventional materials, such as δ-doped Fe/GaAs junctions, already
provide a degree of tunability with bias-dependent sign reversal of
interfacial spin polarization and TMR8–12. Because the observed spin-
dependent signals in such systems are only modest, switching to 2D
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vdWmaterials could offer significant advantages by: (i) simultaneously
increasing the TMR13–15 and supporting highly spin-polarized carriers,
and (ii) expanding the tunability of spin-dependent properties, as
demonstrated, for example, through barrier-thickness controlled
spin polarization16,17 and gate-tunable magnetic proximity effects in
hybridized 2D material/ferromagnet interface for spin valves18–23, and
gate-tunable spin galvanic effect in van der Waals heterostructures of
graphene with a semimetal or topological insulator24,25.

Recently, the all-vdW Fe3GeTe2(FGT)-based MTJs have been
widely studied, amongwhicha largeTMRof ~300% (4.2 K), ~50% (10 K),
and ~110% (4.2 K) have been observed in devices with insulating spacer
hBN and devices with semiconductor InSe and WSe2, respectively

26–28.
Compared with an insulator, the advantage of a semiconductor tunnel
barrier is that its Fermi level (EF) can be adjustedbydoping tomake the
EF close to the valence band or closer to the conduction band, which
plays an important role in enhancing spin-filtering effect13. In addition,
a large room-temperature TMR of 85% was observed in Fe3GaTe2/
WSe2/Fe3GaTe2 MTJs29, which confirms the great potential for
semiconductor-based MTJs. 2D gallium selenide (GaSe) crystal is a
typical layered metal monochalcogenide with an indirect bandgap
energy of ~2 eV in the bulk30, which can serve as a perfect tunnel
barrier31. Furthermore, it was predicted that the giant magnetoresis-
tance can be obtained by using the semiconductor barrier due to the
spin-filtering effect13,15. However, the magnetoresistance properties of
all-vdW MTJs with GaSe barriers have not been reported yet.

In thiswork, wenot only find that themagnitude of TMR increases
first and then decreases with increasing the thickness of the semi-
conductor spacer GaSe in Fe3GeTe2/GaSe/Fe3GeTe2MTJs, but also find
the magnitude and sign of the TMR can be tuned by the bias voltage.
The maximum TMR of up to 192% is obtained with 9 layers of a GaSe
spacer. This realization greatly expandsmaterials design opportunities

for semiconductor spintronics that are unavailable to MTJs with
insulators32,33, including applications in artificial neural networks34,35

and spin lasers36.

Results
The typical optical image of the core structure of the MTJ devices is
plotted in Fig. 1a, where the two FGT electrodes are separated by a
GaSe layer. To avoid oxidation, we covered the core structure of the
device with a hBN flake. The schematic diagram of the device and
magnetotransport setup is shown in the inset of Fig. 1a, where an out-
of-plane magnetic field B controls the magnetization alignment of the
FGTelectrodes.Our previousworks confirmed thatGaSe andFGThave
high-quality crystal structure28,37–40. The photoluminescence spectrum
measurement shows that GaSe has a bandgap of ~2 eV (Supplementary
Fig. 1). TheMTJ devices (A, B, C, D, E, F, andG)with different GaSe-layer
thicknesses were fabricated using mechanical exfoliation and dry
transfer method (see “Methods”), where the GaSe-layer thicknesses
were determined by atomic forcemicroscope (AFM) for device A, B, C,
D, E, F, and G are about 5.5, 6.5, 7.3, 8.2, 9.2, 10.0, and 15.6 nm,
respectively (Supplementary Fig. 2). To have different coercive fields
for the top and bottom electrodes, we select different thicknesses of
FGT flakes28,39,40. The typical thickness of the bottom and top FGT is
~8 nm and ~12 nm, respectively. From the optical image of all the fab-
ricated devices, the active junction overlap areasA < 20μm2, which are
comparable to the typical magnetic domain sizes in FGT flakes41.

We first investigate the current–voltage (I–Vbias) characteristics
under applied perpendicular B = −0.4 T to ensure the parallel-
magnetization configuration of the two FGT. To directly compare
different devices, the normalized nonlinear current density-voltage
J–Vbias curves at 10K for devices A to G are shown in Fig. 1b, where the
nonlinear behavior of devices A and B with a thinner GaSe layer are
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Fig. 1 | Large TMR in the FGT/GaSe/FGT MTJ devices. a Typical optical image of
the core structure of the devicemade of different flakes. Inset shows the schematic
diagram of the device and magnetotransport setup. The magnetic field (B) is
applied in an out-of-plane direction. bCurrent density J versus applied bias Vbias for
the devices with the GaSe thickness ranging from 5.5 to 15.6 nm (devices A-G) in
parallel-magnetic configuration. The inset shows the J–Vbias curves of devices A and

B in a larger bias range. cMagnetic hysteresisof the resistanceR loop fordeviceD at
Vbias = 10mV, and the corresponding TMR is ~192.4%. Red and blue horizontal
arrows show the sweeping directions of B. Black-vertical arrows denote the two
FGTs’ magnetization configurations. d The measured maximum TMR ratios in the
different devices at 10mV. The inset shows the plotted zero-bias log(RA) is nearly
linear with the number of GaSe layers in both parallel and antiparallel states.
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shown in a larger current range (inset of Fig. 1b). The nonlinear J–Vbias

characteristics as well as the obvious parabolic R–Vbias curves (Sup-
plementary Fig. 3) reveal the existence of the tunnel barrier between
GaSe and FGTs. The band alignment at the FGT/GaSe interface,
obtained by analyzing the transport mechanism42,43, also reveals that
the effective tunnel barrier of electrons is up to ~0.9 eV (Supplemen-
tary Fig. 4). In some previous studies, the effective tunnel-barrier
heights of CrI3/hBN, Fe/MgO and CoFe/MgO interfaces are estimated
to be 0.25 eV44, 0.39 eV4, and 0.9 eV45, respectively. Therefore, the
tunnel-barrier height of 0.9 eV in the FGT/GaSe interface could ensure
the tunneling transport of electrons.

We next examine the TMR. Upon sweeping the out-of-plane B,
the devices A–F show two distinct parallel (RP) and antiparallel
resistance (RAP) states (Supplementary Fig. 5). Among them, at bias of
10mV, the RP and RAP of device D are 122.25 kΩ and 357.52 kΩ,
respectively (Fig. 1c). The corresponding TMR = (RAP − RP)/RP is
192.4%. The thickness of GaSe-layer dependence of the measured
maximum TMR ratio is shown in Fig. 1d, which first increases from
83.1% (device A) and 133.5% (device B) and 180.2% (device C) to
192.4% (device D) and then decreases to 182.3% (device E) and 121.7%
(device F), and finally vanishes (devices G) with increasing the
thickness of GaSe layer. The zero-bias resistance-area product (RA) of
the devices for both the parallel and antiparallel states increases
approximately exponentially with increasing the GaSe thickness,
suggesting that the transport mechanism is dominated by tunneling
(inset of Fig. 1d)46. The large TMR and nonlinear J–V curve indicate
that the GaSe spacer serves as a good tunnel barrier. The maximum
TMR at low bias is found in the device with GaSe of 8.2 nm, and the
internal physical mechanism can be explained as follows. On the one
hand, the spin-filtering effect of GaSe gets weaker when the thickness
is reduced, resulting in the decrease of TMR2,13. On the other hand,
with further increase of the spacer thickness, the TMRdecreases and,
eventually, vanishes in device G with 15.6-nm-thick GaSe, where the
tunneling through extrinsic defects could become important and
eventually exceed the spin-relaxation length of GaSe47,48. To confirm
the repeatability of this barrier-thickness-dependent TMR behavior,

we fabricated and measured another group of devices with variable
barrier thickness (Supplementary Fig. 6). Similar layer-thickness-
dependent TMR was proved, further confirming that the magnitude
of TMR is directly related to the semiconductor layer thickness,
which can be improved by optimizing the thickness and quality of the
barrier layer.

To investigate TMR(Vbias) for deviceswith differentGaSe thickness,
we measured the R–B curves. As shown in Fig. 2a, b, the positive TMRs
decrease with Vbias. Negative TMRs of −12.3% and −30.5% for devices B
and D are obtained at 1.2 V and 0.9 V, respectively. This salient sign
inversion of TMR is found in all the devices A–F. The number of sign
reversals of TMR can be tuned, from single to multiple, with increasing
theGaSe thickness. Tobetterunderstand the variationofTMRwithbias,
as shown in Fig. 2c, we measured the I–Vbias curves of the devices in
parallel and antiparallel states, respectively. The nonlinear I–Vbias curves
for devices B, D, and E show very different trends in parallel and anti-
parallel states, which allow us to derive bias-dependent TMR for these
devices (Fig. 2d). The obtained TMR value matches well to that
extracted from the R–B curves (Fig. 2a, b and Supplementary Figs. 7 and
8), indicating the influence of the Zeeman effect on TMR is negligible.
The symmetric bias-dependent current and TMR suggest the symme-
trical FGT/GaSe interfaces in these devices.

Devices A (Supplementary Fig. 9) and B show similar bias-
dependent behavior of TMR. Specifically, as shown in Fig. 2c, for
device B, themeasured current for the parallel state is higher than that
for the antiparallel state for Vbias < 0.76 V, leading to a positive TMR.
However, beyond suchVbias, themeasured current for theparallel state
is lower than that for the antiparallel state, resulting in a negative TMR
(Fig. 2d). With increasing the thickness of the GaSe spacer layer, we
observed multiple sign changes of the TMR. As shown in Fig. 2c, the
nonlinear I–Vbias curves of device D in parallel and antiparallel states
show two crossovers, and similar behavior is also observed in device C
(Supplementary Fig. 10). Correspondingly, in Fig. 2d, the TMR of
device D first decreases monotonically and changes sign of around
0.58V, and again around 1.27 V as the bias increases. With further
increasing the GaSe thickness, as shown in Fig. 2c, the nonlinear I–Vbias
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curves reveal three crossovers for device E. In Fig. 2d, the TMR of
device Efirst decreasesmonotonically and changes sign around0.56 V,
and then the TMR decreases in an oscillatory fashion as the bias
increases. Similar three-sign changes of TMRbehavior is also observed
in device F (Supplementary Fig. 11).

To understand the bias-dependent magnetotransport, the spin-
resolved density of states (DOS) of FGT in the 3-layer-FGT/6-layer-
GaSe/3-layer-FGT heterojunction were obtained using the first-
principles calculations (see Supplementary Fig. 12). The calculated
spin-resolved DOS of FGT electrode is shown in Fig. 3a. Assuming that
tunneling is elastic and spin-conserving, with the corresponding tun-
neling probability independent of the initial and final states as well as
the tunnel-barrier height for electrons49, the spin-dependent tunneling
current at zero temperature can be expressed as1,2,50

Iσ /
Z μS

μD

ρσ
D E � μD

� �
ρσ
S E � μS

� �
dE, ð1Þ

where the μD(S) and ρσ
DðSÞ are the chemical potentials and spin-resolved

DOS for the drain (or source) FGT, respectively (σ is the spin index),
and μD − μS = eVbias. The tunneling currents in parallel (Fig. 3b) and
antiparallel (Fig. 3c) configurations can thus be expressed as

IP /
Z μS

μD

ρ"
D E � μD

� �
ρ"
S E � μS

� �
+ρ#

D E � μD

� �
ρ#
S E � μS

� �� �
dE, ð2Þ

and

IAP /
Z μS

μD

ρ"
D E � μD

� �
ρ#
S E � μS

� �
+ ρ#

D E � μD

� �
ρ"
S E � μS

� �� �
dE: ð3Þ

The resulting bias-dependent TMR is shown in Fig. 3d. With
increasing bias, the calculated TMR rapidly drops, changes sign, and
then oscillates in qualitative agreement with the measurements for
devices E and F. Multiple sign changes of TMR with increasing bias
have also been predicted theoretically for Fe/MoS2/FeMTJ devices13. In
addition, themultiple sign changes of TMRhave also been observed in
FGT/hBN/FGT, FGT/WSe2/FGT, and FGT/WS2/FGT MTJs27. In our FGT/
GaSe/FGT MTJs, within the range of 1.5 V bias, as the thickness of a
GaSe spacer decreases, the number of TMR reversals decreases to two
in devices C and D and to only one in devices A and B. A possible
physical mechanism of the thickness-dependent TMR reversals is
explained as follows.

The above calculation of the spin-dependent tunneling current
assumed that the transmission probability is the same for all initial and
final states. However, if tunneling is at least partially coherent, the
transmission probability should be larger for states with transverse
momenta close to those where the decay rate of the evanescent states
in GaSe is the smallest. Because the bandgap in GaSe is indirect, this
may occur away from the Gamma point51. The efficiency of this
transverse-momentum filtering increases with increasing thickness of
the tunnel barrier50.

Because the interlayer dispersion of the vdW FGT states is weak,
they are at a given transverse momentum essentially quantized. An
energy isosurface of a lead thus consists of one or more 1D Fermi
contours. Coherent tunneling is only possible at the intersections of
the isosurfaces of the two leads corresponding to the same electro-
chemical potential. At large barrier thickness, a strong enhancement of
the tunneling current should occur when such crossing points fall
close to the points of the lowest decay rate in GaSe. If such matching
condition is satisfied at the given bias for initial and final states of the
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same or opposite spin, positive or negative TMR is expected, respec-
tively (Supplementary Fig. 13). The relative importance of such
matching should increase at a larger barrier thickness, as long as the
coherent tunneling persists. Thus, coherent tunneling may explain
why additional sign changes of TMR as a function of bias are observed
at larger GaSe thicknesses.

On the other hand, the barriers thickness-dependent TMR rever-
sals can be related to the tunnel junction resistance values. With
semiconducting tunnel barriers as thick as the GaSe film in device E,
the elastic tunneling model with FGT electronic structures can be
applicable since all the voltage drops of the device should be hap-
pening at the tunnel junctions. With thinner semiconducting films and
lower tunnel junction resistances, however, the bias voltage effectively
applied to the tunnel junctions should be smaller than the voltage
driven by an external voltage source: this phenomenon is often dub-
bed as a voltage-divider effect. To prove this, we extracted the bias
voltages where the TMR-sign reversals firstly occur for different devi-
ces (Supplementary Fig. 14), the bias voltages increases as the tunnel
junction resistance decreases, indicating the voltage-divider effect
could also be the reason for the barriers thickness-dependent TMR
reversals.

We further investigate the temperature-dependent TMR effect
in our devices. The I–Vbias curves of devices B, D, and E in parallel and
antiparallel statesweremeasured at temperatures from 10K to 190 K.
The corresponding TMR is plotted in Fig. 4a–c for device B, D, and E,
respectively. The TMR-Vbias curves in Fig. 4a–c all pass through the
same zero at all temperatures, verifying that the bias-dependent
TMR in the devices is dominated by tunneling42. The extracted TMR
at different temperatures at 10mV for device D (Fig. 4d) and device
B and E (Supplementary Fig. 15) show a decreasing trend, which
can be attributed to the decrease of spin polarization with tem-
perature. When Vbias is extremely small, approximately only the
electrons at the EF take part in tunneling transport. For simplicity,
assume the source and drain FGT electrodes have almost the same

spin polarization. Then TMR can be defined as TMR= 2P2/(1 − P2),
where P denote the spin polarization at the EF for the drain and
source FGT electrode1,2. As shown in Fig. 4d, the P decreases with
temperature, and themaximum P at 10 K is up to 70%, which is larger
than that obtained in other 2D semiconductor-based MTJs, such
as 45% in Fe3GeTe2/InSe and 60% in Fe3GeTe2/WSe2 interfaces27,28,
but lower than that of Ni(111)/Gr interface52. The estimated
temperature-dependence of the spin polarization can be fitted well
by Bloch’s law, given by P = P0(1 − αT3/2), where P0 is the spin polar-
ization at 0 K, α is a materials-dependent constant53. The fitting value
of α is 1.26 – 1.40 × 10−4K−3/2, which is comparable to the previous
reports26,40.

Our presented results, whichdemonstrate large and tunable TMR,
substantiate an ambitious vision where all-vdW MTJs could replace
various charge-based memory applications5, targeted to reach TMR
~200% for commercial viability. Implementing such vdW MTJs is
expected to rely on insulating 2D tunnel barrier5, just as it was shown
with hBN barrier in an all-vdW MTJ with the low-temperature TMR
~160%26 and also supported by a very recent report of TMR ~300%27.
However, since we observe the desired large TMR values even with a
semiconductor spacer, the prospect for all-vdW spintronics becomes
considerably broader than just memory applications and the resulting
large spin polarization and spin–orbit coupling opens opportunities
beyond magnetoresistive effects. For example, the measured sign
reversal of the TMR with applied bias is consistent with the reversal of
the carrier spin polarization and could enable desirable polarization
modulation36. Our findings could integrate semiconductor-based
optoelectronics, microelectronics, and spintronics together, and be
also relevant to emerging cryogenic applications where proximity-
modified semiconductors and MTJs provide a platform for fault-
tolerant quantum computing54. Given the continued advances in
understanding of vdW semiconductor/ferromagnet junctions, includ-
ing a surprising optical manifestation of the valley-dependent mag-
netic proximity effect55,56, we expect further opportunities for valley-
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Fig. 4 | The temperature-dependent TMR. a–c TMR ratios of devices B, D, and E
measured at temperatures from 10 to 190K, respectively. d The TMR and spin

polarization of device D as a function of temperature at bias of 10mV. The red line
shows the fitting data by the Bloch’s law1.
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dependent transport properties by using semiconducting tunnel bar-
riers in MTJs.

Methods
Fabrication of the Fe3GeTe2/GaSe/Fe3GeTe2 MTJ devices. The high-
quality vdW bulk single-crystal FGT and hBN were purchased from HQ
Graphene, while GaSe was purchased from 2D semiconductors, respec-
tively. Firstly, a FGT flake was exfoliated onto polydimethylsiloxane
(PDMS) stamps by adhesive tape. The stamps were adhered to a glass
slide. Under optical microscope, the FGT flake with appropriate thick-
ness and shape was chosen to transfer onto a 300-nm-thick SiO2/Si
substrate by using a position-controllable dry transfer method40. Then,
using the samemethod, a GaSe flake was transferred onto the FGT flake,
followed by another thicker FGT flake to fabricate a 2D heterojunction.
To prevent the FGT fromoxidation, a 20nm-thick hBN layer was used to
cap the whole heterostructure stack. Finally, the device was annealed at
120 °C for 10min to remove the bubbles between the layers and ensure
close contact between the layers. Notably, the whole transfer processes
wereperformed in anitrogen-filledgloveboxwith a concentrationof less
than 1 ppm of oxygen and water to ensure a clean interface. The source
and drain electrode regions were pre-patterned by standard photo-
lithography, and Cr/Au (10/40nm) layers were deposited using an
ultrahigh vacuum magnetron sputtering system, followed by a lift-off
process. The thicknesses of both GaSe and FGT flakes weremeasured by
using AFM (Bruker Multimode 8).

Measurements of MR effect. Electrical properties were mea-
sured using a semiconductor characterization system (Agilent
Technology B1500A). All measurements were carried out in a Model
CRX-VF Cryogenic Probe Station with a ± 2.5 T out-of-plane vertical
magnetic field.

Ab Initio Calculations. Our first-principles calculations are per-
formed by the density functional theory (DFT) using the Vienna ab
initio Simulation Package (VASP) code. The details are shown in the
Supplementary Note 7.

Data availability
The data that support the findings of this study are available within the
article and the Supplementary Information or available from the cor-
responding author upon reasonable request. All data generated in this
study are provided in the Supplementary Information/Source Data
file. Source data are provided with this paper.
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