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Cauchy-type integral method for solving the linearized one-dimensional Vlasov-Poisson equation

Frank M. Lee* and B. A. Shadwick†

Department of Physics and Astronomy, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA

(Received 14 October 2022; revised 17 April 2023; accepted 21 April 2023; published 23 June 2023)

We present a method for solving the linearized Vlasov-Poisson equation, based on analyticity properties
of the equilibrium and initial condition through Cauchy-type integrals, that produces algebraic expressions
for the distribution and field, i.e., the solution is expressed without integrals. Standard extant approaches
involve deformations of the Bromwich contour that give erroneous results for certain physically reasonable
configurations or eigenfunction expansions that are misleading as to the temporal structure of the solution. Our
method is more transparent, lacks these defects, and predicts previously unrecognized behavior.

DOI: 10.1103/PhysRevE.107.L063201

The one-dimensional Vlasov-Poisson equation

∂ f

∂t
+ v

∂ f

∂x
+ q

m
E

∂ f

∂v
= 0 (1)

describes a plasma of particles with charge q and mass m as
a one-particle distribution function f (x, v, t ) ignoring corre-
lations [1]. The electric field E (x, t ) is given by

∂E

∂x
= 4π

(
q

∫ ∞

−∞
f dv + ρion

)
, (2)

where ρion is the ion charge density. We linearize about a
spatially uniform equilibrium f0(v) with a fixed neutralizing
ionic background, i.e., we take f = n0[ f0(v) + δ f (x, v, t )],
where δ f is a small perturbation and n0 is the equilibrium
number density. While we generically expect the linearization
to hold only for a limited time, either due to growth of the
electric field in the case of an instability or due to phase-space
filamentation [1] in the stable case resulting in large velocity
gradients, we nonetheless consider the linearized equation as
a free-standing theory. The resulting perturbed electric field
δE is given by

∂

∂x
δE = 4πqn0

∫ ∞

−∞
δ f dv. (3)

The linearized Vlasov equation

∂

∂t
δ f + v

∂

∂x
δ f + q

m
f ′
0δE = 0 (4)

has received considerable attention in the literature as an
exact solution is possible. Extant methods generally fall into
two broad categories: the approach of van Kampen [2] and
Case [3,4] and that of Jackson [5] (extending the work of
Landau [6]). Here we introduce a method that overcomes
limitations in these approaches and we resolve an apparent
contradiction between the methods for the case of unstable
equilibria. Our solution, using well-established properties of

*flee3@unl.edu
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Cauchy-type integrals [7], only involves Laurent series expan-
sions and algebraic manipulations in the complex plane and
has exact representations free of integral expressions, unlike
the van Kampen–Case solution. Furthermore, our method can
naturally yield a correct asymptotic approximation to the field
and distribution, unlike the Jackson solution.

Case [3,4] generalized van Kampen’s [2] method by treat-
ing the linearized Vlasov equation as an eigenvalue problem
in which zeros of the dielectric function are discrete eigen-
values and van Kampen’s stationary waves correspond to real
continuous eigenvalues, whose contribution is written as a
continuum integral. Since the van Kampen contribution to
the solution is left as an opaque integral expression, this
formulation obscures its temporal behavior. Jackson [5] ex-
panded on the approach of Landau [6], by shifting the Laplace
inversion contour and analytically continuing the integrand,
writing the electric field for all time as the sum of residues.
Jackson’s approach relies on the assumption of a “reasonable”
initial perturbation, which, upon careful analysis, we find to
be overly restrictive. Additionally, Jackson’s method suggests
that all solutions are sums of exponentials with arguments
linear in time, which is, as we will show below, not true for at
least one class of initial conditions. Jackson’s method, widely
cited by standard textbooks, fails to capture the entire time
evolution by overlooking functional properties in the complex
plane and in general does not give a correct asymptotic ap-
proximation to the solution.

Taking f (1)(k, v, t ) and E (1)(k, t ) to be the spatial Fourier
transforms of δ f (x, v, t ) and δE (x, t ), respectively, Eq. (4)
becomes(

∂

∂t
+ ivk

)
f (1)(k, v, t ) + q

m
f ′
0(v)E (1)(k, t ) = 0, (5a)

where E (1)(k, t ) is obtained from the Fourier transform of (3),

E (1)(k, t ) = E
ikλD

∫ ∞

−∞
f (1)(k, v, t )dv, (5b)

where E = mvthωp/q, ωp =
√

4πq2n0/m is the plasma fre-
quency, λD = vth/ωp is the Debye length, and vth is the
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thermal velocity of the equilibrium. For brevity, we hereafter
suppress the k dependence. When solving (5), two sectionally
analytic functions [7] arise naturally: the dielectric function

ε(ω) = 1 − ω2
p

k2

∫ ∞

−∞

f ′
0(v)

v − u
dv =

{
	+(u), Im ω > 0
	−(u), Im ω < 0,

(6)
where u = ω/k, and

1

2π i

∫ ∞

−∞

f (1)(v, 0)

v − u
dv =

{
F+(u), Im u > 0
F−(u), Im u < 0,

(7)

where f (1)(v, 0) is the initial perturbation. The paired + and −
functions on the right-hand sides of (6) and (7) are sometimes
referred to as Cauchy splittings. Using (5b), (6), and (7), the
solution of (5a) can be written as an inverse Laplace transform
[1]

f (1) =
∫ 
+i∞


−i∞

(
f (1)(v, 0)

2π i
+ ω2

p f ′
0(v)

k2

F+(is/k)

	+(is/k)

)
est ds

s + ivk
,

(8)
where 
 is chosen to place the contour to the right of all poles
of the integrand, as required by the Laplace inversion theorem.
Likewise, the electric field can be written as [1]

E (1) = − E
k2λD

∫ 
+i∞


−i∞

F+(is/k)

	+(is/k)
est ds. (9)

For an unstable equilibrium, there appears to be a discrep-
ancy between the methods of van Kampen–Case and Jackson.
A zero of ε in the upper half-plane implies a complex conju-
gate zero in the lower half-plane, each giving a discrete mode.
The van Kampen–Case method includes contributions from
the discrete modes in addition to those from modes associ-
ated with the continuous spectrum (the so-called van Kampen
modes). The structure of (6) and (7) relates the amplitudes of
each pair of discrete modes. Thus, if ε has a single pair of
simple zeros ω0 and ω∗

0, the electric field has the form

E (1)
vKC = E

ikλD

(
Ae−iω0t − A∗e−iω∗

0t
) + EvK, (10)

where

EvK = E
ikλD

∫ ∞

−∞
du

(
F+(u)

	+(u)
− F−(u)

	−(u)

)
e−ikut (11)

is the van Kampen mode contribution. An unstable two-
stream Maxwellian equilibrium

f0 = 1

2
√

2πσ

(
e−(v−v0 )2/2σ 2 + e−(v+v0 )2/2σ 2)

(12)

gives

	± = 1 + ω2
p

k2σ 2

{
1 ± i

√
π

2

[
u + v0

2σ
W

(
u + v0

±√
2σ

)

+ u − v0

2σ
W

(
u − v0

±√
2σ

)]}
, (13)

where W(z) = e−z2
erfc(−iz) is the Faddeeva function

[8]. The dielectric function corresponding to (13) has
zeros ±ig, with g > 0. Taking the initial perturbation
proportional to the equilibrium implies A∗ = A, giving

FIG. 1. Numerical solution of the linearized Vlasov-Poisson
equation: the electric field |E (1)|/E (blue); the putative decaying
mode contribution to the electric field, |Ed|/E (green); and the elec-
tric field with the growing mode removed, |E (1) − Eu|/E (red).

E (1)
vKC = Eu + Ed + EvK, where Eu = (E/ikλD)Aegt and Ed =

−(E/ikλD)Ae−gt . Jackson’s method, however, only picks up
contributions from the zeros of 	+, the analytic continuation
of ε, as the Bromwich contour is shifted, deformed to encircle
the poles, and discarded in the limit 
 → −∞. This implies
an electric field of the form E (1)

J = Eu + (E/ikλD)DJ, where
DJ is the contribution from the zeros of 	+ in the lower
half-plane. The time evolutions implied by E (1)

vKC and E (1)
J

are distinctly different and it is thus important to resolve this
apparent discrepancy.

We solved the linearized Vlasov-Poisson equation numer-
ically [9] on a periodic domain of length L = 7λD with
the equilibrium (12), σ = vth/2, v0 = √

3vth/2, f (1)(v, 0) =
0.01 f0, and kλD = 2π/7. Our results reveal that, contrary to
the work of Case, the decaying discrete mode is not present in
the electric field (see Fig. 1). What remains after removing
the unstable mode from the field (red curve) is clearly not
dominated by the decaying discrete mode (green curve), but
instead is the field resulting from the zeros of 	+ in the lower
half-plane.

To gain more insight, consider a Lorentzian two-stream
equilibrium for which the solution can be readily computed
in closed form. While admittedly this distribution is un-
physical, the mathematics of the linear theory is unaffected.
We take

f0 = α

2π

(
1

(v + v0)2 + α2
+ 1

(v − v0)2 + α2

)
, (14)

for which

	±(u) = 1 − ω2
p

k2

(u ± iα)2 + v2
0

[(u ± iα)2 − v2
0]2

. (15)

Let β = ωp

√
λ − �2 − 1/2, λ2 = 1/4 + 2�2, and � =

kv0/ωp. If v0 > α, then for k < ωp

√
v2

0 − α2/(v2
0 + α2) we

have β > kα and ε has a root in the upper half-plane at
ig̃ = i(β − kα) and in the lower half-plane at −i(β − kα).
From (15) we see that the upper half-plane root corre-
sponds to a zero of 	+, while the lower half-plane root is
a zero of 	−. Further, 	+ has roots in the lower half-plane
at frequencies ih = −i(β + kα) and ±δ − ikα, where δ =
ωp

√
λ + �2 + 1/2; these are not zeros of ε but of its analytic

continuation and thus are not normal modes of the system.

L063201-2
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Since 	+ has a finite number of zeros and the integrand in
(9) vanishes as Re s → −∞, Jackson’s method of taking the
limit 
 → −∞ while encircling the poles gives the correct
solution in this case. For this system, the integrals in the van
Kampen–Case formalism can be readily computed, confirm-
ing the calculation based on (9). The electric field is

E (1)

Ẽ
= μ

ωp

ikα

(
ζ+
2

eg̃t + ζ+
2

e−ht + ζ−e−αt cos δt

)
, (16)

where Ẽ=mαωp/q, ζ±=(λ ∓ 2�2 ∓ 1/2)/(λ ∓ 4�2 ∓ 1/2),
and f (1)(v, 0)=μ f0(v). (Note that we choose the characteris-
tic velocity scale to be α instead of the undefined vth.) The
first term in (16) is the contribution from the root of ε in the
upper half-plane, while the remaining terms are due to zeros
of 	+ in the lower half-plane and represent Landau damping.
A closed-form expression for f (1)(v, t ) can be obtained but
is unimportant here. The form of (16) is that of E (1)

J and not
obviously E (1)

vKC; no term in (16) is proportional to e−g̃t , which
would correspond to the root of ε in the lower half-plane.
The van Kampen–Case prediction that the decaying discrete
mode should be present in the solution is evidently incorrect.
In the calculation it becomes clear that EvK contains a term
that exactly cancels the decaying discrete mode contribution;
as we show later, this cancellation is generic.

It is convenient to rotate the complex plane in (8) with
u = is/k, giving

f (1) =
∫ iγ+∞

iγ−∞

(
f (1)(v, 0)

−2π i
− ω2

p f ′
0(v)

k2

F+(u)

	+(u)

)
e−ikut

u − v
du,

(17)

where γ = 
/k. The contour is now horizontal and above the
poles of the integrand. The presence of the kernel 1/(u − v) in
the integral allows us to apply well-established properties of
Cauchy-type integrals [7]. We interpret (17), for v real, as a −
function resulting from Cauchy splitting about the Bromwich
contour (recall that γ > 0 and thus the real v axis lies below
the Bromwich contour). The strength of the method is that the
Bromwich contour is left fixed and determining the unique +
and − Cauchy splitting involves only algebraic manipulation
of the Cauchy density (the integrand excluding the kernel).
The distribution function becomes

f (1) = f (1)(v, 0)e−ikvt − 2π i
ω2

p

k2
f ′
0(v)�−(v, t ), (18)

since the first term in (17) gives

1

2π i

∫ iγ+∞

iγ−∞

e−ikut

u − z
du =

{
0, Im z > γ

−e−ikzt , Im z < γ
(19)

and we have defined

1

2π i

∫ iγ+∞

iγ−∞

F+(u)

	+(u)

e−ikut

u − z
du =

{
�+, Im z > γ

�−, Im z < γ .
(20)

We find E (1)(t ) from (5a) using (18):

E (1) = 2π i
E

k2λD

(
∂

∂t
+ ikv

)
�−. (21)

Thus, the key to computing the solution is determining
�−, given F+e−ikut/	+. Whereas F± and 	± are Cauchy
splittings about the real axis, �± are Cauchy splittings about
the Bromwich contour. Thus neither F− nor 	− are used in
evaluating �−; the problem is framed entirely by F+, 	+,
and e−ikut and their respective analyticity properties.

The splitting (20) must respect the appropriate functional
properties of �±; they must be analytic and vanish as Im z →
±∞. Note that no such conditions exist for Im z → ∓∞. A
Sokhotski relation [7] gives

F+(u)

	+(u)
e−ikut = �+(u, t ) − �−(u, t ). (22)

The behavior of F+ below the real axis is the crucial fact
that Jackson’s construction ignores. However, if we assume
F+e−ikut/	+ vanishes as Im u → −∞ (as Jackson had done),
the only singularities are from the poles of F+ and the zeros
of 	+. Then �± can be deduced by a separation of the poles
from F+/	+:

�− = −F+(z)

	+(z)
e−ikzt +

∑
n

Pn

(
F+(u)

	+(u)
e−ikut ; z

)
(23)

and

�+ =
∑

n

Pn

(
F+(u)

	+(u)
e−ikut ; z

)
, (24)

where Pn(ϕ; z) denotes the principal part of the Laurent series
of ϕ about its nth pole as a function of z. Inserting (23) into
(18) and (21) gives

f (1) = f (1)(v, 0)e−ikvt + 2π i
ω2

p

k2
f ′
0(v)

[
F+(v)

	+(v)
e−ikvt

−
∑

n

Pn

(
F+(u)

	+(u)
e−ikut ; v

)]
(25)

and

E (1)

E = − 2π

kλD

∑
n

Resn

(
F+(u)

	+(u)
e−ikut

)
, (26)

where Resn(ϕ) denotes the residue of ϕ at its nth pole. Note
that the sums may have an infinite number of terms. The
expressions (25) and (26) are the conventional Jackson result
obtained by shifting and deforming the contour around the
poles, which is widely cited by standard textbooks. However,
this result is only correct provided F+/	+ diverges more
slowly than eikut as Im u → −∞.

A Maxwellian initial condition gives an F+ that does not
generally satisfy this condition and requires a modification to
the Cauchy splitting (22) and hence the solution will differ
from that from Jackson’s formalism. Consider f (1)(v, 0) =
(μ/

√
2πa)e−v2/2a2

, which has essential singularities in both

L063201-3
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half-planes and can be separated as

f (1)(u, 0) = μ√
8πa

[
W

(
u√
2a

)
+ W

(
− u√

2a

)]
. (27)

The first (second) term on the right-hand side of (27) is ana-
lytic in the upper (lower) half-plane and vanishes at infinity
but has an essential singularity at infinity in the opposite
half-plane. Thus,

F± = ± μ√
8πa

W

(
± u√

2a

)
(28)

and separating the poles due to 	+ and the singularities due
to W and e−ikut , which require shifting the argument, allows
for a Cauchy splitting (22), giving

�− = μ√
8πa

{
W

( −z√
2a

)
e−ikzt

	+ − W

(
ibt − z√

2a

)
e−ct2

	+

−
∑

n

Pn

[
W

( −u√
2a

)
e−ikut

	+ −W

(
ibt − u√

2a

)
e−ct2

	+ ; z

]}
,

(29)

where b = −ka2 and c = k2a2/2. When this is inserted into
(21), we find

E (1)

E = μ

ikλD

{√
π

2

i

a

∑
n

Resn

[
W

( −u√
2a

)
e−ikut

	+

− W

(
ibt − u√

2a

)
e−ct2

	+

]
+ �e−ct2

}
, (30)

where � is a constant that depends on the equilibrium. The
more complicated behavior of the Maxwellian in the complex
plane results in a fundamentally different Cauchy splitting
and a time behavior that is not simply a sum of complex
exponentials with arguments linear in time, unlike what is
expected from the Jackson method. In this case, it is clear that
as the Bromwich contour in (9) is shifted as 
 → −∞, the
contour contribution to the integral does not vanish.

To illustrate the consequences of (30) we take the equi-
librium f0 = (α/π )/(v2 + α2) for which 	± = 1 − (ω2

p/k2)/
(u ± iα)2 and � = 1. The field is

E (1)

Ẽ
= μ

ωp

ikα

(
η

∣∣∣∣W
(

ikα − ωp√
2ak

)∣∣∣∣e−kαt cos(ωpt + θ )

+ e−ct2

{
1 + η Im

[
W

(
ibkt + ikα − ωp√

2ak

)]})
,

(31)

where η = √
2πωp/ak and θ = arg W[(ikα − ωp)/

√
2ak].

The exact solution, with μ = 0.01, a/α = 0.2, and kα/ωp =
1/2, is compared with van Kampen’s solution in Fig. 2. We
computed the van Kampen solution by numerically evaluating
(11) using the arbitrary-precision PYTHON library MPMATH

[10] carrying 200 decimal digits. We compare (11) with
the analytical form (31) by fitting the electric field to EL +
EW, where EL = l1el2t cos(l3t + l4) and EW = w1e−w2t2

[1 +
w3 Im W(iw4t + iw5 + w6)]. Doing so requires surprisingly
high precision since the terms involving W are slowly varying
functions of their parameters and the Gaussian-like behavior

FIG. 2. Electric field computed using the van Kampen solution
(dashed red) for a narrow Maxwellian initial perturbation and a
Lorentzian equilibrium. The relative error of fitting the van Kampen
solution to EL + EW, shown in the lower panel, confirms the correct-
ness of (31). See the text for details.

persists for some time before the exponential decay associated
with the single pair of roots of 	+ (Landau damping) becomes
dominant. The red dashed line in the upper panel of Fig. 2
shows EvK. The blue line shows the electric field with EL

removed, while the green line shows the electric field with EW

removed. The parameters extracted by the fitting reproduced
the analytical values to approximately 150 digits. The fit resid-
ual, shown as the relative error in the lower panel of Fig. 2, has
little structure, confirming that the fitted function reproduces
the analytical form well. It is often noted that Landau damping
represents the long-time behavior of the system. Here the field
amplitude must fall by some 20 orders of magnitude before
the system becomes dominated by this long-time behavior;
Landau damping is almost invisible for roughly the first 16
plasma periods. This is entirely due to contributions from the
initial condition, which is in no way physically unreasonable.

It must be emphasized that the existence of nonexponential
terms, i.e., those in addition to Jackson’s result, does not
depend solely on the form of either the initial condition or
the equilibrium, but whether F+/	+ diverges more quickly
than eikut as Im u → −∞. Thus the same initial condition
as above and the equilibrium f0 = (1/

√
2πvth )e−v2/2v2

th can
show qualitatively the same behavior provided a < vth. For
this equilibrium

	+ = 1 + ω2
p

v2
thk2

[
1 + i

√
π

2

u

vth
W

(
u√
2vth

)]
(32)

and � = 3/4. Since 	+ has an infinite number of zeros, it is
not possible to produce a closed-form expression for the field.
The field (30) with (32) for a = vth/10 and evaluated for the
first 1000 zeros of 	+ is shown as the blue curve in Fig. 3.
The green curve shows Jackson’s solution evaluated with the
same zeros. The red dashed curve is a numerical solution of

L063201-4
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FIG. 3. Electric field (30) with (32) (blue) for a Maxwellian ini-
tial perturbation narrower than the Maxwellian equilibrium. Clearly,
Jackson’s method (26) (green) fails to capture a critical feature of the
electric field that is present in the numerical solution (dashed red) and
reproduced by the expressions obtained via Cauchy splitting (blue).
See the text for details.

the linearized Vlasov-Poisson equation for this equilibrium
and initial condition on a periodic domain of length L = 4πλD

with kλD = 1/2 and μ = 0.01.
Further, Jackson’s method of shifting 
 → −∞ in (9)

while analytically continuing the integrand in general does
not necessarily give a reliable asymptotic approximation of
the solution. Consider the above initial condition and the
equilibrium f0 = (1/2vth ) sech(πv/2vth ) for which

	+ = 1 + ω2
p

8k2v2
th

[
ψ (1)

(
vth − iu

4vth

)
− ψ (1)

(
3vth − iu

4vth

)]
,

(33)

where ψ (1) is the trigamma function [8] and � = 1. Here
Jackson’s formulation fails since the solution diverges as more
terms are added, as shown in Fig. 4. The red dashed curve is
a numerical solution of the linearized Vlasov-Poisson equa-
tion for this equilibrium and initial condition on a periodic
domain of length L = 4πλD with kλD = 1/2, a = vth, and
μ = 0.01. The blue curve is (30) with (33) using the first 20
zeros of 	+. This failure of Jackson’s formulation arises be-
cause the zeros of 	+ progress down along the imaginary axis,
which when evaluated in the numerator F+ in (26) causes the
amplitude to become more and more divergent. In contrast, the
numerator in (30) from Cauchy splitting vanishes at infinity
in the lower half-plane, resulting in a proper asymptotic form.
Thus it is crucial to examine the behavior of the entire Cauchy
density, not just 	+ as is commonly done.

For an equilibrium with a finite collection of unstable
modes of any order, the van Kampen–Case solution [2–4], in

(a) (b)

FIG. 4. (a) Electric field (30) with (33) (blue) and Jackson’s
solution (26) truncated to various numbers of terms. (b) An expanded
scale of (a). Our solution by Cauchy splitting (blue), taking only 20
terms, agrees very well with the numerical solution of the linearized
Vlasov-Poisson equation (dashed red).

our notation, becomes

f (1) = −2π i
ω2

p

k2
f ′
0(v)

[ ∑
j

P j

(
F+(u)

	+(u)
e−ikut ; v

)

+
∑

j

P j

(
F−(u)

	−(u)
e−ikut ; v

)]

+
∫ ∞

−∞
du

(
F+(u)

	+(u)
− F−(u)

	−(u)

)

×
(

ω2
p

k2
P

f ′
0(v)

v − u
+ 	+(u) + 	−(u)

2
δ(v − u)

)
e−ikut ,

(34)

where the sums are over the zeros of 	+ in the upper half-
plane and 	− in the lower half-plane and P denotes the
principal value. Using properties of the Cauchy splittings, we
have

1

2π i

∫ ∞

−∞

F−(u)

	−(u)

e−ikut

u − z
du

=
∑

j

P j

(
F−(u)

	−(u)
e−ikut ; z

)
−

{
0
F−(z)
	−(z) e

−ikzt

=
{
ξ+(z), Im z > 0
ξ−(z), Im z < 0,

(35)

which combined with Sokhotski’s relations [7] allows us to
write

P
∫ ∞

−∞

F−(u)

	−(u)

e−ikut

v − u
du

= −iπ [ξ+(v) + ξ−(v)]

= iπ
F−(v)

	−(v)
e−ikvt − 2π i

∑
j

P j

(
F−(u)

	−(u)
e−ikut ; v

)
. (36)

When inserted into (34), the terms in the sum over j in (36)
exactly cancel the decaying discrete mode contributions to the
distribution function, giving

f (1) = −2π i
ω2

p

k2
f ′
0(v)

∑
j

P j

(
F+(u)

	+(u)
e−ikut ; v

)

− iπ
ω2

p

k2
f ′
0(v)

F−(v)

	−(v)
e−ikvt +

∫ ∞

−∞
du

[
F+(u)

	+(u)

ω2
p

k2
P

f ′
0(v)

v − u

+
(

F+(u)

	+(u)
−F−(u)

	−(u)

)
	+(u)+	−(u)

2
δ(v − u)

]
e−ikut .

(37)

It is thus apparent that Case’s counting of discrete modes [3,4]
is not correct. The decaying discrete modes, while necessarily
present whenever there are growing discrete modes as part
of the eigenvalue problem, always cancel with a contribution
from the van Kampen modes and thus never contribute to the
time evolution of the distribution function or electric field.
This result is illustrated in Fig. 5.

Elskens and Escande [11] developed a finite-degree-of-
freedom particle approximation to Vlasov dynamics in the
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FIG. 5. Contribution to the field from the van Kampen modes
|EvK|/E (blue) for the system shown in Fig. 1. The field is dominated
by an exponential decay identical (but with opposite amplitude) to
that of the Case decaying discrete mode Ed. Adding Ed to the van
Kampen contribution |EvK + Ed|/E (cyan) results in a cancellation,
giving the same evolution as when the growing mode is subtracted
from the field from the numerical solution |E (1) − Eu|/E (red).

context of quasilinear theory. They argue that an unstable-
stable eigenmode pair is accompanied by Landau damping
in such a way that the decaying eigenmode contribution
to the electric field is canceled by Landau damping. In
distinction, while we find that the continuum does exactly
cancel the decaying discrete mode, the rate of the discrete
mode is significantly different from the decay rate from the
Landau pole, and the same is true of the phase velocities.
Our result is a rigorous property of the solution of the lin-
earized system and not the consequence of an approximate
argument.

We have developed a method for solving the linearized
Vlasov-Poisson system, based on analyticity properties of the
equilibrium and initial condition by exploiting properties of
Cauchy-type integrals. Our method produces algebraic ex-
pressions for the distribution and field, i.e., the solution is
expressed without integrals. This interpretation of (17) can
be generalized to a wide class of inversion integrals. When
the equilibrium results in 	+ having an infinite number of
zeros, our method can yield a reliable asymptotic approx-
imation to the field and distribution function. We showed
that for reasonable initial conditions and stable equilibria, the
solution may exhibit time dependence more complicated than
simple exponential decay and oscillation as expected from a
naive evaluation of the inverse Laplace transform. Our anal-
ysis explained an apparent discrepancy in unstable systems
between the Jackson and van Kampen–Case solutions. We
showed that the contribution of decaying discrete modes to the
field and distribution is always canceled by a corresponding
contribution from the van Kampen modes. Case’s formulation
in terms of orthogonal eigenfunctions overlooked the fact
that the van Kampen modes and the decaying discrete mode
eigenfunctions are not independent. As a result, Case’s mode
counting is incorrect. Not all of the normal modes arising from
solutions of ε = 0 appear in the solution; only the unstable
discrete modes survive.
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