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CATTLE USING SELECTED VARIANTS FROM IMPUTED LOW-PASS
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University of Nebraska, 2022

Advisor: Matthew L. Spangler

A beef cattle population (n=2,343) was used to assess the impact of variants
identified from imputed low-pass sequence (LPS) on the estimation of variance
components and genetic parameters of birth weight (BWT) and post weaning gain
(PWG). Variants were selected based on functional impact and were partitioned into four
groups (Low, Modifier, Moderate, High) based on predicted functional consequences and
re-partitioned based on consequence of mutation, such as missense and untranslated
region variants, into six groups (G1-G6). Each subset was used to construct a genomic
relationship matrix (GRM) for univariate animal models. Multiple analyses were
conducted to compare the proportion of additive genetic variation explained by the
different subsets individually and collectively, and these estimates were benchmarked
against all LPS variants in a single GRM and array (e.g., GeneSeek Genomic Profiler
100K) genotypes. When all variants were included in a single GRM, heritability
estimates for BWT and PWG were 0.43+0.05 and 0.38+0.05, respectively. Heritability
estimates for BWT ranged from 0.10-0.42 dependent on which variant subsets were

included. Similarly, estimates for PWG ranged from 0.05-0.38. Results showed that



variants in the subsets Modifier and G1 (untranslated region) yielded similar heritability
estimates compared to the inclusion of all variants yielded the highest estimates, while
estimates from GRM containing only variants in the categories High, G4 (non-coding
transcript exon), and G6 (start and stop loss/gain) were the lowest. All variants combined
provided similar heritability estimates to chip genotypes and provided minimal to no
additional information when combined with chip data. This suggests that the chip data
and the variants from LPS predicted to be less consequential are in relatively high linkage
disequilibrium with the underlying causal variants and sufficiently spread throughout the

genome to capture larger proportions of additive genetic variation.
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CHAPTER |
LITERATURE REVIEW
Introduction

The inclusion of genomic data in genetic evaluations has allowed for increased
accuracy of prediction for animal genetic merit. Genetic evaluations calculate estimated
breeding values (EBV) of animals and associated accuracy for a variety of traits. Prior to
the inclusion of genomic data, animals were evaluated using pedigree and available
phenotypic data only. Pedigree data is used to estimate the relationship among
individuals using the numerator relationship matrix, also known as the A matrix (Wright,
1922).

Pedigrees provide an estimate of the amount of genetic information shared among
related individuals. While any individual inherits 50% of their genetic material from each
of their parents, the expected values shared with each grandparent is 25% of their genetic
material. This expectation however is not always the case, and assuming no inbreeding,
individuals can share between 0 and 50% of their alleles with a single grandparent. Even
though pedigree-based relationships are estimates, they still provide a framework for how
phenotypic information can be “shared” among related individuals such that information

on records for one animal can provide an EBV for related animals.

Methods for the Inclusion of Genomic Data in Evaluations
Fernando and Grossman (1989) theorized a generalized method for simultaneous

evaluations with the inclusion of genetic markers and inverting relationship matrices as a



method to be used with best linear unbiased prediction (BLUP). As theorized and
simulated by Meuwissen et al. (2001), if markers were distributed throughout the genome
and then utilized in a genetic evaluation, there would be a benefit to the animal and plant
industries by improving the rate of genetic change.

These theories combined with Van Raden’s (2008) development of the genomic
relationship matrix (GRM) also known as the G matrix, which accounts for similarity
among animals based on SNP being Identical by State (IBS), provided a way for rapid
development in the utilization of genomics. This development allowed for an efficient
method for genetic predictions with the inclusion of genomic information. However, the
methods described by Van Raden (2008) only worked assuming all animals are
genotyped. The ability to combine genomic- and pedigree-based relationship matrices, as
proposed by Christensen & Lund (2009) and Legarra et al. (2009), enabled the
development of single-step evaluations and the eventual move away from the prior two-
step approaches. Single-step methods estimate breeding values using all data at once,
while two-step methods require the estimation of molecular-based EBV (MBV) in a
separate step and then either the use of a multi-trait model that fits the EBV as a
correlated trait or an indexing approach to combine the pedigree-based EBV and then, for
genotyped animals, the MBV.

The use of genomic information via a GRM was quickly implemented with the
use of BLUP, to make genomic best linear unbiased prediction (GBLUP). In the simplest
case of GBLUP, a single trait animal model can be described as

y=Xb+Zu-+e
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where y represents a vector of phenotypic records, b represents a vector of fixed effects, u
represents a vector of random additive genetic effects, e represents a vector of random
residual components which is part of the phenotype which is not explained by effects in b
or u. The X and Z matrices relate observations in y to fixed effects in b and random
additive genetic effects in u, respectively. It is also assumed that
u~N(0, Ga2), e ~ N(0, I62), Cov[u, €] =0,y ~ N(Xb, ZGa2Z' + Ic?)

where Ga and 16 are variance and covariance matrices for genetic and residual
effects, respectively. These specifications are similar for a pedigree BLUP model, where
A replaces G.

Van Raden (2008) described three methods to form G. The first, and most

popular, method scales the G matrix to be analogous to the A matrix. G can be defined as

_ MM/
2% pi(1-p)’

where M denotes a centered SNP matrix with rows corresponding to each animal and
columns representing each locus, and pi is the minor allele frequency at the ith locus.
Historically, the process of incorporating genomic data into EBV was done

through what is known as multi-step, where the calculation of genomically-enhanced
estimated breeding values (GEBV) would require a traditional evaluation using the A
matrix, then the extraction of peusdo-observations such as deregressed EBV, and then the
estimation of SNP effects of genotyped animals, and then the combining of genomic
predictions with traditional EBV. This process was then simplified into a single-step
evaluation with one of the first being by Aguilar et al. (2010). The authors found that

single-step nearly matched the accuracy and bias from that of the multi-step. Misztal et



al. (2009) derived the H matrix, a matrix the includes both pedigree-based relationships
and genomic-based relationships. Afterwards, Aguilar et al. (2010) and Christensen &
Lund (2009) both independently demonstrated how to easily invert H. This matrix is best
utilized when there is information on both genotyped and non-genotyped animals.

GBLUP is not the only modeling approach, some of the other methods include
Bayesian methods, such as BayesR and BayesRC, among others. Kemper et al. (2015)
used BayesR, described as a non-linear model by the authors, and high-density SNP
genotypes and reported estimates of GEBV with similar to improved accuracies
compared to GBLUP for within- and across-breed analyses. Both BayesR and GBLUP
assume that each variant is equally likely to affect the trait, although with BayesRC this
equality is not assumed. BayesRC does use similar prior information but classifies
variants into classes, where this change has been shown to improve accuracy over
BayesR in dairy cattle (MacLeod et al., 2016).

It was also shown by Erbe et al. (2012), that BayesR could perform better in
terms of correlation of GEBV and daughter deviations compared to GBLUP. Fernando et
al. (2014) used single step Bayesian regression (SSBR) in which they demonstrated
combining genotyped and non-genotyped animals in a single evaluation using BayesCr.
Zhou et al. (2014b) observed that when combining genotyped and non-genotyped Nordic
Red cattle, genetic predictions of animals for a whole genome analysis with BayesR
yielded higher accuracies than GBLUP. However, Warburton et al. (2020) reported that
GBLUP was still able to provide a higher prediction accuracy than the BayesR method

when using a small number of highly relevant variants.



Generally, GBLUP methods focus solely on predicting additive genetic effects
using the G matrix, although other matrices can be used in addition. The dominance
relationship matrix, D, follows the design of G but takes on values that are determined
from the dominance level of a locus and the heterozygosity of the individual at that locus.
The D matrix follows as

D= TT'
> 2piq;(1 — 2p;q;)

where T is a matrix of heterozygosity coefficients and pi and g; are minor and major allele
frequencies at the i locus (Su et al., 2012). The findings of Raiden et al. (2018) suggest
the use of a dominance matrix along with epistasis and heterozygosity may only provide
a slight benefit when estimating genetic parameters and that for genetic prediction an
additive genetic effects model was adequate. The authors saw an increase in accuracy
from 0.28 to 0.33 when including nonadditive genetic effects for one group of cattle and
an increase of 0.18 to 0.23 in another group. The magnitude of these increases is
reasonable, given dominance and epistatic effects have been shown to account for a 4-6
% of phenotypic variation for several traits across breeds in dairy cattle (Marete et al.,
2018). Computation can become even more complex when considering dominance and
epistatic effects.

Differences created by multi-breed or multi-population evaluations can impact
resulting accuracy of predictions and can require changes to the kinship matrix that is
used. Differences can be due to different linkage disequilibrium (LD) patterns between
breeds, where fewer shared alleles between breeds provide less information for other

breeds in the matrix (Zhou et al., 20144a). LD is the non-random association of alleles



from two loci, which can reflect recombination history of alleles. As a population
becomes older, more recombination events can occur that can lead to differences in LD
phases between populations. It is likely that LD will differ across different populations
and across diverged breeds (de Roos et al., 2008). The authors also found that these
breeds can differ so much that in order to obtain consistent marker effects across Angus,
Jersey, and Holstein-Friesian it would take approximately 300,000 markers. Similarly, as
shown by Kachman et al. (2013), genetic correlations between molecular breeding values
and growth traits (weaning weight and post weaning gain) were low when trained in one
breed and used to predict in a different, albeit it closely related, breed such as the case
with Angus and Red Angus. However, the authors found that across breed and within
breed molecular breeding values accuracies were similar when across-breed training sets
were representative of the target breed(s).

The weighting of G was demonstrated by Van Raden (2008) where a weighting
can be applied to matrices to add more or less emphasis to certain markers in order to
better meet a certain objective. An example of this can be weighting based on QTL effect
in order to account for differences in how SNPs may affect a trait differently. The use of
weighted relationship matrices can also be used to account for the covariance of SNP
effects across two breeds with different LD phases. The matrices are weighted for
individual SNP effects when accounting for heterogenous variances and covariances. The
genomic relationship coefficient for the weighted G matrix can be described as:

D=1 My iyMa(j oy wi

gij = )
JZ 2P1,k(1 - pl,k) x sz,k(l - pz,k)




where M is a genotype matrix for individual i and individual j at marker k, w,, is the
weight of marker k, and px is the allele frequency for each of the two breeds, 1 and 2
(Zhou et al., 2014a). The weights used by the authors were measured as pairwise

correlations between two breeds as measurements of LD between markers.

Genomic Data for Genetic Evaluations

Genomic sequencing technology has progressed substantially in recent years.
Sanger (1975) developed a method to sequence DNA through dideoxy chain termination
that was utilized for the next 40 years through improved processes. Some of these
improvements came through the development of fluorescent detection systems that
detected different colored dyed fluorescents for each nucleic base. The development of
polymerase chain reaction (PCR) in the 1980s led to bacterial artificial chromosomes
(BAC) that could be cloned to be used in sequencing and combining chains to compile a
whole genome. Next-Gen sequencing (NGS) surfaced in 2008 as several companies
released the high throughput technologies that utilized PCR and fluorescent detection in
such a way that the whole genome could be sequenced in a matter of a few hours.

The use of NGS allows for a simpler way to identify segments of the genome
which can be selected for. In order to select for features of the genome, a large variety of
panels have been developed to test a variety of SNPs in order to provide more
information. The SNPs for these panels are chosen to include significant variants or

variants somewhat uniformly distributed throughout the genome and at intermediate


https://en.wikipedia.org/wiki/History_of_polymerase_chain_reaction

allelic frequency across a large number of breeds. These panels can be broken into the
categories below as described by the Beef Cattle Research Center (Crowley, 2016):
Small panels: include between 5 and 2,000 SNPs. These are
generally used for parentage, genetic abnormality testing, coat color,
horns, etc.

Low density panels: include between 5,000 and 30,000 SNPs.

These are used for genomic prediction/selection purposes when there are a
lot of higher density genotypes available to use for imputation.

Medium density panels: include between 50,000 and 150,000

SNPs. This density is common in beef genomic selection programs.
Usually, a population will begin by genotyping a reference set (influential
animals in the breed) using a medium density panel realizing the definition
of “medium” evolves overtime. A reference set is chosen to represent a
population based on how well they represent the diversity or current
population.

High density panels: include between 500,000 to 1 million SNPs.

These panels are less popular in beef as it comes at a high cost.

Whole Genome Sequencing: occurs when an animal’s entire

genome is sequenced. This type of test is presently used primarily for

research and is too expensive to be employed on farm.



Accuracy of Different Variant Densities and Causal Variants

There have been mixed results on increases in accuracy from the inclusion of
additional genomic data. As found by VVeerkamp et al. (2016), there was a marginal
increase of less than 0.04 in heritability when comparing estimates from a low-density
panel and a high-density panel. Additionally, as found by Chang et al. (2019) via
simulation, there was no significant increase in accuracy from high density array panels
or whole genome sequence data when compared to low and medium density panels. The
authors attribute this to the limitations of current methodology for evaluation
implementation that may be caused from the large number of unknown parameters which
is limited by small marker effects and high false positives. On the other hand, the 1000
Bull Genomes project found that the inclusion of imputed sequence data provided a 2%
improvement in prediction accuracy compared to 800k array data (Hayes et al., 2014).
The authors also demonstrate that BayesRC was able to identify some causal mutations in
the imputed data (e.g., PLAGL). It was also found by Meuwissenn et al. (2021) that using
WGS led to a 3% accuracy improvement over a 600k SNP chip for Australian Red cows.

Some traits may be monogenic, where one gene controls a trait, while other traits
are polygenic, where more than one gene controls a trait. The polygenic traits are much
more complex and can be difficult to estimate or predict. Causative variants, variants
found to be the true cause of variation in traits, have been found recently that can account
for a relatively large amount of variation for polygenic traits. The search for causal
variants in complex traits can be a difficult process. As reported in a summary of

findings, Casas et al. (2016) outlined the genomic regions for several traits where some



10

causative variants have been identified. As reported by Utsunomiya et al. (2013), a
GWAS was able to associate five variants with birth weight in Nellore cattle. The most
significant single variant was able to account for 4.62% of variation in birth weight, while
a non-significant variant may only account for 0.4% or less of the variation.

Although this summary is not comprehensive, these findings can then be used to
make better selection decisions. Although causal variants and marker-assisted selection
may be useful, it is important to make sure that the information used from evaluations

have an emphasis on phenotypic record collection (Dekkers, 2004).

Imputation

The process of imputation takes genotypes of variants from lower density arrays
and uses animal relationships and/or haplotype groups from animals that have been
genotyped or sequenced at higher densities to determine the likely genotypes of the
animals with lower density genotypes. Marchini et al. (2007) reported that animals that
have been genotyped via lower density assays had evaluations that were not as accurate
as those of animals genotyped with high-density arrays, until the inclusion of imputation.

Imputation can be done by comparing the genomic relationships of animals based
on pedigree, haplotype groups, or both. Imputation has been utilized in several studies,
for example in Ventura et al. (2016), the authors were able to improve imputation
accuracy in sheep by testing different panels, software, imputation processes, and which
animals to genotype with the higher density. The authors found that by conducting a two-

step imputation process from 5k to 50k and then to high density outperformed going
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directly from 5K to high density. They also found that a large reference set of animals
provided increases across many animals both purebred and crossbred, especially for
larger breeds. However, large reference sets resulted in a slight loss in accuracy for some
animals when compared to small within-breeds reference sets, but the increase across
most animals justified the larger sets (Ventura et al., 2016).

In order to improve accuracy of imputation for rare variants, the use of a two-step
imputation process can be used. As found by Kreiner-Mgller et al. (2015), going from
550k to WGS yielded accuracies ranging from 0.806-0.942 for markers involving rare
homozygotes. By using a two-step approach going from the 550k to ~4.3 million markers
and then up to WGS they were able to improve accuracies for the same markers to range
from 0.830-0.955. There was not any improvement for more common homozygote
markers. However, given that the heterozygote and rare homozygote marker calls were
improved, the overall accuracy of imputation as also improved.

As imputation is optimized, more avenues for genomic testing are opened.
Accuracy of imputation can be improved in several ways such as when the reference set
of animals is larger in size especially for low frequency alleles (Browning and Browning,
2009). The relationship of the animals included in the reference set compared to those in
the target dataset may also be important for increasing accuracy as shown by Moghaddar
et al. (2015) when comparing purebred or crossbred Merino sheep.

Given more work is needed to better understand the impact of including
potentially causative variants in genetic evaluations, and more data is needed to identify

causative variants, a new process to identify these markers for a reasonable cost could be
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beneficial. With the recent development of low pass sequencing (LPS), a process of using
a low coverage sequencing at around 0.5x, and then imputing markers across the genome,
similar genotype identification accuracy might be achieved as compared to SNP array
sequenced data. As found in Snelling et al. (2020), imputed LPS was able to produce
similar genotypes calls to that of SNP arrays by looking at correlations between the two
sets. Along with this, LPS provides a reasonable cost-effective alternative to genotyping

with high accuracy.

Summary

Genetic evaluations have progressed greatly with the development of new
methods. With the use of genomics, accuracy of prediction has been increased and will
likely continue to be improved. One of these improvements could come in the form of
LPS and imputation providing a new way of obtaining genomic information that is more

dynamic with the potential to increase accuracy.
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CHAPTER II
VARIANCE COMPONENT ESTIMATES FOR GROWTH TRAITS IN BEEF
CATTLE USING SELECTED VARIANTS FROM IMPUTED LOW-PASS
SEQUENCE DATA
Abstract
A beef cattle population (n=2,343) was used to assess the impact of variants
identified from imputed low-pass sequence (LPS) on the estimation of variance
components and genetic parameters of birth weight (BWT) and post weaning gain
(PWG). Variants were selected based on functional impact and were partitioned into four
groups (Low, Modifier, Moderate, High) based on predicted functional consequences and
re-partitioned based on consequence of mutation, such as missense and untranslated
region variants, into six groups (G1-G6). Each subset was used to construct a genomic
relationship matrix (GRM) for univariate animal models. Multiple analyses were
conducted to compare the proportion of additive genetic variation explained by the
different subsets individually and collectively, and these estimates were benchmarked
against all LPS variants in a single GRM and array (e.g., GeneSeek Genomic Profiler
100K) genotypes. When all variants were included in a single GRM, heritability
estimates for BWT and PWG were 0.43+0.05 and 0.38+0.05, respectively. Heritability
estimates for BWT ranged from 0.10-0.42 dependent on which variant subsets were
included. Similarly, estimates for PWG ranged from 0.05-0.38. Results showed that
variants in the subsets Modifier and G1 (untranslated region) yielded similar heritability

estimates compared to the inclusion of all variants yielded the highest estimates, while
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estimates from GRM containing only variants in the categories High, G4 (non-coding
transcript exon), and G6 (start and stop loss/gain) were the lowest. All variants combined
provided similar heritability estimates to chip genotypes and provided minimal to no
additional information when combined with chip data. This suggests that the chip data
and the variants from LPS predicted to be less consequential are in relatively high linkage
disequilibrium with the underlying causal variants and sufficiently spread throughout the

genome to capture larger proportions of additive genetic variation.

Introduction

Although advances have been made in recent years relative to the incorporation of
genomic data into routine genetic evaluations of beef cattle and corresponding increases
in predictive accuracy, hope remains that the inclusion of causal variants into prediction
models will lead to further gains in accuracy. Such efforts require the use of whole-
genome sequencing (WGS), and despite decreases in cost, wide-spread deep sequencing
of seedstock cattle is cost prohibitive. The use of low-pass sequencing at much shallower
depths (e.g., 0.5x) is a much more attractive alternative, when coupled with imputation,
to garner genotypes of potentially causal variants on large numbers of individuals for a
lesser cost. Such an approach also represents a means of making marker subsets actually
used in genetic evaluations more flexible and dynamic.

Large effect variants for complex traits such as birth weight in beef cattle are
known to exist and are predictive in populations external to where they were identified

(Snelling et al., 2017). However, the general benefits of including putative causal variants
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in genetic predictions or the use of WGS for prediction more generally has had mixed
results in the literature (e.g., Heidaritabar et al., 2016; Veerkamp et al., 2016; Warburton
et al., 2020). Several challenges exist relative to the use of WGS for genetic prediction,
including the inability to accurately estimate the effect of all WGS Single Nucleotide
Polymorphisms (SNP) using currently available phenotypic datasets to allow for accurate
pre-selection of variants. Additionally, currently available high-density panels may
sufficiently capture enough genetic variation through LD with causal variants to limit
gains from using WGS (e.g., Frischknecht et al., 2018). However, evidence in the
literature supports the concept of pre-selected WGS variants to improve prediction
accuracy in multi-breed populations (e.g., Raymond et al., 2018). Consequently, the
objective of the current study was to investigate the benefit of fitting variants based on
predicted functional impact and variant consequence in prediction models for birth
weight (BWT) and post weaning gain (PWG) in a multi-breed beef cattle population

using a genomic best linear unbiased prediction framework.

Materials and Methods
Animal Care

All methods and animal care described in this study followed the Guide for the
Care and Use of Agricultural Animals in Agricultural Research and Teaching (Ag Guide,
2020) and were approved by the U. S. Meat Animal Research Center (USMARC) Animal

Care and Use Committee.
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Data

A crossbred beef cattle population (n=2,343) with sequence variant genotypes
imputed from low-pass (~0.5x) WGS and recorded BWT and PWG was used. Animals
were part of the continuously sampled USMARC Germplasm Evaluation (GPE) project
(Retallick et al., 2017). The low-coverage sequence was submitted to the Gencove
pipeline for imputation with loimpute (Loimpute-Public, 2020) to a haplotype reference
panel constructed from WGS of 946 cattle (598 available from NCBI Sequence Read
Archive; 348 GPE sires) (Snelling et al., 2020). As described by Snelling et al. (2022),
functional impact and consequences of the imputed variants was assessed with snpEff
using the Ensembl annotation of the ARS-UCD1.2 assembly of the bovine genome (Aken
et al., 2016; Cingolani et al., 2012; Rosen et al., 2020). Genotypes for interesting
variants were extracted from the imputed calls of each individual with low-pass
sequence. Interesting variants included variants in exons of protein-coding genes, which
may affect gene function, in untranslated regions (UTR) and non-coding transcript exon
variants, which may impact gene regulation. Low-pass calls were required to have a
genotype probability greater than 0.95, then a 0.95 call rate filter by animal and variant
was applied to the set of interesting variants.

In total, a set of 1,145,892 variants was identified for further analysis. The
variants were partitioned into two different categories, predicted functional impact and
consequence of mutation. For the functional impact classifications, variants were divided
into four groups: High, Moderate, Modifier, and Low. For the consequence of mutation

classifications, variants were divided into six groups: G1 (untranslated region; UTR), G2
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(synonymous), G3 (missense), G4 (non-coding transcript exon variants), G5 (splice
region), and G6 (start and stop loss/gain). Animals also had LPS genotypes called that
corresponded to the GGP Bovine 100K SNP Array with a total of 72,997 variants (Chip).

In order to determine the effects of linkage disequilibrium (LD), pruning at
differing levels of r? values were tested (r> = 0.9, 0.8 and 0.7). Variants were prioritized
for pruning based on the level of predicted function from highest potential effect to the
lowest. For example, for the functional impact subsets this meant that if a variant was in
LD with a variant contained in the High subset, the lower-level variant was removed. For
functional impact variants, this was ordered as High, Moderate, Modifier, and then Low.
For consequence variants, this was ordered as G6, G5, G3, G4, G1, and then G2. If a
variant was in LD with another variant from the same subset, both variants were kept.
Results herein include only those from the most stringent LD cutoff.

After removing those that were fixed (minor allele frequency (MAF) of 0) or were
in LD with another marker at a level of r>=0.7 data were reduced to 461,806 variants for
the functional impact classifications and 435,538 for consequence classifications. These
values differ due to the way pruning was conducted. Variants in the same subset that
were in high LD were retained while those in high LD across subsets were removed.
Consequently, when classifications changed, subsets changed and different variants were
removed based on LD. Total variants in the functional impact subsets were as follows:
Low (98,557 variants across 17,885 genes), Modifier (183,823 variants across 16,970
genes), Moderate (171,690 variants across 19,599 genes) and High (7,736 variants across

5,360 genes). The other category based on consequence of mutation were partitioned as
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follows: G1 (138,364 variants across 14,199 genes), G2 (79,787 variants across 16,784
genes), G3 (147,908 variants across 19,185 genes), G4 (32,949 variants across 2,607
genes), G5 (31,440 variants across 12,009 genes), and G6 (5,090 variants across 3,812

genes).

Statistical analysis

All analyses were conducted using the ASREML 4.1 software package (Gilmour
et al., 2015). Genomic Relationship Matrices (GRM) were constructed to contain variants
from each of the partitioned subsets, and one GRM that included all variants. Genetic
parameters were obtained from univariate animal models in a GBLUP framework by
fitting fixed effects of sex, contemporary group (concatenation of year, season of birth,
and age of dam (BW only)) and linear covariates of expected heterozygosity and breed
fractions. Random effects included the additive genetic effect associated with each GRM
and a residual. In matrix notation, the model for one GRM is:

y=Xb+Zu-+e

where y represents a vector of observations for the traits BW or PWG, b represents a
vector of fixed effects, u represents a vector of random additive genetic effects, e
represents a vector of random residual components which is part of the phenotype which
is not explained by effects in b or u. The X and Z matrices relate observations in y to
fixed effects in b and random additive genetic effects in u, respectively. It is also
assumed that

u~N(0, Ga2), e ~ N(0, Ie?), Cov[u,e] =0,y ~ N(Xb, ZGa2Z' + 152)
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where Ga? and Ie2 are variance and covariance matrices for genetic and residual
effects, respectively. The addition of more than one GRM required fitting additional
corresponding random effects (u) and incidence matrices.

As detailed by Yang et al. (2011), models can contain multiple GRM to be used
as random effects in a joint analysis. In the current study this included fitting a single
random effect associated with the GRM comprised of a subset of variants (e.g., High, G3,
etc.), models that included multiple random effects each associated with a different GRM
(e.g., Low & Modifier; G1,2,4), models that included all variants in a single GRM (Full)
and models that included all variants by fitting multiple GRM (All). Variants from the
Chip genotypes were also included in their own GRM. To measure any additional
information from Full when compared to Chip, a single GRM was built to include all
variants in both the Full and Chip sets (Full & Chip). There were 2,820 SNP that were
shared between these two sets, whether this was from Full for functional impact or
consequence of mutation partitions, so the variants were removed from the Chip set to
avoid double counting of these variants. To test if the number of markers impacted
estimates, ten random sets of variants from Low were taken with 7,736 variants, the same
number of variants found in High. Each random set was then included in single GRM
models for comparison.

Riemannian distance between GRMs was used as an additional method to
determine differences among GRMs by considering intra-class variance and distance.
The Riemannian distance between two semi-positive definite covariance

matrices, A and B is given by:
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5x(4,B) = jZ'f_l{lnui(AlB)]}z

where the A; are the real and strictly positive eigenvalues of the matrices A and B

(Moakher, 2005).

Results

Estimates of variance components and heritability for single GRM models of
BWT and PWG for functional impact subsets are reported in Tables 1 and 2, respectively,
while Tables 3 and 4 report findings for consequence separated subsets. These single
GRMs include Chip, Full, Full & Chip and the subsets (e.g., Low, Moderate, G1, G2,
etc.). Differences in heritability estimates between models were negligible except for
models that omitted the Modifier or G1 variants. The Full and Chip models resulted in
similar estimates and when they were combined into one GRM, they provided minimal or
no increase in heritability estimates.

Estimates of variance components, heritability, and percentage of additive genetic
variance explained by each combination of GRMs for models with more than one GRM
for BWT and PWG for functional impact subsets are reported in Tables 5 and 6,
respectively, while Tables 7 through 12 report findings for consequence separated
subsets. Tables 7, 8, and 9 are models for BWT and Tables 10, 11, and 12 for PWG. The
tables are separated based on number of GRM in each model where Tables 7 and 10
contain models with two GRMs, 8 and 11 for three GRMs, and 9 and 12 for four or more
GRMs. These contain every combination of GRMs where the models included multiple

GRM as different random effects (i.e. Low & Modifier, Low, Modifier & Moderate, etc.).
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Estimates from models that included GRM based on High impact or G4 and G6 variants
resulted in heritability estimates similar to what was obtained when they were not
included. In general, the highest estimates of heritability were from models containing
Modifier or G1 and the lower estimates from models containing High, G4, or G6.

The 10 random sets of Low variants had an average heritability estimate of 0.16
with a standard deviation of 0.03, while the heritability estimate from High was 0.10. The
Riemannian distances did not differ dramatically from one another for either partition
except when the High, G4, or G6 subsets was involved. The distances for functional
impact combinations that did not contain High ranged from 26.4-29.8, while the
combinations that contained High had a range of 93.0-94.5. For the consequence of
mutation combinations, the distances ranged from 27.1-38.5 for combinations not
containing G4 or G6. Combinations that contained G4 had distances of 51.7-55.5, and G6
containing combinations ranged from 122.4-124.6, with the G4:G6 combination falling
into the latter range. This indicates that the High impact variants, the non-coding
transcript exon (G4), and start/stop loss/gain (G6) variants are different from the rest of

the subsets.

Discussion

Estimates of heritability from models fitting the Full GRMs from either
categorization were 0.43+0.05 and 0.38+0.05 for BWT and PWG, respectively, both in
the range of estimates previously reported for these traits in beef cattle (Koots et al.,

1994). The Chip GRM yielded higher or similar estimates of heritability to that of the
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Full GRMs despite having only 2,820 SNP in common between the two, suggesting that
any differences in heritability estimates were due to the content not in common.

The models that contained all subsets in separate GRMs provided a very similar
estimate of heritability compared to Full. Warburton et al. (2020) reported results from a
beef cattle population comparing the use of a single GRM with pre-selected WGS
variants added to panel SNP and a multiple GRM model whereby panel SNP comprised
one GRM and WGS variants comprised a second GRM. The multiple GRM model
produced greater accuracy than the single GRM model in their study. Interestingly, only
fitting the GRM comprised of Modifier and G1 variants resulted in a negligible decrease
in the additive genetic variance compared to the Full GRM.

Perhaps more interesting are results from fitting only the GRM comprised of High
impact variants. These loss-of-function variants are predicted to substantially alter
protein-coding genes and yet only accounted for 22.5% of the additive genetic variation
in BWT and 25.7% in PWG in this population. Approximately 62% of annotated genes in
the current study’s data include the high impact variants, and the low amount of
phenotypic variation explained by high impact variants could indicate that genes with
similar function may compensate for genes affected by high impact alleles (EI-Brolosy
and Stainier, 2017). Similarly, Veerkamp et al. (2016) reported a marginal gain in the
proportion of genetic variation explained when fitting a GRM based on full sequence data
as compared to a GRM based on a common SNP array for traits in Holstein cattle despite
identifying 42 variants that explained ~23% of the genetic variance when they were fitted

alone.
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The classification of mutation category results also follows previous literature.
Zhang et al. (2020) reported that UTR, synonymous, and missense variants explained a
large amount of genetic variance for growth traits such as average daily gain (ADG) or
residual feed intake (RFI) in beef cattle. In the current study, similar variants are
accounted for in G1, G2, and G3. These variants account for a total of 62.7% of additive
variance in PWG and 83.2% of the additive variance for BWT when they were fit in All.
While many of these variants are not believed to be causal variants, they are still able to
account for large proportions of genetic variation, which may imply further that the
inclusion of causal variants might not substantially improve prediction accuracy. This
might be particularly true within-population given that linkage disequilibrium between
observed variants and underlying causal variants is sufficiently high. In across-breed or
admixed populations, where LD structures differ, the use of causal variants might prove
more helpful in increasing prediction accuracy or more specifically in providing more
robust prediction accuracies across breeds.

The Full GRMs provided the same heritability estimates across both traits and
partitions. Although the four subsets in the functional impact partition are not quite
equivalent to the six subsets in the consequence of mutation partition, but in general the
synonymous variants, G2, were in Low while High contained most of the variants found
in G4 and G6. This can be further seen in the heritability estimates with similar estimates
between G2 and Low and the lowest estimates coming from High and G6.

In general, as the number of variants included in a GRM increased the estimate of

heritability increased. However, when taking 10 random samples from Low, the resulting
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heritability estimate was consistently higher than the estimate from the High subset. This
could be due to variants in Low covering more of the genome and having higher MAF on
average.

Models that included GRM from Chip and Full variants resulted in similar
heritability estimates, a result that is supported by Frischknecht et al. (2018). The authors
found no difference in genomic prediction accuracy when comparing a 50k SNP chip
compared to 50k imputed WGS variants in Brown Swiss cattle. They also found slight
deviations in accuracy between traits, which was also observed by Lopez et al. (2021)
when using pre-selected variants where marbling score accuracy increased slightly while
carcass weight accuracy had a slight decrease. Additionally, Lopez et al. (2021) found
that WGS was more accurate than using a specific genomic region, such as intronic or

synonymous regions.

Conclusion

. Results suggest that if reduced subsets based on predicted function or
consequence, as done in the current study, were to be included for genetic prediction,
additional information (i.e., pedigree or more global SNP representation) would be
needed to fully capture additive genetic variation. In the current study similar results were
found using SNP from a standard platform compared to pre-selected variants from
imputed low-pass sequence. However, different categorizations or prioritizing different
regions of the genome could yield improvements in results. Additionally, the current

study relied on current annotation to initially choose variants. Improvement in annotation
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could also substantially improve initial variant selection. The use of low-pass sequencing
may allow for more robust prediction in multi-breed populations and allow for more
frequent changes to genomic content without increasing genotyping cost. Future research
including different classifications for partitioning variants into GRM, investigating

different trait complexes and quantifying predictive accuracy across-breeds is needed.
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