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A beef cattle population (n=2,343) was used to assess the impact of variants 

identified from imputed low-pass sequence (LPS) on the estimation of variance 

components and genetic parameters of birth weight (BWT) and post weaning gain 

(PWG). Variants were selected based on functional impact and were partitioned into four 

groups (Low, Modifier, Moderate, High) based on predicted functional consequences and 

re-partitioned based on consequence of mutation, such as missense and untranslated 

region variants, into six groups (G1-G6). Each subset was used to construct a genomic 

relationship matrix (GRM) for univariate animal models. Multiple analyses were 

conducted to compare the proportion of additive genetic variation explained by the 

different subsets individually and collectively, and these estimates were benchmarked 

against all LPS variants in a single GRM and array (e.g., GeneSeek Genomic Profiler 

100K) genotypes. When all variants were included in a single GRM, heritability 

estimates for BWT and PWG were 0.43±0.05 and 0.38±0.05, respectively. Heritability 

estimates for BWT ranged from 0.10-0.42 dependent on which variant subsets were 

included. Similarly, estimates for PWG ranged from 0.05-0.38. Results showed that 



variants in the subsets Modifier and G1 (untranslated region) yielded similar heritability 

estimates compared to the inclusion of all variants yielded the highest estimates, while 

estimates from GRM containing only variants in the categories High, G4 (non-coding 

transcript exon), and G6 (start and stop loss/gain) were the lowest. All variants combined 

provided similar heritability estimates to chip genotypes and provided minimal to no 

additional information when combined with chip data. This suggests that the chip data 

and the variants from LPS predicted to be less consequential are in relatively high linkage 

disequilibrium with the underlying causal variants and sufficiently spread throughout the 

genome to capture larger proportions of additive genetic variation.  
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CHAPTER I 

LITERATURE REVIEW 

Introduction 

 The inclusion of genomic data in genetic evaluations has allowed for increased 

accuracy of prediction for animal genetic merit. Genetic evaluations calculate estimated 

breeding values (EBV) of animals and associated accuracy for a variety of traits. Prior to 

the inclusion of genomic data, animals were evaluated using pedigree and available 

phenotypic data only. Pedigree data is used to estimate the relationship among 

individuals using the numerator relationship matrix, also known as the A matrix (Wright, 

1922). 

Pedigrees provide an estimate of the amount of genetic information shared among 

related individuals. While any individual inherits 50% of their genetic material from each 

of their parents, the expected values shared with each grandparent is 25% of their genetic 

material. This expectation however is not always the case, and assuming no inbreeding, 

individuals can share between 0 and 50% of their alleles with a single grandparent.  Even 

though pedigree-based relationships are estimates, they still provide a framework for how 

phenotypic information can be “shared” among related individuals such that information 

on records for one animal can provide an EBV for related animals.  

 

Methods for the Inclusion of Genomic Data in Evaluations 

Fernando and Grossman (1989) theorized a generalized method for simultaneous 

evaluations with the inclusion of genetic markers and inverting relationship matrices as a 
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method to be used with best linear unbiased prediction (BLUP). As theorized and 

simulated by Meuwissen et al. (2001), if markers were distributed throughout the genome 

and then utilized in a genetic evaluation, there would be a benefit to the animal and plant 

industries by improving the rate of genetic change.  

These theories combined with Van Raden’s (2008) development of the genomic 

relationship matrix (GRM) also known as the G matrix, which accounts for similarity 

among animals based on SNP being Identical by State (IBS), provided a way for rapid 

development in the utilization of genomics. This development allowed for an efficient 

method for genetic predictions with the inclusion of genomic information. However, the 

methods described by Van Raden (2008) only worked assuming all animals are 

genotyped. The ability to combine genomic- and pedigree-based relationship matrices, as 

proposed by Christensen & Lund (2009) and Legarra et al. (2009), enabled the 

development of single-step evaluations and the eventual move away from the prior two-

step approaches. Single-step methods estimate breeding values using all data at once, 

while  two-step methods require the estimation of molecular-based EBV (MBV) in a 

separate step and then either the use of a multi-trait model that fits the EBV as a 

correlated trait or an indexing approach to combine the pedigree-based EBV and then, for 

genotyped animals, the MBV. 

The use of genomic information via a GRM was quickly implemented with the 

use of BLUP, to make genomic best linear unbiased prediction (GBLUP). In the simplest 

case of GBLUP, a single trait animal model can be described as  

𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆 
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where y represents a vector of phenotypic records, b represents a vector of fixed effects, u 

represents a vector of random additive genetic effects, e represents a vector of random 

residual components which is part of the phenotype which is not explained by effects in b 

or u. The X and Z matrices relate observations in y to fixed effects in b and random 

additive genetic effects in u, respectively. It is also assumed that 

u ~ N(0, 𝑮𝝈𝒖
𝟐), e ~ N(0, 𝑰𝝈𝒆

𝟐), Cov[u, e] = 0, y ~ N(Xb, 𝒁𝑮𝝈𝒖
𝟐𝒁′ + 𝑰𝝈𝒆

𝟐) 

where 𝑮𝝈𝒖
𝟐 and 𝑰𝝈𝒆

𝟐  are variance and covariance matrices for genetic and residual 

effects, respectively. These specifications are similar for a pedigree BLUP model, where 

A replaces G.  

 Van Raden (2008) described three methods to form G. The first, and most 

popular, method scales the G matrix to be analogous to the A matrix. G can be defined as 

𝑮 =
𝑴𝑴′

2 ∑ 𝑝𝑖(1−𝑝𝑖)
 , 

where M denotes a centered SNP matrix with rows corresponding to each animal and 

columns representing each locus, and pi is the minor allele frequency at the ith locus.  

Historically, the process of incorporating genomic data into EBV was done 

through what is known as multi-step, where the calculation of genomically-enhanced 

estimated breeding values (GEBV) would require a traditional evaluation using the A 

matrix, then the extraction of peusdo-observations such as deregressed EBV, and then the 

estimation of SNP effects of genotyped animals, and then the combining of genomic 

predictions with traditional EBV. This process was then simplified into a single-step 

evaluation with one of the first being by Aguilar et al. (2010). The authors found that 

single-step nearly matched the accuracy and bias from that of the multi-step. Misztal et 
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al. (2009) derived the H matrix, a matrix the includes both pedigree-based relationships 

and genomic-based relationships. Afterwards, Aguilar et al. (2010) and Christensen & 

Lund (2009) both independently demonstrated how to easily invert H. This matrix is best 

utilized when there is information on both genotyped and non-genotyped animals. 

GBLUP is not the only modeling approach, some of the other methods include 

Bayesian methods, such as BayesR and BayesRC, among others. Kemper et al. (2015) 

used BayesR, described as a non-linear model by the authors, and high-density SNP 

genotypes and reported estimates of GEBV with similar to improved accuracies 

compared to GBLUP for within- and across-breed analyses. Both BayesR and GBLUP 

assume that each variant is equally likely to affect the trait, although with BayesRC this 

equality is not assumed. BayesRC does use similar prior information but classifies 

variants into classes, where this change has been shown to improve accuracy over 

BayesR in dairy cattle (MacLeod et al., 2016). 

It was also shown by Erbe et al. (2012), that BayesR could perform better in 

terms of correlation of GEBV and daughter deviations compared to GBLUP. Fernando et 

al. (2014) used single step Bayesian regression (SSBR) in which they demonstrated 

combining genotyped and non-genotyped animals in a single evaluation using BayesCπ. 

Zhou et al. (2014b) observed that when combining genotyped and non-genotyped Nordic 

Red cattle, genetic predictions of animals for a whole genome analysis with BayesR 

yielded higher accuracies than GBLUP. However, Warburton et al. (2020) reported that 

GBLUP was still able to provide a higher prediction accuracy than the BayesR method 

when using a small number of highly relevant variants.   
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Generally, GBLUP methods focus solely on predicting additive genetic effects 

using the G matrix, although other matrices can be used in addition. The dominance 

relationship matrix, D, follows the design of G but takes on values that are determined 

from the dominance level of a locus and the heterozygosity of the individual at that locus. 

The D matrix follows as  

𝑫 =
𝑻𝑻′

∑ 2𝑝𝑖𝑞𝑖(1 − 2𝑝𝑖𝑞𝑖)
 

where T is a matrix of heterozygosity coefficients and pi and qi are minor and major allele 

frequencies at the ith locus (Su et al., 2012). The findings of Raiden et al. (2018) suggest 

the use of a dominance matrix along with epistasis and heterozygosity may only provide 

a slight benefit when estimating genetic parameters and that for genetic prediction an 

additive genetic effects model was adequate. The authors saw an increase in accuracy 

from 0.28 to 0.33 when including nonadditive genetic effects for one group of cattle and 

an increase of 0.18 to 0.23 in another group. The magnitude of these increases is 

reasonable, given dominance and epistatic effects have been shown to account for a 4-6 

% of phenotypic variation for several traits across breeds in dairy cattle (Marete et al., 

2018). Computation can become even more complex when considering dominance and 

epistatic effects.  

 Differences created by multi-breed or multi-population evaluations can impact 

resulting accuracy of predictions and can require changes to the kinship matrix that is 

used.  Differences can be due to different linkage disequilibrium (LD) patterns between 

breeds, where fewer shared alleles between breeds provide less information for other 

breeds in the matrix (Zhou et al., 2014a). LD is the non-random association of alleles 
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from two loci, which can reflect recombination history of alleles. As a population 

becomes older, more recombination events can occur that can lead to differences in LD 

phases between populations. It is likely that LD will differ across different populations 

and across diverged breeds (de Roos et al., 2008). The authors also found that these 

breeds can differ so much that in order to obtain consistent marker effects across Angus, 

Jersey, and Holstein-Friesian it would take approximately 300,000 markers. Similarly, as 

shown by Kachman et al. (2013), genetic correlations between molecular breeding values 

and growth traits (weaning weight and post weaning gain) were low when trained in one 

breed and used to predict in a different, albeit it closely related, breed such as the case 

with Angus and Red Angus. However, the authors found that across breed and within 

breed molecular breeding values accuracies were similar when across-breed training sets 

were representative of the target breed(s). 

The weighting of G was demonstrated by Van Raden (2008) where a weighting 

can be applied to matrices to add more or less emphasis to certain markers in order to 

better meet a certain objective. An example of this can be weighting based on QTL effect 

in order to account for differences in how SNPs may affect a trait differently. The use of 

weighted relationship matrices can also be used to account for the covariance of SNP 

effects across two breeds with different LD phases. The matrices are weighted for 

individual SNP effects when accounting for heterogenous variances and covariances. The 

genomic relationship coefficient for the weighted G matrix can be described as:   

𝑔𝑖𝑗 =
∑ 𝑴1(𝑖,𝑘)𝑴2(𝑗,𝑘)𝜔𝑘

𝑚
𝑘=1

√∑ 2𝑝1,𝑘(1 − 𝑝1,𝑘) ∑ 2𝑝2,𝑘(1 − 𝑝2,𝑘)

 , 
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where M is a genotype matrix for individual i and individual j at marker k, 𝜔𝑘  is the 

weight of marker k, and pk is the allele frequency for each of the two breeds, 1 and 2 

(Zhou et al., 2014a). The weights used by the authors were measured as pairwise 

correlations between two breeds as measurements of LD between markers.  

 

Genomic Data for Genetic Evaluations 

Genomic sequencing technology has progressed substantially in recent years. 

Sanger (1975) developed a method to sequence DNA through dideoxy chain termination 

that was utilized for the next 40 years through improved processes. Some of these 

improvements came through the development of fluorescent detection systems that 

detected different colored dyed fluorescents for each nucleic base. The development of 

polymerase chain reaction (PCR) in the 1980s led to bacterial artificial chromosomes 

(BAC) that could be cloned to be used in sequencing and combining chains to compile a 

whole genome. Next-Gen sequencing (NGS) surfaced in 2008 as several companies 

released the high throughput technologies that utilized PCR and fluorescent detection in 

such a way that the whole genome could be sequenced in a matter of a few hours. 

The use of NGS allows for a simpler way to identify segments of the genome 

which can be selected for. In order to select for features of the genome, a large variety of 

panels have been developed to test a variety of SNPs in order to provide more 

information. The SNPs for these panels are chosen to include significant variants or 

variants somewhat uniformly distributed throughout the genome and at intermediate 

https://en.wikipedia.org/wiki/History_of_polymerase_chain_reaction
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allelic frequency across a large number of breeds. These panels can be broken into the 

categories below as described by the Beef Cattle Research Center (Crowley, 2016): 

Small panels: include between 5 and 2,000 SNPs. These are 

generally used for parentage, genetic abnormality testing, coat color, 

horns, etc. 

Low density panels: include between 5,000 and 30,000 SNPs. 

These are used for genomic prediction/selection purposes when there are a 

lot of higher density genotypes available to use for imputation. 

Medium density panels: include between 50,000 and 150,000 

SNPs. This density is common in beef genomic selection programs. 

Usually, a population will begin by genotyping a reference set (influential 

animals in the breed) using a medium density panel realizing the definition 

of “medium” evolves overtime. A reference set is chosen to represent a 

population based on how well they represent the diversity or current 

population.  

High density panels: include between 500,000 to 1 million SNPs. 

These panels are less popular in beef as it comes at a high cost. 

Whole Genome Sequencing: occurs when an animal’s entire 

genome is sequenced. This type of test is presently used primarily for 

research and is too expensive to be employed on farm. 
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Accuracy of Different Variant Densities and Causal Variants 

There have been mixed results on increases in accuracy from the inclusion of 

additional genomic data. As found by Veerkamp et al. (2016), there was a marginal 

increase of less than 0.04 in heritability when comparing estimates from a low-density 

panel and a high-density panel. Additionally, as found by Chang et al. (2019) via 

simulation, there was no significant increase in accuracy from high density array panels 

or whole genome sequence data when compared to low and medium density panels. The 

authors attribute this to the limitations of current methodology for evaluation 

implementation that may be caused from the large number of unknown parameters which 

is limited by small marker effects and high false positives. On the other hand, the 1000 

Bull Genomes project found that the inclusion of imputed sequence data provided a 2% 

improvement in prediction accuracy compared to 800k array data (Hayes et al., 2014).  

The authors also demonstrate that BayesRC was able to identify some causal mutations in 

the imputed data (e.g., PLAG1). It was also found by Meuwissenn et al. (2021) that using 

WGS led to a 3% accuracy improvement over a 600k SNP chip for Australian Red cows. 

Some traits may be monogenic, where one gene controls a trait, while other traits 

are polygenic, where more than one gene controls a trait. The polygenic traits are much 

more complex and can be difficult to estimate or predict. Causative variants, variants 

found to be the true cause of variation in traits, have been found recently that can account 

for a relatively large amount of variation for polygenic traits. The search for causal 

variants in complex traits can be a difficult process. As reported in a summary of 

findings, Casas et al. (2016) outlined the genomic regions for several traits where some 
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causative variants have been identified. As reported by Utsunomiya et al. (2013), a 

GWAS was able to associate five variants with birth weight in Nellore cattle. The most 

significant single variant was able to account for 4.62% of variation in birth weight, while 

a non-significant variant may only account for 0.4% or less of the variation.  

Although this summary is not comprehensive, these findings can then be used to 

make better selection decisions. Although causal variants and marker-assisted selection 

may be useful, it is important to make sure that the information used from evaluations 

have an emphasis on phenotypic record collection (Dekkers, 2004).   

 

Imputation 

The process of imputation takes genotypes of variants from lower density arrays 

and uses animal relationships and/or haplotype groups from animals that have been 

genotyped or sequenced at higher densities to determine the likely genotypes of the 

animals with lower density genotypes. Marchini et al. (2007) reported that animals that 

have been genotyped via lower density assays had evaluations that were not as accurate 

as those of animals genotyped with high-density arrays, until the inclusion of imputation.  

Imputation can be done by comparing the genomic relationships of animals based 

on pedigree, haplotype groups, or both. Imputation has been utilized in several studies, 

for example in Ventura et al. (2016), the authors were able to improve imputation 

accuracy in sheep by testing different panels, software, imputation processes, and which 

animals to genotype with the higher density. The authors found that by conducting a two-

step imputation process from 5k to 50k and then to high density outperformed going 



11 

 

directly from 5K to high density. They also found that a large reference set of animals 

provided increases across many animals both purebred and crossbred, especially for 

larger breeds. However, large reference sets resulted in a slight loss in accuracy for some 

animals when compared to small within-breeds reference sets, but the increase across 

most animals justified the larger sets (Ventura et al., 2016). 

In order to improve accuracy of imputation for rare variants, the use of a two-step 

imputation process can be used. As found by Kreiner-Møller et al. (2015), going from 

550k to WGS yielded accuracies ranging from 0.806-0.942 for markers involving rare 

homozygotes. By using a two-step approach going from the 550k to ~4.3 million markers 

and then up to WGS they were able to improve accuracies for the same markers to range 

from 0.830-0.955. There was not any improvement for more common homozygote 

markers. However, given that the heterozygote and rare homozygote marker calls were 

improved, the overall accuracy of imputation as also improved. 

As imputation is optimized, more avenues for genomic testing are opened. 

Accuracy of imputation can be improved in several ways such as when the reference set 

of animals is larger in size especially for low frequency alleles (Browning and Browning, 

2009). The relationship of the animals included in the reference set compared to those in 

the target dataset may also be important for increasing accuracy as shown by Moghaddar 

et al. (2015) when comparing purebred or crossbred Merino sheep.  

Given more work is needed to better understand the impact of including 

potentially causative variants in genetic evaluations, and more data is needed to identify 

causative variants, a new process to identify these markers for a reasonable cost could be 
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beneficial. With the recent development of low pass sequencing (LPS), a process of using 

a low coverage sequencing at around 0.5x, and then imputing markers across the genome, 

similar genotype identification accuracy might be achieved as compared to SNP array 

sequenced data. As found in Snelling et al. (2020), imputed LPS was able to produce 

similar genotypes calls to that of  SNP arrays by looking at correlations between the two 

sets. Along with this, LPS provides a reasonable cost-effective alternative to genotyping 

with high accuracy. 

 

Summary 

Genetic evaluations have progressed greatly with the development of new 

methods. With the use of genomics, accuracy of prediction has been increased and will 

likely continue to be improved. One of these improvements could come in the form of 

LPS and imputation providing a new way of obtaining genomic information that is more 

dynamic with the potential to increase accuracy. 
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CHAPTER II 

VARIANCE COMPONENT ESTIMATES FOR GROWTH TRAITS IN BEEF 

CATTLE USING SELECTED VARIANTS FROM IMPUTED LOW-PASS 

SEQUENCE DATA 

Abstract 

A beef cattle population (n=2,343) was used to assess the impact of variants 

identified from imputed low-pass sequence (LPS) on the estimation of variance 

components and genetic parameters of birth weight (BWT) and post weaning gain 

(PWG). Variants were selected based on functional impact and were partitioned into four 

groups (Low, Modifier, Moderate, High) based on predicted functional consequences and 

re-partitioned based on consequence of mutation, such as missense and untranslated 

region variants, into six groups (G1-G6). Each subset was used to construct a genomic 

relationship matrix (GRM) for univariate animal models. Multiple analyses were 

conducted to compare the proportion of additive genetic variation explained by the 

different subsets individually and collectively, and these estimates were benchmarked 

against all LPS variants in a single GRM and array (e.g., GeneSeek Genomic Profiler 

100K) genotypes. When all variants were included in a single GRM, heritability 

estimates for BWT and PWG were 0.43±0.05 and 0.38±0.05, respectively. Heritability 

estimates for BWT ranged from 0.10-0.42 dependent on which variant subsets were 

included. Similarly, estimates for PWG ranged from 0.05-0.38. Results showed that 

variants in the subsets Modifier and G1 (untranslated region) yielded similar heritability 

estimates compared to the inclusion of all variants yielded the highest estimates, while 
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estimates from GRM containing only variants in the categories High, G4 (non-coding 

transcript exon), and G6 (start and stop loss/gain) were the lowest. All variants combined 

provided similar heritability estimates to chip genotypes and provided minimal to no 

additional information when combined with chip data. This suggests that the chip data 

and the variants from LPS predicted to be less consequential are in relatively high linkage 

disequilibrium with the underlying causal variants and sufficiently spread throughout the 

genome to capture larger proportions of additive genetic variation.  

 

Introduction 

Although advances have been made in recent years relative to the incorporation of 

genomic data into routine genetic evaluations of beef cattle and corresponding increases 

in predictive accuracy, hope remains that the inclusion of causal variants into prediction 

models will lead to further gains in accuracy. Such efforts require the use of whole-

genome sequencing (WGS), and despite decreases in cost, wide-spread deep sequencing 

of seedstock cattle is cost prohibitive. The use of low-pass sequencing at much shallower 

depths (e.g., 0.5x) is a much more attractive alternative, when coupled with imputation, 

to garner genotypes of potentially causal variants on large numbers of individuals for a 

lesser cost. Such an approach also represents a means of making marker subsets actually 

used in genetic evaluations more flexible and dynamic.   

Large effect variants for complex traits such as birth weight in beef cattle are 

known to exist and are predictive in populations external to where they were identified 

(Snelling et al., 2017). However, the general benefits of including putative causal variants 
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in genetic predictions or the use of WGS for prediction more generally has had mixed 

results in the literature (e.g., Heidaritabar et al., 2016; Veerkamp et al., 2016; Warburton 

et al., 2020).  Several challenges exist relative to the use of WGS for genetic prediction, 

including the inability to accurately estimate the effect of all WGS Single Nucleotide 

Polymorphisms (SNP) using currently available phenotypic datasets to allow for accurate 

pre-selection of variants. Additionally, currently available high-density panels may 

sufficiently capture enough genetic variation through LD with causal variants to limit 

gains from using WGS (e.g., Frischknecht et al., 2018). However, evidence in the 

literature supports the concept of pre-selected WGS variants to improve prediction 

accuracy in multi-breed populations (e.g., Raymond et al., 2018). Consequently, the 

objective of the current study was to investigate the benefit of fitting variants based on 

predicted functional impact and variant consequence in prediction models for birth 

weight (BWT) and post weaning gain (PWG) in a multi-breed beef cattle population 

using a genomic best linear unbiased prediction framework. 

 

Materials and Methods 

Animal Care 

All methods and animal care described in this study followed the Guide for the 

Care and Use of Agricultural Animals in Agricultural Research and Teaching (Ag Guide, 

2020) and were approved by the U. S. Meat Animal Research Center (USMARC) Animal 

Care and Use Committee. 
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Data 

A crossbred beef cattle population (n=2,343) with sequence variant genotypes 

imputed from low-pass (~0.5x) WGS and recorded BWT and PWG was used. Animals 

were part of the continuously sampled USMARC Germplasm Evaluation (GPE) project 

(Retallick et al., 2017). The low-coverage sequence was submitted to the Gencove 

pipeline for imputation with loimpute (Loimpute-Public, 2020) to a haplotype reference 

panel constructed from WGS of 946 cattle (598 available from NCBI Sequence Read 

Archive; 348 GPE sires) (Snelling et al., 2020).  As described by Snelling et al. (2022), 

functional impact and consequences of the imputed variants was assessed with snpEff 

using the Ensembl annotation of the ARS-UCD1.2 assembly of the bovine genome (Aken 

et al., 2016; Cingolani et al., 2012; Rosen et al., 2020).  Genotypes for interesting 

variants were extracted from the imputed calls of each individual with low-pass 

sequence.  Interesting variants included variants in exons of protein-coding genes, which 

may affect gene function, in untranslated regions (UTR) and non-coding transcript exon 

variants, which may impact gene regulation. Low-pass calls were required to have a 

genotype probability greater than 0.95, then a 0.95 call rate filter by animal and variant 

was applied to the set of interesting variants.  

In total, a set of 1,145,892 variants was identified for further analysis. The 

variants were partitioned into two different categories, predicted functional impact and 

consequence of mutation. For the functional impact classifications, variants were divided 

into four groups: High, Moderate, Modifier, and Low. For the consequence of mutation 

classifications, variants were divided into six groups: G1 (untranslated region; UTR), G2  
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(synonymous), G3 (missense), G4 (non-coding transcript exon variants), G5 (splice 

region), and G6 (start and stop loss/gain). Animals also had LPS genotypes called that 

corresponded to the GGP Bovine 100K SNP Array with a total of 72,997 variants (Chip). 

In order to determine the effects of linkage disequilibrium (LD), pruning at 

differing levels of r2 values were tested (r2 = 0.9, 0.8 and 0.7). Variants were prioritized 

for pruning based on the level of predicted function from highest potential effect to the 

lowest. For example, for the functional impact subsets this meant that if a variant was in 

LD with a variant contained in the High subset, the lower-level variant was removed. For 

functional impact variants, this was ordered as High, Moderate, Modifier, and then Low. 

For consequence variants, this was ordered as G6, G5, G3, G4, G1, and then G2. If a 

variant was in LD with another variant from the same subset, both variants were kept. 

Results herein include only those from the most stringent LD cutoff.  

After removing those that were fixed (minor allele frequency (MAF) of 0) or were 

in LD with another marker at a level of r2=0.7 data were reduced to 461,806 variants for 

the functional impact classifications and 435,538 for consequence classifications. These 

values differ due to the way pruning was conducted. Variants in the same subset that 

were in high LD were retained while those in high LD across subsets were removed. 

Consequently, when classifications changed, subsets changed and different variants were 

removed based on LD. Total variants in the functional impact subsets were as follows: 

Low (98,557 variants across 17,885 genes), Modifier (183,823 variants across 16,970 

genes), Moderate (171,690 variants across 19,599 genes) and High (7,736 variants across 

5,360 genes). The other category based on consequence of mutation were partitioned as 
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follows: G1 (138,364 variants across 14,199 genes), G2 (79,787 variants across 16,784 

genes), G3 (147,908 variants across 19,185 genes), G4 (32,949 variants across 2,607 

genes), G5 (31,440 variants across 12,009 genes), and G6 (5,090 variants across 3,812 

genes).   

 

Statistical analysis 

All analyses were conducted using the ASREML 4.1 software package (Gilmour 

et al., 2015). Genomic Relationship Matrices (GRM) were constructed to contain variants 

from each of the partitioned subsets, and one GRM that included all variants. Genetic 

parameters were obtained from univariate animal models in a GBLUP framework by 

fitting fixed effects of sex, contemporary group (concatenation of year, season of birth, 

and age of dam (BW only)) and linear covariates of expected heterozygosity and breed 

fractions. Random effects included the additive genetic effect associated with each GRM 

and a residual. In matrix notation, the model for one GRM is:  

𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆 

where y represents a vector of observations for the traits BW or PWG, b represents a 

vector of fixed effects, u represents a vector of random additive genetic effects, e 

represents a vector of random residual components which is part of the phenotype which 

is not explained by effects in b or u. The X and Z matrices relate observations in y to 

fixed effects in b and random additive genetic effects in u, respectively. It is also 

assumed that 

u ~ N(0, 𝑮𝝈𝒖
𝟐), e ~ N(0, 𝑰𝝈𝒆

𝟐), Cov[u, e] = 0, y ~ N(Xb, 𝒁𝑮𝝈𝒖
𝟐𝒁′ + 𝑰𝝈𝒆

𝟐) 
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where 𝑮𝝈𝒖
𝟐 and 𝑰𝝈𝒆

𝟐  are variance and covariance matrices for genetic and residual 

effects, respectively. The addition of more than one GRM required fitting additional 

corresponding random effects (u) and incidence matrices.  

As detailed by Yang et al. (2011), models can contain multiple GRM to be used 

as random effects in a joint analysis. In the current study this included fitting a single 

random effect associated with the GRM comprised of a subset of variants (e.g., High, G3, 

etc.), models that included multiple random effects each associated with a different GRM 

(e.g., Low & Modifier; G1,2,4), models that included all variants in a single GRM (Full) 

and models that included all variants by fitting multiple GRM (All). Variants from the 

Chip genotypes were also included in their own GRM. To measure any additional 

information from Full when compared to Chip, a single GRM was built to include all 

variants in both the Full and Chip sets (Full & Chip). There were 2,820 SNP that were 

shared between these two sets, whether this was from Full for functional impact or 

consequence of mutation partitions, so the variants were removed from the Chip set to 

avoid double counting of these variants. To test if the number of markers impacted 

estimates, ten random sets of variants from Low were taken with 7,736 variants, the same 

number of variants found in High. Each random set was then included in single GRM 

models for comparison.  

Riemannian distance between GRMs was used as an additional method to 

determine differences among GRMs by considering intra-class variance and distance. 

The Riemannian distance between two semi-positive definite covariance 

matrices, A and B is given by: 
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𝛿𝑅(𝐴, 𝐵) = √∑ {ln[𝜆𝑖(𝐴−1𝐵)]}2
𝑛

𝑖=1
 

where the λi are the real and strictly positive eigenvalues of the matrices A and B 

(Moakher, 2005). 

 

Results 

Estimates of variance components and heritability for single GRM models of 

BWT and PWG for functional impact subsets are reported in Tables 1 and 2, respectively, 

while Tables 3 and 4 report findings for consequence separated subsets. These single 

GRMs include Chip, Full, Full & Chip and the subsets (e.g., Low, Moderate, G1, G2, 

etc.). Differences in heritability estimates between models were negligible except for 

models that omitted the Modifier or G1 variants. The Full and Chip models resulted in 

similar estimates and when they were combined into one GRM, they provided minimal or 

no increase in heritability estimates. 

Estimates of variance components, heritability, and percentage of additive genetic 

variance explained by each combination of GRMs for models with more than one GRM 

for BWT and PWG for functional impact subsets are reported in Tables 5 and 6, 

respectively, while Tables 7 through 12 report findings for consequence separated 

subsets. Tables 7, 8, and 9 are models for BWT and Tables 10, 11, and 12 for PWG. The 

tables are separated based on number of GRM in each model where Tables 7 and 10 

contain models with two GRMs, 8 and 11 for three GRMs, and 9 and 12 for four or more 

GRMs. These contain every combination of GRMs where the models included multiple 

GRM as different random effects (i.e. Low & Modifier, Low, Modifier & Moderate, etc.). 
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Estimates from models that included GRM based on High impact or G4 and G6 variants 

resulted in heritability estimates similar to what was obtained when they were not 

included. In general, the highest estimates of heritability were from models containing 

Modifier or G1 and the lower estimates from models containing High, G4, or G6. 

The 10 random sets of Low variants had an average heritability estimate of 0.16 

with a standard deviation of 0.03, while the heritability estimate from High was 0.10. The 

Riemannian distances did not differ dramatically from one another for either partition 

except when the High, G4, or G6 subsets was involved. The distances for functional 

impact combinations that did not contain High ranged from 26.4-29.8, while the 

combinations that contained High had a range of 93.0-94.5. For the consequence of 

mutation combinations, the distances ranged from 27.1-38.5 for combinations not 

containing G4 or G6. Combinations that contained G4 had distances of 51.7-55.5, and G6 

containing combinations ranged from 122.4-124.6, with the G4:G6 combination falling 

into the latter range. This indicates that the High impact variants, the non-coding 

transcript exon (G4), and start/stop loss/gain (G6) variants are different from the rest of 

the subsets. 

 

Discussion 

Estimates of heritability from models fitting the Full GRMs from either 

categorization were 0.43±0.05 and 0.38±0.05 for BWT and PWG, respectively, both in 

the range of estimates previously reported for these traits in beef cattle (Koots et al., 

1994). The Chip GRM yielded higher or similar estimates of heritability to that of the 
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Full GRMs despite having only 2,820 SNP in common between the two, suggesting that 

any differences in heritability estimates were due to the content not in common.  

The models that contained all subsets in separate GRMs provided a very similar 

estimate of heritability compared to Full. Warburton et al. (2020) reported results from a 

beef cattle population comparing the use of a single GRM with pre-selected WGS 

variants added to panel SNP and a multiple GRM model whereby panel SNP comprised 

one GRM and WGS variants comprised a second GRM.  The multiple GRM model 

produced greater accuracy than the single GRM model in their study. Interestingly, only 

fitting the GRM comprised of Modifier and G1 variants resulted in a negligible decrease 

in the additive genetic variance compared to the Full GRM.  

Perhaps more interesting are results from fitting only the GRM comprised of High 

impact variants. These loss-of-function variants are predicted to substantially alter 

protein-coding genes and yet only accounted for 22.5% of the additive genetic variation 

in BWT and 25.7% in PWG in this population. Approximately 62% of annotated genes in 

the current study’s data include the high impact variants, and the low amount of 

phenotypic variation explained by high impact variants could indicate that genes with 

similar function may compensate for genes affected by high impact alleles (El-Brolosy 

and Stainier, 2017).  Similarly, Veerkamp et al. (2016) reported a marginal gain in the 

proportion of genetic variation explained when fitting a GRM based on full sequence data 

as compared to a GRM based on a common SNP array for traits in Holstein cattle despite 

identifying 42 variants that explained ~23% of the genetic variance when they were fitted 

alone.  
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The classification of mutation category results also follows previous literature. 

Zhang et al. (2020) reported that UTR, synonymous, and missense variants explained a 

large amount of genetic variance for growth traits such as average daily gain (ADG) or 

residual feed intake (RFI) in beef cattle. In the current study, similar variants are 

accounted for in G1, G2, and G3. These variants account for a total of 62.7% of additive 

variance in PWG and 83.2% of the additive variance for BWT when they were fit in All. 

While many of these variants are not believed to be causal variants, they are still able to 

account for large proportions of genetic variation, which may imply further that the 

inclusion of causal variants might not substantially improve prediction accuracy. This 

might be particularly true within-population given that linkage disequilibrium between 

observed variants and underlying causal variants is sufficiently high. In across-breed or 

admixed populations, where LD structures differ, the use of causal variants might prove 

more helpful in increasing prediction accuracy or more specifically in providing more 

robust prediction accuracies across breeds. 

The Full GRMs provided the same heritability estimates across both traits and 

partitions. Although the four subsets in the functional impact partition are not quite 

equivalent to the six subsets in the consequence of mutation partition, but in general the 

synonymous variants, G2, were in Low while High contained most of the variants found 

in G4 and G6. This can be further seen in the heritability estimates with similar estimates 

between G2 and Low and the lowest estimates coming from High and G6.  

In general, as the number of variants included in a GRM increased the estimate of 

heritability increased. However, when taking 10 random samples from Low, the resulting 
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heritability estimate was consistently higher than the estimate from the High subset. This 

could be due to variants in Low covering more of the genome and having higher MAF on 

average.   

Models that included GRM from Chip and Full variants resulted in similar 

heritability estimates, a result that is supported by Frischknecht et al. (2018). The authors 

found no difference in genomic prediction accuracy when comparing a 50k SNP chip 

compared to 50k imputed WGS variants in Brown Swiss cattle. They also found slight 

deviations in accuracy between traits, which was also observed by Lopez et al. (2021) 

when using pre-selected variants where marbling score accuracy increased slightly while 

carcass weight accuracy had a slight decrease. Additionally, Lopez et al. (2021) found 

that WGS was more accurate than using a specific genomic region, such as intronic or 

synonymous regions. 

 

Conclusion 

.  Results suggest that if reduced subsets based on predicted function or 

consequence, as done in the current study, were to be included for genetic prediction, 

additional information (i.e., pedigree or more global SNP representation) would be 

needed to fully capture additive genetic variation. In the current study similar results were 

found using SNP from a standard platform compared to pre-selected variants from 

imputed low-pass sequence. However, different categorizations or prioritizing different 

regions of the genome could yield improvements in results. Additionally, the current 

study relied on current annotation to initially choose variants. Improvement in annotation 
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could also substantially improve initial variant selection. The use of low-pass sequencing 

may allow for more robust prediction in multi-breed populations and allow for more 

frequent changes to genomic content without increasing genotyping cost. Future research 

including different classifications for partitioning variants into GRM, investigating 

different trait complexes and quantifying predictive accuracy across-breeds is needed. 
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