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Hierarchical pore structure: triple porosity 
model for granular activated carbon (GAC)
(Venegas and Umnova, 2016)

interstitial pores

mesopore

micropore

The micropores inside the granules can lower the
speed of sound in the material, provides larger
apparent volume:SEM image of activated carbon

(Marsh and Rodríguez-Reinoso,
Activated Carbon, 2006)
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Appears to be advantageous if applied in confined
space. A recent study (Arenas et al., 2023) looked
into the performance of an absorber consisting of
GAC and a membrane using a 1D model

tensioned
membrane

axis of the
cylindrical
container

GAC helps improve the low frequency performance.

Model predictions that closely match those in figure 2(a) and 3(b) from

Arenas et al., 2023.2𝑎=10cm

8 cm

2 cm
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1. Extend the simulation to two dimensions
Build finite difference scheme on a rectangular axisymmetric domain

2. Introduce perforated membrane
The membrane has features similar to those of micro-perforated panel

3. Consider the coupling between the granules and the interstitial air
Biot theory is applied to account for the elasticity of the granule stack



Porous granules
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A set of parameters was chosen so that the surface
impedance predicted by the triple porosity model
matches closely to that reported in (Arenas et al., 2023):

𝑟𝑝 [mm] granule radius 0.29

𝑟𝑚 [𝜇m] mesopore radius 0.1973

𝑟𝑛 [nm] micropore radius 1

𝜙𝑝 macroporosity 0.4059

𝜙𝑚 mesoporosity 0.3878

𝜙𝑛 microporosity 0.4285

𝑏 [Pa−1] Langmuir constant 4.919 × 10−7

𝐷𝑐 [m
2/s] configurational diffusivity 5 × 10−9

Arenas et al., 2023

Reproduction
Total porosity: 0.7922
Bulk density: 457 kg/m3

2 or 4 cm
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Further, the stiffness of the “frame” consisting of the
unconsolidated granules was accounted for by applying
Biot theory (poroelastic model).

The governing equations can be found in (Biot, 1956):

𝑁∇2𝐮 + ∇ 𝐴 + 𝑁 𝑒 + 𝑄𝜀 =
𝜕2

𝜕𝑡2
𝜌11𝐮 + 𝜌12𝐔

∇ 𝑄𝑒 + 𝑅𝜀 =
𝜕2

𝜕𝑡2
𝜌12𝐮 + 𝜌22𝐔

For the purpose of implementing the FD scheme, the
𝐮 − 𝒑 formulation (Atalla et al., 1998) is applied:

∇ ⋅ ෝ𝝈𝑠 + 𝜔2 𝜌𝐮 + 𝛾∇𝑝 = 0

∇2𝑝 + 𝜔2
𝜌22
𝑅

𝑝 − 𝜔2
𝜌22
𝜙2 𝛾 ∇ ⋅ 𝐮 = 0

𝛾

𝜌, 𝜌11, 𝜌12, 𝜌22

𝐴, 𝑁, 𝑄, 𝑅

Stiffness coefficients

Density coefficients

𝐾𝑒𝑞, 𝜌𝑒𝑞
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The displacement of a perforated membrane can be
described as follows (Yoo et al., 2008):

Δ𝑝 − 𝑅𝑡Ω
𝜕 𝑑𝑓 − 𝑑𝑠

𝜕𝑡
= 𝜌𝑓ℎ

𝜕2𝑑𝑓

𝜕𝑡2

Δ𝑝 + 𝑅𝑡
Ω

1 − Ω

𝜕 𝑑𝑓 − 𝑑𝑠

𝜕𝑡
= 𝐷∇4𝑑𝑠 − 𝑇∇2𝑑𝑠 + 𝜌𝑠

𝜕2𝑑𝑠
𝜕𝑡2

𝑟 Perforation radius

𝑅𝑡 Flow resistance

𝜌𝑓 Effective density

Ω Perforation rate

ℎ Effective thickness

𝑑𝑠 Solid displacement

𝑑𝑓 Fluid displacement

(Maa, 1998):

𝑍

= 𝑗𝜔𝜌0ℎ 1 −
2

𝑔 −𝑗

𝐽1 𝑔 −𝑗

𝐽0 𝑔 −𝑗

−1

𝑔 = 𝑟
𝜌0𝜔

𝜂

1 − Ω Ω

𝑑𝑓𝑑𝑠

𝑤 = Ω𝑑𝑓 + 1 − Ω 𝑑𝑠 Flexural stiffness Tension Surface 
density

The tensioned membrane (Arenas 
et al., 2023):

𝑇∇2𝑤 + Δ𝑝 = 𝜌𝑠
𝜕2𝑤

𝜕𝑡2

Spatial average
1D impedance

𝑍𝑚 = 𝑗𝜔𝜌𝑠 1 −
2

𝑘𝑚𝑎

𝐽1 𝑘𝑚𝑎

𝐽0 𝑘𝑚𝑎

−1

𝑘𝑚 = 𝜔 𝜌𝑠/𝑇



2D Finite difference simulation

8

external air

membrane

air gap

granules

𝑂
𝑟

𝑥

Axisymmetric axis

Fixed solid phase

Simply supported for membrane
with flexural stiffness and tension

Uniform sound pressure input

Radius 5 cm

2D five point stencil
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Tensioned membrane only

4 cm

• In 2D cases, resonant frequencies reduced slightly
due to mass loading of membrane by evanescent
near field neglected in 1D approach



Finite difference simulation
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Fig 3(b) from Arenas et al., 20231D reproduction of results

• Good match between measurements and 1D predictions with large air gap

2 cm

8 cm

tensioned 
membrane



2 mm

2D Finite difference simulation
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Tensioned membrane:
𝜌𝑠 = 0.265 kg/m3

𝑇 = 62 × 1 + 0.005𝑗 N/m
58 mm GAC + 2 mm air gap

• It is necessary to consider the radial modes
• Radial fluid motion in granule stack dissipates 

energy: i.e., “Nearfield damping”

58 mm
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Tensioned membrane:
𝜌𝑠 = 0.265 kg/m3

𝑇 = 55.2 × 1 + 0.005𝑗 N/m
18 mm GAC + 2 mm air gap

Tensioned membrane:
𝜌𝑠 = 0.265 kg/m3

𝑇 = 55.2 × 1 + 0.005𝑗 N/m
18 mm GAC + 12 mm air gap

More significant impact of 
GAC pores with narrow gap

18 mm

2 mm

18 mm

12 mm
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Perforated membrane: tension + flexural stiffness + finite flow resistance
𝜌𝑠 = 0.912 kg/m3

ℎ = 0.8 mm
𝑇 = 50.04 × 1 + 0.005𝑗 N/m
Ω = 0.02
𝑟 = 0.15 mm
𝐷 = 0.1313 + 0.0007𝑗 Pa ⋅ m3

𝑅𝑡0 = 1.03 × 103 rayl
Total cavity depth: 40 mm

• GAC contributes to higher low frequency absorption
• The simulation of narrow gap predicts obvious increase at low 

frequency

40 mm
20 mm

20 mm 38 mm

2 mm
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A 2DFD model was built to simulate the performance of absorbers consisting of membrane and porous granules:

1. The comparison between the 2DFD simulation and 1D analytical model prediction shows that it is necessary
to consider the modal response in the radial direction when separation between membrane and granules is
small

2. The simulation shows potential advantages of bringing the granules close to the membrane, where the
interaction of the membrane nearfield and the granule stack may be exploited to increase energy dissipation
and to reduce reflection

3. The simulation of the absorber with a perforated membrane shows more dramatic improvement at low
frequencies when GAC is added to the absorber

In the future, it is of interest to experimentally validate the predictions of the 2DFD model, and find theoretical
explanation of the difference with the 1D model prediction, especially when the air gap is narrow
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