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Abstract— Carbon-aware spatial computing (CASC) is focused 
on reducing the carbon footprint of spatial computing itself and 
leveraging spatial computing techniques to minimize carbon 
emissions in other domains. The signifcance of CASC lies 
in its potential to mitigate anthropogenic climate change by 
offering numerous societal applications, such as carbon-aware 
supply chain development and carbon-aware site selection. CASC 
is challenging because of the spatiotemporal variability and 
the high dimensionality of carbon emissions data, involving 
spatial coordinates and timestamps. Related work, known as 
carbon-aware computing, mostly focuses on job scheduling of 
cloud computing, and there is a lack of surveys and review 
papers detailing the potential of CASC on variant domains 
and applications. In this paper, we provide the vision of CASC 
by proposing a taxonomy of sub-domains within CASC and 
introducing ideas beyond job scheduling, such as carbon-smart 
site selection. We also briefy review the literature in selected 
sub-domains and highlight research challenges and opportunities. 
Given the societal importance of the topic, we encourage the 
scientifc community to use this brief survey to expand the feld 
of study into other related sub-domains and advance CASC 
more broadly. 

Index Terms— Carbon-aware, spatial computing, workload 
shifting, carbon complexity, climate risk 

I. INTRODUCTION 

Carbon-aware spatial computing (CASC) has two primary 
objectives. First, CASC aims to reduce the carbon footprint 
associated with spatial computing itself. This involves im-
plementing innovative strategies that optimize the allocation 
of computing resources, such as job scheduling with the 
aim of consuming clean energy for computation. Second, 
it offers the potential to minimize carbon emissions and 
promote sustainability in diverse sectors by leveraging spatial 
computing techniques. For example, site selection through 
spatial computing can reduce emissions for many vertical 
markets ranging from food (e.g., local produce sourcing) and 
supply chains (e.g., co-locating manufacturing with major 
consumption sites) to energy, transportation, data centers, and 
more. 

CASC is important because it offers many untapped 
opportunities to help achieve the all-important goal of 
achieving net-zero carbon emissions, a global effort to reduce 
greenhouse gas (GHG) emissions to zero by 2050 set by the 
Paris Agreement [1]. Specifcally, carbon emissions from the 
transportation and electric power industries have emerged as 
the major contributors to climate change with annual CO2 
emissions reaching 28% and 25% of overall GHG emissions 
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Fig. 1. US data center demand forecast till 2030 [3]. 

in the U.S., respectively [2]. On the other hand, the demand for 
computational capabilities also projects multi-fold growth (see 
Figure 1). All these domains can beneft from the advancement 
of CASC. 

The challenges around CASC arise from the spatiotemporal 
nature of carbon emission data. For example, emissions related 
to computation largely depend on the carbon intensity of 
producing the energy that the computing operation consumes, 
which consequently depends on the energy mix of the local 
power grid. Therefore, the carbon intensity not only varies 
temporally in a given region but also spatially across different 
regions, as shown by Figures 3 and 4. In addition, the carbon 
emission data usually have high dimensionality due to the 
inclusion of spatial coordinates and timestamps. 

Despite the promise of CASC, current work on carbon-
aware computing mostly focuses only on job scheduling of 
data centers, and there is a notable lack of surveys and review 
papers detailing CASC. To address these limitations, this 
paper makes the following contributions. First, we introduce 
the domain of CASC and present a hierarchical taxonomy of 
research areas as a navigational guide (Section II). Second, we 
review the research and open problems in four sub-domains 
where optimized spatiotemporal techniques could be applied 
(Sections II-B.3, II-B.1, II-B.2, and II-B.4). As a prerequisite, 
we discuss how the carbon footprint of computation is 
calculated and the particular importance that carbon intensity 
plays in the calculation (Section II-A). While our review 
is necessarily brief, we believe it offers a comprehensive 
overview of major research opportunities in the domain. This 
is a vision paper, so the following works are out of scope: 
specifc methodologies, experiments, results, etc. 

II. CARBON-AWARE SPATIAL COMPUTING 

To help conceptualize the research opportunities in CASC, 
we present a hierarchical taxonomy (Figure 2) with three 
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Fig. 2. Taxonomy of carbon-aware computing methods and key areas for open problems (blue). 

main branches: carbon footprint estimation, job scheduling 
and resource management, and infrastructure management. 

A. Calculating Carbon Footprint 

An essential prerequisite of CASC is quantifying carbon 
footprint. Quantifying the carbon footprint in the domain 
applications of CASC (e.g., supply chains, energy grids, etc.) 
can be multi-faceted due to diverse emission sources (e.g., 
tailpipe emissions, grid-side emissions, etc.). This section 
focuses on an example of quantifying the carbon footprint of 
one domain: computing operations. 

The carbon footprint of computing operations depends 
on the total energy expended during the operation, the 
associated carbon emissions from energy generation (supply-
side emissions), and additional emissions related to auxiliary 
demands, such as GHG emissions from cooling systems. 
The total energy expended is infuenced by the energy 
requirements of the computing resources used such as the 
computing cores, memory units, etc., and the characteristics 
of the computation to be executed such as running time. The 
supply-side emissions vary with the time and location of 
energy generation. 

The energy consumption of computing operations can be 
modeled as a combination of the energy drawn by computing 
cores (e.g., CPU) and by that of memory. Additionally, if 
these operations are carried out in data centers, the effciency 
of the data center should also be taken into consideration. 
The effciency represents how much extra power is necessary 
to run the facility (e.g., cooling and lighting) [4]. Assuming 
consistent power and effciency, the energy consumption of 
computing operations can be calculated as [4]: 

E(loc, t) = runtime∗(nc ∗uc ∗Pc +nm ∗Pm)∗PUE(loc, t) 
(1) 

where runtime denotes the running time, nc denotes the 
number of cores used, uc denotes the core usage factor 
between 0 and 1, Pc denotes the power draw of a computing 
core, nm denotes the size of memory available, Pm denotes 
the power draw of memory, and PUE denotes the effciency 

coeffcient of the data center and is dependent on the spatial 
(loc) and temporal (t) coordinates. The carbon intensity of 
computing can be represented by a function of the location 
and time of operation, denoted as CI(loc, t). Then, given a 
quantity of energy E consumed by computing operations, the 
carbon footprint C is obtained as: 

C(loc, t) = E(loc, t) ∗ CI(loc, t) (2) 

By combining Equations 2 and 1, the carbon footprint of 
computation operations can be calculated by: 

Z t0+runtime 

C = (nc ∗uc ∗Pc+nm ∗Pm)∗ PUE∗CIdt (3) 
t0 

where t0 denotes the starting timestamp of the computation 
and loc denotes the location where the computation is 
performed. In conclusion, Equation 3 shows that the carbon 
footprint of computing operations is infuenced by fve factors: 
run time, power draw from computing cores, power draw 
from memory, energy effciency of data centers, and carbon 
intensity. 

Carbon intensity data is crucial for the estimation of 
carbon footprint using Equation 3 as well as in numerous 
methodologies implemented to mitigate carbon emissions, 
which will be discussed in detail in Section II. Until 
recently, real-time energy production and carbon emissions 
data from the balancing authorities were not available to 
consumers. However, authorities have started providing this 
information to consumers through web APIs. WattTime [6] 
and electricityMap [5] are two such examples that not only 
provide historical and real-time data but also forecast data 
for grids around the world. An electrical grid’s marginal 
emissions rate data [6], [5] represents the emissions rate of 
electricity generators responding to changes in load on the 
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Fig. 3. Electrical grid marginal emissions rate (CI in Equation 2) data of US at different time stamps [5]. 

local grid by location and time. As shown in Figure 3 1, the 
carbon intensity can change drastically for different regions 
and different time stamps. 

B. Challenges and Opportunities 

We focus our review on four sub-domains highlighted in 
blue in Figure 2. We begin our review with the topic of carbon-
aware site selection within the sub-domain of infrastructure 
management 

1) Carbon-Aware Site Selection 

Carbon-aware site selection is the process of strategically 
choosing locations for facilities with the goal of minimizing 
carbon emissions. An important application of carbon-aware 
site selection is the supply chain industry. Every site within 
a supply chain network such as suppliers, manufacturing 
plants, distribution centers, customer locations etc. constitutes 
a distinct element in the local transportation ecosystem, 
characterized by infrastructure, transport modes, reliability 
and cost considerations. By strategically relocating sites or 
adding new sites to the network, companies can minimize 
transportation distances, leading to reduced emissions as-
sociated with product distribution. Current research works 
implement site selection criteria such as road connectivity 
([8], [9]), water supply ([8], [9]), and proximity to main 
markets ([10], [8]). Optimizing for component-wise carbon 
footprint is an unexplored area. 

Another application is in the data center market. With 
data center vacancy rates dropping to record lows [11] and 
increasing projected demand for high-performance computing 
(HPC) [3], data center and cloud computing enterprises face 
signifcant pressure to establish new facilities or expand 
existing ones. Current research in the data center placement 
problem (DCP) focus on minimizing different cost factors 
and addressing specifc objectives. The authors of [12] 
consider the total data center ownership cost (split into capital 
and operating expenses), while [13] emphasizes minimizing 
network costs during disaster failure scenarios. [14] aims to 
minimize the consumption of dirty energy and data center 
ownership costs. 

1Note that Figure 3 shows the spatiotemporal variability of the carbon 
intensity instead of the absolute values of the carbon emissions. This 
distinction sets it apart from emission maps such as those in [7], which 
display aggregated emissions for the research area. 

Open Problems: The selection of suitable sites for 
various vertical markets pose complex challenges. In supply 
chains, fnding locations that optimize the distribution’s 
carbon footprint while satisfying operational demands remains 
challenging. Sites can be strategically positioned to reduce 
the transportation of heavy materials that result in higher 
emissions, which can particularly beneft industries with high 
transportation-related carbon footprints, such as heavy machin-
ery, electronics, and construction materials. Similarly, cloud 
computing companies prioritize low operation costs including 
energy prices. Unfortunately, energy prices do not strongly 
correlate with the carbon intensity of energy production, 
necessitating the consideration of carbon intensity in the 
placement of computing facilities. Developing robust spatial 
methodologies like clustering and geospatial optimization can 
integrate these additional factors with carbon intensity into 
the site selection process. 

2) Balancing Power Systems 

The idea of balancing the load of a power system (or grids) 
through strategic management of consumer-side activities 
can help minimize the reliance on fossil fuel-based power 
generation, thereby potentially reducing carbon footprint. One 
such example of strategic management is the Vehicle-to-Grid 
(V2G) system. V2G is a bi-directional charging system that 
enables electric vehicles (EVs) to both absorb excess power 
as well as push energy back to the grid, thus promoting grid 
stability. Umoren and Shakir [15] introduced the concept 
of Electric-Vehicle-as-a-service (EVaaS) which focuses on 
the allocation of EVs in a microgrid with the aim of outage 
mitigation and grid balancing. However, consumers would be 
incentivized mostly only by net-positive monetary benefts. 

Another such example is the implementation of a technique 
called spatial workload migration. One study [16] evaluated 
the economic feasibility of balancing power load by spatially 
migrating workload using geographically distributed data 
centers, where one data center can modify its workload by 
taking on a fractional share of the overall workload. This 
adjustment affects the power demand and contributes to grid 
stability. However, this workload shift impacts the load at the 
other location, potentially leading to high load volatility. The 
authors explore this phenomenon by focusing on the spatial 
migration of load to locations that can satisfy unbalanced 
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Fig. 4. Share of primary energy from renewable sources including 
hydropower, solar, wind, geothermal, bioenergy, wave, and tidal, 2021. [23]. 

demand in a cheaper or less carbon-intensive way. The authors 
of [17] extend this approach to a larger scale by virtually 
interconnecting multiple distant markets using data centers, 
addressing the drawback of limited balancing potential [16]. 

Open Problems: In seeking to minimize carbon emissions, 
scheduling algorithms can create bottlenecks as demand 
surges in areas with the lowest carbon intensity, potentially 
destabilizing power demand. This often leads to the use of 
backup power sources to stabilize the grid which can increase 
the local carbon intensity. Future methods may be able to 
solve this problem by accounting for the interaction between 
the decisions made by scheduling algorithms and the grid 
supplying large computing resources. 

3) Spatio-temporal Workload Shifting 

Supply-side emissions are the primary contributors to 
the carbon footprint of computing operations. It has been 
widely acknowledged that promoting sustainable computing 
necessitates not only energy-awareness but also carbon-
awareness [18]. The grid’s energy demand, and consequently 
the carbon intensity of generation, vary based on consumer 
behavioral patterns. Daytime typically experiences higher 
energy demand and high carbon intensity. Additionally, 
weather conditions impact heating and cooling requirements, 
and the availability of renewable energy sources. As a result, 
the practice of temporally shifting computing workloads to 
low carbon-intensive periods has become prevalent [19], [20], 
[21]. Google’s carbon-intelligent platform reduces emissions 
by leveraging the temporal fexibility of Google’s workloads 
that tolerate delays of up to 24 hours [19], [20]. The temporal 
fexibility of such time-shiftable workloads depends on 
characteristics such as estimated running time, interruptibility, 
and deferrability [22]. In solving the problem of temporal 
workload shifting, appropriate weights are assigned to these 
factors, along with other modeled performance objectives. 

In light of the spatial variation in carbon intensity (Figure 
4), another approach is spatial workload shifting [24], [25], 
[26], [27]. It involves migrating computing jobs to cloud 
centers that utilize comparatively greener energy. However, 
the trade-offs of migration include increased time delays 
due to network latencies and data transfer requirements, and 

additional energy costs for the migration, especially for long-
running and memory-intensive jobs. 

Open Problems: Existing methods are able to effectively 
reduce the carbon footprint of computation by scheduling 
jobs to run in areas and at times where the grid carbon 
intensity is lower. However, this incentivizes the use of 
computing resources in countries with cleaner energy grids, 
which are concentrated in the global north, and may incur 
overlooked time, space, and energy costs. Methods for 
dynamic workload balancing should account for these variable 
costs of transferring jobs. Furthermore, future work could 
investigate whether it is less expensive in the long term to 
integrate renewable energy sources into data centers located 
in areas with high grid carbon intensity. Creating clean data 
center microgrids within otherwise carbon-intense areas could 
help reduce overall job times and reduce HPC resource 
bottlenecks while keeping carbon emissions low. 

4) Carbon Complexity 

Time complexity, or the total amount of time required by 
an algorithm to complete its execution, and space complexity, 
the total space taken by an algorithm with respect to the input 
size, are widely used metrics for algorithm analysis. Kansal 
et al. [28] presented a power consumption estimation model 
for virtual machines using resource usage data at runtime. 
The authors of [29] then posed the question "Should software 
applications be redesigned based on energy-optimality?" and 
consequently introduced an energy complexity model. Various 
other energy consumption models have also been proposed 
toward the same goal [30], [31]. However, these models 
to estimate the energy usage of computational operations 
differ in important ways from the notions of time and space 
complexity, which do not account for location and time and 
can be determined through the relatively simple analysis of 
algorithms. Space and time complexities are often measured 
using Big O notation representing the worst-case performance 
with respect to the input size, but no equivalent notation exists 
for energy complexity. Furthermore, energy usage is one step 
removed from carbon emissions, which must take into account 
the carbon intensity of the local grid and therefore depends 
on the place and time in which computing resources are being 
used. 

Open Problems: Introducing a new algorithmic defnition 
of energy complexity, and a standard process to determine 
carbon complexity could be a valuable development for 
the computing industry. An apt representation of carbon 
complexity could provide a standardized and quantitative way 
for facilities to assess the carbon footprint implications of 
employing different algorithms and computational processes 
and would facilitate the comparison of computing operations 
based on their carbon complexity. Current methods of defning 
energy complexity lack the simplicity and intuition that make 
space and time complexity popular metrics with which to 
compare algorithms. It is an open problem to explore ways 
to explicitly incorporate location and time into computational 
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complexity models. Toward this end, empirical analysis of the 
relationship between energy utilization and space and time 
complexity of algorithms run with inputs of various sizes 
may prove constructive. 

III. CONCLUSION 

CASC is concerned with reducing the carbon footprint 
of spatial computing itself and leveraging spatial computing 
techniques to minimize carbon emissions in other domains. 
We identify and elaborate on four key problem areas within 
CASC that could beneft from optimized spatiotemporal 
methods. The applications discussed in this paper exemplify 
the signifcant impact CASC can have in achieving sustain-
ability goals within various vertical markets. In addition to 
summarizing recent literature on these topics and highlighting 
open research problems within these areas, we introduce 
a hierarchical taxonomy that researchers may consult to 
navigate this feld and explore areas that could lead to other 
research opportunities. 

IV. FUTURE WORK 

In future work, we will investigate new algorithms and 
present experimental fndings to address the open problems 
discussed in this paper. Furthermore, we aim to quantify the 
theoretical benefts of using specifc techniques from CASC 
as well as to initiate discussions around the economic and 
political feasibility of CASC. 
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