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Abstract

As the scope of multirotor unmanned aerial vehicle (UAV) applications increases, more attention is being paid to UAV energy
requirements, which vary depending on the mission profile. To obtain accurate information about the UAV battery during flight, the idea
of a digital twin including a battery state estimation model is promising. For battery state estimation, a Kalman filter combination is the
preferred approach in the literature. Comparing different Kalman filters, the unscented Kalman filter has a more accurate estimation for
nonlinear systems compared to the extended Kalman filter. In the application of UAV flight with load-dependent flight missions, the
comparison of different Kalman filter estimation methods has not yet been researched. In order to evaluate the applicability of different
state of charge estimation methods applied to different UAV flight missions, an extended Kalman filter, an unscented Kalman filter, and
the Coulomb-counting method are implemented in this research and combined with an end of discharge estimation. To compare the
estimation methods based on a delivery mission and a facade inspection mission, a parameter identification of the UAV battery is
performed, and an equivalent circuit model is developed and combined with the estimation methods to estimate the battery state. The
results of the investigation show that the unscented Kalman filter achieves more accurate state of charge estimation results than the
extended Kalman filter, even in the field of UAV application. The results also show that the choice of estimation method is mainly
influenced by the accuracy of the parameter identification process, while the dynamic load of a UAV mission has less impact. Contrarily,
the end of discharge estimation does not correlate with the accuracy of the state of charge estimation, indicating that the end of discharge
estimation is more dependent on the dynamic load.
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1 Introduction

Multirotor electrically powered unmanned aerial vehicles (UAVs) have been studied and deployed in various application
areas such as monitoring (Possoch et al., 2016), delivery (Ayamga et al., 2021), and drone show (Lanteigne et al., 2017).

For the operator of a UAV, it is of interest to know the state of the battery in order to evaluate the progress of a flight
mission and its limits. During a mission, the UAV is exposed to fluctuating power requirements due to mission
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characteristics and environmental conditions, which can
lead to varying battery power requirements. Usually, a
battery management system is used to monitor and limit the
operation of the battery in order to protect it from health
degradation (Naseri et al., 2023).

However, with the advancement of new technologies,
digital twins have been discussed in various applications
such as general model-based systems (Madni et al., 2019),
agriculture (Nasirahmadi & Hensel, 2022), healthcare
(Boulos & Zhang, 2021; Hassani et al., 2022), UAV and
internet of things-based systems (Sun et al., 2022), and
batteries (Singh et al., 2021; Thelen et al., 2022). In UAV
applications, a digital twin can be used to limit operational
risks and gain new insights into the processes and condition
of the UAV (Fakhraian et al., 2023), as well as to minimize
time and energy requirements through optimized path
planning (Soliman et al., 2023).

A basic exemplary model on the way of developing a full
digital twin of the UAV battery application could use the
real-time voltage and current data from the real battery and
process the information to estimate the remaining capacity
and state of charge (SOC), and to predict the end of
discharge (EOD). This information could be presented to the
UAV pilot who could take early action to limit the mission
to a safer operating range to extend the battery health.

For the future development of a digital twin, a reliable
battery model is necessary. Several battery modeling
approaches have been developed and discussed in the
literature (Meng et al., 2018; Shrivastava et al., 2019).
Recently, there has been an increase in research on artificial
intelligence data-driven and machine learning methods
especially for SOC and state-of-health estimations in aerial
applications (Raoofi & Yildiz, 2023; Shibl et al., 2023) as
well as in electromotive applications (Khawaja et al., 2023;
Manoharan et al., 2023).

Nevertheless, for real-time estimation, an electrical
equivalent circuit model combined with a variation of a
Kalman filter is also commonly used due to its accurate
SOC estimation (Khanum et al., 2021; Sangwan et al.,
2017). The most popular variations of the Kalman filter for
SOC estimation in general are the extended Kalman filter
and the unscented Kalman filter. For nonlinear systems, the
unscented Kalman filter is superior to the extended Kalman
filter due to robustness and higher accuracy as illustrated by
several comparative studies (Guo et al., 2023; He et al.,
2013; Kumar & Rao, 2023; Priya et al., 2022).

Regarding UAV applications, Schacht-Rodriguez et al.
(2017) presented a model with an extended Kalman filter
for SOC and EOD estimation and applied it in a flight
mission. In addition, Anggraeni et al. (2022), Jung & Jeong
(2017), and Zhang et al. (2019) presented SOC estimation
methods using the extended Kalman filter and managed
to achieve low SOC estimation errors. As the focus of
research regarding UAV applications has not yet been on
the unscented Kalman filter utilization for SOC estimation

and general research shows advantages compared to the
extended Kalman filter, this paper considers both estima-
tion methods and the basic Coulomb-counting method to
comparatively evaluate the best estimation performance
while conducting different UAV flight missions.

The objective of this paper is to comparatively evaluate
an equivalent circuit battery model in combination with
different Kalman filters and the Coulomb-counting method
to find the most appropriate estimation method for the load-
dependent SOC and EOD of a multirotor UAV battery.
The results of this paper will be used to determine which
Kalman filter estimation method is most applicable to
UAVs for the further development of digital twins of UAV
batteries in the future.

This paper first introduces the UAV under study, its
battery parameters, and the two investigated flight missions
in Section 2. This is followed by the battery modeling
process, including the parameter identification and the SOC
and EOD estimation methods. In Section 3, the simulation
results of the flight mission are presented, and in Section 4,
the conclusion of this paper and an outlook are given.

2 UAV Battery Estimation Modeling Process

For the following comparative evaluation of the different
SOC and EOD estimation algorithms in the UAV appli-
cation area, the basic correlations outlined in Figure 1 were
considered.

The individual steps of the components are described in
the following. During an ongoing flight mission, the UAV
battery (see Section 2.1) has to provide the required power
(see Section 2.2). The time-varying load requirements,
current, and voltage are measured by sensors and provided
as input signals to the developed battery state estimation
model. The model uses an electrical equivalent circuit
battery model (see Section 2.3), which provides the
calculated voltage to the Kalman filter (see Section 2.5).
The measured current also serves as an input signal to the
Kalman filter (extended Kalman filter (see Section 2.5.1) or
unscented Kalman filter (see Section 2.5.2)). The estimated
SOC of the Kalman filter is used to estimate the EOD (see
Section 2.5.3). The SOC and EOD are presented in real
time to the UAV pilot, who can monitor the estimates and
take countermeasures such as reducing power or returning
early if the planned mission and the estimated EOD do not
match. A more detailed description of the battery model
and the developed state estimation model is given in the
following subsections.

2.1 Description of the UAV

The investigated lithium battery-powered multirotor
UAV is based on an exemplary commercial UAV
(Matrice 600 Pro—DJI, n.d.). It is a multirotor UAV with
six rotors and a weight of 10 kg, which can carry an
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additional payload of up to 5.5 kg, depending on the
mission. The UAV is equipped with six batteries to store a
maximum energy of 779.76 Wh (Matrice 600 Pro—DJI,
n.d.).

In this first approach to the battery model, MATLAB and
Simulink components are used as the output signal of the
investigated battery. The assumed battery is modeled using
the Simscape Electrical Battery (Table-Based) block. Here,
predefined data points or series can be added to various
parameters, including capacity, open-circuit voltage, term-
inal resistance, and several different modeling options, all
as a function of the SOC. These parameters were taken
from one of the internal example Simulink models provided
by Mathworks itself (Huria et al., 2012; Lithium Battery
Cell—Mathworks, n.d.).

Since the cell capacity and nominal voltage of the UAV
battery (reference UAV) and the model battery are
different, the number of cells per battery and batteries per
UAV were adjusted for the model to achieve similar values
of stored energy. The general parameters are listed in Table 1.

2.2 Description of Flight Missions

The model is intended to work with real-time data from
a UAV on an ongoing mission. In the first approach this
research uses MATLAB and Simulink components and
multirotor UAV power profiles from different flight
missions as input to the model. Figure 2 shows how the
power profiles are integrated into the model described at
the beginning of Section 2.

Two different missions, a delivery flight mission and a
monitoring mission described by Suwe et al. (2022), are
investigated. In the delivery mission, the UAV picks up a
package weighing 2 kg from point A, delivers it to point B,
and then returns to point A without the package on the
same path. The flight path is shown in Figure 3.

In detail, the UAV goes from no motion to an accelerated
climb to gain vertical speed, followed by a constant climb
to the desired altitude of 120 m. After reaching the altitude
above point A, the UAV hovers for 10 s and transitions to
an accelerated horizontal flight to a constant horizontal
flight at a speed of 12 m/s for 5 km until point B is reached.
Upon arrival, the UAV hovers above the point again for

10 seconds, then descends and lands. After delivering the
package, the UAV returns while performing the above
actions in reverse without the package attached. The total
horizontal flight distance is 10 km, and the total flight time
is 1006.2 s. The resulting power profile calculated by Suwe
et al. (2022) and shown in Figure 4 is used as input to the
model.

For the facade inspection mission, a monitoring flight
in the form of a facade inspection flight mission was
described by Suwe et al. (2022). Monitoring missions have
been used to inspect buildings, bridges, and power lines to
detect possible damage to the structure. In this study case a
five-story building with a height of 15 m and a length and
width of 50 m is assumed to be inspected stock-wise
horizontally. The UAV is equipped with camera equipment
weighing 1.6 kg. The flight path is shown in Figure 5.

From the starting point in one of the corners of the
building, the UAV accelerates vertically, climbs constantly
to 1.5 m, and hovers at this position for 5 s. After the hover,
the UAV transitions to an accelerated horizontal flight,
followed by a constant horizontal flight at a speed of 2 km/h,
and travels around the building at a distance of 3.5 m from
the building. After completing the inspection of the first
floor, the UAV hovers above the start point for 5 s, climbs
3 m to the second floor, and hovers again for 5 s. The UAV
transitions back to an accelerated horizontal flight and
repeats the inspection for each subsequent floor until the
fifth floor is completed, at which point the UAV returns
to the ground. The duration of the entire mission is 619 s.

Figure 1. Basic overview of the interrelationships between the developed battery state estimation model and the UAV battery.

Table 1
Comparison of reference UAV battery parameters (Matrice 600 Pro—DJI,
n.d.) and battery parameters of the used battery model (Lithium Battery
Cell—Mathworks, n.d.).

Reference UAV battery Battery model

Cells per battery 6 7
Batteries per UAV 6 8
Cell capacity 5.70 Ah 4.18 Ah
UAV capacity 34.20 Ah 33.40 Ah
Nominal cell voltage 3.80 V 3.30 V
Nominal UAV voltage 22.80 V 23.10 V
Stored energy 779.76 Wh 771.54 Wh
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The resulting power profile calculated by Suwe et al.
(2022) and shown in Figure 6 for the facade inspection is
used as input to the model.

The discussed load profiles apply to the following
assumptions and constraints. External environmental con-
ditions such as wind speed and direction have not been
included. The ambient temperature and the battery
temperature have been assumed to be constant, independent
of the altitude. The ambient pressure as well as precipita-
tion and humidity are not considered. Furthermore, the user
behavior has not been taken into account. For the following
investigations of the estimation methods, these load profiles
are used in order to have a consistent basis for comparison
in the first step. For further investigations of real UAV
applications, it should be considered that a variation of the
environmental conditions and user behavior will affect the
energy demand of the UAV.

2.3 Description of the Battery Model

The purpose of the battery model to be studied is to
replicate the behavior of the real battery as closely as

possible. In this paper, a dual polarization electrical
equivalent circuit model (2RC or second order) is used to
represent the battery, as it has been shown to better
represent a real battery compared to the first-order model,
while remaining less complex than higher-order models
(Huria et al., 2013). It uses two RC networks to describe
the transient dynamics, as shown in Figure 7. Ri represents
the ohmic resistance and R1, C1, R2, and C2 represent the
internal polarization resistance and capacitance of the
battery. V1 (R1, C1) and V2 (R2, C2) are the voltage drops
across the respective RC networks. These parameters
depend on SOC and have to be identified. The open-circuit
voltage V0 is represented as a voltage source that also varies
(V0 5 f (SOC)). Using Kirchhoff’s second law, the voltage
equation can be written as:

Vbat(SOC)~V0(SOC){Ri(SOC) : Ibat{V1(SOC)

{V2(SOC) ðEq: 2:1Þ

The primary purpose of this battery model is to evaluate
the effects on SOC estimation and EOD estimation. There-
fore, no additional dependencies, such as the influence of

Figure 2. Integration of the power profiles into the assumed interrelationships of the developed battery state estimation model and UAV battery.

Figure 3. Basic outline of the delivery flight mission (Suwe et al., 2022).
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ambient temperature discussed in Hu et al. (2023), the
thermal modeling of the battery presented in Zhu et al.
(2013), or the influence of degradation mechanisms
according to Krupp et al. (2022) and Zhao et al. (2017),

are considered. This model assumes a constant temperature
of 16.6 C̊, which corresponds to the average temperature in
New York City (Klima New York City, n.d.). However,
for future studies, a combination of different loads and

Figure 4. Power profile of the delivery mission from Suwe et al. (2022).

Figure 5. Basic outline of the facade inspection mission (Suwe et al., 2022).
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temperatures as well as thermal modeling of the battery
according to the approach presented in Zhu et al. (2013)
should be considered. In addition, the implementation of
degradation effects to estimate the state of health as
described in Liu et al. (2022) is strongly recommended.

2.4 Parameter Identification of the Battery

The battery model depends on the different equivalent
circuit components shown in Figure 7. The components

must be identified to make an accurate representation of the
battery possible. In this identification process, the battery
must go through tests, starting with a simple capacity test to
find the true capacity. To do this, the battery is charged and
then completely discharged, monitoring the current and
time required to completely discharge the battery.

For the equivalent circuit representation of the battery,
the parameters Ri, R1, C1, R2, and C2 must be identified in
another process. To identify the parameters, the widely
used analysis method presented by Lv et al. (2020) and

Figure 6. Power profile of the facade inspection mission from Suwe et al. (2022).

Figure 7. Equivalent circuit diagram of the 2RC battery model during discharge.
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Santos et al. (2017) is used. For each SOC step, the
response of the voltage to a constant current pulse must be
examined. An example response is shown in Figure 8.

Sections A–B and C–D show the instantaneous response
to the applied current pulse. This drop and rise in voltage
during discharging is due to the internal ohmic resistance of
the battery, Ri ? Ri can be found directly from the four
voltages corresponding to points A–D and the discharge
current Ibat for each SOC step:

Ri(SOC)~
(VB{VA)z(VC{VD)

2 : Ibat

ðEq: 2:2Þ

The two RC networks are used to describe the
exponential response in sections B–C and D–E. The time
constants t1 and t2 (where t1 5 R1 ? C1; t2 5 R2 ? C2) are
used to describe the dynamic behavior. The identification
of R1 and R2 and the time constants t1 and t2 needs to be
approached through optimization using the MATLAB
Toolbox Curve Fitter and a least-squares fitting function
on the named exponential responses.

The final step in the identification process is to characterize
the open-circuit voltage V0. This is done by noting the
resulting voltage after the relaxation phase of the current pulse
(point C in Figure 8) for each SOC step examined.

The results of the parameter identification are shown in
Figure 9. As can be seen in Figure 9A, the open-circuit
voltage V0 follows the typical battery voltage characteristics
with an exponential zone between 90% and 100%, a wide
nominal zone with only a small change in voltage repre-
senting the main operating range, and a stronger voltage
decrease at 20% and below when the nominal zone ends.

The corresponding parameters for the resistors shown
in Figure 9B are on the same scale to show the different
magnitudes of the parameters. The parameters Ri, R1, and
R2 are relatively constant and vary only slightly in the range
from 20% to 80% SOC which is the main operating range.
Outside the operation range, in the range of 0% to 20% and

80% to 100% especially the resistance R2 increases.
Considering this operating range, this paper takes the
average values as the battery parameters to be used in the
following SOC estimation process to reduce the nonlinear-
ity of the system. The results of the identification process
are shown in Table 2.

2.5 Estimating the SOC and the EOD

As shown in Figure 10, different methods can be used to
determine the SOC of the battery, which are described in
Zhou et al. (2021) and Boulmrharj et al. (2020). The
estimation methods can be divided into three main groups.

From the group of direct methods, only the Coulomb-
counting method is considered as the SOC estimation
method in this paper because it is simple and one of the
most widely used methods (Saji et al., 2019). The
Coulomb-counting method uses the measured current Ibat

integrated over time to estimate the SOC with the help of
the SOC value in the step before SOC0, nominal capacity
Cn, and the battery efficiency � (Boulmrharj et al., 2020):

SOC~SOC0{
g

Cn

:
ðt

t{1

Ibat
: dt ðEq: 2:3Þ

The second group of estimation methods are the artificial
networks that have high accuracy. All methods in this
group require reliable training data to achieve good
performance (Zhou et al., 2021). Since no reliable training
data are known for the UAV under study, these methods
are not considered.

The third group consists of the model-based methods,
which can be divided into observer, Kalman filter, and
particle filter. These methods use the model and the
measurement to estimate and correct the state of the model.
Observers such as the adaptive Luenberger observer can be
used to estimate the SOC as in Hu et al. (2010). The
Kalman filter is only suitable for linear systems, while the

Figure 8. Voltage response to a constant current pulse based on Jackey et al. (2013).
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unscented Kalman filter, extended Kalman filter, and their
adaptive counterparts are suitable for nonlinear systems. Since
the chosen model depends on the SOC, it is a nonlinear
system. Detailed descriptions of the Kalman filter types and
their advantages and disadvantages are presented in Zhou
et al. (2021). In addition, particle filters can be implemented
for highly nonlinear systems as in Ye et al. (2018).

Combinations of the methods can also be used to reduce
the estimation error. Possible hybrid methods are described
in Boulmrharj et al. (2020). One of the hybrid methods
presented in that paper is the combination of the Kalman
filter with Coulomb-counting (Boulmrharj et al., 2020).

Consequently, this paper implements the SOC estimation
with Coulomb-counting in combination with a nonlinear
extended and unscented Kalman filter. The Coulomb-
counting estimation is also evaluated.

2.5.1 Development of the extended Kalman filter
To develop an extended Kalman filter, the model needs

to be transformed into a state space model. The discrete
state space model is derived as described in Shrivastava
et al. (2019) and Sepasi et al. (2014). A simplified overview
of the algorithm is shown in Figure 11A.

First the Jacobian of the measurement matrix (H) is
computed, which is a matrix of all first-order partial

derivatives. In the prediction step, the state variables (V1,
V2, and SOC) and the covariance matrix (P) are updated.
The correction step corrects the state variables and the
covariance matrix with respect to the deviation of the
calculated Vbat and the measured voltages (Vmeas). The
algorithm of the extended Kalman filter is explained in
detail inSchacht-Rodriguez et al. (2017).

In contrast to the work of Schacht-Rodriguez et al.
(2017), a dependence between Ri and the SOC is assumed
as in He et al. (2013). Thus, the Jacobian of the
measurement matrix (H) for a 2RC model is computed as
a partial derivative with respect to all state variables:

H~ {1 {1
dV0

dSOC
{Ibat

: dRi

dSOC

� �
ðEq: 2:4Þ

To find the derivative of the open-circuit voltage with
respect to the SOC dV0 / dSOC and the derivative of the
internal resistance with respect to the SOC dRi / dSOC, the
dependencies can be approximated with a linear poly-
nomial function as in He et al. (2013). Another approach is
to construct the difference quotient and linearize the
function around the operating point. Both approaches lead
to similar solutions for this type of battery.

2.5.2 Development of the unscented Kalman filter
To improve results and to be more robust to nonlinear

systems, an unscented Kalman filter is also implemented
and tested. A brief overview of the unscented Kalman filter
is given in Figure 11B. Overall, the unscented Kalman filter
does not use the Jacobian to estimate the actual state but
uses sigma points from the Gaussian distribution to

Figure 9. Identified parameter values of the battery. (A) Open-circuit voltage. (B) Internal resistance and the two polarization resistances.

Table 2
Result of battery parameter identification.

R1 R2 t1 t2

0.044 V 0.0253 V 668 s 270 s
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estimate the actual state. In the prediction step, the new
states are calculated using the sigma points and the
resulting battery voltage (Vbat) is calculated. Additionally,
the covariances (P) are determined. In the correction step,
the states are corrected as well as the covariance (Lv et al.,
2020; Zhang et al., 2022). A detailed explanation as well as
the algorithm can be found in He et al. (2013).

To compare both Kalman filters and the Coulomb-
counting method the root-mean-square error (RMSE)
is calculated (Huang et al., 2018). The RMSE is the
quadratic difference between the real value (x) and the
estimated value (x̂) divided by the number of sample
points (n):

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
:
Xn

t~1

(x̂{x)2

s
ðEq: 2:5Þ

Additionally, the maximum deviation between the actual
and the estimated SOC is determined by subtracting the
actual values from the estimated values:

MAX ¼ max j x̂� x j ðEq: 2:6Þ

2.5.3 EOD estimation
A linear approximation is used to estimate the EOD from

the estimated SOC. The actual SOC(t) is calculated from
the initial SOC0 and its derivation (Schacht-Rodriguez
et al., 2017):

SOC(t)~DSOC : tzSOCt{1 ðEq: 2:7Þ

This equation calculates the EOD and uses the
exponential moving average to smooth the result.
Depending on the variability of the SOC estimate, the
smoothing can be adapted.

3 Results and Discussion

To analyze the behavior of the UAV battery in terms of
the SOC and EOD estimation, the two missions presented
are simulated. Before presenting the results, the general
conditions of the simulation are described.

The investigated battery has an initial SOC of 95%,
which covers possible self-discharge reactions inside the
battery, while the estimation methods have an initial SOC
of 100%. This difference is intentional, as the estimation
methods need to react accordingly to a deviation from the

Figure 11. Overview of the different Kalman filter-based estimation algorithms. (A) Extended Kalman filter. (B) Unscented Kalman filter.

Figure 10. Overview of relevant SOC estimation methods for this paper from Boulmrhaj et al. (2020).
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real battery and need to be able to estimate the SOC with
varying initial conditions.

The EOD estimation uses the lower end of the described
working range of the battery (at 20% SOC) as the EOD
reference point.

3.1 SOC Estimation for Flight Missions

Figure 12 shows the corresponding voltage and current
profiles of the battery in response to the power profile of
the delivery flight mission. Initially, the highest power is
required during the accelerated climb, so a high current is
present. During horizontal flight, the interaction between
voltage and current is evident. As the battery voltage drops
because of the decreasing SOC, the current increases to
compensate and still deliver the required power. Overall,
the battery voltage drops from about 22 V to a voltage of
about 16 V. The average current of the mission is 86.61 A.

The actual and estimated SOCs are shown in Figure 13.
The estimated SOCs at the end of the mission are compared
in Table 3. At the end of the mission, the SOC remains at
approximately 22%. This is only 2% above the lower end
of the main operating range. Thus, the mission can just be
completed by the battery. Both estimation methods with
Kalman filters adjust their estimation to the real SOC value
and are able to track the change in SOC. The deviation at
the end of the mission is only 0.62% for the unscented
Kalman filter and 2.52% for the extended Kalman filter.
The deviation of the Coulomb-counting method at the end
of the mission is the highest with 5.2%.

Figure 14 shows the SOC deviation during the mission.
The estimation of the Coulomb-counting method does not
adapt to the real SOC because it has no way to correct its

state variables when they differ from the initial SOC. Thus,
the offset of 5% of the initial condition remains until the
end of the mission. For the Kalman filters, the highest
deviation is at the beginning of the simulation due to the
different initial condition of the SOC. Interestingly, both
Kalman filters respond quickly to the SOC deviation, but
the extended Kalman filter is not able to eliminate the error
completely. Due to the nonlinearity, the unscented Kalman
filter achieves better results as expected and described in
He et al. (2013). The unscented Kalman filter is able to
eliminate the estimation error extremely quickly while also
staying close to the real SOC value.

It can also be seen that the deviations of the filters
depend on the accuracy of the parameters. As the
parameters are only identified for discrete points, the
deviation also depends on the parameter identification.

Table 4 shows the maximum deviation and the RMSE of
the estimation methods. The maximum deviation of the
extended and the unscented Kalman filters, as well as the
maximum deviation of the Coulomb-counting method are
high compared to the RMSE. This is due to the different
initial conditions at the beginning of the simulation.
However, the extended Kalman filter and the unscented
Kalman filter perform significantly better than the
Coulomb-counting method. Comparing the two Kalman
filters, the RMSE of the unscented Kalman filter is about
1.45% smaller than the RMSE of the extended Kalman
filter.

The second simulated mission is the facade inspection
mission. Since this is a shorter mission compared to the
delivery flight mission, higher SOC values are expected at
the end of mission. Figure 15 shows the voltage and current
response to the mission power profile. It can be seen that

Figure 12. Resulting voltage and current profiles of the UAV battery during the delivery flight mission.
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the voltage and current interact as expected as the current
compensates for the voltage drops and reverses to deliver
the required power. The voltage drops from about 22.5 V to
18.5 V during the mission. The average current is 79.24 A.

The SOC at the end of the mission, shown in Figure 16
and Table 5, ends with about 54% of the remaining energy.
The discharge rate of the facade inspection mission is about
9% less than the discharge rate of the delivery mission. The
reason for this can be explained with the help of the
average current. The average current is 79.24 A which is
about 8.51% less than the average current of the delivery
mission. The estimated and the real SOCs at the end of the
façade inspection mission are depicted in Table 5. The
deviation at the end from the unscented Kalman filter is
0.23% and the deviation from the extended Kalman filter is
1.73%. The Coulomb-counting method has the biggest
deviation due to the state error at the beginning.

Like in the delivery mission, the Coulomb-counting
method does not provide the desired results for the reasons
explained in the previous section. Both Kalman filters can
quickly correct the errors and closely match the change in
SOC. The maximum error and RMSE of the estimation
methods are listed in Table 6.

The maximum deviation is the same range as the
maximum deviation of the first flight mission because it is

caused by the initial conditions. Comparing the RMSE
values of both Kalman filters, the unscented Kalman filter
(0.24%) is more accurate than the extended Kalman filter
(1.58%) as expected. The deviation profiles of both Kalman
filters during the mission in Figure 17 show this as well.
Both Kalman filters correct the SOC error quickly, but the
extended Kalman filter has trouble eliminating the error
completely. The performance of the unscented Kalman
filter is about 84.81% more accurate than the extended
Kalman filter.

The estimation of the facade inspection mission is more
accurate than the estimation of the delivery mission, as all
estimators have a more accurate performance than the
estimators for the delivery mission. Due to the different
load requirements, the current and thus the behavior of the
model change. Thus, the load changes result in different
performance of the state estimators. Despite the differences
in performance due to the power profile, the best fitting
estimator is the unscented Kalman filter as expected.

To compare the deviations of the estimated SOC and the
real SOC for both missions, the absolute deviations of the
best performing filter, the unscented Kalman filter, are
plotted against the SOC in Figure 18. The estimation error
of 4% at the beginning of the missions due to the different
starting conditions are trimmed to make the deviations

Figure 13. Resulting SOC profiles of the UAV battery and the estimation methods during the delivery flight mission.

Table 3
Comparison of the end of mission SOC values of the battery and the respective estimation method for the delivery mission.

Battery Unscented Kalman filter Extended Kalman filter Coulomb-counting

21.59% 20.97% 19.07% 26.79%
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during the mission more visible. It can be seen that the
deviation depends more on the SOC value than on the load
and the corresponding current for the investigated battery
and flight mission. This proves that parameter identification
is one of the most important processes for estimating SOC
reliability. If the battery parameter estimation differs from
the real battery parameter, the SOC estimation will not be
as reliable, as can be seen here. For parameters that are
extremely different from those of the real system, the
Kalman filters will not converge to the system and the
estimates will fail. A solution approach to avoid this
divergence problem is a parameter estimation within a SOC
estimation as in Yang et al. (2019) or Mondal et al. (2022).

In summary, estimation with the unscented Kalman filter
provides more accurate results for estimating the SOC
compared to the extended Kalman filter, as expected. The
performance of the unscented Kalman filter across both
missions is within an RMS error of 0.3% while the
extended Kalman filter performance is within an error of
1.7%. However, both filter techniques are significantly
better than using simple Coulomb-counting. The extended

Kalman filter is not as accurate as the unscented Kalman
filter but can still be used for dynamic processes. The most
important impact on the estimation method is the accuracy
of the parameter identification.

Further focal points to justify the choice of a Kalman
filter would be the consideration against strongly differing
initial conditions or stronger measurement noise, also
called robustness. To estimate the time correctly and to
make the estimation more reliable, an implementation of an
adaptive unscented Kalman filter as in Fu et al. (2022) and
Zheng et al. (2018) would be a solution approach. Another
approach is to use a particle filter as in Tang et al. (2020) or
Luan et al. (2023).

3.2 Estimation of EOD

To estimate the remaining flight time of the UAV during
a mission, the influence of the SOC estimation methods on
the discharge time estimation is also evaluated. To evaluate
the estimation of the EOD, the results are compared to the
value of a constant current discharge for each mission
calculated in Section 3.1 as a reference.

For the delivery flight mission, the EOD is about 1028.2
s at an assumed constant discharge rate of 20.07%/s This is
only about 22 s after the end of the mission. However,
it should be noted that this paper considers the lower end of
the operation range of the battery as the EOD and not the
point of 0% SOC.

Table 7 shows the results of estimating the time of
discharge with the three different SOC estimation methods.

Figure 14. Deviation of the estimation methods from the real SOC for the delivery flight mission.

Table 4
Maximum deviation and RMSE of the estimation methods in comparison to
the UAV battery SOC.

Maximum deviation (%) RMSE (%)

Coulomb-counting 5.02 4.99
Extended Kalman filter 5.01 1.76
Unscented Kalman filter 3.02 0.30
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Figure 15. Resulting current and voltage profiles of the UAV battery during the facade inspection mission.

Figure 16. Resulting SOC profiles of the UAV battery and the estimation methods during the facade inspection mission.

Table 5
Comparison of the end of mission SOC values of the battery and the respective estimation method for the facade mission.

Battery Unscented Kalman filter Extended Kalman filter Coulomb-Counting

54.06% 54.29% 55.79% 59.06%
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The deviation of the estimation from the reference time is
shown in the third column of the table.

The results of the Coulomb-counting method have the
highest deviation between the calculated and the estimated
EOD with 15.13% compared to the extended and the
unscented Kalman filters. Due to the different initial con-
ditions and the failed SOC estimation, the EOD estima-
tion is not as accurate as desired. The estimated EOD
points of the extended and unscented Kalman filters fit
well, as the deviation between the calculated and estimated
EOD points is less than 1%. However, the unscented
Kalman filter outperforms the extended Kalman filter.

For the facade inspection mission, the EOD with a
constant current draw of 79.24 A (average current of the
mission) is calculated at 1133.8 s. The EOD estimates
(shown in Table 8) of all methods deviate strongly from the
reference mean by 18.24% to 23.69%. A possible reason
could be the strong current decrease at the end of the
mission due to the landing maneuver (see Figure 15).

Therefore, the methods estimated a later discharge end
point. The observed time interval for the estimated
discharge point is too small. To validate the EOD estimate
in the facade inspection mission, the EOD estimate is taken
at 614.6 s without the landing maneuver.

The improved results are shown in Table 9. The new
calculated deviations are smaller than before with a
deviation of the Kalman filters of about 1%, so the
Kalman filter EOD estimation works well for the facade
inspection mission. The unscented Kalman filter again
outperforms the extended Kalman filter.

Furthermore, it is noticeable that the EOD estimation for
the facade inspection mission does not achieve better
results like in the SOC estimation. So, the deviation of the
Kalman filter is not necessarily related to the accuracy of
the EOD estimation. The EOD estimation is more
dependent on the dynamic load than the SOC estimation.

Overall, the estimation of the EOD is very sensitive to
small changes in the current at the end of a flight mission.
To improve the estimation and change the robustness, the
moving average factor could be changed to increase the
observed interval. The combination of the SOC estimator
with a subsequent EOD estimator represents a sensitive
system that is difficult to tune to implement uniformity
across many different UAV flight missions. It may be more
reliable to combine the adaptive unscented Kalman filter
with a neural network if sufficient training data are
generated to improve the SOC and EOD estimations, as
in Hannan et al. (2017) and Cui et al. (2022).

Figure 17. SOC deviation profiles for the facade inspection mission from the considered estimation methods.

Table 6
Maximum error and RMSE of the estimation methods in comparison to the
UAV battery SOC.

Maximum deviation (%) RMSE (%)

Coulomb-counting 5.10 5.01
Extended Kalman filter 5.01 1.58
Unscented Kalman filter 3.91 0.24
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4 Conclusion and Outlook

In this paper, a multirotor UAV battery model has been
developed and different Kalman filters and the Coulomb-
counting method have been compared with respect to their
performance in estimating the load-dependent SOC and
EOD of the UAV battery. A 2RC-equivalent circuit battery
model is used in combination with different estimation
methods. The varying loads of two power profiles of UAV
flight missions were simulated using the Coulomb-counting

method, the extended Kalman filter, and the unscented
Kalman filter. In addition, the EOD estimation was tested
with the estimated states.

In conclusion, the SOC of the analyzed UAV and the
different flight missions can be estimated with both an
unscented Kalman filter and an extended Kalman filter.
Only the Coulomb-counting method does not achieve good
results. The unscented Kalman filter achieves more
accurate results due to the nonlinearity of the system, as
expected and in line with the existing literature.

The deviation between the delivery and the facade
inspection missions for the estimation by the unscented
Kalman filter is slightly different. Comparing the devia-
tions as a function of the SOC, it is clear that the deviations
depend mostly on the SOC and less on the variation of the
load and the corresponding current. The main cause of the
deviations is the parameter identification and its deviation
between reality and model. Therefore, parameter identifica-
tion and the evaluation of the model with a real system play
an important role in the development of a digital twin.

Figure 18. Absolute SOC deviation as a function of SOC value for both missions.

Table 7
Results of EOD estimation for the delivery flight mission and the deviation
from the reference constant current EOD.

EOD (s) Deviation (%)

Coulomb-counting 1183.8 15.13
Extended Kalman filter 1036.7 0.82
Unscented Kalman filter 1030.1 0.18

Table 8
Results of EOD estimate for the facade inspection mission and the
deviation from the reference constant current EOD.

EOD (s) Deviation (%)

Coulomb-counting 1485.9 23.69
Extended Kalman filter 1442.7 21.41
Unscented Kalman filter 1386.7 18.24

Table 9
Corrected results of EOD estimation for the facade inspection mission and
the deviation from the reference constant current EOD.

EOD (s) Deviation (%)

Coulomb-counting 1179.1 3.84
Extended Kalman filter 1115.1 1.68
Unscented Kalman filter 1145.4 1.01
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The estimation of the EOD works reliably for the
delivery mission as well as for the facade inspection
mission. The deviations depend more on the dynamic load
of the mission. Therefore, the facade inspection mission
leads to less accurate EOD estimations. Nevertheless, the
unscented Kalman filter in combination with the EOD
estimation achieves more accuracy. Overall, the system is
sensitive and a small change in the Kalman filter tuning
could have a large impact on the EOD estimation.

To correctly estimate the SOC during the mission, an
appropriate estimation method must be chosen. The method
also depends on the parameters. If the parameters have high
nonlinearity and linearization around the operation point
is difficult, an extended Kalman filter or an unscented
Kalman filter will archive less accurate results in SOC and
EOD estimation compared to systems with low nonlinear-
ity. To improve SOC estimation, the estimation method of
choice should be adaptive. There are several different
estimation techniques that could be tested, such as the
adaptive unscented Kalman filter with correntropy loss in
Sun et al. (2018) or the estimation with a long short-term
memory network as in Gong et al. (2022), or resorting to a
neural network and a training set that collects data during
missions and can use this information for a better
estimation.

Reliable parameter identification is essential for the
choice of the SOC estimator. Since parameter identification
often leads to deviation and the parameters could change
due to degradation effect, a combination of parameter and
SOC estimation could be a solution approach as in Mondal
et al. (2022).

The two studied flight mission examples show that the
estimation of SOC can also be applied to UAV batteries.
The filters achieve results comparable to those of existing
literature, which indicates a lower impact of the dynamic
load requirements of a UAV mission on the choice of the
estimation method.

For further work and to explore the application of SOC
estimation more deeply, the influences of other environ-
mental aspects would need to be considered. Also, the
robustness of the extended Kalman filter and the unscented
Kalman filter should be analyzed and a combination with a
neural network should be tested. In combination with a
state-of-health estimation, the system would become more
sensitive, so the SOC estimation should work as reliably as
possible.

A robust SOC estimation is required with a more
advanced battery model of a digital twin, as there are
additional aspects to consider, such as degradation of the
battery. The degradation could be estimated with a state-of-
health estimation process as in Noura et al. (2020) or a
battery lifetime prediction could be implemented as in
Yang et al. (2022). Furthermore, the effect of temperature
on the UAV parameters needs to be analyzed as in Yang
et al. (2019).

In addition, experimental validation of the battery model
by measuring real-time data of a UAV battery and
implementation of a microcontroller for communication
are planned for future work.
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