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Abstract: Energy generation from renewable sources and effective management are two critical 
challenges for sustainable development. Biofuel Cells (BFCs) provide an elegant solution by com-
bining these two tasks. BFCs are defined by the catalyst used in the fuel cell and can directly gener-
ate electricity from biological substances. Various nontoxic chemical fuels, such as glucose, lactate, 
urate, alcohol, amines, starch, and fructose, can be used in BFCs and have specific components to 
oxide fuels. Widely available fuel sources and moderate operational conditions make them promise 
in renewable energy generation, remote device power sources, etc. Enzymatic biofuel cells (EBFCs) 
use enzymes as a catalyst to oxidize the fuel rather than precious metals. The shortcoming of the 
EBFCs system leads to integrated miniaturization issues, lower power density, poor operational sta-
bility, lower voltage output, lower energy density, inadequate durability, instability in the long-term 
application, and incomplete fuel oxidation. This necessitates the development of non-enzymatic bio-
fuel cells (NEBFCs). The review paper extensively studies NEBFCs and its various synthetic strat-
egies and catalytic characteristics. This paper reviews the use of nanocomposites as biocatalysts in 
biofuel cells and the principle of biofuel cells as well as their construction elements. This review 
briefly presents recent technologies developed to improve the biocatalytic properties, biocompatibil-
ity, biodegradability, implantability, and mechanical flexibility of BFCs.
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1. INTRODUCTION

The uneven distribution of fuels throughout the geo-
graphical locations insisted many researchers and govern-
ments explore energy and fuels from sustainable energy and 
green sources. In the pursuit of fuels from renewable 
sources, fuel cells (FCs) are environmentally friendly and 
generate electrical energy from chemical energy [1]. In con-
ventional fuel cells, noble metals and their alloys are used as 
catalysts in the oxidation of pure fuels (methanol, hydrogen, 
etc.) at the anode and the reduction of oxidant (Oxygen) at 
the cathode. They are very efficient and can work in ac-
id/basic electrolytes. The limitation of these metals is they 
are costly with restricted availability. The need for renewable 
energy has opened fields like harvesting energy from biolog-
ical sources [2]. Applications in biomedical, microelectron-
ics, and sensor devices have attracted more attention in 
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utilizing energy from electric impulses, walking, running, 
muscle contraction, relaxation, body heat, etc. [3]. However, 
significant challenges are posed in biocompatibility and du-
rability for health and safety concerns. 

Enzymatic biofuel cells (EBFCs) are subareas of fuel 
cells that employ redox reactions by oxidoreductase enzymes 
[4-9]. Yahiro et al. in 1964 first described the EBFCs con-
cept. With the demand for potential applications, the EBFCs 
are designed in numerous configurations, which are quite 
different from conventional FCs stacks, but their components 
are the same [10]. Like other FCs, EBFCs comprise a pro-
ton-conducting medium separating two-electrode cells that 
stream through the external electrical circuit to the biocath-
ode, where the oxidants peroxides [11] or oxygen [12] are 
reduced to water. The advantages of using EBFCs are that 
the catalysts are renewable, diverse, operationally safe, and 
mild.  

Sugars [13], organic acids [14], alcohols [15], and many 
other materials in the body are digested by living organisms 
through their respective enzymes. They can be utilized as 
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fuels for EBFCs. The enzymatic reactions occur at room 
temperature, physiological pH, and ambient pressure. The 
recent use of enzymatic reactions at high temperatures like 
85 °C and acidic pH of 2 have expanded the scope of the 
EBFCs work under varying conditions [16, 17]. The redox 
enzymes have an additional extraordinary selectivity towards 
their respective substrates, allowing circumvention of the 
purification step. Furthermore, the EBFCs can be considered 
environmentally friendly because their components are most-
ly biodegradable. These advantages and properties of EBFCs 
have opened new fields for green power generation applica-
ble in a wide range of applications. 

The review article evaluates enzymatic and non-
enzymatic 2D nanomaterial-based biofuel cells in considera-
ble detail and their diverse synthesis methods and catalytic 
properties. The usage of nanocomposites as biocatalysts in 
biofuel cells is examined in this review article. It also dis-
cusses the basic idea of biofuel cells and its components. It 
discusses current technological advancements to enhance the 
mechanical flexibility, biocatalytic characteristics, biocom-
patibility, and biodegradability of BFCs. 

2. BACKGROUND RESEARCH ON BFCS 

Potter's pioneering work in BFCs was initiated in 1912, 
engaging yeast cells for glucose oxidation at the anode. They 
proposed the concept of biofuel generation employing en-
zymes for the energy conversation giving rise to the devel-
opment of enzymatic biofuel cells [18]. Microbial biofuel 
cells (MBFCs) have been studied for more than a century, 
but in the 1960s, eBFCs were developed. The idea of EBFCs 
with a platinum cathode and an anode based on the glucose 
oxidase (GOx) enzyme was created by Yahiro et al. (illus-
trating the first enzymatic biofuel cells with the platinum as a 
cathode and glucose oxidized as an anode). Even though the 
created EBFC had a very low open circuit potential (0.17-
0.35 V), it proved the theory that an oxidoreductase enzyme 
could be used to start a half-reaction fuel cell. By following 
this route, C6H12O6 is converted to C6H10O6, generating elec-
trons that can be transferred to the electrode surface with a 
redox conducting support. EBFCs, which used substrate-
specific enzymes to circumvent the limitations of traditional 
fuel cells, were built on the groundwork of this ground-
breaking research. The use of an electron relay to facilitate 
mediated electron transfer (MET) from purified oxidoreduc-
tase enzymes to the electrode surface was documented in 
several biofuel cell studies from the 1960s [10]. Their work 
proved that enzymes could swap a noble metal catalyst for 
the FCs reaction. However, this primitive biofuel cell has 
limitations of lower open-circuit potentials and negligible 
current density due to the lack of a mediator molecule. In 
1984, Cass et al. also investigated electron transfer using 
mediators and enzymes to improve the current density. Since 
bioelectrocatalysis of direct electron transfer (DET) has the 
capacity to transfer electrons from the enzyme cofactor to the 
electrode directly, it does not require a mediator of redox 
activity. 

In contrast to MET, which may experience a dip due to 
the difference in potential between the mediator and enzyme 
active sites, DET results in smaller potential losses. This 
research work inspired the primary goal of BFCs in the fu-
ture. The research in this field focused on enhancing enzy-
matic bioelectrocatalysis as an application in biosensors. By 
bypassing the redox mediation, in 1978, Berezin and 
coworkers introduced the concept of electron transfer to the 
electrode from proteins directly. As shown in Fig. (1), medi-
ators have carried out several innovative research works for 
electron transfer that produces high current densities [19]. 
Laane et al. in 1984 used organometallic redox mediators in 
solution and incorporated them into polymers for biofuel 
cells [20].  

After 1984, the concept of utilizing biological catalysts 
on a BFCs cathode was first proposed. Instead of using the 
enzyme for direct bio-electrocatalysis at the cathode, a gold-
supported cathode was utilized, which produced peroxide 
from oxygen, which was then eliminated by the chloroperox-
idase enzyme [20]. Therefore, this innovative study expands 
the range of BFCs that use enzymes at either the cathode or 
the anode. While numerous studies have defended the use of 
facilitated electron transfer because it typically results in 
higher current densities. Even yet, there are still significant 
problems with EBFCs, such as their low mediator stability 
and high potential losses. Cass et al. employed organometal-
lic redox mediators for the first time in the 1980s [21]. 

Redox mediators were used in two ways: they might be 
dissolved in a solution or immobilized in conducting poly-
mers. The integration of organo-metallic-based redox-active 
mediators into redox polymers was the Heller group's 
groundbreaking work that was later applied in other research 
domains. Future development in this field focuses on devel-
oping various bio-anodes, constructing microbial and enzy-
matic biofuel cells with improved current densities, and ex-
tending their lifetime up to five years [22]. The stability of 
proteins in the solutions is a major drawback of the enzymat-
ic fuel cells. Most enzymes lose three-dimensional structure 
and catalytic activity over 8-72 hours. The researchers aim to 
improve the energy density and lifetime via enzyme cas-
cades. The strategic employment of enzyme cascades has 
resulted in the encashment of the degree of oxidation of EB-
FCs. There has been a growing interest in developing novel 
immobilization strategies for alternative electron transfer 
pathways and enhancing the enzymes' lifetime at the elec-
trode surface [23]. Yu et al., 2010, developed biofuel cells 
by immobilizing the selective enzyme at the cathode and 
anode to form novel membrane-less BFCs, as shown in  
Fig. (2). 

3. CATEGORIES OF BIOFUEL CELLS 
The classification of BFCs based on the biological cata-

lyst opens up Enzymatic biofuel cells (EBFCs), Microbial 
fuel cells (MBFCs), and Abiotic biofuel cells (ABFCs). EB-
FCs use enzymes as catalysts at both cathode and anode, 
MBFCs use living cells as catalysts, and ABFCs are nonbio-
logical fuel cells that use nonbiological catalysts.  
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Fig. (1). Schematic diagram of an EBFC utilizing a mediator at bio-anode and a direct electron transfer bio-cathode. Figure adapted from 
permission with [19] copyright open access. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle). 

 
Fig. (2). Schematic diagram of the membranes and compartmentless EBFC. Figure adapted from permission with [24] copyright open access. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 

3.1. Microbial Fuel Cells (MBFCs) 
MBFCs are bio-electrochemical fuel cells that produce 

electrical energy from chemical energy with the help of mi-
croorganisms or microbes in the organic substrate. In 1990, 
Habermann and Pommer first testified about an MBFC, 
where a specific kind of bacteria donated electrons indirectly 
through soluble mediators. This study with sulfide storage 
capacity was employed for five years in utilizing municipal 
wastewater [25]. The MBFCs can further be classified into 
mediator MBFCs and mediator-less MBFCs based on the 
mediator usage. In mediator MBFCs, microbes generate 
electricity in the presence of mediators. The mediators are 
usually chemical agents that are involved in the reactions. 
One of its kinds is anthraquinone-2,6-disulfonate, humic 
acid, neutral red, etc. Logan mentioned that potassium ferri-
cyanide, neutral red, and methyl viologen are the chemical 

mediators used in MBFCs, also denoted as active electron 
metabolites [26]. 

On the other hand, as the name indicates, mediator-less 
MBFCs are those FCs that do not use mediators to generate 
electricity. Here, microbes convert chemical energy into 
electrical energy without the interference of chemical mole-
cules. These mediator-less MBFCs have few advantages 
over mediator MBFCs. These are less expensive and non-
toxic. In mediatorless MBFCs, the microbes use the enzymes 
produced in them. A few factors limiting electricity genera-
tion in mediator-less MBFCs are redox enzymes for electron 
transfer to the anode, electrical resistance in the circuit, fuel 
oxidation at the anode, oxidation, and reduction at the cath-
ode, and variation of pH near electrodes may hinder micro-
bial activity. Researchers have conducted many studies dis-
cussing electricity generation through MBFCs, applications, 
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performance, and design of MBFCs. However, configura-
tion, design, economics, and cost-effective materials are the 
scope required to construct MBFCs [27, 28].  

The construction of an MBFC comprises two compart-
ments identified as electrodes, one cathode and another  
anode, which is divided by a proton exchange membrane 
(Fig. 3). The anodic chamber consists of electrochemically 
active microbes, and the cathodic chamber is abiotic. The 
microorganisms behave as biocatalysts, stimulating the deg-
radation of the organic constituents to harvest electrons that 
travel to the cathodic section through the electric circuit [29]. 
Oxygen and electrons at the cathode react with protons from 
the anodic and produce water in the internal circuit by pass-
ing through the external circuit [30, 31]. Therefore, MBFCs 
are potential candidates for green "electricity." 

Based on the design, the MBFCs can also be categorized 
into single-chamber reactor MBFC, double-chamber reactor 
MBFC, up-flow MBFC, and stacked MBFC. Single-
Chamber reactor MBFCs: It contains both anode and cathode 
in one chamber. Protons are transferred inside the anodic and 
cathodic common chamber, and released water is produced 
by the interaction between protons and electrons in the pres-
ence of oxygen [32]. It has a few advantages like requiring 
less space, less internal resistance, simple operating proce-
dures, and low cost. Contrarily, the major drawback of sin-
gle-chamber MBFC is the presence of oxygen concentration. 
If excess oxygen is present, the efficiency of the MBFC will 
reduce (Fig. 4). 

 

Fig. (4). Single chamber MBFCs. (A higher resolution / colour 
version of this figure is available in the electronic copy of the arti-
cle). 

Double-Chamber MBFCs: Double-chamber MBFCs 
generally have a similar design to the traditional fuel cell. 
The proton exchange membrane split the anode and cathode 
compartments (Fig. 5). The double chamber has the draw-
back of low power generation because of high internal re-
sistance and complicated design. However, one has better 
control for different reactions in the double-chamber MBFCs 
as various environments can be sustained in separate cham-
bers. In Double-chamber MBFC, electrons travel a longer 
distance as the anode and cathode are separated into two 
different sections. Due to this parameter, an increase in the 
internal resistance and a decrease in the efficiency can be 
observed in this type of MBFC. The internal resistance can 
be minimized if the electrode is clamped to the membrane 
[32]. 

3.1.1. Up-flow MBFC 

It comprises an anion exchange membrane and graphite 
electrodes that can be operated ina continuous batch or fed-
batch processes (Fig. 6). To obtain a high mass transfer rate 
and efficiency, they are operated in fed-batch operations. On 
the other hand, in the continuous mode process, it was ob-
served that the reduction in hydraulic retention time en-
hanced bioenergy production. Jang et al. have reported an 
up-flow MBFC, where they made the MBFC on plexiglass 
and separated it into two compartments [33]. One was filled 
with glass wool and another with glass beads. The cylindri-
cal setup contains an anode compartment at the bottom 
where feed is supplied, and at the cathode, the effluent 
stream continuously passes and discharges from the topside. 
In this process, oxygen penetration is a disadvantage from 
the cathodic chamber to the anodic chamber. Oon et al. have 
developed a hybrid design where bioenergy production of 
6.12 mW/m2 and wastewater treatment operated simultane-
ously [34].  

3.1.2. Stacked Microbial Biofuel Cells 

In stacked MBFCs, the chambers are connected in paral-
lel or series, as we see in electrical circuits. It was observed 
that both parallel and series connectivity have advantages 
like the high currents were obtained in parallel, and high 
voltages were obtained in series connectivity. The produc-
tion  of  bioenergy  and  chemical  oxygen  demand  (COD)  

 

Fig. (3). Schematic diagram of a simple MBFC. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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Fig. (5). Double chamber MBFCs. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

Fig. (6). Up-flow microbial fuel cell. (A higher resolution / colour 
version of this figure is available in the electronic copy of the arti-
cle). 

removal was directly proportional to the surface area of the 
electrodes, as shown in Fig. (7) [35]. The major drawback of 
this type of MBFC is that it cannot be commercialized. Fur-
thermore, the stacking can be arranged inhorizontal or verti-
cal order. Few researchers used urine samples as the sub-
strate for MBFC, and the experiment lasted 19 months. The 
whole setup was made of ceramic and was cost-effective. 
They checked the efficiency with varied designs like cas-
cade, stacked, and individual, for which they obtained 75 
mW, 21.4 mW, and 1.56 mW power output, respectively. 
The COD removal was high with three-module systems 
compared to conventional membrane MBFCs. Conversely, 

the traditional membrane MBFCs produced more power 
compared to stacked MBFCs. Kim et al. proposed a few 
modifications by regulating the voltage reversal and harmo-
nizing the system kinetics using electroactive microorgan-
isms [36].  

3.1.3. Miniature MBFCs 

Miniature MBFCs are designed micro or minutely to in-
crease the surface area, decrease the distance between the 
electrodes, and have a quick reaction time, as in Fig. (8) [37]. 
Lorenza et al. have prepared a 3D-printed layer-by-layer 
prototype where the chamber was microscaled and acted as a 
biosensor for water quality monitoring [38]. Chouler et al. 
used urine as a substrate; increasing the electrode length by 
two times resulting in increased power density [39]. 3D elec-
trodes in small-sized MBFCs retain a high volume ratio -
surface area and increased mass transfer rate [40]. However, 
miniature MBFCs presume many difficulties with viscous 
solutions and substrate, irregular proton transfer, etc. [41, 
42].  

Different type of MFBCs have been considered, and  
Table 1 explain the advantages and disadvantages of the 
kinds of MBFCs based on their technology, operating condi-
tions, and various factors [43-49]. 

The MBFCs have promising applications in wastewater 
treatment as it gives viable solutions for chemical oxygen 
demand (COD) removal and generation of electricity at the 
same time. The primary application of MFCs is the devel-
opment of biosensors. MBFCs can also be utilized in biohy-
drogen and power production. Since MBFCs will be an ap-
propriate choice for producing electricity from biomass, 
electricity production using microbes can be a dynamic form 
of bioenergy for the future [50]. Another application of 
MFCs, as pointed out by Bose, has to deal with biosensors 
for the online monitoring of organic matter and detection of 
water toxicity [51]. Studies have shown that the usual meth-
ods used to calculate the total organic content and biological 
oxygen demand in wastewater treatment are unsuitable for 
online screening and control of natural wastewater treatment.  
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Fig. (7). Stacked microbial fuel cells. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

Fig. (8). Miniature microbial biofuel cell. Figure adapted from permission with [43] copyright open access. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article). 

Table 1. Advantages and disadvantages of different types of MBFCs. 

Types of MBFC Advantages Disadvantages References 

Single-Chambered 

(a) Easy operation 

(b) Low-cost investment 

(c) High power output 

(d) Increased proton diffusion 

(e) Low internal resistance 

(f) Improved O2 reduction rate (e) low electrode spacing 

(a) Expensive maintenance 

(b) Membrane malfunction 
[44-46] 

Single-chambered 
mediator-less 

(a) Low cost 

(b) Nontoxic 

(c) More O2 diffusion rate 

(a) Low efficiency [45] 

Double chambered 
(a) Various operation conditions 

(b) High overall performance 

(a) Constant replacement of solution at the cathode 

(b) Expensive setup 

(c) Membrane malfunction 

[47] 

(Table 1) contd… 
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Types of MBFC Advantages Disadvantages References 

Up-flow 

(a) Superior loading capacity 

(b) Simple to scale-up 

(c) Continuous operations 

(d) More COD removal 

(e) Less clogging 

(a) The long distance between the cathode and 
anode 

(b) High cost of fluid pumping 

[48, 49] 

Miniature 

(a) Enhanced power 

(b) Low fluid volume 

(c) Fewer electrode sizes 

(d) Long-term applicability 

(e) High electrode surface-area 

(a) Not suitable for wastewater treatment 

(b) Low loading rate 
[43, 49] 

Stacked 

(a) High power density 

(b) Continuous operation 

(c) High loading rate 

(d) High voltage 

(e) Easy fabrication 

(a) Low loading rate 

(b) Low efficiency 

(c) Voltage reversal 

[49] 

 

To detect the toxic content in the water necessary for 
providing safe water for human, animal, and crop consump-
tion, MBFCs can act as a possible biological oxygen demand 
sensor because of the linear correlation of MBFC with the 
strength of organic matter in wastewater. The main drawback 
of using MBFC technology is associated with insufficient 
power output. Secondly, the issue of the high cost of elec-
trode materials, membranes, and cathode catalyst poses a 
further limitation to the technology. Providing an electrode 
material of high surface area to improve the power output is 
a direction this technology should focus on in the future. 
Doing this in the absence of polymer electrolyte membrane 
(PEM) in futuristic MBFCs (at a large scale) can make the 
technology more economical. 

MBFC technology uses the same biomass in anaerobic 
digestion technology in many cases for energy production. 
MBFCs can convert biomass at a temperature below 20 °C 
and with low substrate concentration, which tends to be 
problematic for methanogenic digesters in both technologies. 
As a result of the over-reliance on biofilms for mediators less 
electron transport is associated with MBFCs, which is a dis-
advantage to the technology, anaerobic digesters such as the 
upflow anaerobic sludge capacity reduce or eliminate this 
transport. By reusing the microbial consortium without cell 
immobilization in an anaerobic digester, the MBFC technol-
ogy can coexist with anaerobic digestion in the coming days. 
Bose reported that the main application of MBFCs is in gen-
erating electricity [51]. Some examples of MFC performance 
for electricity from the literature are presented in Table 2 
[52-54]. 

3.2. Enzymatic Biofuel Cell 

The Enzymatic biofuel cell is a specific type of fuel cell 
which uses enzymes as a catalyst instead of noble metals to 
oxidize fuel. EBFC is known for its inexpensive ingredients 

and fuel. EBFCs have a similar operating protocol to con-
ventional fuel cells, except that the biological catalyst (en-
zyme) catalyzes the half-cell reaction [55]. The EBFCs use 
enzymes to transform chemical energy into electrical energy 
through biochemical reactions. The operational procedure is 
similar to a traditional fuel cell. In place of microbes, en-
zymes or catalysts are used (Fig. 9).  

The EBFCs are further categorized into two based on 
electron transfer. Direct electron transfer (DET) and media-
tor electron transfer (MET). DET is the transfer of electrons 
between the electrode and the substrate without an external 
mediator, and MET is the transfer of electrons in the pres-
ence of a mediator, as in Fig. (10) [5]. In the DET, the en-
zymes are immobilized at the electrode, which is the com-
plete biochemical activity the enzymes could exploit. Thus, 
providing enhanced efficiency and fewer voltage losses. The 
redox mediator is employed in the MET of BFCs to transport 
the electron between the enzyme's active site and the elec-
trode. The MET pathway was observed to provide impro-
vised output power for the BFCs by facilitating rapid elec-
tron transfer and enhancing electrically conductive. The 
MET biofuel cells have drawbacks such as cell voltage loss 
and less stability. The fuel concentration is the critical pa-
rameter for accurate EBFC processes. A high concentration 
of substrate is the rate-determining step in EBFC operation 
[56]. 

EBFC is considered an attractive eco-friendly technolo-
gy, owing to its unique features like portability, the potential 
to yield sustainable and renewable energy, and easy minia-
turization [57]. EBFCs can produce electric power from var-
ious organic substrates and can be operated at room tempera-
ture. Moreover, they have exceptional intrinsic properties 
like good catalytic activity, mild operating conditions like 
neutral pH, ambient temperature, and binding to a specific 
substrate  [58].   EBFCs   are   mainly   used   in   implantable  
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Table 2. Common materials used for MBFC. 

Cathode Material Advantages Disadvantages References 

Graphite and carbon Used mostly as an anode A poor catalyst for oxygen reduction [26] 

Platinum Excellent catalyst ability Expensive [26] 

Manganese oxide High power density Short longevity [52] 

Lead oxide and cobalt complex High power density Short longevity [52] 

Proton-exchange Membrane 

Nafion 
Excellent ionic conductivity and allows ion 

transfer 
Oxygen leakage from the cathode [53] 

Anode Material 

Stainless steel Low cost and high conductivity 
Low power production and poor microbe 

attachment 
[53] 

Carbon paper High conductivity Expensive and low-specific area [53] 

Graphite rod Defined surface area and high conductivity Low strength [53] 

Graphite fiber brush High conductivity and porosity Expensive [53] 

Carbon cloth Large specific area and Flexible Brittle [53] 

Graphite granules High porosity, low cost, more surface area High contact resistance [53] 

Conductive polymer Large surface area Low conductivity [53, 54] 

 

 

Fig. (9). Schematic representation of EBFC device. (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 

 

Fig. (10). DET and MET representation. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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biomedical devices such as biosensors as they can use the 
biofluids present in living organisms to generate electric 
power [56]. 

3.3. Abiotic Fuel Cells 

In abiotic fuel cells, the catalysts used are abiotic and sol-
id-state materials. These systems can work even at high tem-
peratures and pH conditions. However, it results in a low 
current density. (a) nature of the metal catalyst, (b) pH and 
concentration of glucose solution, and (c) operating condi-
tion of FCs are the factors that affect the cell performance 
[59, 60]. The nature of a metal catalyst means the shape, 
size, metal composition, and ionomers that conduct electrici-
ty between the electrode and the metal catalyst [61]. 

4. STRATEGIES AND CATALYTIC CHARACTERIS-
TICS FOR EFFICIENT BIOFUEL CELLS 

Significant work has been carried out in EBFC develop-
ment [3, 7, 55, 62-64]. Many researchers have worked on 
electrode materials [65-67], bioelectrocatalysis [12, 68], en-
zyme immobilization [69-71], etc. There are still some areas 
where development must be focused on, like power density, 
energy output, operational stability, voltage output, etc. Hy-
drogen fuel is one of the most sought energy fuels in recent 
times. It is a clean fuel produced from water splitting or bi-
omass. It can also be employed in BFCs incorporated with 
hydrogenase enzymes [67, 72-75]. The storage of hydrogen 
safely is one of the prime types of research and highly fo-
cused areas these days. Formic acid, a stable carrier of hy-
drogen, is used to power EBFCs because of its low toxicity, 
controlled flammability, and high volumetric capacity [76]. 
Methanol is another alternative fuel easily transported and 
sufficiently accessible but has severe toxic disasters if con-
sumed. It has a three-fold higher energy density compared to 
formic acid. Ethanol can also be an alternative to hydrogen 
but was less explored. Glycerol is another possibility as an 
energy source. It has low flammability, low vapor pressure, 
and low toxicity and is obtained as a byproduct of biodiesel 
production [77]. 

Furthermore, power output is one of the challenges in 
BFCs. Four methods monitor the voltage-current curve or 
polarization profile and the respective power output. (i) by 
varying resistance measurement of currents and voltages by 
connecting the EBFC to a resistor, (ii) potentiostatic dis-
charge: recording various currents generated by applying 
various voltages, (iii) potentiodynamic discharge rates: it 
records the voltage-current response when a meager sweep 
rate (less than 1 mV/s) is reached, (iv) galvanostatic dis-
charge: EBFC discharge voltage records at various currents. 
Of these, (i), (ii), and (iv) are widely applied for long-term 
testing [78].  

4.1. Employment of Nanomaterials in EBFCs 
Porous carbon and gold nanomaterial electrodes have 

been employed vastly to increase the current density [67, 79, 
80]. Conducting materials with a high surface-to-volume 

ratio allows extra enzyme loading capacity [81]. Porous 3D 
nanomaterials accompanied by metal electrodes provide 
good conductivity, chemical stability, and biocompatibility, 
fabricated through dealloying [82-84], anodization [85], dia-
zonium grafting [86-88], electropolymerization [89, 90]. The 
following table (Table 3) represents the wastewater treatment 
source and efficiency through MBFC [91-100].  

4.1.1. 2D-Nanocomposites-based BFCs 

Developments in nanotechnology and nanoscience have 
demanded scientists to explore micro-and nanomaterials for 
electrodes. Since the beginning of this century, the search for 
new nanomaterials in the field of electrodes has taken a fast 
pace [32]. It was discussed earlier that the smaller the unit, 
the increased surface area, high enzyme loading capacity, 
high crystallinity, efficient energy storage, improved catalyt-
ic activity, good adsorption efficiency, the superior potential 
for durability, storage, recovery, recycling, and reusability, 
thus improving the overall efficiency of BFCs [101]. Most 
nanomaterials have been reported utilizing carbon, precious 
metals, and inorganic metals for BFCs. 

The efficiency of BFCs has improved with the use of na-
nomaterials in immobilization methodology. The movement 
of electrons from the active location of the enzyme to the 
surface of the electrode is the rate-limiting step in determin-
ing the efficiency of BFCs [102]. This can be overpowered 
by the inclusion of nanomaterials into the BFC mechanism. 
Thus, researchers have recently paid much attention to de-
veloping carbon-based inorganic nanoparticles and metallic 
nanomaterials [103, 104]. 

4.1.2. Carbon-based Nanomaterials 

Carbon with an amorphous texture has shown good con-
ductivity, increased porosity, and massive surface area, mak-
ing it a suitable electrode material. With the advancement in 
the field of nanotechnology, various carbon-based nano-
materials (CBNMs) have been explored, like porous carbon 
[105, 106], carbon nanotubes [107, 108], and graphene [109, 
110]. They showed promising results in various applications 
of BFCs. When carbon nanomaterials are employed in BFCs, 
they offer high conductivity because of the reduced weight 
and size of the electrode and are suitable for implant applica-
tions. Despite excellent applications, biosafety measures for 
long-term use are still in question because of incomplete 
toxicity studies at the cellular level [111, 112]. Another 
drawback is the adsorption of enzymes on the carbon sub-
strate leads to low utilization of enzymes for effective con-
tribution to the chemical reactions [113]. Some of the car-
bon-based biofuel cells applied in the literature are:  

4.1.2.1. Graphene 

In 2004, Novoselov prepared graphene in a single layer 
for the first time through the exfoliation of graphite [114]. 
Graphene is a 2D single flat layer arranged in a honeycomb 
pattern as sp2 hybridized carbon atoms with a bond length of 
1.43 Å and bond angle of 120o. It is the thinnest material 
with a theoretical thickness of 3.35 Å [115-119]. It is one of  
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Table 3. Treatment of wastewater through specialized MBFCs. 

Wastewater Substrate 
Source Inoculum Source MBFC Efficiency Power Density References 

White wine lees Denitrification wastewater tank 

� Single chambered 

� 90 % COD removal 

� 15 % CE 

262 mW/m2 [91] 

Red wine lees Denitrification wastewater tank 

� Single chambered 

� 27 % COD removal 

� 9 % CE 

111 mW/m2 [91] 

Dairy industry Activated sludge 

� No mediator membrane and catalysts 

� 90.5% COD removal, 

� 37.5% CE 

621.1 mW/m2 [92] 

Chocolate industry Anaerobic sludge 
� Single-chambered 

� 3% COD removal 
22.898 W/m2 [93] 

Tannery industry Anaerobic sludge 
� Single compartment 

� 88% COD removal 
7 mW/m2 [94] 

Palm olein oil industry Pseudomonas aeruginosa ZH1 
� Two chambered 

� 3% COD removal 
451.3 mW/m2 [95] 

Human urine E. coli 
� Double chambered 

� 46% SCOD removal 
93 mA/m2 [96] 

Paper recycling LZ-P1 strain 

� Dual chambered 

� 0.9% COD removal 

� 8.72% CE 

44.05 mW/m2 [97] 

Swine industry Swine 
� Two-step MBFC 

� 72% SCOD removal 
33.3 mW/m2 [98] 

Rubber industry Sludge 
� Ceramic separated 

� 9.77%COD removal 
3.26 μW/m3 [99] 

Wood industry Municipal wastewater 
� Two chambered. 

� 66% COD removal 
14 mW/m3 [100] 

CE - coloumbic efficiency 

 
the strongest materials with a tensile strength of 130 GPa and 
a light weight of 0.77 mg/m2. It has high flexibility with a 
large surface area of about 2630 m2/gm. Despite large work 
carried out by various researchers on graphene exploring 
green energy, most of them are at the base level and cover 
research on supercapacitors and fuel cells [120]. Most of the 
electrochemical application work was carried out in the gra-
phene family with fluorographene, reduced graphene oxide, 
graphene oxide, graphane, graphing, and graphene [121]. Of 
these, GO and rGO are promising materials for preparing 2D 
and 3D nanomaterials [122, 123]. In BFCs, graphene materi-
als are graphene hydrogel, graphene aerogel, graphene foam, 
etc.  

Graphene doped with heteroatoms shows high catalytic 
activity compared to Pt over carbon in various graphene 
composites with different metal oxides and conducting mate-

rials. The graphene sheets show irreversible agglomeration 
because of strong pi-pi interactions and Vander Waal forces 
[124]. 3D graphene offers excellent flexibility, high strength, 
and a large surface area compared to 2D graphene materials. 
3D materials with an extensive surface area are a suitable 
choice for microbial fuel cells because of more chances of 
microbes' attachment to the surface. Some approaches to 
growing 3D graphene materials from GO include microbial 
reduction, chemical reduction, chemical vapor deposition, 
hydrothermal reduction, electrochemical reduction, etc. The 
critical factor governing the BFC performance is the electron 
transfer efficiency between electrodes and biocatalysts [26].  

4.1.2.2. 2D Graphene Materials 

These materials are highly chosen because of their high 
electrical conductivity and surface area. It was reported that 
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2D graphene helped the E. coli attachment on stainless steel 
mesh. It witnessed an increase in power density by 17 times 
compared to the normal SS electrode [125]. Positive-charged 
film of poly (3,4-ethylene dioxythiophene) (PEDOT) was 
applied to an anode made of graphene film with carbon pa-
per coating to increase the negative-charged bacterial inter-
action with the anode. Compared to conventional carbon 
paper electrodes, the current in this system was enhanced by 
seven times, and a 15 times increase was observed in the 
maximum power output [126]. In another approach reported 
by Wang et al., 2D graphene film was used in making multi-
layered electrodes. It was exploited as a spacer between dif-
ferent multilayered films. This multilayered electrode as-
sembly was achieved because of π-π or electrostatic interac-

tions. At 0.48 V in a phosphate buffer solution comprising 
30 mM glucose and 10 mM NAD+, the glucose and oxygen 
BFC exhibited a maximum power density of about 22.50 
μW/cm2. In an open circuit, they exhibited a voltage of 0.69 
V [127]. 

By reducing the fuel crossing across the liquid and gas 
graphene membranes without disturbing proton conduction, 
they enhanced the fuel cell efficiency. Fang et al. formed 
graphene/ hexagonal boron nitride (hBN) on the electrode 
and membrane assembly through the chemical vapor deposi-
tion technique. They observed that the graphene barrier al-
lows only protons to permeate and restricts the passage of 
methanol, thereby improving the efficiency of methyl alco-
hol fuel cells. The dense lattice framework of 2D graphene 
was the reason for such selective permeation, which also 
blocked proton transfer [128]. 

4.1.2.3. 3D Graphene Materials 

The enhanced surface area and high volume/ surface ratio 
of 3D graphene attracted many researchers to use these mate-
rials for electrode substrates. These factors enable biocata-
lysts' immobilization or bacterial colonization on the elec-
trode. 2D graphene showed improved electrode efficiency 
compared to the conventional electrode. However, 2D gra-
phene still has some limitations, for example in 2D graphene 
with SS mesh electrode, only the graphene located on the 
anode exterior surface is exposed to bacterial suspension and 
not the interior anodic region. When 3D graphene is pre-
pared, an additional surface is created either in porous form 
or hollow cavities that enable total graphene utilization, fur-
ther enhancing the FC performance [129]. 3D graphene 
structures are categorized into graphene gels and foams. Ad-
ditionally, gels are categorized as hydrogels and aerogels. In 
hydrogels, the space inside the graphene crosslinks is filled 
with water, and on the other hand, in aerogels, the space is 
filled with air which can be removed by freeze-drying. 

Xie and his group incorporated graphene foams into SS 
electrical collectors to enhance their electrical conductivity. 
A 14-fold increase in maximum power density was generat-
ed with a 3D graphene material anode when assessed with a 
plain anode [130]. Wang et al. prepared a 3D reduced gra-
phene oxide-based nickel foam anode. This material provid-
ed a large surface area for microbial growth and efficient 
diffusion of culture media. This technique facilitates large-

scale electrode preparation. They observed that the reduced 
graphene oxide-based nickel foam showed high efficiency 
than plain nickel foam and conventional electrodes. Some 
researchers coated graphene with hydrophilic polyaniline to 
enhance the hydrophilicity, allowing bacteria to adhere to the 
surface. They also observed that the bacteria attached deeply 
to the 3D electrode. They also observed a 4-fold enhance-
ment in maximum power density with these 3D graphene/ 
polyanilines compared to carbon cloth [131]. 

These 3D graphene structures have advantages over other 
graphene structures, as they allow to make of lightweight 
FCs with improved performance. Macroporous substrates 
can be achieved with this 3D material by freeze casting or 
drying techniques. A group prepared 3D-chitosan with vacu-
um-striped graphene to obtain superior porous materials. 
These hollow porous substrates allowed the bacteria to grow 
colonies in the porous region and increased electron transfer 
rates [132]. 

4.1.3. Inorganic Nanomaterials 

The unique properties of polysulfones demand their us-
age in nanoparticle preparation. They possess properties like 
high mechanical, chemical, and thermal stability. They also 
withhold strong acidic conditions at a low cost. They also 
have the desired film-forming capacity [133, 134]. These 
inorganic materials, when molded into membranes, decrease 
the swelling and prolong the degradation of sulfonic endings 
at high temperatures. Generally, inorganic materials are used 
as fillers in the nano substrate, improving the required prop-
erties [135, 136]. Aluminum oxide [137], silicon oxide 
[138], ferric oxide [139], and titanium oxide [140] are a few 
inorganic fillers used in nanocomposite materials. Of these 
fillers, titanium oxide and silicon oxide materials are exten-
sively studied and are functionalized between polymer ma-
trices [141, 142]. 

4.1.4. Metallic Nanomaterials 

Metal nanoparticles have attracted the attention of re-
searchers for their usage in BFCs because of their excellent 
catalytic properties and high conductivity. They act as carri-
ers by transporting electrons between the solid substrate and 
enzymes, enhancing biocatalytic activity [143]. Some re-
searchers have used gold nanoparticles to prepare mediator-
less enzymatic BFCs and biosensors for fructose and glucose 
oxidation [70, 144, 145]. Moreover, platinum also possesses 
high conductivity, catalytic properties, and biocompatibility. 
Sugar/ O2 EBFCs and amperometric glucose sensors are a 
few good examples of incorporating platinum nanoparticles 
into biomolecules [146-148]. The main drawback of these 
metallic nanoparticles is the cost, which can be balanced by 
using them in low amounts.  

5. POTENTIAL APPLICATIONS OF BIOFUEL 
CELLS 

Biofuel cells have potential applications in energy har-
vesting devices, specifically for personal and biomedical 
applications as shown in Fig. (11) [149]. Recently, BFCs 
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have garnered massive attention as an alternative approach 
for green sources for numerous wearable and implantable 
applications [150-152]. Biofluids such as tears and blood 
comprise beneficial metabolites like lactate and glucose, 
functioning as electrical energy generators. The recent ad-
vancement in nanoscale technologies gave new opportunities 
to develop compact BFCs for implantable biomedical devic-
es. BFCs have vast applicability in biomedical devices like 
glucose biosensors, gastric stimulators, brain neurotransmit-
ters, drug delivery systems, and variable sensors [19, 153, 
154]. There is increasing use of BFCs in pacemakers to gen-
erate electricity even though more attention is required to 
address weak responses leading to infection and low lifetime 
and efficient use of BFCs in pacemakers [155-157]. Kulkarni 
et al. developed a novel enzymatic glucose BFC that detects 
glucose levels with high sensitivity near 86.42 Hz/cm2. 
These self-powered power sensors based on BFCs offer good 
performance over old glucometers and continuous glucose 
monitors [158].  

Since biofuel cells may be able to function in living sys-
tems, they may be able to draw the oxygen and fuel they 
need for operation from their surroundings. This opens up a 
wide range of potential implanted medical devices using 
biofuel cells as power sources. For instance, a biosensor for 
glucose has been created that produces an electrical current 
using an anode based on glucose oxidase and a cathode 
based on cytochrome c. This procedure can be applied to a 
biosensor to measure glucose concentration in the range of 1-
80 mM. It has also been designed to detect lactate [159]. 
Power sources for medication delivery systems are another 
potential application for small fuel cells, and biofuel cells 
have already been designed to be small enough for this usage 
[160, 161]. 

Many fuel cells have been demonstrated to produce ener-
gy by oxidizing substances in wastewater streams. This pro-
cess can be used for two beneficial purposes: (a) to remove 
organic chemicals from the waste stream and (b) to generate 
electricity. According to a recent study, a town of 150,000 

people's wastewater can produce up to 2.3 MW of power 
(assuming 100 percent efficiency), while a power of 0.5 MW 
might be more practical. It should be noted in this context 
that wastewater treatment in a microbial fuel cell can remove 
up to 80% of the chemical oxygen demand, and the electrici-
ty produced by this method could possibly be used locally to 
power additional wastewater treatment. The review's eco-
nomic assessment [162] demonstrates the application's po-
tential. However, it is heavily reliant on localized power 
prices. 

The idea of creating robots that can "live off the land" by 
using biofuel cells to produce their energy and the difficul-
ties that must be addressed have already been covered [163]. 
The "Slugbot," which, as its name suggests, hunts slugs, is a 
classic illustration [164]. Although the "Slugbot" has a re-
chargeable battery, after it has captured a slug, it keeps it in a 
holding tank until the battery starts to run low. After transfer-
ring the slugs, the "Slugbot" returns to a microbial fuel cell 
and uses the energy generated by their "digestion" to re-
charge its batteries (www-robotics.usc.edu). Another "gas-
tropod" with the name "Chew-Chew" has also been created, 
and it can "feed" by consuming meat to continue operating. 

6. CHALLENGES 

Microbial fuel cells have been in use to generate energy. 
It has been employed on a microscale successfully. Howev-
er, it has some drawbacks to apply for commercial applica-
tions, as it produces low power output, durability, and stabil-
ity for long-term usage, proton exchange or cation exchange, 
membrane durability, substrate feed continuity, the strength 
of electrodes, cost of the setup, etc., require improvement. 
Setting up a new MBFC is thirty times more expensive than 
the conventional activated sludge process [165]. Carbon pa-
per and carbon cloth electrodes are efficient electrodes and 
are commonly used. However, their scale-up at a commercial 
scale is expensive, and further design for a large scale is 
challenging. Jaiswal has reported that the structural construc-
tion of microalgal FC requires a high cost, and the pH mem-

 

Fig. (11). Targeted application of BFCs in implantable biomedical devices. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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brane employed in this setup reduces the voltage and power 

output [166]. Few limitations are noted in the MBFCs, such 

as internal resistance, the distance between the electrodes, 

the exchange of ions through the cation exchange membrane, 

or the proton exchange membrane. These factors pose a mas-

sive challenge in setting up biofuel cells for long-term func-

tion. 

BFCs are miniature devices that produce micropower. 

Their application in commercial devices is questionable. The 

cost of generating electricity using BFCs is not yet compara-

ble to the traditional sources of power generation which can-

not be regarded as a significant contribution to power gen-

eration [167]. For commercialization, BFCs must overcome 

specific challenges such as low manufacturing costs, long-

term operational stability, etc. EBFCs have low mediator 

stability, high potential losses, and lower open circuit poten-

tial [19]. 

The enzymes are loaded on the electrode surfaces in high 

quantities to improve the catalytic activity of enzymes and 

faster electron transfer between the electrode and enzyme. 

This will eventually lead to improved current density and 

power. The contribution of material engineering and genetic 

modification of enzymes will increase enzymes' stability and 

provide optimistic attachment sites on the surface of the elec-

trode [19]. The enzymes are grouped in reaction pathways 

such that the traveling of the reaction intermediates is de-

creased. This prevents the formation of undesirable toxic 

intermediates and competes for side reactions [168]. 

7. FUTURE PERSPECTIVES 

Biofuel cell methodologies are transcribing the world as 

they promote the production of bioenergy and treat 

wastewater at the same time. The technology and design 

setup broaden the range of wastewater treatment from ultra-

pollute to less polluting and bioenergy production. The pow-

er output through this technology is still less, which can be 

improved (a) by adequately designing the setup by keeping 

the internal resistance low, (b) by increasing the transfer of 

electrons by implementing nanoparticles, and (c) by using 

genetically modified microbes that produce more electricity 

and increase conductivity [169] (d) pretreating the feed to 

decrease the biofilm formation time [170] (e) MBFCs stack-

ing and design can be optimized to avoid short-circuiting, 

and voltage reversal (f) integration of MBFCs with newer 

treatment technology can speed up the process with im-

proved efficiency [171]. 

CONCLUSION 

The increasing energy demand for portable electronic de-

vices drives interest in sustainable power generation. Several 

miniaturized biofuel cells can be used for this in which ubiq-

uitous solutions, like glucose or lactate, can be utilized. Bio-

fuel cells, a form of renewable energy, have received consid-

erable attention. Biological organic matter can be oxidized 

directly in these cells to produce electricity. The conversion 

of energy in BFCs is highly determined by the area of the 

electrode that is effective as a catalyst. Real-world applica-

tions require high energy conversion efficiency, low cost, 

long-term stability, ease of production, and high reproduci-

bility. Biofuel cell technology can also be applied in 

wastewater treatment, water desalination, bioremediation, 

biosensor development, power production, microbial carbon 

capture, and biohydrogen production. This process generates 

electricity through wastewater treatment, thus completing the 

tasks of water recycling and creating renewable energy. The 

generation of electricity by applying microbes will recycle 

the waste without harming the environment. The investment 

for new BFCs and their maintenance cost is relatively large 

compared to the energy output. However, the environmental 

impact is friendly despite the energy production capacity, 

which can be improved with further research and develop-

ment. By overcoming the challenges like low power density 

output, COD removal, contaminant degradation, and energy 

production without CO2 emission, the BFCs technology can 

ramp up future perspectives and preserve the earth for sur-

vival. 
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