EDGE MAXIMAL $C_{2 k+1}$-EDGE DISJOINT FREE GRAPHS

M.S.A. Bataineh
Department of Mathematics
Yarmouk University
Irbid-Jordan
e-mail: bataineh71@hotmail.com

AND
M.M.M. Jaradat

Yarmouk University
Department of Mathematics Irbid-Jordan
Department of Mathematics, Physics and Statistics
Qatar University Doha-Qatar
e-mail: mmjst4@yu.edu.jo; mmjst4@qu.edu.qa

Abstract

For two positive integers r and $s, \mathcal{G}(n ; r, s)$ denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and $f(n ; r, s)=$ $\max \{\mathcal{E}(G): G \in \mathcal{G}(n ; r, s)\}$. In this paper, for integers $r \geq 2$ and $k \geq 1$, we determine $f(n ; r, 2 k+1)$ and characterize the edge maximal members in $\mathcal{G}(n ; r, 2 k+1)$.

Keywords: extremal graphs, edge disjoint, cycles.
2010 Mathematics Subject Classification: 05C38, 05C35.

1. Introduction

The graphs considered in this paper are finite, undirected and have no loops or multiple edges. Most of the notations that follow can be found in [5]. For a given graph G, we denote the vertex set of a graph G by $V(G)$ and the edge set by $E(G)$. The cardinalities of these sets are denoted by $\nu(G)$ and $\mathcal{E}(G)$, respectively. The cycle on n vertices is denoted by C_{n}.

Let G_{1} and G_{2} be graphs. The union of G_{1} and G_{2} is a graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Two graphs G_{1} and G_{2} are vertex disjoint if and only if $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset ; G_{1}$ and G_{2} are edge disjoint if $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$. If G_{1} and G_{2} are vertex disjoint, we denote their union by $G_{1}+G_{2}$. The intersection $G_{1} \cap G_{2}$ of graphs G_{1} and G_{2} is defined similarly, but in this case we need to assume that $V\left(G_{1}\right) \cap V\left(G_{2}\right) \neq \emptyset$. The join $G \vee H$ of two vertex disjoint graphs G and H is the graph obtained from $G+H$ by joining each vertex of G to each vertex of H. For two vertex disjoint subgraphs H_{1} and H_{2} of G, we let $E_{G}\left(H_{1}, H_{2}\right)=\left\{x y \in E(G): x \in V\left(H_{1}\right), y \in V\left(H_{2}\right)\right\}$ and $\mathcal{E}_{G}\left(H_{1}, H_{2}\right)=\left|E_{G}\left(H_{1}, H_{2}\right)\right|$.

In this paper we consider the Turán-type extremal problem with the odd edge disjoint cycles being the forbidden subgraph. Since a bipartite graph contains no odd cycles, the non-bipartite graphs have been considered by some authors. First, we recall some notations and terminologies. For a positive integer n and a set of graphs \mathcal{F}, let $\mathcal{G}(n ; \mathcal{F})$ denote the class of non-bipartite \mathcal{F}-free graphs on n vertices, and

$$
f(n ; \mathcal{F})=\max \{\mathcal{E}(G): G \in \mathcal{G}(n ; \mathcal{F})\}
$$

For simplicity, in the case when \mathcal{F} consists only of one member C_{s}, where s is an odd integer, we write $\mathcal{G}(n ; s)=\mathcal{G}(n ; \mathcal{F})$ and $f(n ; s)=f(n ; \mathcal{F})$.

An important problem in extremal graph theory is that of determining the values of the function $f(n ; \mathcal{F})$. Further, characterize the extremal graphs $\mathcal{G}(n ; \mathcal{F})$ where $f(n ; \mathcal{F})$ is attained. For a given r, the edge maximal graphs of $\mathcal{G}(n ; r)$ have been studied by a number of authors [1, 2, 3, 7, 8, 9, 10, 12]. In 1998, Jia [11] proved the following result:

Figure 1. (a) The figure represents a member of $\mathcal{G}^{*}(n)$.
(b) The figure represents a member of $\Omega(n, 2)$.

Theorem 1 (Jia). Let $G \in \mathcal{G}(n ; 5), n \geq 10$. Then $\mathcal{E}(G) \leq\left\lfloor(n-2)^{2} / 4\right\rfloor+3$. Furthermore, equality holds if and only if $G \in \mathcal{G}^{*}(n)$ where $\mathcal{G}^{*}(n)$ is the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph $K_{\lfloor(n-2) / 2\rfloor,\lceil(n-2) / 2\rceil}$. Figure 1 (a) displays a member of $\mathcal{G}^{*}(n)$.

Jia, also conjectured that $f(n ; 2 k+1) \leq\left\lfloor(n-2)^{2} / 4\right\rfloor+3$ for all $n \geq 4 k+2$. In 2007, Bataineh, confirmed positively the conjecture. In fact, he proved the following result:

Theorem 2 (Bataineh). Let $k \geq 3$ be a positive integer and $G \in \mathcal{G}(n ; 2 k+1)$. Then for large $n, \mathcal{E}(G) \leq\left\lfloor(n-2)^{2} / 4\right\rfloor+3$.
Furthermore, equality holds if and only if $G \in \mathcal{G}^{*}(n)$ where $\mathcal{G}^{*}(n)$ is as above.
Let $\mathcal{G}(n ; r, s)$ denote to the class of graphs on n vertices containing no r of s-edge disjoint cycles and

$$
f(n ; r, s)=\max \{\mathcal{E}(G): G \in \mathcal{G}(n ; r, s)\}
$$

Note that

$$
\mathcal{G}(n ; 2, s) \subseteq \mathcal{G}(n ; 3, s) \subseteq \cdots \subseteq \mathcal{G}(n ; r, s)
$$

Let $\Omega(n, r)$ denote to the class of graphs obtained by adding $r-1$ edges to the complete bipartite graphs $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$. Figure $1(\mathrm{~b})$ displays a member of $\Omega(n, 2)$.

The Turán-type extremal problem with two odd edge disjoint cycles being the forbidden subgraph, was studied by Bataineh and Jaradat [2]. In fact, they only established partial results by proving the following:

Theorem 3 (Bataineh and Jaradat). Let $k=1,2$ and $G \in \mathcal{G}(n ; 2,2 k+1)$. Then for large n,

$$
\mathcal{E}(G) \leq\left\lfloor n^{2} / 4\right\rfloor+1
$$

Furthermore, equality holds if and only if $G \in \Omega(n, 2)$.
In this paper, we continue the work initiated in [2] by generalizing and extending the above theorem. In fact, we determine $f(n ; r, 2 k+1)$ and characterize the edge maximal members in $\mathcal{G}(n ; r, 2 k+1)$. Now, we state a number of results, which play an important role in proving our result.

Lemma 4 (Bondy and Murty). Let G be a graph on n vertices. If $\mathcal{E}(G)>n^{2} / 4$, then G contains a cycle of length r for each $3 \leq r \leq\lfloor(n+3) / 2\rfloor$.

Theorem 5 (Brandt). Let G be a non-bipartite graph with n vertices and more than $\left\lfloor(n-1)^{2} / 4\right\rfloor+1$ edges. Then G contains all cycles of length between 3 and the length of the longest cycle.

In the rest of this paper, $N_{G}(u)$ stands for the set of neighbors of u in the graph G. Moreover, $G[X]$ denotes to the subgraph induced by X in G.

2. Edge-Maximal $C_{2 k+1}$-Edge Disjoint Free Graphs

In this section, we determine $f(n ; r, 2 k+1)$ and characterize the edge maximal members in $\mathcal{G}(n ; r, 2 k+1)$. Observe that $\Omega(n, r) \subseteq \mathcal{G}(n ; r, 2 k+1)$ and every graph in $\Omega(n, r)$ contains $\left\lfloor n^{2} / 4\right\rfloor+r-1$ edges. Thus, we have established that

$$
\begin{equation*}
f(n ; r, 2 k+1) \geq\left\lfloor n^{2} / 4\right\rfloor+r-1 \tag{1}
\end{equation*}
$$

In the following work, we establish that equality holds. Further we characterize the edge maximal members in $\mathcal{G}(n ; r, 2 k+1)$.
Theorem 6. Let $k \geq 1, r \geq 2$ be two positive integers and $G \in \mathcal{G}(n ; r, 2 k+1)$. For large n,

$$
\mathcal{E}(G) \leq\left\lfloor n^{2} / 4\right\rfloor+r-1
$$

Furthermore, equality holds if and only if $G \in \Omega(n, r)$.
Proof. We prove the theorem using induction on r.
Step 1. We show the result for $r=2$. Note that by Theorem 3, it is enough to prove the result for $k \geq 3$. Let $G \in \mathcal{G}(n, 2,2 k+1)$. If G does not have a cycle of length $2 k+1$, then by Lemma $4, \mathcal{E}(G) \leq\left\lfloor n^{2} / 4\right\rfloor$. Thus, $\mathcal{E}(G)<\left\lfloor n^{2} / 4\right\rfloor+1$. So, we need to consider the case when G has cycles of length $2 k+1$. Assume $C=x_{1} x_{2} \ldots x_{2 k+1} x_{1}$ be a cycle of length $2 k+1$ in G. Consider $H=G-\left\{e_{1}=\right.$ $\left.x_{1} x_{2}, e_{2}=x_{2} x_{3}, \ldots, e_{2 k+1}=x_{2 k+1} x_{1}\right\}$. Observe that H cannot have $2 k+1$-cycle as otherwise G would have two edge disjoint $2 k+1$-cycles. We now consider two cases according to H :

Case 1. H is not a bipartite graph. If $k \geq 2$, then by Theorems 1 and 2

$$
\mathcal{E}(H) \leq\left\lfloor(n-2)^{2} / 4\right\rfloor+3
$$

But, $\mathcal{E}(G)=\mathcal{E}(H)+2 k+1 \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+2 k+4 \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor-n+2 k+5$. Thus, for $n \geq 2 k+5$, we have $\mathcal{E}(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$. If $k=1$, then by Theorems 5 $\mathcal{E}(H) \leq\left\lfloor(n-1)^{2} / 4\right\rfloor+1$. And so, by using the same argument as in the above, we get that for $n \geq 7$,

$$
\mathcal{E}(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor+1
$$

Case 2. H is a bipartite graph. Let X and Y be the partition of $V(H)$. Thus, $\mathcal{E}(H) \leq|X||Y|$. Observe $|X|+|Y|=n$. The maximum of the above is when $|X|=\left\lfloor\frac{n}{2}\right\rfloor$ and $|Y|=\left\lceil\frac{n}{2}\right\rceil$. Thus, $\mathcal{E}(H) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$. Restore the edges of the cycle C. We now consider the following subcases:
(2.1). One of X and Y contains two edges of the cycle, say e_{i} and e_{j} belong to X. Let $y_{1}, y_{2}, \ldots, y_{k-1}$ be a set of vertices in $X-\left\{x_{i}, x_{i+1}, x_{j}, x_{j+1}\right\}$. We split this subcase into two subcases:
(2.1.1). i and j are not consecutive. Then $\mid N_{Y}\left(x_{i}\right) \cap N_{Y}\left(x_{i+1}\right) \cap N_{Y}\left(x_{j}\right) \cap$ $N_{Y}\left(x_{j+1}\right) \cap N_{Y}\left(y_{1}\right) \cap N_{Y}\left(y_{2}\right) \cap \cdots \cap N_{Y}\left(y_{k-1}\right) \mid \leq k+2$, as otherwise G contains two edge disjoint $2 k+1$-cycles. Thus,

$$
\mathcal{E}_{G}\left(\left\{x_{i}, x_{i+1}, x_{j}, x_{j+1,}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}, Y\right) \leq(k+2)|Y|+k+2
$$

So,

$$
\begin{aligned}
\mathcal{E}(G)= & \mathcal{E}_{G}\left(X-\left\{x_{i}, x_{i+1}, x_{j}, x_{j+1}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}, Y\right) \\
& +\mathcal{E}_{G}\left(\left\{x_{i}, x_{i+1}, x_{j}, x_{j+1,}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}, Y\right)+\mathcal{E}(G[X])+\mathcal{E}(G[Y]) \\
\leq & (|X|-k-3)|Y|+(k+2)|Y|+k+2+2 k+1 \\
\leq & |X||Y|-|Y|+3 k+3 \leq(|X|-1)|Y|+3 k+3
\end{aligned}
$$

Observe that $|X|+|Y|=n$. The maximum of the above equation is when $|Y|=\left\lceil\frac{n-1}{2}\right\rceil$ and $|X|-1=\left\lfloor\frac{n-1}{2}\right\rfloor$. Thus,

$$
\mathcal{E}(G) \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+3 k+3
$$

Hence, for $n \geq 6 k+7$, we have $\mathcal{E}(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$.
(2.1.2). i and j are consecutive, say $j=i+1$. Then by following, word by word, the same arguments as in (2.1.1) and by taking into the account that $\left|N_{Y}\left(x_{i}\right) \cap N_{Y}\left(x_{i+1}\right) \cap N_{Y}\left(x_{j+2}\right) \cap N_{Y}\left(y_{1}\right) \cap N_{Y}\left(y_{2}\right) \cap \cdots \cap N_{Y}\left(y_{k-1}\right)\right| \leq k+1$ and so $\mathcal{E}\left(\left\{x_{i}, x_{i+1}, x_{i+2}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}, Y\right) \leq(k+1)|Y|+k+1$, we get the same inequality.
(2.2). $\mathcal{E}(G[X])=1$ and $\mathcal{E}(G[Y])=0$ or $\mathcal{E}(G[X])=0$ and $\mathcal{E}(G[Y])=1$, say $e_{1} \in E(G[X])$. Then $G-e_{1}$ is a bipartite graph and so as in the above $\mathcal{E}\left(G-e_{1}\right) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$. Thus, $\mathcal{E}(G)=\mathcal{E}\left(G-e_{1}\right)+1 \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$.

One can observe from the above arguments that for $r=2$ the only time we have equality is in case when G is obtained by adding an edge to the complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$. This gives rise to the class $\Omega(n, 2)$.

Step 2. Assume that the result is true for $r-1$. We now show the result is true for $r \geq 3$. To accomplish that we use similar arguments to those in Step 1. Let $G \in \mathcal{G}(n ; r, 2 k+1)$. If G contains no $r-1$ edge disjoint cycles of length $2 k+1$, then by the inductive step $\mathcal{E}(G) \leq\left\lfloor n^{2} / 4\right\rfloor+r-2$. Thus, $\mathcal{E}(G)<\left\lfloor n^{2} / 4\right\rfloor+r-1$. So, we need to consider the case when G has $r-1$ edge disjoint cycles of length $2 k+1$. Assume that $\left\{C^{i}=x_{i 1}, x_{i 2}, \ldots, x_{i 2 k+1}, x_{i 1}\right\}_{i=1}^{r-1}$ be the set of cycles of length $2 k+1$. Consider $H=G-\cup_{i=1}^{r-1} E\left(C^{i}\right)$. Observe that H cannot have $2 k+1$-cycles as otherwise G would have r of edges disjoint $2 k+1$-cycles. As in Step 1, we consider two cases:

Case I. H is not a bipartite graph. If $k \geq 2$, then by Theorems 1 and 2 $\mathcal{E}(H) \leq\left\lfloor(n-2)^{2} / 4\right\rfloor+3$. Thus, $\mathcal{E}(G)=\mathcal{E}(H)+(r-1)(2 k+1) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+(r-$ 1) $-n+4+2 k(r-1)$. Hence, for $n>4+2 k(r-1)$, we have $\mathcal{E}(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor+r-1$. If $k=1$, then by Theorems $5 \mathcal{E}(H) \leq\left\lfloor(n-1)^{2} / 4\right\rfloor+1$.

By using the same argument as in the above, we get that for $n \geq 4(r-1)+1$,

$$
\mathcal{E}(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor+1
$$

Case II. H is a bipartite graph. Let X and Y be the partition of $V(H)$. Thus, $\mathcal{E}(H) \leq|X||Y|$. Observe $|X|+|Y|=n$. The maximum of the above is when $|X|=\left\lfloor\frac{n}{2}\right\rfloor$ and $|Y|=\left\lceil\frac{n}{2}\right\rceil$. Thus, $\mathcal{E}(H) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$. Now, we consider the following two subcases:
(II.I). There is $1 \leq m \leq r-1$ such that C^{m} contains at least two edges, say $e_{i}=x_{m i} x_{m(i+1)}$ and $e_{j}=x_{m j} x_{m(j+1)}$, joining vertices of one of X and Y, say X. Let $y_{1}, y_{2}, \ldots, y_{k-1}$ be a set of vertices in $X-\left\{x_{m i}, x_{m(i+1)}, x_{m j}, x_{m(j+1)}\right\}$. To this end we have two subcases:
(II.I.I). i and j are not consecutive. Then $\mid N_{Y}\left(x_{m i}\right) \cap N_{Y}\left(x_{m(i+1)}\right) \cap N_{Y}\left(x_{m j}\right)$ $\cap N_{Y}\left(x_{m(j+1)}\right) \cap N_{Y}\left(y_{1}\right) \cap N_{Y}\left(y_{2}\right) \cap \cdots \cap N_{Y}\left(y_{k-1}\right) \mid \leq k+2$, as otherwise $H \cup\left\{e_{i}, e_{j}\right\}$ contains two edges disjoint $2 k+1$-cycles and so G contains r edge disjoint cycles of length $2 k+1$. Thus, as in (2.1.1) of Step 1 ,

$$
\mathcal{E}_{H}\left(\left\{x_{m i}, x_{m(i+1)}, x_{m j}, x_{m(j+1)}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}, Y\right) \leq(k+2)|Y|+k+2
$$

And so,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(H)+\left|\cup_{i=1}^{r-1} E\left(C^{i}\right)\right| \\
& =\mathcal{E}_{H}\left(X-\left\{x_{m i}, x_{m(i+1)}, x_{m j}, x_{m(j+1)}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}, Y\right) \\
& +\mathcal{E}_{H}\left(\left\{x_{m i}, x_{m(i+1)}, x_{m j}, x_{m(j+1)}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}, Y\right)+\left|\cup_{i=1}^{r-1} E\left(C^{i}\right)\right| \\
& \leq(|X|-k-3)|Y|+(k+2)|Y|+k+2+(r-1)(2 k+1) \\
& =(|X|-1)|Y|+k+2+(r-1)(2 k+1) .
\end{aligned}
$$

Moreover, the maximum of the above inequality is when $|Y|=\left\lceil\frac{n-1}{2}\right\rceil$ and $|X|-$ $1=\left\lfloor\frac{n-1}{2}\right\rfloor$. Thus,

$$
\mathcal{E}(G) \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+k+2+(r-1)(2 k+1)
$$

Hence, for $n \geq 6 k(r-1)+7$, we have $\mathcal{E}(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor+(r-1)$.
(II.I.II). i and j are consecutive, say $j=i+1$. Then by following word by word the same arguments as in (2.1.2) of Step 1 and (II.I.I) of Step 2, we get the same inequality

$$
\mathcal{E}(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor+(r-1)
$$

(II.II). Each $1 \leq m \leq r-1, C^{m}$ has exactly one edge belonging to one of X and Y. Let e be the edge of C^{1} that belongs to one of X and Y. Then $G-e \in \mathcal{G}(n ; r-1,2 k+1)$ and so by inductive step, $\mathcal{E}(G)=\mathcal{E}(G-e)+1 \leq$ $\left\lfloor\frac{n^{2}}{4}\right\rfloor+r-2+1=\left\lfloor\frac{n^{2}}{4}\right\rfloor+r-1$.

We now characterize the extremal graphs. Throughout the proof, we notice that the only time we have equality is in case when G obtained by adding $r-1$ edges to the complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$. This gives rise to the class $\Omega(n, r)$. This completes the proof of the theorem.

From Theorem 6 and the inequality (1), we get that for $k \geq 1, r \geq 2$ and large $n, f(n ; r, 2 k+1)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+r-1$.

References

[1] M.S. Bataineh, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 2007).
[2] M.S. Bataineh and M.M.M. Jaradat, Edge maximal C_{3} and C_{5}-edge disjoint free graphs, International J. Math. Combin. 1 (2011) 82-87.
[3] J. Bondy, Large cycle in graphs, Discrete Math. 1 (1971) 121-132. doi:10.1016/0012-365X(71)90019-7
[4] J. Bondy, Pancyclic graphs, J. Combin. Theory (B) 11 (1971) 80-84. doi:10.1016/0095-8956(71)90016-5
[5] J. Bondy and U. Murty, Graph Theory with Applications (The MacMillan Press, London, 1976).
[6] S. Brandt, A sufficient condition for all short cycles, Discrete Appl. Math. 79 (1997) 63-66. doi:10.1016/S0166-218X(97)00032-2
[7] L. Caccetta, A problem in extremal graph theory, Ars Combin. 2 (1976) 33-56.
[8] L. Caccetta and R. Jia, Edge maximal non-bipartite Hamiltonian graphs without cycles of length 5, Technical Report.14/97. School of Mathematics and Statistics, Curtin University of Technology (Australia, 1997).
[9] L. Caccetta and R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combin. 18 (2002) 75-92.
doi:10.1007/s003730200004
[10] Z. Füredi, On the number of edges of quadrilateral-free graphs, J. Combin. Theory (B) 68 (1996) 1-6.
doi:10.1006/jctb.1996.0052
[11] R. Jia, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 1998).
[12] P. Turán, On a problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.

