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Abstract

For two positive integers r and s, G(n; r, s) denotes to the class of graphs
on n vertices containing no r of s-edge disjoint cycles and f(n; r, s) =
max{E(G) : G ∈ G(n; r, s)}. In this paper, for integers r ≥ 2 and k ≥ 1,
we determine f(n; r, 2k+1) and characterize the edge maximal members in
G(n; r, 2k + 1).
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1. Introduction

The graphs considered in this paper are finite, undirected and have no loops or
multiple edges. Most of the notations that follow can be found in [5]. For a given
graph G, we denote the vertex set of a graph G by V (G) and the edge set by
E(G). The cardinalities of these sets are denoted by ν(G) and E(G), respectively.
The cycle on n vertices is denoted by Cn.

http://dx.doi.org/10.7151/dmgt.1601


272 M.S.A. Bataineh and M.M.M. Jaradat

Let G1 and G2 be graphs. The union of G1 and G2 is a graph with vertex
set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). Two graphs G1 and G2 are
vertex disjoint if and only if V (G1) ∩ V (G2) = ∅; G1 and G2 are edge disjoint
if E(G1) ∩ E(G2) = ∅. If G1 and G2 are vertex disjoint, we denote their union
by G1 +G2. The intersection G1 ∩G2 of graphs G1 and G2 is defined similarly,
but in this case we need to assume that V (G1) ∩ V (G2) 6= ∅. The join G ∨ H
of two vertex disjoint graphs G and H is the graph obtained from G + H by
joining each vertex of G to each vertex of H. For two vertex disjoint subgraphs
H1 and H2 of G, we let EG(H1, H2) = {xy ∈ E(G) : x ∈ V (H1), y ∈ V (H2)} and
EG(H1, H2) = |EG(H1, H2)|.

In this paper we consider the Turán-type extremal problem with the odd edge
disjoint cycles being the forbidden subgraph. Since a bipartite graph contains no
odd cycles, the non-bipartite graphs have been considered by some authors. First,
we recall some notations and terminologies. For a positive integer n and a set
of graphs F , let G(n;F) denote the class of non-bipartite F-free graphs on n
vertices, and

f(n;F) = max{E(G) : G ∈ G(n;F)}.

For simplicity, in the case when F consists only of one member Cs, where s is an
odd integer, we write G(n; s) = G(n;F) and f(n; s) = f(n;F).

An important problem in extremal graph theory is that of determining the
values of the function f(n;F). Further, characterize the extremal graphs G(n;F)
where f(n;F) is attained. For a given r, the edge maximal graphs of G(n; r) have
been studied by a number of authors [1, 2, 3, 7, 8, 9, 10, 12]. In 1998, Jia [11]
proved the following result:

(a) (b)
Figure 1. (a) The figure represents a member of G∗(n).

(b) The figure represents a member of Ω(n, 2).

Theorem 1 (Jia). Let G ∈ G(n; 5), n ≥ 10. Then E(G) ≤
⌊

(n− 2)2/4
⌋

+ 3.

Furthermore, equality holds if and only if G ∈ G∗(n) where G∗(n) is the class

of graphs obtained by adding a triangle, two vertices of which are new, to the

complete bipartite graph K⌊(n−2)/2⌋,⌈(n−2)/2⌉. Figure 1(a) displays a member of

G∗(n).
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Jia, also conjectured that f(n; 2k + 1) ≤
⌊

(n− 2)2/4
⌋

+ 3 for all n ≥ 4k + 2.
In 2007, Bataineh, confirmed positively the conjecture. In fact, he proved the
following result:

Theorem 2 (Bataineh). Let k ≥ 3 be a positive integer and G ∈ G(n; 2k + 1).
Then for large n, E(G) ≤

⌊

(n− 2)2/4
⌋

+ 3.

Furthermore, equality holds if and only if G ∈ G∗(n) where G∗(n) is as above.

Let G(n; r, s) denote to the class of graphs on n vertices containing no r of s-edge
disjoint cycles and

f(n; r, s) = max{E(G) : G ∈ G(n; r, s)}.

Note that

G(n; 2, s) ⊆ G(n; 3, s) ⊆ · · · ⊆ G(n; r, s).

Let Ω(n, r) denote to the class of graphs obtained by adding r − 1 edges to the
complete bipartite graphs K⌊n

2
⌋,⌈n

2
⌉. Figure 1(b) displays a member of Ω(n, 2).

The Turán-type extremal problem with two odd edge disjoint cycles being
the forbidden subgraph, was studied by Bataineh and Jaradat [2]. In fact, they
only established partial results by proving the following:

Theorem 3 (Bataineh and Jaradat). Let k = 1, 2 and G ∈ G(n; 2, 2k+1). Then

for large n,

E(G) ≤
⌊

n2/4
⌋

+ 1.

Furthermore, equality holds if and only if G ∈ Ω(n, 2).

In this paper, we continue the work initiated in [2] by generalizing and extending
the above theorem. In fact, we determine f(n; r, 2k+1) and characterize the edge
maximal members in G(n; r, 2k + 1). Now, we state a number of results, which
play an important role in proving our result.

Lemma 4 (Bondy and Murty). Let G be a graph on n vertices. If E(G) > n2/4,
then G contains a cycle of length r for each 3 ≤ r ≤ ⌊(n+ 3)/2⌋.

Theorem 5 (Brandt). Let G be a non-bipartite graph with n vertices and more

than
⌊

(n− 1)2/4
⌋

+ 1 edges. Then G contains all cycles of length between 3 and

the length of the longest cycle.

In the rest of this paper, NG(u) stands for the set of neighbors of u in the graph
G. Moreover, G[X] denotes to the subgraph induced by X in G.
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2. Edge-Maximal C2k+1-edge Disjoint Free Graphs

In this section, we determine f(n; r, 2k + 1) and characterize the edge maximal
members in G(n; r, 2k+1). Observe that Ω(n, r) ⊆ G(n; r, 2k+1) and every graph
in Ω(n, r) contains

⌊

n2/4
⌋

+ r − 1 edges. Thus, we have established that

(1) f(n; r, 2k + 1) ≥
⌊

n2/4
⌋

+ r − 1.

In the following work, we establish that equality holds. Further we characterize
the edge maximal members in G(n; r, 2k + 1).

Theorem 6. Let k ≥ 1, r ≥ 2 be two positive integers and G ∈ G(n; r, 2k + 1).
For large n,

E(G) ≤
⌊

n2/4
⌋

+ r − 1.

Furthermore, equality holds if and only if G ∈ Ω(n, r).

Proof. We prove the theorem using induction on r.
Step 1. We show the result for r = 2. Note that by Theorem 3, it is enough to
prove the result for k ≥ 3. Let G ∈ G(n, 2, 2k + 1). If G does not have a cycle
of length 2k + 1, then by Lemma 4, E(G) ≤

⌊

n2/4
⌋

. Thus, E(G) <
⌊

n2/4
⌋

+ 1.
So, we need to consider the case when G has cycles of length 2k + 1. Assume
C = x1x2 . . . x2k+1x1 be a cycle of length 2k + 1 in G. Consider H = G− {e1 =
x1x2, e2 = x2x3, . . . , e2k+1 = x2k+1x1}. Observe that H cannot have 2k+1-cycle
as otherwise G would have two edge disjoint 2k+1-cycles. We now consider two
cases according to H:

Case 1. H is not a bipartite graph. If k ≥ 2, then by Theorems 1 and 2

E(H) ≤
⌊

(n− 2)2/4
⌋

+ 3.

But, E(G) = E(H) + 2k + 1 ≤
⌊ (n−2)2

4

⌋

+ 2k + 4 ≤
⌊

n2

4

⌋

− n + 2k + 5. Thus,

for n ≥ 2k + 5, we have E(G) <
⌊

n2

4

⌋

+ 1. If k = 1, then by Theorems 5
E(H) ≤

⌊

(n − 1)2/4
⌋

+ 1. And so, by using the same argument as in the above,
we get that for n ≥ 7,

E(G) <

⌊

n2

4

⌋

+ 1.

Case 2. H is a bipartite graph. Let X and Y be the partition of V (H).
Thus, E(H) ≤ |X||Y |. Observe |X| + |Y | = n. The maximum of the above is

when |X| =
⌊

n
2

⌋

and |Y | =
⌈

n
2

⌉

. Thus, E(H) ≤
⌊

n2

4

⌋

. Restore the edges of the
cycle C. We now consider the following subcases:

(2.1). One of X and Y contains two edges of the cycle, say ei and ej belong
to X. Let y1, y2, . . . , yk−1 be a set of vertices in X−{xi, xi+1, xj , xj+1}. We split
this subcase into two subcases:
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(2.1.1). i and j are not consecutive. Then |NY (xi) ∩ NY (xi+1) ∩ NY (xj) ∩
NY (xj+1) ∩NY (y1) ∩NY (y2) ∩ · · · ∩NY (yk−1)| ≤ k + 2, as otherwise G contains
two edge disjoint 2k + 1-cycles. Thus,

EG({xi, xi+1, xj , xj+1,y1, y2, . . . , yk−1}, Y ) ≤ (k + 2)|Y |+ k + 2.

So,

E(G) = EG(X − {xi, xi+1, xj , xj+1, y1, y2, . . . , yk−1}, Y )

+ EG({xi, xi+1, xj , xj+1,y1, y2, . . . , yk−1}, Y ) + E(G[X]) + E(G[Y ])

≤ (|X| − k − 3)|Y |+ (k + 2)|Y |+ k + 2 + 2k + 1

≤ |X||Y | − |Y |+ 3k + 3 ≤ (|X| − 1)|Y |+ 3k + 3.

Observe that |X| + |Y | = n. The maximum of the above equation is when
|Y | =

⌈

n−1
2

⌉

and |X| − 1 =
⌊

n−1
2

⌋

. Thus,

E(G) ≤

⌊

(n− 1)2

4

⌋

+ 3k + 3.

Hence, for n ≥ 6k + 7, we have E(G) <
⌊

n2

4

⌋

+ 1.

(2.1.2). i and j are consecutive, say j = i + 1. Then by following, word
by word, the same arguments as in (2.1.1) and by taking into the account that
|NY (xi)∩NY (xi+1)∩NY (xj+2)∩NY (y1)∩NY (y2)∩ · · · ∩NY (yk−1)| ≤ k+1 and
so E({xi, xi+1, xi+2, y1, y2, . . . , yk−1}, Y ) ≤ (k + 1)|Y | + k + 1, we get the same
inequality.

(2.2). E(G[X]) = 1 and E(G[Y ]) = 0 or E(G[X]) = 0 and E(G[Y ]) = 1,
say e1 ∈ E(G[X]). Then G − e1 is a bipartite graph and so as in the above

E(G− e1) ≤
⌊

n2

4

⌋

. Thus, E(G) = E(G− e1) + 1 ≤
⌊

n2

4

⌋

+ 1.
One can observe from the above arguments that for r = 2 the only time we

have equality is in case when G is obtained by adding an edge to the complete
bipartite graph K⌊n

2
⌋,⌈n

2
⌉. This gives rise to the class Ω(n, 2).

Step 2. Assume that the result is true for r− 1. We now show the result is true
for r ≥ 3. To accomplish that we use similar arguments to those in Step 1. Let
G ∈ G(n; r, 2k + 1). If G contains no r − 1 edge disjoint cycles of length 2k + 1,
then by the inductive step E(G) ≤

⌊

n2/4
⌋

+ r− 2. Thus, E(G) <
⌊

n2/4
⌋

+ r− 1.
So, we need to consider the case when G has r − 1 edge disjoint cycles of length
2k + 1. Assume that {Ci = xi1, xi2, . . . , xi2k+1, xi1}

r−1
i=1 be the set of cycles of

length 2k + 1. Consider H = G − ∪r−1
i=1E(Ci). Observe that H cannot have

2k + 1-cycles as otherwise G would have r of edges disjoint 2k + 1-cycles. As in
Step 1, we consider two cases:
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Case I. H is not a bipartite graph. If k ≥ 2, then by Theorems 1 and 2
E(H) ≤

⌊

(n − 2)2/4
⌋

+ 3. Thus, E(G) = E(H) + (r − 1)(2k + 1) ≤
⌊

n2

4

⌋

+ (r −

1)−n+4+2k(r− 1). Hence, for n > 4+2k(r− 1), we have E(G) <
⌊

n2

4

⌋

+ r− 1.
If k = 1, then by Theorems 5 E(H) ≤

⌊

(n− 1)2/4
⌋

+ 1.

By using the same argument as in the above, we get that for n ≥ 4(r−1)+1,

E(G) <

⌊

n2

4

⌋

+ 1.

Case II. H is a bipartite graph. Let X and Y be the partition of V (H).
Thus, E(H) ≤ |X||Y |. Observe |X| + |Y | = n. The maximum of the above is

when |X| =
⌊

n
2

⌋

and |Y | =
⌈

n
2

⌉

. Thus, E(H) ≤
⌊

n2

4

⌋

. Now, we consider the

following two subcases:

(II.I). There is 1 ≤ m ≤ r − 1 such that Cm contains at least two edges, say
ei = xmixm(i+1) and ej = xmjxm(j+1), joining vertices of one of X and Y , say
X. Let y1, y2, . . . , yk−1 be a set of vertices in X − {xmi, xm(i+1), xmj , xm(j+1)}.
To this end we have two subcases:

(II.I.I). i and j are not consecutive. Then |NY (xmi)∩NY (xm(i+1))∩NY (xmj)
∩NY (xm(j+1))∩NY (y1)∩NY (y2)∩· · ·∩NY (yk−1)| ≤ k+2, as otherwiseH∪{ei, ej}
contains two edges disjoint 2k+1-cycles and so G contains r edge disjoint cycles
of length 2k + 1. Thus, as in (2.1.1) of Step 1,

EH({xmi, xm(i+1), xmj , xm(j+1), y1, y2, . . . , yk−1}, Y ) ≤ (k + 2)|Y |+ k + 2.

And so,

E(G) = E(H) + | ∪r−1
i=1 E(Ci)|

= EH(X − {xmi, xm(i+1), xmj , xm(j+1), y1, y2, . . . , yk−1}, Y )

+ EH({xmi, xm(i+1), xmj , xm(j+1), y1, y2, . . . , yk−1}, Y ) + | ∪r−1
i=1E(Ci)|

≤ (|X| − k − 3)|Y |+ (k + 2)|Y |+ k + 2 + (r − 1)(2k + 1)

= (|X| − 1)|Y |+ k + 2 + (r − 1)(2k + 1).

Moreover, the maximum of the above inequality is when |Y | =
⌈

n−1
2

⌉

and |X| −
1 =

⌊

n−1
2

⌋

. Thus,

E(G) ≤

⌊

(n− 1)2

4

⌋

+ k + 2 + (r − 1)(2k + 1).

Hence, for n ≥ 6k(r − 1) + 7, we have E(G) <
⌊

n2

4

⌋

+ (r − 1).
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(II.I.II). i and j are consecutive, say j = i + 1. Then by following word by
word the same arguments as in (2.1.2) of Step 1 and (II.I.I) of Step 2, we get the
same inequality

E(G) <

⌊

n2

4

⌋

+ (r − 1).

(II.II). Each 1 ≤ m ≤ r − 1, Cm has exactly one edge belonging to one of
X and Y . Let e be the edge of C1 that belongs to one of X and Y . Then
G − e ∈ G(n; r − 1, 2k + 1) and so by inductive step, E(G) = E(G − e) + 1 ≤
⌊

n2

4

⌋

+ r − 2 + 1 =
⌊

n2

4

⌋

+ r − 1.

We now characterize the extremal graphs. Throughout the proof, we notice
that the only time we have equality is in case when G obtained by adding r − 1
edges to the complete bipartite graph K⌊n

2
⌋,⌈n

2
⌉. This gives rise to the class

Ω(n, r). This completes the proof of the theorem.

From Theorem 6 and the inequality (1), we get that for k ≥ 1, r ≥ 2 and

large n, f(n; r, 2k + 1) =
⌊

n2

4

⌋

+ r − 1.
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