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Control of �uid forces is an emerging area of research with numerous engineering applications. ­e uneven wake behind an
obstacle causes undesirable structural oscillations, which can lead to fatigue or structural failure. Controlling the wake phenomena
could directly bene�t a wide range of engineering applications, including skyscrapers, naval risers, bridges, columns, and a few
sections of airplanes. ­is study is concerned with the time dependent simulations in a channel in presence of an obstacle aiming
to compute �uid forces.­e underlying mathematical model is based on nonstationary Navier–Stokes equations coupled with the
constitutive relations of power law �uids. Because the representative equations are complex, an e�ective computing strategy based
on the �nite element approach is used. To achieve higher accuracy, a hybrid computational grid at a very �ne level is used. ­e
P2 − P1 elements based on the shape functions of the second and �rst-order polynomials were used to approximate the solution.
­e discrete nonlinear system arising from this discretization is linearized by Newton’s method and then solved through a direct
linear solver PARADISO.­e code validation study is also performed for Newtonian �uids as a special case, and then the study is
extended to compute drag and lift forces for other cases of viscosity as described by the power law index. When looking at the
phase plot, it can be seen that for the Newtonian case n� 1, there is only one closed orbit after the steady state is reached, whereas
for n � 0.5, there are multiple periodic orbits. Moreover, the e�ects of shear rate on the drag-lift phase plot are also discussed.

1. Introduction

­e signi�cance of �ow around blu� bodies has been re-
alized since the last couple of centuries, and hence it is
considered as benchmark problem in �uid dynamics. Hence,
researchers investigated di�erent shapes of blu� bodies
submerged in di�erent �uids for their analysis. It has been
proved both experimentally and analytically that hydrody-
namic forces like drag and lift around obstacles play an
important role in designing structures in many engineering
applications. It is also worthy to mention that the interaction
of �uid �ow with such blu� bodies produces wake, and the

formation of wake around these complex geometries is
germane to understand due to its practical utilization. Some
investigations are available in recent literature that realize
the importance of such con�gurations in theoretical as well
as practical aspects. Hussain et al. [1] considered a circular
cylinder to investigate the incompressible �ow behavior.­e
nonlinear �uid for speci�c values of n is used by Chhabra
et al. [2] to investigate the blockage ratios. In [3], shear
thinning and shear thickening behavior are observed for the
range 100≤Re≤ 500. Drag and lift for a circular cylinder
placed in a channel are studied in [4]. Lid-driven �ow be-
havior is observed in [5]. A comparison of drag and lift for
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circular and square cylinders can be seen in [6]. Williamson
[7] summarized some of the work about this benchmark.
)e results proposed by Schäfer et al. [8] consider New-
tonian fluid at various Reynolds numbers for hydrodynamic
forces. )ey justified the credibility of their work by con-
structing a comparison with experimental data and also
using different computational approaches for attaining the
solution. Fluid past a rotating and stationary cylinder is
considered in [9, 10] to perform the numerical simulations.
)ey computed instantaneous streamlines along with drag
and lift. At low Reynolds number (0≤Re≤ 50), Tritton [11]
performed analysis on the interaction of fluid flow with a
circular obstacle and measured hydrodynamic forces. To
demarcate the flow regime, Coelho and Pinho [12] used
shear thinning fluids for elucidating the vortex shedding.
Gupta et al. [13] investigated the steady flow features in
Newtonian fluid for Reynolds number (5≤Re≤ 40). For
sake of brevity, some more investigations across circular
cylindrical obstacles are referred to in [14–18]. In [14], Bharti
et al. presented a numerical study of heat transfer using the
finite volume method. Some aspects of flow behavior around
a circular cylinder are presented in [15]. )e 2D and 3D
computational analysis of fluid flow around a cylinder is
discussed in [16]. Rajani et al. [17] used different values of
Reynolds number to observe the impact of flow behavior
around a circular cylinder. Very slow flow around a cylinder
is numerically investigated in [18].

A lot of numerical work has been accomplished to ex-
plore drag and lift forces on obstacles in the Newtonian flow
field, but for non-Newtonian cases, the investigations are
still at an embryonic stage to assess the relationship between
drag and lift, especially for highly nonlinear viscosity. For
nonlinear viscosity fluids, the flow around cylinders of
different shapes is an interesting topic of research due to the
investigation of the wake, recirculation zone length, and
drag and lift characteristics. To analyse the laminar flow of
non-Newtonian fluid around a circular cylinder, Chhabra
et al. [2] used three values of Reynolds (1, 20, and 40). )ey
used a finite difference scheme to observe the flow pattern.
Mossaz et al. [19] used the most generic Herschel–Bulkley
fluid model to evaluate the flow pattern around a circular
cylinder. In [20], Nejat et al. used power law fluid for their
numerical investigations. With the help of the Lattice
Boltzman method, they computed drag and lift coefficients.
In the low Reynolds number range (5≤Re≤ 40), the rela-
tionship between n and drag coefficient is investigated in
[21]. Whitney and Rodin [22] proposed some results for
shear thinning fluids.)ese results are compatible with some
previous studies of flow around bluff bodies. )e power law
fluid past a heated cylinder is used in [23] to observe heat
transfer characteristics. In order to eliminate the impact inlet
and outlet on the results, some researchers [24–26] used very
large computational domains to reduce such effects. )e
results show that for a circular cylinder, drag is inversely
proportional to the computational grid. Abegunrin et al. [27]
investigated a non-Newtonian fluid simulation on the upper
horizontal surface of a paraboloid of revolution. It is de-
duced that when the flow is described as Newtonian fluid
flow, the maximum velocity of the flow can be determined.

Similarly, Patnana et al. [10] considered unsteady power-law
(PL) fluid past a circular cylinder and calculated some results
using the finite volume method.

In the literature, there is only a small contribution to-
wards non-Newtonian fluids moving around obstacles and
the computation of fluid forces. )ere is a need to see the
impact of shear-thinning and thickening behavior on drag
and lift forces. )e aim of this article is to elucidate the
characteristics of unsteady nonlinear fluid flow in a channel
over a cylinder and the estimation of fluid forces.)e present
work is organized as follows: a limited survey highlighting
the importance of flow configuration is presented in Section
1. In Section 2, the adopted research methodology is dis-
cussed with details of all solvers. )e simulation results and
analysis through graphs and phase-plots are performed in
Section 3. )e present attempt is concluded in Section 4.

2. Research Methodology

2.1. Mathematical Formulation. )e mathematical model
for an incompressible, isothermal, and nonlinear viscosity
fluid model is given by the following set of nonlinear
equations, as shown in [30]:
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we couple equations (1) and (2) with the well -known power-
law model as

μ( _c) � m( _c)
n− 1

, (3)

where m represents the coefficient of fluid consistency; n is
the power law exponent.

2.2. Problem Description and Numerical Approach. )e
computational domain is a channel Ω � [0, 2.2] × [0, 0.41],
as considered in [28–30]. )e circular obstacle is placed at
(0.2, 0.2) that is offset from the center to generate a nonzero
lift. )e top and bottom walls offer no slip conditions as
u� v � 0. An inflow parabolic profile with maximum velocity
as Umax � 1.5 is exposed at the inlet of the channel to
produce a periodic flow regime and a zero Neumann
condition at the outlet. More elements are considered
around the obstacle to accurately capture the hydrodynamic
forces on the cylinder.

)e coarse grid for present simulations is shown in
Figure 1. To achieve higher accuracy, one element is mapped
into four dotted elements of smaller size by joining the
midpoints of the sides of the parent element through
h-refinement. Following this strategy of refinement, Table 1
shows the details about the cardinality of elements and
degrees of freedom (DOF) at various computational re-
finement levels.
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Table 1: Grid statistics at various levels.

Levels # Elements #DOF
1 962 7378
2 1590 12009
3 2426 17918
4 4540 32683
5 6716 47611
6 11796 81603
7 27194 187374
8 65288 444873

Figure 1: Computational grid at level-1.
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Figure 3: CD andCL values at n � 0.5. (a) CD. (b) CL.
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Figure 2: CD andCL values at n � 1.0. (a) CD. (b) CL.

Mathematical Problems in Engineering 3



9.0

8.0

7.0

6.0

5.0
0.0 2.0 4.0 6.0 8.0

n=1.5
t

(a)

0.06

0.04

0.05

0.03

0.02

0

0.01

0 5 10

n=1.5
t

(b)

Figure 4: CD andCL values at n � 1.5. (a) CD. (b) CL.
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Figure 5: Velocity profiles for n � 1.0 at various values of time. (a) t � 0.1. (b) t � 0.5. (c) t � 1. (d) t � 2. (e) t � 3. (f ) t � 4. (g) t � 5.
(h) t � 6. (i) t � 7. (j) t � 8.
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Figure 6: Velocity profiles for n � 0.5 at various values of time. (a) t � 0.1. (b) t � 0.5. (c) t � 1. (d) t � 2. (e) t � 3. (f ) t � 4. (g) t � 5. (h)
t � 6. (i) t � 7. (j) t � 8.
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Figure 7: Continued.
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)e incompressible generalized Navier–Stokes equa-
tions (1) and (2), as well as the rheological law (3), or power
law, can be used to explain a variety of simulations. )ese
equations help us understand the flow of materials in
nature by describing particular transactions. We use finite
element simulation for the numerical estimation of the
governing equations because exact solutions to such
problems are rare due to the model’s high nonlinearity. )e
conforming element pair P2 − P1 is chosen for the velocity
and pressure approximations in this direction. )is ele-
ment is a stable element pair [31–36] that meets the inf-sup

condition. )e inner linear subproblems are solved using a
direct solver, and discrete nonlinear algebraic systems are
solved using Newton’s method. )e stopping criterion for
the nonlinear iteration is set through a bound on the
relative error as

ℵr+1
− ℵr

ℵr+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 10− 6

, (4)

where ℵ represents one of the component of solution
(u, v, p).
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Figure 7: Velocity profiles for n � 1.5 at various values of time. (a) t � 0.1. (b) t � 0.5. (c) t � 1. (d) t � 2. (e) t � 3. (f ) t � 4. (g) t � 5. (h)
t � 6. (i) t � 7. (j) t � 8.
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Figure 8: Pressure distribution in a channel for various n at t� 8. (a) n � 0.5, (b) n � 1.0, and (c) n � 1.5.
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3. Results and Discussions

)e periodic flow of incompressible and unsteady power law
fluids is numerically investigated by implementing the finite
element method. For the validation of the code, we first
simulate the case for n� 1, Re� 100 which corresponds to
the Newtonian case for which the reference data is available
in [8]. )e viscosity of time-independent nonlinear fluids is
only affected by shear rate and temperature. Shear-thinning,
shear thickening, and plasticization viscosity increase with
increased shear rate. )e visual impact of drag and lift with
respect to time can be seen in Figures 2–4 for all three cases
of n. )e considered time interval 0< t≤ 10 seconds is
enough for hydrodynamic forces to get stable. Overall, there
is not much variation in the amplitude of drag and lift from 5
seconds onwards. Lift coefficient appeared to be symmetric
C

L
� 0 on the horizontal axis for shear thinning (n � 0.5)

and Newtonian case (n � 1). In the shear thinning case
(n � 0.5), the drag oscillates between 2.3 and 4 (Figure 3),
while the lift starts from zero and varies between −4 and +4.
From Figure 4(a) and Figure 4(b) it is seen that both drag
and lift coefficients converge to respective steady state

constant values for n� 1.5 due to enhanced viscosity in
shear-thickening case. )e lift forces are most potent in the
upward trend, as indicated by the negative CL. Even the
obstacle is arranged as the lift coefficient is negative,
resulting in a computational configuration like this.

)e velocity profiles at various time steps for n� 1, 0.5
and 1.5 are presented in Figures 5–7, respectively. )e
corresponding pressure plots are shown in Figures 8(a)–8(c).
In Figure 5, using n� 1, we provided the time dependent
fluid with a parabolic profile having velocity Umax � 1.5. It
can be seen that as the fluid strikes the circular cylinder, at
t � 0.1 it starts bifurcating and approximately at t � 3 ap-
proach the outlet of the channel.

)e outcome of the velocity profile for the shear thinning
case is shared in Figure 6. )e flow is fully developed ap-
proximately for t≥ 3. Figure 7 reports the velocity variations
for shear thickening fluid. Here the flow is fully developed
and vortex formation does not occur due to high viscosity.
At t� 8, the pressure distribution for each case of n is offered
in Figure 8.

)e periodic flow at Re � 100 has its impact on drag and
lift patterns, as shown in Figure 9 in terms of phase-plots. It
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Figure 9: Phase-portrait (drag versus lift) (a) n � 0.5, (b) n � 1.0, and (c) n � 1.5.
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is observed that for the Newtonian case n� 1, there exists a
single closed orbit after the steady state is achieved; however,
there exist multiple periodic orbits for n� 0.5. )e case of
n� 1.5 is different where there is not any closed trajectory.
Physically, the Reynolds number corresponds to a direct
increase in the inertial forces capable of laminar flow for a
fixed viscous fluid [37]; therefore, in future works, we would
like to increase the Reynolds number to see its impact on
CD andCL and on the Strouhal number elaborating the
frequency of vortex shedding for shear thinning and
thickening cases. [38, 39].

4. Conclusions

We have considered the two-dimensional transient flow of
an incompressible power law fluid over a circular cylinder
inside a channel. A static circular cylinder of diameter 0.1m
is used as an obstacle. )e two-dimensional flow equations
solved using the finite element method (FEM). Power law
index n is considered for three particular values (n� 0.5, 1.0,
and 1.5) at base Reynolds number Re� 100. For the time
interval 0≤ t≤ 10 seconds, the behavior of velocity and
pressure is observed. Moreover, the effects of shear rate on
the drag-lift phase plot are also discussed. )e diagram of
drag-lift phase provides the precise information about the
variations of CD andCL. From the phase plots, it is con-
cluded that for the Newtonian case n� 1, there is only one
closed orbit after the steady state is reached, while for
n � 0.5, there are multiple periodic orbits. For the case of
shear thickening n� 1.5, there is not any closed trajectory.
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