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A B S T R A C T   

Internet of Things (IoT) and Artificial Intelligence (AI) technologies are currently replacing the traditional 
methods of handling buildings, infrastructure, and facilities design, control, and maintenance due to their pre-
cision and ease of use. This paper proposes a novel automated algorithm for the health monitoring of concrete 
column base cover degradation based on IoT and the state-of-the-art deep learning framework, Convolutional 
Neural Network (CNN). This technique is developed for instance detection and localization of the major types of 
column defects. Three deep machine learning training models; namely, Resnet-50, Googlenet, and Visual Ge-
ometry Group (VGG19), with 7 different network configurations and inputs were studied and compared for their 
classification performance and certainty. Despite that, a few articles consider the certainty of the CNN classifi-
cation results, this work investigates the certainty and employs the classification error score as a new perfor-
mance measure. The results of this study demonstrated the effectiveness of the proposed defect detection and 
localization algorithm as it managed to read all barcodes, localize defective columns, and binary classify the 
condition of the concrete covers against their surrounding objects. They also showed that the VGG19 network 
outperformed the other addressed network models and configurations. The VGG19 network yielded a health 
condition classification accuracy of 100% with an RMSE of 0.33% and a maximum classification error score of 
0.87 %.   

1. Introduction 

Many facility management organizations are currently investigating 
technologies to efficiently and timely inspect the health condition of 
civil structures at reduced labor costs. Visual inspection of concrete 
structures is costly as it requires intensive and continuous monitoring 
[1]. Due to the deterioration of concrete and the criticality of the in-
spection task, smart automated health condition monitoring systems are 
highly required defects [2 3 4 5]. The following factors summarize the 
potential causes and the factors that influence concrete deterioration: 
corrosion of embedded metals is the most common cause of concrete 
deterioration, freeze–thaw deterioration, chemical attacks due to acids, 
salts, alkalis, and sulfate found in soil or dissolved in groundwater, 
abrasion/erosion, exposure to fire/heat, expansion of the aggregates, 
restraint to volume changes due to the fluctuations in moisture content 
and temperature, overloads, and impacts [6 7]. Concrete spalling and 
rebar exposure are among the major concrete column defects and widely 
exist in buildings and concrete structures (see Fig. 1 [6]). Those defects 

have the capacity to cause serious risks such as loss of property and 
public injury. Moreover, they can lead to serious damage to the whole 
structure such as damage to reinforcing bars (rebar) [8]. 

A timely remedy is usually a professional decision whenever con-
crete column spalling takes place. The repair cost and risks significantly 
increase with time as they depend on the concrete deterioration condi-
tion at the repair time [8]. Image processing and artificial intelligence 
are utilized to automatically recognize concrete spall and concrete cover 
defects [9]. 

Non-invasive techniques for the health condition monitoring of 
concrete structures have gained increasing importance in smart facility 
management and have been proposed and researched in the literature. 
Various research articles proposed condition health monitoring systems 
for concrete structures wherein AI-based methods using wireless 
acoustic emission sensors, embedded magnetic shape memory alloy 
components, capacitive sensors, and embedded PZT sensors were used 
for health monitoring and detecting defects [2 3 4 5]. Building concrete 
defects were also segmented and detected using digital cameras, image 
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processing, and deep learning models, such as the Convolutional Neural 
Network (CNN) models that are widely used in similar applications [10 
11]. 

Deep learning techniques are data-driven and non-rule-based algo-
rithms. The performance of deep learning training models has been 
extensively researched in the literature. Artificial intelligence is applied 
to different engineering fields and demonstrated good performance [12 
13]. Zhao and Zhou [14] developed and tested a CNN network to detect 
various cracks, spalling, and holes in concrete covers. Despite that the 
proposed network yielded good results, the detectability against the 
surrounding objects was not reported. Perez et al. [15] proposed a deep 
learning network to detect building mold (a fungus that grows in the 
presence of moisture), stain, and paint deterioration where they trans-
ferred learning to the Visual Geometry Group 16 (VGG16) pre-trained 
model. Also, VGG19 networks proved a good performance when used 
to classify structural cracks [16]. VGG16 and VGG19 are both deep 
learning networks, however, the former network consists of 16 layers, 
while the latter consists of 19 layers. Bhavani et al. [16] introduced a 
customized CNN network with 81 % accuracy to detect building dam-
ages and predict the robustness of the repaired mortar. The network is 
based on the widely known Resnet-50 pre-trained network. Addition-
ally, Alexnet and Googlenet models are among the best performing pre- 
trained models as they proved image classification effectiveness. These 
networks were used to detect cracks in highways and locations of illegal 
buildings in [17] and [18]. 

In summary, spalling and rebar exposure are the most common 
column concrete base cover defects and may lead to serious safety 
hazards. Googlenet, Alexnet, Resnet-50, VGG19, and other pre-trained 
models have been used to develop efficient buildings and concrete 
defect detection algorithms. However, none of the research articles 
proposed an integrated, functional, and tested hybrid algorithm for both 
localization and binary health condition classification for concrete col-
umn base covers. Concrete columns are usually surrounded by aggre-
gates and soil with colors similar to the columns, and sometimes with a 
texture close to concrete spalling and discoloration textures, which 
makes the classification process against surrounding objects more 
challenging than the rest of the concrete elements. No specific algorithm 
or input option can give a guaranteed precision and thus this particular 
classification problem requires investigation of the most performing 
technique and input option. Also, this work introduces a new evaluation 
technique based on the classification error score (certainty) to improve 
the reliability of the classification. 

Hence, this work proposes a new functional and tested smart health 

condition monitoring system for concrete column base covers including 
IoT and image classification technologies. This new algorithm has the 
potential to improve facility management systems by providing accurate 
and timely health information about concrete column covers with 
higher precision and at a significantly reduced cost. 

The paper includes 7 sections; Section 1 includes the literature re-
view and the objective of the work, Section 2 explains the methodology, 
Section 3 lists and explains the well-proven AI-based image classifica-
tion models that are used in similar algorithms, Section 4 discusses the 
image capturing and the training process for the addressed deep learning 
paradigms, Section 5 displays the classification results of the different AI 
models, Section 6 discusses the results shown in Section 5 and identifies 
the best-performing model, while Section 7 concludes the conducted 
study and lists the final results. 

2. Methodology 

The proposed automated algorithm takes a high-resolution digital 
image of columns from digital cameras or drones as input and outputs 
column barcodes, locations, and the health condition of each concrete 
column base cover. The algorithm provides the maintenance team with a 
list of defective column locations along with a digital image of each 
deflected column base. However, the defect identification algorithm 
does not consider the severity of spalling as maintenance will be 
immediately required in all severity cases. Additionally, the images of 
the defective column base covers will allow the maintenance team to 
decide the maintenance priority and act accordingly. 

Fig. 2 depicts the defect detection process. The process starts by 
taking a digital image from a camera or a video camera, then reading 
and identifying the barcode label position in the image. The barcode 
label informs the column number, image scale, and column location. The 
image scale is calculated by identifying and dividing the width/height of 
the barcode label in pixels by the actual width/height of the barcode 
label (140 mm). An error message (error message I) will be sent to the 
maintenance team if the algorithm failed to identify the column number. 
It will also send the camera number/IP address to allow the team to 
identify the location of the faulty barcode label. Based on the image 
scale information, the algorithm will crop the image that includes the 
column base cover, resize it to the image size for the pre-trained network 
(224 × 224 × 3), and then pass it to the pre-trained CNN image classi-
fication algorithm for decision-making. If the CNN network failed to 
classify the image, an error message (error message II) will be sent to the 
maintenance team informing them about the location of the column and 

Fig. 1. Causes of concrete spalling.  
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the classification fault. If the algorithm managed to classify the image 
successfully with good accuracy, the algorithm will send the column 
barcode, location, and concrete cover health condition to the mainte-
nance team. In order to identify the best-performing AI-based classifi-
cation model, Sections 3 and 4 list, explain, and compare the 
performance of the well-proven deep learning AI models. This algorithm 
will run on a cloud server as shown in Fig. 3. 

The Internet of Things became a key system in all modern automated 
condition monitoring systems as it facilitates remote computing and 
data transfer without human-to-human or human-to-computer interac-
tion. The proposed concrete column covers health monitoring and em-
ploys an IoT system to transfer, store and analyze the data received from 
all wireless cameras (IoT sensors). Fig. 3 illustrates the interrelated ob-
ject, computing device, digital camera, client devices, and maintenance 
team. The process starts by capturing digital images using Wifi cameras 
and transferring the digital data to the cloud server over a wireless (or 
Wifi) network. The cloud server receives the data, stores them, and then 
applies the proposed concrete column cover defect detection algorithm 

to all images. As shown in Fig. 3, the cloud server runs a data-driven 
deep learning algorithm to make decisions related to the health condi-
tion of concrete column base covers. Then, the images, barcodes, loca-
tion information, and decisions made by the algorithm are sent to 
various IoT client devices over a wireless network to be made available 
to the maintenance team. 

3. Column identification and image cropping algorithm 

The input images to the algorithm have been taken using Nikon D610 
digital camera (24 Megapixels, 6016 × 4016 resolution). The image 
cropping and column identification algorithm are based on the recog-
nition and localization of barcode labels with known dimensions. The 
label is placed 80 cm above the ground level. The algorithm starts with 
the identification of the barcode and image scale using the “read-
barcode” MATLAB function, which returns the barcode and the location 
of the barcode label in pixels. A lookup table is then used to localize the 
column based on the extracted barcode. The image scale can be 

Fig. 2. Automatic AI-based defect detection algorithm for concrete column base covers.  
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calculated by dividing the width in pixels in the captured image by the 
actual width of the barcode label in mm (140 mm). The actual di-
mensions of the column base image in the cropped image are designed to 
be 900 mm in height and 800 mm in width (see Fig. 4). The cropping 
dimensions of the image are calculated and then converted to width and 
height pixels based on the identified image scale. At this stage, the 
column is identified and localized, and the column base is contoured and 

cropped. The cropped image is then passed to the CNN algorithm for 
classification. Further classifications can take place in the future if 
required. 

Fig. 3. Framework of the proposed IoT system.  

Fig. 4. Column barcode identification and localization process in (a) and column base image cropping in (b) using image processing (using Matlab).  
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4. Training CNN network for concrete column base cover defect 
detection 

The image dataset includes 96 digital images; 48 images of column 
base covers are in good health condition and 48 images of deflected 
concrete covers. Only 70 % of those images were used for training while 
30 % were used for validation and testing (15 % for validation and 15 % 
for testing). The image classification performance, and thus, defect 
detection accuracy is significantly affected by the pre-trained convolu-
tional neural network model type. Several efficient pre-trained networks 
are considered in this paper to identify and improve the classification 
accuracy of the best-performing pre-trained deep learning model. 

4.1. Case study object 

Rebar exposure and spalling are among the major concrete column 
base cover defects (see Fig. 5). Hence, this paper employs a binary 
classification deep learning algorithm to differentiate between two 
classes; covers in good health condition and defected concrete covers. 
The defected class includes spalling and rebar exposure, given that both 
defects must be maintained. The maintenance team will be also provided 
with an image of the defect to allow them to prioritize the maintenance 
based on the severity of the defect. However, in this paper, all cover 
defects are considered severe and need immediate maintenance. 

4.2. Deep and transfer learning 

Deep Learning is a branch of machine learning where Artificial 
Neural Networks (ANNs) are employed to solve computer vision tasks 
such as object detection and image classification. Deep refers to the 
utilization of multiple layers (depth) in the neural network architecture. 
Thus, numerous configurations of ANNs are used to automatically 
extract features from several data formats such as images and text. Re-
searchers observed that the performance has been improved with the 
increase in the number of ANN layers. However, very deep networks 
with too many layers will not be only computationally costly but also 
may suffer from overfitting that causes gradient and performance issues. 

Convolutional neural networks (CNNs), deep neural networks(DNN), 
and recurrent neural networks(RNN) are examples of ANNs but with 
different configurations. CNNs are widely used in similar defect detec-
tion applications, particularly Googlenet, Resnet-40, and VGG19 net-
works. Fig. 6 illustrated how CNN networks process input images [19]. 
As the data go through CNNs, the depth of the input image (n) increases 

through convolution layers, and the width and height decrease through 
polling layers. This takes place to improve the processing speed as well 
as the precision of the results. The depth of the data increases propor-
tionally with the number of filters. A padding layer exists in all CNN 
networks just before the output layer to equalize the height, width, and 
depth of the data to the number of the output channels of the CNN 
network (number of output classes). The last layer is the softmax layer 
and the output of this function is a score vector all up to 1, as it repre-
sents the probability of a certain class. 

Googlenet, Resnet-40, and VGG19 networks demonstrated efficiency 
when they have been used in similar algorithms. Googlenet network is a 
deep convolutional network that consists of 27 deep layers; 22 deep 
convolution layers and 5 pool layers. The 22 layers include 9 inception 
modules and 2 convolution layers. The MATLAB pre-trained model, 
which was trained on the MATLAB ImageNet dataset, is utilized in this 
paper. Transfer learning was implemented by applying and adapting the 
knowledge gained by the pre-trained network to our image dataset. The 
network has an image input size of 224-by-224 pixels. Resnet-50 consists 
of 50 deep layers; 48 convolution layers and 2 pool layers. The network 
has an image input size of 227-by-227 pixels. Visual Geometry Group 19 
(VGG19) network consists of 19 deep layers; 16 convolution layers with 
stride and padding and 3 fully connected layers. The network has an 
image input size of 224-by-224 pixels [20]. 

Transfer learning is the process of training a pre-trained network to 
learn new patterns in new data. This is useful to take advantage of the 
knowledge provided by a pre-trained network and to avoid defining a 
network architecture and training it from scratch. Since fine-tuning the 
parameters of a pre-trained image classification network using transfer 
learning is usually much easier and faster, it is preferred over the con-
struction, training, and testing of a network from scratch. This will help 
develop adjusted networks for different applications without the need of 
having thousands of images or powerful computing machines. Fig. 7 
details the steps required to reuse a pre-trained network the train-
ingOptions and trainNetwork functions in MATLAB. 

4.3. Training methods and performance evaluation 

Various CNN network types and configurations; namely Resnet-50, 
Googlenet, and VGG19, were investigated in this paper to identify the 
network with the best binary classification performance (either good or 
defective concrete cover condition). The proposed algorithm was tested 
using 7 different pre-trained deep learning networks, network configu-
rations, and image types; namely, Resnet-50 using different weight learn 

Fig. 5. Example of original training images: (a) rebar exposure and (b) spalling.  
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rate factors, Googlenet, VGG19, RGB images, and grayscale images. The 
main purpose of this investigation is to maximize the classification 
certainty, and thus, reduce the potential of wrong classifications (false 
detection). In the beginning, the Resnet-50 pre-trained deep learning 
network configuration was used to binary classify the cropped concrete 
base cover images. This network yielded a correct image classification 
accuracy of 92.5 % (see Fig. 8 and Table 1). The certainty level was 
assessed using the maximum and RMSE scores given to the wrong class 
(wrong condition), given that all classification scores are given in 
Table 1 and Table 2. Knowing that a 100 % certainty could be achieved 
only if a ZERO score is given to the wrong class. 

Fig. 9 shows the training progress of the best-performing pre-trained 
CNN network. RGB and grayscale images were used as inputs to the CNN 
network. Despite that, the classification rate remained unchanged at 
100 %, the conversion of RGB images to gray images improved the 
classification certainty as it reduced the maximum error score from 
12.77 % to 0.87 % and the RMSE from 4.81 % to 0.29 %. 

5. Results 

The pre-trained networks yielded different classification perfor-
mances and score certainty percentages. The last layer in any CNN 
network is the softmax layer and the output of this layer is a score vector 
all up to 1. The addressed networks were evaluated based on the clas-
sification score produced by the softmax layer, as this layer returns a 
score that represents the probability for each classification class (out of 

1) with a total summed score value of 1 for all classes. For example, the 
algorithm may classify the cover as good with a score of 0.6 and as 
defected with a score of 0.4, given that the softmax vector includes two 
elements as we have two classification classes only (good or defected 
cover). The larger the difference between the classification score of each 
class, the better classification certainty. Table 1 summarizes the classi-
fication scores yielded by the Resnet-50 architecture using RGB images, 
grayscale images, and different learn rate factors of 10 and 20. All 
network configurations using different input image types yielded a 
performance of 100 % except the Resnet-50 network when trained using 
grayscale images. It yielded a classification performance of 92.5 % only 
(see line 11 in Table 1). 

Table 2 summarizes the classification scores yielded by the Google-
net and VGG19 architectures using RGB images and grayscale images. 
All network configurations using different input image types yielded a 
classification performance of 100 %. However, the certainty of image 
classification is different. The VGG19 demonstrated the highest cer-
tainty with an RMSE and max error values of less than 1 %. 

6. Discussion 

The proposed concrete column-base cover defect detection algorithm 
successfully detected and localized all barcodes with an accuracy of 100 
percent. To find a good-performing network configuration and input 
image type, the performance was investigated by training and testing 
the algorithm using 7 different pre-trained deep learning networks, 

Fig. 6. An example of the CNN classification sequence.  

Fig. 7. Transfer learning process in MATLAB [20].  

K. Naji et al.                                                                                                                                                                                                                                     



Ain Shams Engineering Journal 14 (2023) 102520

7

network configurations, and image types; namely, Resnet50 using 
different weight learn rate factors, Googlenet, VGG19, RGB images, and 
grayscale images. The performances of the addressed pre-trained deep 
learning algorithms were evaluated using RGB (R) and grayscale (G) 
input images. Fig. 10 depicts the results of the comparative study. The 
VGG19 pre-trained network yielded a correct image classification of 
100 % when trained using grayscale images. The RMSE and maximum 
image classification/prediction scores were used for classification per-
formance evaluation. VGG19 produced an RMSE value and a classifi-
cation score of 0.33 % and 0.87 %, respectively. This means that the 
average certainty of the correct classifications is 99.63 %. The score 
value provides a negated average binary loss per class, and each class is a 
support vector machine (SVM) multiclass classifier. 

Various pictures with various concrete column-based concrete cover 
conditions, which were not used for training, were utilized to test the 
performance of the proposed algorithm. For example, the images shown 

in Fig. 11 were taken from a site in Qatar using a Nikon D610 digital 
camera. The algorithm successfully managed to binary classify all im-
ages with a classification rate of 100 %. 

7. Conclusion 

This paper employs the Internet of Things (IoT) and Artificial Intel-
ligence (AI) technologies to develop an efficient algorithm for the 
automated health monitoring of concrete column base covers. The al-
gorithm is developed for automated facility management as it has the 
capability to monitor the health of a large number of concrete column 
bases simultaneously. This is achieved by providing the column barcode 
and location information, binary classifying their health conditions 
(good or defected), and then sending notifications to the facility main-
tenance team. 

The state-of-the-art deep learning framework, Convolutional Neural 

Fig. 8. Training progress of the AI-based defect detection algorithm using Resnet50 network and gray images (classification accuracy of 92.5%, MATLAB Figure).  

Table 1 
Summary of the prediction scores of the proposed algorithm using different configurations for the Resnet-50 pre-trained deep learning network (max. score value 
(probability) = 1, false classification in bold).   

Network Resnet50(Grayscale) Resnet50(RGB-10) Resnet50(RGB-20) 

s Correct classification Defected Good Defected Good Defected Good 

1 Defected  0.999777  0.000223  0.997401  0.002599  0.995054  0.004946 
2 Defected  0.996647  0.003353  0.9989  0.0011  0.998887  0.001113 
3 Defected  0.996065  0.003935  0.9989  0.0011  0.998887  0.001113 
4 Defected  0.997214  0.002786  0.997646  0.002354  0.99979  0.00021 
5 Defected  0.999807  0.000193  0.999736  0.000264  0.99979  0.00021 
6 Defected  0.999033  0.000967  0.999736  0.000264  0.996606  0.003394 
7 Defected  0.999033  0.000967  0.983785  0.016215  0.996606  0.003394 
8 Good  0.157906  0.842094  0.445953  0.554047  0.008165  0.991835 
9 Good  0.157906  0.842094  0.445953  0.554047  0.008165  0.991835 
10 Good  0.100307  0.899693  0.005074  0.994926  0.007689  0.992311 
11 Good  0.654957  0.345043  0.026837  0.973163  0.154789  0.845211 
12 Good  0.143291  0.856709  0.124696  0.875304  0.154789  0.845211 
13 Good  0.143292  0.856708  0.039926  0.960074  0.195046  0.804954 
14 Good  0.447808  0.552192  0.039841  0.960159  0.011282  0.988718  

Max. Error  0.654957  0.445953  0.195046  
RMSE  0.323043  0.002282  0.244138  0.006299  0.111022  0.002674  
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Network (CNN) was used to develop an instance detection and locali-
zation of the major types of column base defects; namely spalling and 
rebar exposure. Resnet-50, Googlenet, and VGG19 pre-trained deep 
neural networks were used for training and transferring learning to 
maximize classification performance and certainty. Resnet-50 pre- 
trained deep learning network with standard configurations yielded an 
image classification accuracy of 92.5, as shown in Table 1 and Fig. 8. 
Various pre-trained networks were used for training with the objective 
to not only improve the binary classification accuracy but the certainty 
of the classification. Although the certainty of the classification is 
important, a few research articles researched it. VGG19 network 

outperformed the rest of the addressed network configurations yielding 
a binary classification accuracy of 100 % with an RMSE error and a 
maximum classification error score of 0.33 % and 0.87 %, respectively, 
as shown in Table 2. Despite the slight differences between healthy and 
defective columns, the introduced method proved its effectiveness and 
certainty. 
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Table 2 
Summary of the prediction scores of the proposed algorithm using Googlenet and VGG19 pre-trained deep learning networks (max. score value (probability = 1).   

Network Googlenet (RGB) Googlenet(Grayscale) VGG19(RGB) VGG19(Grayscale) 

s Correct classification Defected Good Defected Good Defected Good Defected Good 

1 Defected  0.969243  0.030757  0.997918  0.002082 0.999836  0.00014 0.99174  0.007883 
2 Defected  0.969243  0.030757  0.99951  0.00049 0.869828  0.127292 1  2.53E-09 
3 Defected  0.929899  0.070101  0.999455  0.000545 0.999943  5.63E-05 0.999998  5.38E-07 
4 Defected  0.980153  0.019847  0.93933  0.06067 0.99996  3.89E-05 1  8.81E-08 
5 Defected  0.991365  0.008635  0.93933  0.06067 1  1.07E-08 0.999996  1.42E-06 
6 Defected  0.77988  0.220121  0.996861  0.003139 0.996789  0.000976 0.999989  6.3E-06 
7 Defected  0.929097  0.070904  0.951068  0.048932 0.998301  0.00046 0.999964  7.71E-06 
8 Good  0.004074  0.995926  0.040438  0.959562 7.31E-08  0.99999 8.26E-08  0.999999 
9 Good  0.004074  0.995926  0.00663  0.99337 2.65E-07  0.999962 3.39E-08  0.999998 
10 Good  0.001514  0.998486  0.041824  0.958176 7.68E-07  0.999998 0.008741  0.989347 
11 Good  0.0124  0.9876  0.041824  0.958176 2.34E-07  0.999991 5.11E-07  0.999994 
12 Good  0.075749  0.924252  0.002568  0.997432 9.58E-07  0.999889 3.71E-10  0.999999 
13 Good  0.271405  0.728595  0.077213  0.922787 1.03E-08  0.999986 1.02E-08  0.99999 
14 Good  0.271404  0.728596  0.077213  0.922787 5.06E-07  0.999999 4.57E-07  0.999997  

Max. Error  0.220121  0.077213  
0.127292  0.008741  

RMSE  0.147961  0.093163  0.049437  0.037361 5.2E-07  0.048114 0.003304  0.002979  

Fig. 9. Training progress of the AI-based defect detection algorithm using VGG19 network and gray images (classification accuracy of 100%, MATLAB Figure).  
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