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A B S T R A C T

Dysgraphia is a type of learning disorder that affects children’s writing skills. Poor writing skills can obstruct
students’ academic growth if it is undiagnosed and untreated properly in the early stages. The irregularity in the
symptoms and varying levels of difficulty at each age level made the dysgraphia diagnosis task quite complex.
This work focuses on developing machine learning-based automated methods to build the dysgraphia screening
tool for children. The proposed work analyzes the various attributes of online handwritten data recorded by
digitizing tablets during On-Surface (when the pen is on the tablet’s surface) and In-Air activity (when the
pen is away from the tablet’s surface). The proposed work has considered feature extraction from the whole
handwriting data in a combined manner instead of feature extraction from task-specific (word, letter, sentence,
etc.) handwritten data separately to reduce the number of features. This approach has significantly reduced the
number of features by about 85%. Extracted features are used to train and evaluate multiple machine learning
classifiers such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random forest, and AdaBoost.
Evaluation in a publicly available dataset indicates that the AdaBoost classifier achieved a classification
accuracy of 80.8%, which is 1.3% more than the state-of-the-art method. Moreover, a deep analysis of different
characteristics (kinematic, dynamic, temporal, spatial, etc.) of online handwriting is conducted to examine their
significance in distinguishing normal and abnormal handwritten data. The analysis can help psychologists
determine what attributes and methods should be considered for effective treatment.
1. Introduction

Learning disabilities are a broad generic categorization of learning
disorders that hamper the skill acquisition activity of a human being.
Learning disabilities and lack of intelligence are often got confused
as similar. However, both are disparate, and studies have shown that
human beings with learning disabilities possess no less than an average
level of intelligence. Although self-intelligence is not that much affected
due to learning disabilities, the latter can cause a lack of self-esteem
and self-confidence in human beings, especially in children. Children
are probably looking to learn novel information and acquire new skills
day by day when they grow. Learning disabilities hinder or delay this
skill acquisition in one way or another, resulting in children struggling
to understand new things. This situation will make them feel inferior to
their colleagues. And it can result in reduced self-esteem, confidence,
and social-emotional and behavioral concerns. Students with learning
disabilities account for a significant proportion of the ‘‘special educa-
tional needs’’ category [1]. Learning disabilities damage or harm the
perception ability of the student and cause difficulties in one or many
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tasks, including reading, writing, or doing math, etc. Dysgraphia is a
learning disability mainly regarded as disarray in written expression.
Dysgraphia can affect not only handwriting but also grammar, spelling,
organization, etc. [2]. The available statics about learning disabilities
show that about 10%–30% of children in the world face difficulties in
handwriting.

Usually, team-based assessments are conventionally practiced dys-
graphia diagnosis methods in children. The team-based assessments
include multiple specialists from different domains, such as educa-
tion (teacher), psychology (occupational therapist), medicine (speech
therapists, ophthalmologists), etc. These specialists jointly analyze the
student’s handwriting ability and other factors that can affect hand-
writing. Because the existence of some prevalent conditions (which
can cause handwriting impairments), such as hearing loss, poor vision,
lack of intelligence, or lack of training, should be ruled out before
subjecting the child to the actual dysgraphia assessment. It is significant
to contemplate various contributing factors of dysgraphia, such as
speed and legibility of writing, inconsistency between spelling, ability,
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and verbal intelligence quotient, as well as how the pencil grip is held
while writing and writing pose to assess the condition of the student
effectively. And there is a lack of standard medical assessment methods
for examining the existence of dysgraphia. Concise Evaluation Scale
for Children’s Handwriting (BHK) for French [3], Detailed Assessment
of Speed of Handwriting (DASH) in Latin [4] are the commonly used
popular standard assessments for dysgraphia diagnosis.

It is challenging to accurately diagnose any learning disorder since
the assessment procedure has to consider or take into account multiple
cues. The cues or symptoms of dysgraphia differ with the child’s age.
The symptoms may vary at each development stage or age range.
More crucially, the predefined identifiers or indication should con-
tinue for at minimum six months with parallel intercession actions
being administered [5]. The behavior of dysgraphia is often complex.
Sometimes the child will have only dysgraphia, but in the worst case,
comorbidity is observed. Children may have autism spectrum disorder
(ASD), developmental coordination disorder (DCD) [6], or attention
deficit hyperactivity disorder (ADHD) along with dysgraphia. It makes
the assessment procedure bit difficult. It yields the need for early assess-
ment and diagnosis of dysgraphia. Identification and intervention in the
early stages can significantly decrease the effort and time required to
treat the disorders.

The decision of the manual dysgraphia assessments performed by
a team of specialists is merely based on the score or judgment of
the handwritten product. Human bias and other factors (experience of
the specialists) can positively or negatively affect the final results to
an extent. Furthermore, manual assessments are time-consuming and
require a lot of human resources. These limitations in manual assess-
ments paved the way for the development of automated systems for
dysgraphia diagnosis. The automated systems are focused on statisti-
cally analyzing the characteristics of handwriting acquired by digitizing
tablets. Current technological advancements in the mobile industry
have led to the development of tablets with built-in capabilities to
extract various handwriting features/raw data. It includes the position
of the pen tip, On-Surface/In-Air pen position, pen tip pressure, the
azimuth angle of the pen to the tablet surface, the tilt of the pen,
timestamp [7]. Multiple works in the literature have utilized digitizing
tablets and information acquired by them to identify dysgraphia with
the help of machine learning algorithms. Apart from methods based
on digitizing tablet-based data acquisition and analysis of online hand-
written features, handwritten image analysis-based methods [8] are
proposed in the literature for dysgraphia screening.

Although dysgraphia diagnosis involves complex and multiple ap-
proaches, several machine learning-based automated diagnosis tech-
niques have been proposed in the literature in recent years. Mekyska
et al. proposed methods for screening the normally developing hand-
writing and dysgraphia handwriting using machine learning algo-
rithms. Kinematics, dynamics, and non-linear dynamics of handwritten
products are extracted to form the feature vectors for training the
machine learning classifiers. Random forest and linear discriminant
analysis algorithms are used on the extracted multiple features to
discriminate the normal and abnormal handwritings with a sensitivity
of 96%. The dysgraphia diagnosis system proposed in the [9] utilizes
machine learning methods such as random forest, logistic regression,
and naïve Bayes to classify the extracted online handwritten features.
The significant features extracted from the handwritten data are slant,
pressure, letter, word spacing, etc. In [10], Dimauro et al. proposed a
software system for dysgraphia diagnosis by utilizing various document
analysis algorithms and their modifications. The proposed approach
has semiautomated the BHK test by automatically evaluating the nine
relevant handwriting characteristics (writing size, skewed writing, let-
ter spacing, etc.) along with the manual assessment of the other four
relevant characteristics. The output of the software system generates a
score similar to the BHK scale. The framework proposed in [11] uses
image processing and pattern recognition on handwritten text samples
2

for the automated detection of dyslexia symptoms. Although referred
to as dyslexia, only the writing aspect is considered in the work that
yielded 73% classification accuracy.

The studies and experiments conducted in the literature [12–19]
have shown that stroke dimensions, velocity, acceleration, jerk, pres-
sure, tilt, temporal, azimuth angle, and the number of pen elevations
have less or equal importance in discriminating the normally devel-
oping handwriting and dysgraphia. The most relevant features spotted
in several works are kinematics of writing and pen tip pressure. Com-
parative analysis of relevant ML-based dysgraphia screening systems
proposed in recent years is provided in Table 1.

Compared to the approaches merely based on handwriting im-
ages (offline), the tablet-based techniques (online) could explore more
characteristics of handwriting, which turned out to be significant for
the detection of dysgraphia [26]. The data acquisition in the latter
approach involved writing with a standard pen or an electronic pen
on paper overlaid on the tablet. The number of features used in the
literature for dysgraphia diagnosis in most works is enormous (1000 or
more). The features extracted from the handwritten data can generally
be classified into two types based on the activities during handwriting:
when the pen is touching the surface of the tablet or On-Surface activity
(On-Surface features) and when the pen is away from the surface in
between writing or In-Air activity (In-Air features). Most of the work
in the literature has utilized features from two types of activities for
classifying handwriting. However, a study on the significance of each
activity’s specific features or comparative analysis is not conducted
in the literature, especially for the dataset we used to evaluate our
method. Kinematic, dynamic, spatial, and temporal are the popular
handwriting attributes/characteristics considered in the literature for
distinguishing dysgraphia writing and normal writing [26]. However,
no works in the literature have analyzed the significance of each at-
tribute for distinguishing dysgraphia writing and normally developing
writing. This work tries to address all these issues, and the contribution
of the work is as follows:

• Design and develop a machine learning-based dysgraphia diagno-
sis system for preliminary assessment.

• Examine the effectiveness of different supervised machine learn-
ing algorithms (the ones which can handle nonlinear data, rang-
ing from simple to kernel-based methods and ensemble learning
methods) for classifying the online handwriting features.

• Analyze the effectiveness of On-Surface features alone, followed
by the analysis of feature combination of On-Surface and In-Air
features for dysgraphia diagnosis problem.

• Analyze the potential or significance of different attributes of
handwriting activity or different categories of online handwritten
features (Kinematic, dynamic, spatial, and temporal attributes
for On-Surface activity, Kinematic and Temporal for In-Air activ-
ity) for discriminating the normally developing handwriting and
dysgraphia.

• Develop methods that utilize fewer features than state-of-the-art
method (to reduce the computational overhead) without com-
promising the classification performance. The proposed work has
considered extracting features from the whole handwriting data
combined instead of feature extraction from task-specific (word,
letter, sentence, etc.) handwritten data separately to reduce the
number of features.

• Propose a framework to assist psychologists in treating children
with dysgraphia.

The rest of this paper is organized as follows; Section 2 presents
the methodology of the proposed work. It explains how we built the
proposed method, including all the details of the algorithm and the
dataset used. Section 3 presents the results and findings. A discussion
and new framework for assisting psychologists in treating students with
dysgraphia are provided in Section 4. Finally, Section 5 presents the

conclusion.
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Table 1
Comparative analysis of state of the art dysgraphia classification methods.

Ref. Age group Subjects Data collection task Features Classifiers Performance

[12] Grade 3 Total: 54 (27 positives) Writing sequence of
letters

Kinematic , 34 nonlinear
dynamic, other 7 Features

Linear
discriminant
analysis,
Random
forest

Recall : 96%

[13] Primary
school

Total 298 (56 positives) Copying the text Static, Kinematic, Pressure,
Tilt

Random
Forest

Recall :
96.5%

[11] Primary
school

– Images of handwritten
text

OCR,MSER ANN Accuracy :
71%

[14] Grade 3 to 4 Total:76 (15 positives) Drawing few
patterns/figures

Spatial, temporal,
kinematic, dynamic, other
— pen elevations and
relative number of
interruptions

XG-Boost Specificity :
90%

[15] Grade 3 to 4 Total:65 (33 positives) Copy a short paragraph Kinematic, temporal,
spatial, and dynamic

Support
vector
machine and
Random
forest

Recall : 88%

[16] Age:3 Total:104 (28 positives) Draw shapes and
symbols, questionnaire

Gesture smoothness,
pressure(mean value),
drawing kinematics

Logistic
regression

Area under
curve : 0.82

[17] Age: 9 years Total:280 (62 positives) – Static, kinematic, pressure,
and tilt

linear
regression

–

[18] Age: 8 to 15 Total: 120 (57
positives)

write letters, words,
sentence with varying
speed

Dynamic, Spatiotemporal
and kinematic features

AdaBoost Accuracy :
79.5%

[20] Age: 8 to 9 Total:90 (49 positives) Writing write letters,
words, and sentence

Spatiotemporal , dynamic,
kinematic and other
features

SVM Accuracy :
90%

[21] Grade: 3 to 6 Total:32 writing and drawing
task

Spatial, temporal ,
dynamic and other features

SVM Accuracy :
82.51%

[22] Age: 10 to 13 Total:72 (36 positives ) Write letters, words,
and sentence

Spatial, temporal ,
dynamic, kinematic and
other features

SVM Sensitivity :
75.5%

[23] Age: 7 to 8 Total:40 drawing lines, tracing
figures , encircling
matching shapes

Not explicitly mentioned Decision tree Not
mentioned

[24] Age: 7 to 12 Total:60 Drawing and writing
tasks

Spatiotemporal, dynamic
and kinematic features

Random
forest

Recall:
92.85%

[25] Age: 8 to 15 Total: 120 (57
positives)

Writing tasks Convolutional features Convolutional
neural
network

Accuracy:
79.7%
t
d

2. Methodology

This section outlines the details of the dataset and methodology
used to design and build the dysgraphia diagnosis classifiers. Fig. 1
provides an overview regarding how a handwriting analysis-based
dysgraphia diagnosis system is developed and its workflow.

The major steps involved in designing a machine learning-based
dysgraphia diagnosis system are conducting handwriting experiments
to collect the raw data and extracting relevant features which outline
the dynamic, kinematic, temporal, and spatial characteristics of raw
handwritten data. Usually, children are advised to write certain things,
such as letters, words, and sentences, or draw specific patterns on the
tablet using a stylus pen. Recent technological advancements enable
us to record the writing’s trajectory, time, and dynamics using the
digitized tablet. When a child writes on the tablet, the time, x, and 𝑦
ositions of the pen tip on the surface of the tablet, the pressure exerted
y the pen tip on the tablet surface, altitude, and azimuth angle are
ecorded for further processing. Later the extracted features are stacked
ogether to form feature vectors representing each individual’s unique
haracteristics. Machine learning algorithms are trained using the ex-
racted feature vectors to develop classifiers, and their performance is
3

valuated. s
2.1. Dataset

The main challenge researchers face in developing the automated
dysgraphia diagnostic system or proposing classification methods is the
unavailability of raw data. Data is the backbone of machine learning-
based decision systems, and sufficient data is required for algorithms to
understand the unique underlying patterns. Although there are several
handwritten datasets for the diagnosis of dysgraphia in the literature,
only very few are accessible to the public. In this work, a dataset [18],
which includes handwritten data from 120 children, was used to assess
the performance of the proposed approaches. Children involved in data
collection were between 8 and 15 years of age. Among 120 participants,
57 have symptoms of dysgraphia, and the remaining have normally
developing handwriting. During data collection, the participants were
asked to complete different handwriting tasks, including writing letters,
words, and sentences on the tablet. The ground truth of the data is
identified with the help of trained professionals and certified clinical
therapists. The data is currently publicly available [27]. We retrieved
this publicly available data for further analysis. For each individual, the
raw data provides the 𝑥 and 𝑦 positions of the written expression and
heir respective time, pressure, azimuth, and altitude information. The
ataset contains text data obtained using Slovak orthography. Fig. 2

hows the sample data from the dataset.
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Fig. 1. Dysgraphia diagnosis system development : Workflow.
Fig. 2. Samples from the dataset.
2.2. Feature extraction

Feature extraction is a pivot task while developing decision-making
systems using traditional machine learning algorithms. The handwrit-
ing task will generate seven raw data values (x position, 𝑦 position,
time, pen position indicator, azimuth, altitude, pressure) for each in-
stance. These raw data values must be transferred to meaning full
value or vectors before training the machine learning classifier. In this
work, we extracted 175 features from the raw data for each subject.
Although the raw data available in the dataset represents multiple
tasks (letter writing, word writing, sentence writing), we considered
them a single handwriting task while extracting the feature. It means
the features are not extracted for each task separately. Instead, the
features are extracted from the combined handwritten content for each
individual. This approach will decrease the number of features and
reduce the computational overhead while training the classifiers and
during prediction.
4

Detailed descriptions of the extracted features are provided in Ta-
ble 2. Among 175 extracted features, 119 are for On-Surface activity
and 56 for In-Air activity.

2.2.1. On-Surface features
On-Surface features refer to the features extracted from the recorded

data points when the stylus pen is touching the tablet’s surface. In other
words, the feature extracted during the actual writing task. Five cate-
gories of On-Surface features are extracted from the data: kinematic,
dynamic, temporal, spatial, and other. Dynamic features measure the
characteristics of pressure exerted by the person on the surface while
writing, characteristics of inclination of the pen, etc., while writing
on the tablet. Spatial and temporal features extract the uniqueness
associated with the space and time data. It means the size of the
writing, letter or words is considered in the spatial data, and the time
taken for writing activity is considered in the temporal data. Usually,
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Table 2
Feature descriptions.

Category Feature Description No. of features

Dynamic

Pressure Pressure between the pen tip and tablet surface ( Mean, Median,
Max, Min, SD, 95th and 5th percentile)

7

Azimuth Angle of the pen to the vertical axis ( Mean, Median, Max, Min,
SD, 95th and 5th percentile)

7

Altitude Angle of the pen to the horizontal axis ( Mean, Median, Max, Min,
SD, 95th and 5th percentile)

7

Spatial

Stroke Length Magnitude of length of stroke 5

Horizontal
Stroke Length

Stroke length in the horizontal direction ( Mean, Median,
Maximum, Minimum, SD)

5

Vertical
Stroke Length

Stroke length in the vertical direction ( Mean, Median, Maximum,
Minimum, SD)

5

Y position of
segments

Difference between y position of first and last stroke, second and
penultimate stroke. Variance of y position of strokes ( Mean,
Minimum, Median, Maximum )

12

Length Length of the whole writing movement 1

Vertical
Length

Length of the whole writing movement in vertical direction 1

Horizontal
Length

Length of the whole writing movement in horizontal direction 1

Length in
vertical
direction

( Mean, Median, Maximum, Minimum, SD) 5

Length in the
horizontal
direction

( Mean, Median, Maximum, Minimum, SD) 5

Temporal

Stroke time Time taken to complete a stroke( Mean, Median, Maximum,
Minimum, SD)

5

writing time Time taken to complete whole writing task 1

On-Air time Idle time between writing activity( Mean, Median, Maximum,
Minimum, SD)

5

Kinematic

Velocity,
vertical
/horizontal

Change in position of stylus pen over time. Also, velocity is
computed in both vertical and horizontal directions separately. (
Mean, Median, Maximum, Minimum, SD, 95th percentile, 5th
percentile)

21

Acceleration Change in writing speed over time ( Mean, Median, Maximum,
Minimum, SD, 95th percentile, 5th percentile)

7

Jerk, vertical
/horizontal

Change in acceleration while writing over time. Also, jerk is
computed in both vertical and horizontal directions separately. (
Mean, Median, Maximum, Minimum, SD, 95th percentile, 5th
percentile)

21

Extrema of
velocity and
acceleration

Number of extrema in velocity and acceleration values 2

Other Pen Lift Number of interruptions during writing 1
the subject with dysgraphia may take more time to complete the task.
Furthermore, the spatial appearance of the written character will be
worse in the case of dysgraphic subjects. Kinematic features explore
the kinetic property of the writing, which include speed, acceleration,
jerk etc.

2.2.2. In-Air features
In-Air features refer to the features extracted from the recorded data

points when the stylus pen is not touching the tablet’s surface. The In-
Air features is extracted from the raw data representing the activity
between writing each stroke, segment, or word. Two categories of In-
Air features were extracted from the data. It includes 51 kinematic
features (as mentioned in Table 2, but the difference is that it is com-
puted when the pen is away from the tablet surface) and five temporal
features (statistical values of On-Air time). On-Air time measures the
time the student was not writing (or thinking about writing) from
starting the writing task until completing it. Children with dysgraphia
may take more time to think or may need more time to start a new
stroke/segment after finishing the current stroke.
5

2.3. Machine learning classifiers

Machine learning classification algorithms are required to train and
develop prediction models using the extracted features. The prediction
model will be capable of classifying the extracted handwritten features
into either normal or dysgraphia classes. From the data analysis per-
spective, this is a binary classification problem (supervised learning).
Many supervised machine learning algorithms are available for binary
classification problems ranging from simple KNN algorithms to complex
deep neural network algorithms. Compared to traditional algorithms,
deep neural network algorithms are data-hungry. Even though the
selection of machine learning algorithms in this work is somewhat
random and based on our previous experience, specific criteria were
considered. The algorithms that can directly handle the non-linear data
points and algorithms with different complexity levels are considered.

Furthermore, the performance of the machine learning algorithms
needs to be analyzed (with different underlying working principles) for
classifying the handwritten data. In that context, four supervised learn-
ing algorithms such as K-Nearest Neighbor (KNN) [28], Support Vector
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Table 3
Definitions of true positives, true
negatives, false positives and false
negatives.

Actuals Predictions

True False

True TP FN
False FP TN

Machine (SVM) [29], RandomForest(RF) [30], and AdaBoost(AB) [31]
are used in this work. These algorithms are prevalent and have been uti-
lized in the literature for wide applications such as image classification,
audio classification, text classification, etc.

KNN is a simple non-parametric algorithm based on computing the
nearest neighbors by considering the distance metrics. KNN is included
to examine how a simple algorithm works with handwriting features
for dysgraphia diagnosis problems. KNN and decision trees are the
popular simple machine-learning algorithms that can handle non-linear
data points. KNN was considered above decision trees in this work
since the latter will be used as base learners in Random forest and
AdaBoost algorithms.SVM is a more complex algorithm, and its kernel
feature enables it to handle non-linear data. Apart from simple and
complex (kernel-based) algorithms, ensemble learning algorithms are
considered. Ensemble learning algorithms are way more complex and
require a longer training time. However, ensemble learning can reduce
either variance or bias to an extent. Random Forest and Adaboost
are the popular ensemble learning classifiers that constitute multiple
decision trees. The random forest just integrates numerous decision
trees to reduce the variance. Random forests are also known as bagged
trees, meaning each tree is independent and can be implemented in par-
allel. On the other hand, AdaBoost, or adaptive boosting, implements
a boosting approach to integrate multiple decision tree classifiers. In
AdaBoost, the succeeding classifiers are modified based on the error in
the preceding classifiers.

3. Evaluation and results

All of the experiments were carried out in Python. The classification
models are built and trained on a laptop with configuration Intel(R)
Core (TM) i7-7820HK CPU operating at 2.90GHZ (2901 MHz) with
four cores and eight logical processors. The Sci-Kit library is used for
training and evaluating the machine learning classifiers.

Evaluation of any model is critical to recognize how good the
built model is. The commonly used evaluation metrics for multi-label
classification methods are accuracy, precision, recall, and F1 score. First
and foremost, four essential parameters for computing the evaluation
metrics are true positives(TP), false positives(FP), true negatives(TN),
and false negatives(FN). Table 3 defines TP, FP, TN, and FN.

Accuracy represents the percentage of correct predictions made by
the classifier. In other words, it is the ratio between the number of
accurate predictions and total predictions made by the classifier in
percentage.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(1)

In addition to accuracy, other evaluation metrics are used to mea-
sure the model’s performance. Precision is the ratio of the true positives
to total predictions.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

The recall is the ratio of true positives to total true positives in the
test data. Recall measures the sensitivity of the model.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (3)
6

𝑇𝑃 + 𝐹𝑁
Table 4
Hyperparameter configuration of classifiers.

Algorithm Hyperparameters Feature set

On-Surface On-
Surface +
In-Air

KNN No. of nearest neighbors , N 11 5

SVM
C 1 100
gamma 1 0.01
kernel RBF RBF

Random forest

Splitting criterion Entropy Gini
No. of estimators 100 200
Maximum depth 5 10
Minimum samples leaf 5 5
Minimum samples split 10 5

AdaBoost Learning rate 0.1 0.5
No. of estimators 120 265

F1 score is the weighted average of recall and precision. It considers
both false negatives and false positives, similar to accuracy. In the
unsymmetrical dataset, the F1 score is a better evaluation metric than
the accuracy.

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(4)

Moreover, the receiver operating characteristic (ROC) plot and the
area under the ROC curve (AUC_ROC) are used to evaluate the per-
formance of the proposed methods. ROC is the plot of the prediction
where the 𝑦-axis represents sensitivity/recall/true positive rate, and
𝑥-axis represents false positive rate.

The whole experiment is categorized into two sections. The first
section focused on comparing and contrasting the performance of
On-Surface features with the On-Surface features + In-Air features
combination. And they are followed by the comparison of the pro-
posed methods with the state-of-the-art techniques. So, initially, the
machine learning classifiers are trained with On-Surface features, and
performance is recorded. Later the feature vectors are extended by
adding the In-Air features with the On-Surface features. Training and
evaluation of machine learning classifiers are conducted with new
feature vectors, and performance is recorded. Some of the features
among the new feature vectors derived from the raw data have higher
magnitude values than other derived features. Training and evaluating
the machine learning classifiers using the features in this form may
negatively affect the performance. Because the classification algorithm
may be biased towards features with higher magnitude.

Since machine learning algorithms like SVM, KNN, and neural
networks utilize the spatial relationship between the data samples to
generate the decision boundary, they are sensitive to feature sets with
a wide magnitude range. So the features have to be pre-processed
(feature scaling) before training the classifiers to avoid this issue. On
the other hand, machine learning algorithms such as decision trees,
AdaBoost, Random forests, etc., are not affected since their working
principle or decision boundary generation principle is different. Either
without scaling or with scaling, the tree-based algorithms will perform
normally. This work uses tree-based algorithms and other algorithms
such as SVM and KNN, to develop classifiers. The Min-Max scaling
method is utilized to scale the feature values to a specific range.
To optimize the performance as well as reduce the selection bias,
the hyperparameters of all the classifiers are tuned. Each classifier
was trained and evaluated with the best hyperparameter sets. The
training and evaluation followed 10-fold cross-validation. The details
of hyperparameters used in each classifier are shown in Table 4. The
performance of each classifier with On-Surface features and On-Surface
features + In-Air is provided in Fig. 3.

In Fig. 3, accuracy, precision, recall, and f1-score of the developed
machine learning classifiers are provided. A total of 8 classifiers are
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Fig. 3. Performance of the proposed methods, left top: Accuracy, right top : Precision, left bottom : recall, right bottom: F1-Score.
built and evaluated, where four of them are trained with On-Surface
features while the rest are trained with On-Surface + In-Air features.
With On-Surface features, the SVM classifier has generated the best
classification performance in terms of accuracy (72.5%). But accuracy
alone cannot be considered for a problem like medical diagnosis. More
significant metrics like precision and recall must be considered in this
case. Precision indicates how many are correctly predicted as positive
from all the positive predictions. When the precision is higher, the false
positive rate is less (falsely classified as positive).

Similarly, we also have to consider the false negatives (falsely
classified as negatives). In preliminary diagnosis, false negatives are
more or equally significant than false positives. The recall value metric
will take account of false negatives. Considering precision and recall, it
is clear that SVM classifiers are not good as AdaBoost or RF classifiers
when trained with On-Surface features. The AdaBoost classifier has
recorded a maximum precision of 73.7% and a recall of 73.8%. In
some instances, classifiers can have higher precision but less recall or
vice versa. So better metrics like the F1-score are used for analyzing
the classifier’s performance. F1-score computes the harmonic mean
of precision and recall. In terms of F1-score also AdaBoost classifier
surpassed all other classifiers trained with On-Surface features.

By analyzing the accuracy of each classifier, it is comprehensi-
ble that adding In-Air features along with On-Surface features has
significantly improved the classification performance. It shows the
significance of In-Air features for classifying normally developing and
dysgraphia writing. In On-Surface + In-Air features set, the perfor-
mance of SVM, AdaBoost, and RF classifiers has drastically increased.
Among all the proposed methods, AdaBoost with On-Surface + In-Air
feature set has yielded the best accuracy of 80.8%, which is acceptable.
The superiority of the AdaBoost classifier with the On-Surface + In-
Air feature set is visible not only in terms of accuracy but also while
considering the precision, recall, and F1-metric. AdaBoost with On-
Surface + In-Air feature set yielded a precision score of 83.3%, a
recall score of 78.5%, and an F1-score of 0.801. The precision score
of 83.3% indicates that if the AdaBoost classifier has predicted ten
samples as positive, more than eight samples are true positives, which is
7

reasonably good. Moreover, the obtained recall score can be interpreted
as if there are ten positive samples in the test set; the classifiers can
predict almost 8 of them as positive, which is reasonably acceptable.

Better metrics like ROC and AUC are computed to analyze the
performance of classifiers and features more deeply. ROC and AUC
compare the classifier’s true positive rate (recall) against the false posi-
tive rate. Higher values of AUC indicate that there is a more significant
distinction between True positives and True negatives. The ROC and
AUC of the classifiers with On-Surface features set and On-Surface +
In-Air features set are provided in Figs. 4 and 5, respectively.

The AUC of the SVM, RF, and AdaBoost classifiers trained with the
On-Surface + In-Air feature set is more than 0.8, which is reasonably
good. When the feature set is shrunk to On-Surface alone, the AUC
of the classifiers is between 0.76–0.77, which is not good enough.
TextcolorblueAlthough there is no standard acceptable AUC value,
anything more than 0.85 is usually considered good or excellent. In
this context, the RF and AdaBoost trained with On-Surface + In-Air
feature set displayed its effectiveness for diagnosing dysgraphia from
handwritten data.

Since the number of samples is comparatively less in the evaluated
dataset, there is the possibility of overfitting. The performance of
classifiers (in terms of accuracy) in both train and test sets is compared
to examine the possibility of overfitting. The accuracy of classifiers in
the train and test set is provided in Table 5. The classification accuracy
in the train set is always higher than in the test set. So, it is impossible
to deny the possibility of slight overfitting. However, a few other things,
such as fewer data samples or fewer samples in the test set, can also be
the reason for observed results. Fewer data samples in the training set
can lead to overfitting. Furthermore, the number of data samples in the
test data in each fold was about 12. So even misprediction of at least
two data samples during testing can reduce the accuracy by about 18%

The performance of the proposed methods is compared with state-
of-the-art dysgraphia diagnosis methods evaluated in the same dataset
to show the effectiveness. The performance comparison of the proposed
method with state of the art method is provided in Table 6. The
methods highlighted in bold are the proposed methods. The number
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Fig. 4. ROC and AUC of classifiers trained with On-Surface feature set.

Fig. 5. ROC and AUC of classifiers trained with On-Surface+In-Air feature set.
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Fig. 6. Classification accuracy of each feature category with different classifiers.
Table 5
Performance (accuracy) comparison of classification algorithms in train and test set.

Algorithm Feature set

On-Surface On-Surface+In-Air

Train set Test set Train set Test set

KNN 71.6 67.5 74.81 68.3
SVM 91.7 72.5 92.3 76.7
Random forest 91.4 67.5 94.2 77.5
AdaBoost 90.9 71.7 95.8 80.8

Table 6
Comparison with state-of-the-art methods.

Methods Features Accuracy

Adaboost [18] On-Surface +
In-Air features
(1176)

79.5%

SVM [18] On-Surface +
In-Air features
(1176)

78.8%

RF [18] On-Surface +
In-Air features
(1176)

77.6%

CNN [25] – 79.7%

SVM On-Surface +
In-Air features
(175)

76.7%

RF On-Surface +
In-Air features
(175)

77.5%

AdaBoost On-Surface +
In-Air features
(175)

80.8%

of features used in each method is provided in the 2nd column of the
table.

Even though the proposed work has used similar feature types
(kinematic, dynamic, temporal, spatial) compared to the state-of-the-art
methods, but generated similar performance or better performance by
9

using a very less number of features. The best result achieved in one of
the state-of-the-art methods is 79.5% accuracy for AdaBoost [18] with
On-Surface + In-Air features. However, it has been trained with 1176
features. On the other hand, the proposed AdaBoost method trained
with On-Surface + In-Air features achieved a classification accuracy of
80.8%, which is almost 1.3% more than the state-of-the-art methods.
And this performance is achieved by using fewer features, only 175,
which is just about 15% of the total features used in the state-of-the-art
methods. The 1176 features set include 1064 On-Surface features and
112 In-Air features. But our feature set contains only 119 On-Surface
features and 56 In-Air features. Not only with the AdaBoost Classifiers
but also with the Rf classifier, our approach has generated competitive
results. It displays the superiority of our method over the state-of-the-
art method. The dataset consists of raw data for eight separate writing
tasks. The state-of-the-art method has extracted features for each task
separately. On the other hand, the proposed method extracted the
feature for the whole raw data without task separation, reducing the
number of features to a large extent. Fewer features will reduce the
computational overhead associated with the training and prediction.
And another advantage is the proposed method has displayed superior
performance even with fewer features. [25] utilized the convolutional
neural network algorithm for classifying normal and dysgraphia writ-
ing. They achieved an accuracy of 79.7%, which is almost similar to
the performance of the method proposed in [18]. Compared to [25]
also, our method performed better. Moreover, the [25] utilized the
CNN algorithm, which is computationally expensive compared to the
traditional machine learning algorithm.

The second section of the experiment is focused on the analysis
of each feature category (kinematic, dynamic, temporal, spatial, tem-
poral (In-Air), kinematic(In-Air)) for the classification of handwritten
data. The main aim of this experiment was to study the relevance
or significance of each feature category for discriminating the nor-
mally developing handwriting and dysgraphia handwriting. A total of
24 classifiers (four classifiers and six feature categories) are trained
and evaluated in this experiment. Similar to the first experiment, the
second experiment also followed hyperparameter tunning and 10-fold
cross-validation during the classifier training and evaluation task. The
accuracy of classifiers trained with each feature category is provided in
Fig. 6.
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Fig. 7. Classification performance of each feature category with different classifiers.
Considering the accuracy obtained for each category features with
different classifiers, the kinematic, temporal (In-Air), and temporal
features are superior for classifying handwriting data into normal or
dysgraphia classes. The SVM classifier trained with kinematic fea-
tures yielded the highest classification accuracy of 72.5%. The second-
highest accuracy of 70.8% was recorded in AdaBoost Classifier trained
with temporal features. In all classifiers except KNN, the temporal
(In-Air and On-Surface) and kinematic features generated a minimum
10
accuracy of not less than 60% and not less than 65%, respectively.
Among all feature categories, the kinematic features are more in num-
ber. In usual cases, more number features generate better results.
However, temporal features are significantly fewer in number (only six)
but displayed better performance. It shows that time-related feature is
very significant in the dysgraphia diagnosis problem. In general, it can
be interpreted that features’ quality is more important than quantity in
traditional machine learning applications. By analyzing these values,
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it can be concluded that kinematic and temporal features significantly
distinguish normally developing and dysgraphia handwriting.

Similar to the first experiment, the precision and recall of the clas-
sifiers are computed to analyze their classification performance more
deeply. The precision is calculated to examine how well the classifiers
trained with each feature category predict the positive class. And the
recall is computed to examine how many times the classifiers trained
with each feature category predicted the positive class accurately. The
precision and recall of classifiers trained with each feature category are
provided in Fig. 7.

In terms of precision, Kinematic features are superior to the rest.
SVM classifier trained with the kinematic feature recorded a precision
of 80.8%. It means the false positive predictions are fewer. However,
the recall value of SVM trained with kinematic features is 60.1%. The
maximum recall obtained with kinematic features is 71.3%. Although
the accuracy and precision were good, the low recall value indicates
that the kinematic features are not very significant as the temporal
features in this problem. Because the proposed solution is for prelimi-
nary diagnosis and false negatives should be reduced. In this context,
temporal features are better and achieved a recall value of 78.8%
with AdaBoost classifiers. And further, the performance of each feature
category varies with each classifier. It can be due to the inductive
bias and assumption of the machine learning classifiers considered
for the experiment. Based on the analyses, we can conclude that the
more significant features for distinguishing the handwritten data are
temporal, kinematic, and the rest of the feature categories, respectively.

4. Discussion

The proposed work focused on developing machine-learning meth-
ods to build preliminary dysgraphia diagnosis systems for children. And
the main aim of the work was to develop handwritten classification
methods or machine learning algorithms to distinguish the normally
developing handwriting and dysgraphia handwriting with fewer fea-
tures than the state-of-the-art methods. To an extent, the proposed
method has achieved the aim of handwriting classification with fewer
features (85% lesser compared to the state-of-the-art method). Even
though the number of features is less, one of the proposed methods
(AdaBoost classifier trained with 175 features) outperformed the state-
of-the-art with a classification accuracy of 80.8%. Moreover, a feature
selection approach based on the XGBoost algorithm is implemented
to reduce the number of features further. This approach generated 36
relevant features. The accuracy of machine learning classifiers trained
with 36 relevant features is not good enough compared to those trained
with 175 features. Although the proposed method has outperformed
the state-of-the-art method, the achieved classification accuracy is not
excellent considering the task is a binary classification problem. We
can point out multiple underlying reasons for not achieving excellent
classification performance in the evaluated dataset.

First and foremost, the sample size in the dataset is small. The
dataset consists of handwriting samples collected from 120 children.
It is strenuous to achieve ideal classification performance in machine
learning algorithms when trained with a limited number of samples.
Furthermore, training the machine learning models with a limited num-
ber of samples can result in overfitting. The generalization ability of
the machine learning model will be affected by the lack of sample size
in the dataset. The number of testing samples in each cross-validation
fold is much less (about 12). Even if 2 or 3 predictions became wrong
among 12, the accuracy would be between 83% and 75%. The age
range of students who participated in the dataset collection is 8 to 15,
relatively wide. It means the dataset consists of handwriting data from
students of ages ranging from 8–15. Since handwriting is a continuously
developing and altering skill during these years, the manifestation
of abnormality may differ with age. Also, the relevant features for
discrimination may vary with age. The subsets of the dataset (based
on different age ranges) need to be analyzed to study the relationship
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between age and relevant features. But the number of total samples is
comparatively less (only 120) in the available dataset. So the analysis
of the subset of data is not practically possible, or it is insufficient to
represent the actual population.

Apart from proposing machine learning algorithms to distinguish
the normally developing handwriting and dysgraphia handwriting with
fewer features, multiple contributions are made in this work. The
performance of four machine learning algorithms (KNN, SVM, Random
forest, and AdaBoost) is analyzed for classifying normal and dysgraphia
writing. KNN is a simple but effective method that has been prevalently
used for various classification and regression problems in the literature.
But in the dysgraphia diagnosis problem, the performance of the KNN
was abysmal. SVM is a complex algorithm compared to KNN, and the
possible choice of different kernels for data analysis makes it popular
for many machine-learning tasks. SVM has generated decent classifi-
cation performance. Even though our selection of machine learning
algorithms is somewhat random and based on our previous experience,
we managed to pick the algorithms with different outlying classifi-
cation principles. So, after choosing a simple and complex machine
learning algorithm(KNN and SVM), we went behind ensemble learning
methods, Random forest, and AdaBoost. Although the basic learner
in both ensemble learning methods is the decision tree algorithm,
each ensembling approach is entirely different. AdaBoost has displayed
the best performance among the four machine-learning classification
algorithms. It shows the effectiveness of the boosting-based ensemble
learning method for the dysgraphia diagnosis problem.

Furthermore, this work analyzed the On-Surface features’ effective-
ness for classifying handwritten data. The obtained results showed that
the On-Surface features alone are insufficient for effectively distinguish-
ing normal and dysgraphia writing. Combining In-Air features with
On-Surface features has significantly improved the classification perfor-
mance. One of the crucial attributes/subfeatures of the In-Air feature
set is On-Air time. The On-Air time feature considers the statistical
values of idol time that the subject has taken after finishing a segment
to starting a new segment. This time can be more in the case of students
with dysgraphia. Since there is a higher probability that they require
more time to think or they may be confused about writing the next
segment. Moreover, different characteristics of handwriting (kinemat-
ics, dynamics, temporal and spatial) during On-Surface activity and
In-Air activity are analyzed in this work. Observed results indicated
that the temporal and kinematics attributes of handwriting have more
significance in distinguishing normal and dysgraphia handwriting.

The main aim of the automated dysgraphia diagnosis system is to
replace the time-consuming manual preliminary analysis conducted by
the occupational therapist and other trained professionals. Psycholo-
gists or occupational therapists can utilize this system to diagnose the
existence of dysgraphia in children within 5 to 10 min. Moreover,
they can also benefit from the diagnosis system throughout treating
subjects with dysgraphia. Combining the preliminary diagnosis system
with psychological analysis can introduce more intelligent and effective
treatment procedures. As part of a tracking system that uses both
the psychological approach and machine learning systems, treatment
can be considered by analyzing the handwriting attributes and their
improvement, as shown in Fig. 8. By exploring what treatment can
be helpful to improve the characteristics/attributes (On-Surface and
In-Air) that are explored in the research, such artificial intelligence
systems can assist psychologists in designing and obtaining a better
treatment system. The analysis provided in the experiment and results
section shows that temporal and kinematic attributes can distinguish
dysgraphia vs. normal cases better. It means the temporal and kine-
matic aspects of students with dysgraphia are very distinguishable
from normally developing students. Quickly identifying these aspects
affecting handwriting quality enables the psychologist to design a new
treatment strategy by focusing on the specific attributes and their

gradual improvements.
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Fig. 8. Overview of the proposed system to assist psychologists in the treatment process.
The proposed work in this article and most of the literature con-
sidered dysgraphia diagnosis as a binary classification problem. These
systems can identify whether a student has dysgraphia or not. The
severity of dysgraphia may differ from person to person. Grading
the severity of dysgraphia is more challenging than classifying the
handwritten data into either dysgraphia or normal class (binary classi-
fication). In that context, the scope of more intelligent systems can be
considered in the future that grade the severity of dysgraphia. Grading
the levels or severity of dysgraphia using automated systems can assist
the psychologist in preliminary diagnosis and further treatment after
diagnosing the dysgraphia. Although the dysgraphia diagnosis sys-
tems utilize supervised machine learning algorithms for classification,
grading levels or severity of dysgraphia can be achieved by using un-
supervised algorithms such as traditional k means clustering algorithm
or more advanced clustering algorithms [32–34]. It eliminates the need
for further labeling the ground truth of the data with different severity
levels.
12
Most of the works in the literature have used online handwritten
data for dysgraphia diagnosis compared to the very few that have
used handwriting images. Different features can be extracted from the
images (offline data) compared to online handwritten data. Future
works can be focused on creating a public image handwritten dataset
and analysis of the same for diagnosis of dysgraphia. Also, the online
handwritten data captured using digitizing tablets can be converted to
offline image data. In that context, combining online and offline data
can be considered to enhance classification performance. The dataset
used in this work is the only publicly available handwritten dataset
available for the dysgraphia diagnosis problem in children. But the scal-
ability of the prediction algorithms trained with this dataset is limited
since this handwritten dataset is available in Slovak orthography. And
Slovak alphabet uses several letters in addition to the 26 letters used
in the English alphabet. So the prediction algorithms trained with this
dataset can only be used for diagnosis in students who know Slovak or
who are native Slovak speakers. This limitation yields the scope for a
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global public dataset (an ensemble of multiple orthographies) for the
dysgraphia diagnosis problem.

5. Conclusion

This work focuses on the development of machine learning-based
methods for the diagnosis of dysgraphia. The proposed approach uti-
lizes handwritten data from the digitized tablet and its kinematic,
temporal, dynamic, and spatial characteristics to distinguish normal
and abnormal handwriting. The proposed method achieved a state-of-
the-art classification performance and a 1.3% increment in accuracy
compared to the literature. Our approach is superior to the methods
in the literature in terms of accuracy. Further, our method reduced
the computational overhead by decreasing the number of features used
for training the classifiers. Moreover, this work deeply investigated the
significance of different feature categories for handwriting analysis-
based dysgraphia diagnosis problem. The observed result indicates that
the handwritten data’s temporal and kinematic characteristics are more
significant than others (dynamic, spatial), etc.
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