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The ransomware threat has loomed over our digital life since 1989. Criminals use this type of cyber at- 

tack to lock or encrypt victims’ data, often coercing them to pay exorbitant amounts in ransom. The 

damage ransomware causes ranges from monetary losses paid for ransom at best to endangering human 

lives. Cryptographic ransomware, where attackers encrypt the victim’s data, stands as the predominant 

ransomware variant. The primary characteristics of these attacks have remained the same since the first 

ransomware attack. For this reason, we consider this a key factor differentiating ransomware from other 

cyber attacks, making it vital in tackling the threat of cryptographic ransomware. This paper proposes 

a cyber kill chain that describes the modern crypto-ransomware attack. The survey focuses on the En- 

cryption phase as described in our proposed cyber kill chain and its detection techniques. We identify 

three main methods used in detecting encryption-related activities by ransomware, namely API and Sys- 

tem calls, I/O monitoring, and file system activities monitoring. Machine learning (ML) is a tool used in 

all three identified methodologies, and some of the issues within the ML domain related to this survey 

are also covered as part of their respective methodologies. The survey of selected proposals is conducted 

through the prism of those three methodologies, showcasing the importance of detecting ransomware 

during pre-encryption and encryption activities and the windows of opportunity to do so. We also ex- 

amine commercial crypto-ransomware protection and detection offerings and show the gap between aca- 

demic research and commercial applications. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The incursion of digital and online lifestyles in almost every 

egment of our lives has brought multiple consequences related to 

ependence on integrity and availability of information in business 

nd personal matters. One of those consequences is our inability 

o live, work or even receive life-dependent services like medi- 

al treatment or water and electricity supply if related digital re- 

ources and data are unavailable or compromised. Cybercrimes are 

eeing significant growth across all geographies, with ransomware 

eing the leading type of attack ( Singleton et al., 2021 ). Ran- 

omware is a type of attack where malicious actors utilize multiple 

actics and techniques to gain the capability to lock or encrypt a 

ictim’s data. This attack usually results in an ultimatum where the 

ictim-user either pays for unlocking or decryption keys or faces 

osing all their data. Due to the already mentioned dependency on 

igital lifestyle, data is constantly growing in importance, creating 

n environment for a very lucrative business for ransomware gangs 

ince the first recorded attack in 1989. While crypto-ransomware 
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s a more common type of attack and lock-ransomware is in the 

ecay ( Berrueta et al., 2019 ), the latter is still relevant, especially 

n the mobile platforms ( Su et al., 2018 ). According to a Fortinet 

urvey, ransomware grew by 1070% across different industry ver- 

icals between July 2020 and June 2021 ( Fortinet, 2021 ). Critical 

ervices like the health sector, especially in the age of the COVID- 

9 pandemic, have been particularly vulnerable and targeted—the 

.S. Health and Human Services Department has tracked 82 ran- 

omware attacks in the first five months of 2021. The average cost 

f the incident in the U.S. health sector was around USD1.27 mil- 

ion, even though only USD131,0 0 0 was the average cost of the ran- 

omware payment ( U.S. Department of Health and Human Services 

ybersecurity Program, 2021 ). The rest of the cost was distributed 

cross lost business costs, including increased customer turnover, 

ost revenue due to system downtime, and the increasing cost 

f acquiring new business due to diminished reputation. Depend- 

ng on the industry and geography, in other sectors worldwide, 

he ransom ranged between USD7.75 million and USD0.37 million, 

aking the average cost of ransomware incidents in 2021 USD1.85 

illion ( Sophos, 2021 ). The ransomware threat goes even further, 

ith the Conti ransomware group announcing their support for the 

ussian invasion of Ukraine at the end of February 2022 and ac- 
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Fig. 1. Percentage of attack types per industry ( Singleton et al., 2021 ). 
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ive participation in cyber warfare utilizing their capabilities and 

he available access to various assets worldwide ( Russia-based ran- 

omware group Conti issues warning to Kremlin foes | Reuters ). 

Despite all the reporting and high-profile cases of ransomware 

ttacks, they continue to flourish and grow in sophistication and 

ffectiveness. The reason for this probably lies in the fact that, ac- 

ording to Fortinet’s survey in 2021, 96% of companies that were 

lready victims of ransomware gangs responded that they were 

oderately ready for the ransomware attack, even though 16% of 

hem suffered from three or more attacks ( Fortinet, 2021 ). 

As shown in Fig. 1 , in industries like Professional Services, Gov- 

rnment, and Healthcare, the percentage of ransomware attacks as 

 portion of all cyber attacks is 35%, 33%, and 28%, respectively, 

aking this type of attack by far the most common attack overall 

 Singleton et al., 2021 ). 

Nevertheless, another trend was noticed in Sophos’ research 

n the state of ransomware. The malicious ransomware actors 

re moving away from generic and automated large-scale attacks 

o more targeted attacks executed with precision and persistence 

 Sophos, 2021 ). A review of the available data on modes of ran-

omware groups’ operation points to apparent similarities with the 

dvanced Persistent Threat modus operandi. This observation par- 

ially explains the increase in the difficulty of detecting and de- 

ending against these attacks compared to defending against mal- 

are like common viruses, trojans, or worms. 

In the targeted crypto-ransomware attack, the malicious ac- 

or uses various techniques to gain the capability to encrypt the 

ictim’s data. Such techniques evolve, becoming more focused 

 Sophos, 2021 ) and using precise no-noise attacks on the networks 

 Wang et al., 2018 ). Despite the shifting of techniques and some 

actics, cryptographic ransomware carries one differentiating char- 

cteristic that separates it from malware: the capability and goal of 

ncrypting victims’ data so that only malicious actors can decrypt 

t upon the ransom payment. 

In this survey, existing proposals of pre-encryption and encryp- 

ion detection techniques were reviewed to show their importance 

n countering ransomware and the possibility of being the ulti- 

ate solution for eliminating this threat. Detecting and countering 

rypto-ransomware has long been at the forefront of scholarly re- 

earch. With the advent of the COVID-19 pandemic, motivation for 

ansomware attacks increased, and research interest in this topic 

as grown to an ever-larger extent. Most pre-encryption and en- 
2 
ryption detection solutions operate in a host-based environment 

ocusing on file system and kernel activity monitoring. However, 

ome detection solutions focus on network communication inside 

ocal target networks and communication with command and con- 

rol servers. The latter algorithms do not necessarily utilize net- 

ork information to detect DNS-based indicators of compromise 

IOC) but also deep packet inspection to detect cryptographic key 

elivery and exfiltration. The comprehensive set of algorithms and 

echniques to detect pre-encryption and encryption varies from 

imple decoys placement and file integrity monitoring to complex 

achine learning (ML) models trained on monitoring systems’ be- 

avior during encryption and encryption-related operations, such 

s key generation. The survey also focuses on encryption-related 

etection in crypto-ransomware, and any further references to ran- 

omware are related to the encryption of victims’ data by malicious 

ctors with the purpose of extortion. 

After introducing the topic of cryptographic ransomware, this 

aper covers related survey-like works available at the time of 

riting in the section 1.1 Related Work . Further, we propose a cy- 

er kill chain to describe cryptographic ransomware attacks and 

iscuss each of the defined phases in the kill chain, describing the 

ehavior and methodology of attacks. In the survey part of the pa- 

er, we review research on the detection of activities related to the 

ncryption phase as described in the discussion of the proposed 

yber kill chain. We also provide a brief survey of commercial so- 

utions and usage of encryption detection outside of the crypto- 

ansomware use case. 

.1. Related work 

Several surveys related to ransomware have been published, 

rimarily focusing on defining the characteristics of ransomware 

ttacks. However, there were no previous attempts to build a sur- 

ey of detection techniques related to encryption as a hallmark of 

ansomware attacks. 

Recent literature on ransomware threats is largely focused on 

hree main streams. The first stream revolves around identifying 

ecent ransomware threats based on static and dynamic analysis 

eveloped by the scientific community. The second stream aims to 

lassify ransomware threats without necessarily focusing on detec- 

ion algorithms. Finally, the third stream engages with holistic ap- 
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roaches to ransomware techniques and tactics. The following will 

riefly present these studies. 

With regard to the first stream, Moussaileb et al. (2021) , in their 

urvey of ransomware threats to Windows operating systems, have 

nified all detection techniques based on static and dynamic anal- 

sis developed by the scientific community since 2014. This sur- 

ey treats both crypto and locking ransomware types and, despite 

he title and general topic of the paper, covers some Android ran- 

omware cases as well. The existing surveys focus on crypto ran- 

omware strictly ( Berrueta et al., 2019 ), noting the difficulty of sur- 

eying this novel topic since data from various papers is impos- 

ible to compare due to different metrics and approaches to ran- 

omware. 

Regarding studies focusing on the second stream, in 

n earlier attempt to survey research on ransomware, Al- 

imy et al. (2018) provided a comprehensive classification of 

ansomware attacks but with few details on detection algorithms. 

lso worth mentioning is a paper by Eze et al. (2018) , that at-

empted a holistic examination of ransomware techniques and 

actics in a very general and brief manner. Other survey-like 

apers focus on the evolution of the ransomware phenomenon 

 Zavarsky and Lindskog, 2016 ) or actual empirical data about 

eal-world attacks ( Connolly et al., 2020 ). In their survey of ran- 

omware detection solutions, Herrera Silva et al. (2019) focus on 

dentifying and listing all the detection and prevention parameters 

dentified in the surveyed research, and they consider situational 

wareness concerning the same. 

About the third stream, which takes more innovative ap- 

roaches, more comprehensive surveys ( Oz et al., 2022 ) cover all 

vailable varieties of platforms targeted by ransomware and con- 

ider the historical context and chronology of ransomware de- 

elopment. Other similar works ( Dargahi et al., 2019 ) take the 

ystematization of ransomware features’ taxonomy as a center of 

heir proposal, and, similar to ours, the authors propose a cy- 

er kill chain that attempts to describe and encompass all ran- 

omware behavior observed so far. Also, some proposals focus on 

ertain operating systems like Android ( Ameer et al., 2018 ), Win- 

ows ( Moussaileb et al., 2021 ; Reshmi, 2021 ; Naseer et al., 2020 ),

r methods and tools in detection like a machine and deep learn- 

ng and big data ( Urooj et al., 2022 ; Bello et al., 2021 ). Finally, some

roposals seek to build benchmarks for researchers who want to 

ntroduce more innovative approaches in ransomware detection 

echanisms ( Maigida et al., 2019 ). 

Cryptographic ransomware detection has interested the aca- 

emic community and the cybersecurity industry. Methodologies 

nd techniques for detection use static and dynamic analysis 

f components and actions belonging to the cryptographic ran- 

omware lifecycle phases. Some focus on local user machines, user 

nd program activities, and the state of files in memory and file 

ystems. Others look at the network indicators of ransomware 

resence, ranging from detecting single ransomware based on its 

ignature to complex heuristic techniques and machine learning al- 

orithms looking at multiple stages of the ransomware lifecycle. 

Digging deeper into the available literature, it is noticeable that 

nly some research papers focus on the issue of encryption in 

rypto-ransomware. Those usually concentrate on machine learn- 

ng algorithms ( Kok et al., 2020a ) or methods like frequency of 

ncryption estimation ( Mülders, 2017 ). Furthermore, approaches 

ocusing on the state of files in the file system ( Jethva et al.,

020 ; Jung and Won, 2018 ), monitoring of the hardware perfor- 

ance ( Dimov and Tsonev, 2020 ), and even the energy consump- 

ion ( Azmoodeh et al., 2018 ) show promising results in detecting 

ncryption. 

This paper aims to survey contributions to the research of en- 

ryption detection in ransomware and techniques valuable for de- 

ecting the ransomware Encryption phase. The analysis does not 
3 
mploy first-hand information like in some other more general sur- 

eys on the crypto-ransomware ( Berrueta et al., 2019 ). Instead, it 

ocuses on results in other scientific and industry-based proposi- 

ions with a strong focus on encryption detection. The outline of 

he contributions of this paper relative to the recent ransomware 

urveys can be summarized as follows: 

- Compared to other survey papers in the field, this survey pro- 

vides a deeper dive into the detection of encryption by com- 

partmentalizing the detection of encryption techniques and 

treating them as independent cases, even if they are part of a 

hybrid solution. 

- We identify a widening gap between richly-diverse academic 

literature on the detection of encryption techniques on the one 

hand and commercial implementations in market-leading solu- 

tions on the other. 

- We provide an overview of some of the key challenges and, 

in our view, misconceptions when approaching the topic of 

crypto-ransomware. 

- We present the need for a better organized cyber kill chain that 

describes the modern crypto-ransomware attack. 

- We propose a needs-based, field-informed contemporary cyber 

kill chain. 

For completeness, an apt description and classification of cryp- 

ographic ransomware attacks in their methodologies and phases 

ill be presented with a brief classification of detection tech- 

iques. 

. On crypto-ransomware behavior and methodology 

The crypto-ransomware attack is characterized by a specific ac- 

ion of encrypting victims’ data with the intention to extort finan- 

ial or other benefits as a ransom for decryption. Researchers have 

bserved distinct actions that mark noticeable separate phases of a 

ansomware attack ( Moussaileb et al., 2021 ; Berrueta et al., 2019 ; 

l-rimy et al., 2018 ; Eze et al., 2018 ). After a careful examination

f different proposals for ransomware-specific kill chains, as well 

s the growing tendency of ransomware groups to carefully choose 

he target and emulate Advanced Persistent Threat ( Sophos, 2021 ), 

e synthesized our findings and, as a result, identified four dis- 

inct phases of a crypto-ransomware attack. Our proposal for a kill 

hain is shown in Fig. 2 . 

.1. Phases of the attack 

There are many other surveys of ransomware used kill chains 

ith different numbers and scopes of phases. We propose a kill 

hain with four distinct steps or phases for a ransomware attack. 

he kill chain, presented in Fig. 2 , was found to be the best fit to

ocus on detecting encryption as a defining characteristic of cryp- 

ographic ransomware attacks. The following section will explain 

n detail the essential characteristics of each of the four phases 

f our kill chain, namely Initial compromise, Establishing foothold, 

ncryption, and Extortion, to present ransomware’s lifecycle and 

mphasize the importance of the Encryption phase. 

.1.1. Initial compromise 

Initial compromise marks the phase in which a ransomware 

ttack compromises the first computer. Various methods for de- 

ivering and executing initial compromise include phishing, spear- 

hishing, corrupt web pages, and actual security bugs and system 

isconfigurations (vulnerabilities). Fig. 3 shows the most common 

ethods of initial compromise based on original research by the 

uthors, covering the years between 2013 and 2021. 

As presented in Fig. 3 , phishing is the most common method for 

nitial compromise, often combined with exploiting vulnerabilities 

r corrupted websites. 
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Fig. 2. Ransomware kill chain. 

Fig. 3. Initial compromise attack vectors. 
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Spear-phishing is rare, but that could result from many re- 

earchers not focusing on segregating spam (unsolicited emails), 

hishing, and spear-phishing. 

Due to non-standardized terminology describing the initial 

ompromise techniques, applying the same unique valuation across 

ll sources takes a lot of work. The result is that some ransomware 

ttacks fall into more than one category. However, for the sake of 

larity, we placed such ransomware attacks into the category cor- 

esponding to its most defining characteristic. 

.1.2. Establishing foothold 

In most cases, after the initial compromise, the attacker at- 

empts to establish a permanent foothold in the compromised sys- 

em and move laterally or otherwise. The activity usually, but not 

ecessarily, starts with connecting to command and control (C2) 

ervers. C2 is an Internet host or entire infrastructure built to 

ontrol ransomware’s behavior, issuing commands, generating, dis- 

ributing, and/or storing encryption keys, and collecting informa- 

ion about the ransomware victim. 

Ransomware attacks that do not utilize C2 reduce detection sur- 

ace to the host detection capabilities only, entirely avoiding net- 

ork detection measures that focus on communication detection 

etween the initial intrusion code and C2 ( Berrueta et al., 2019 ). 

f this type of ransomware propagates and establishes a foothold 

n the manner of a worm, then network controls can detect it 

 Alotaibi and Vassilakis, 2021 ). Notable ransomware attacks that 

o not use C2 are BadRabbit ( Alotaibi and Vassilakis, 2021 ), CT- 

Locker ( Upadhyaya and Jain, 2016 ), Bart ( Labs, 2017a ), KillDisk 

 The rise of TeleBots, 2016 ), Patcher ( New crypto–ransomware hits 
4 
acOS, 2017 ), Revenge ( Revenge Ransomware, a CryptoMix Vari- 

nt, Being Distributed by RIG Exploit Kit ), Spora ( Lemmou et al., 

021 ), BTCWare ( Wood and Eze, 2020 ), Crysis ( Wood and 

ze, 2020 ), NotPetya ( NotPetya Ransomware Attack [Technical 

nalysis], 2017 ), GlobeImposter ( Dargahi et al., 2019 ), Sage2.0 

 Sage 2.0 Ransomware ), Scarab ( Lemmou et al., 2021 ), LockerGoga 

 Adamov et al., 2019 ), Jigsaw ( Berrueta et al., 2019 ), Ryuk ( A Tar-

eted Campaign Break-Down - Ryuk Ransomware, 2018 ), and Zeoti- 

us 2.0 ( Walter ). 

Ransomware attacks that use C2 to establish control over 

ompromised hosts and further direct actions use three dif- 

erent approaches such as C2 server static IP address, static 

NS domains for C2 servers, and dynamically generated domain 

ames. With static C2 server IP addresses, the IPs to which 

ansomware attempts to connect in this attack phase are al- 

eady hard encoded within attack tools and files downloaded in 

revious stages. In a recent example, the ransomware dubbed 

aze was widely distributed in Italy during 2020 using the 

ist of static IPs to connect to C2 servers and share the infor- 

ation about the victim host immediately after the encryption 

 Ransomware Maze, 2020 ). Unlike Maze ransomware, WannaCry 

sed static hard-encoded DNS domains to access C2 servers in- 

tead of IP addresses. Incidentally, another static DNS domain, 

uqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com, was hard-coded 

nto WannaCry. Subsequently, the ransomware researchers found 

he domain name to be a kill-switch for WannaCry propaga- 

ion ( Akbanov et al., 2019 ). Finally, dynamically generated domain 

ames characterize ransomware families that aim to make both 

tatic binary analysis and network detection difficult. Examples like 
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Fig. 4. Usage of encryption algorithms by major ransomware families 1989 - 2021 
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ocky and TeslaCrypt ransomware ( Berrueta et al., 2019 ) utilize dy- 

amic generation algorithms (DGA) to create domain names dy- 

amically. DGA’s purpose is to make it difficult for defenders to 

iscover and block C2 servers’ names and/or IP addresses. In order 

o keep its activity hard to detect and yet avoid total randomness, 

he DGA is using some of the following building elements: 

- Seed, which can be a word(s) and/or number(s), is a building 

element introduced by ransomware DGA writers, and it can be 

changed to segregate C2 domain names between different ver- 

sions or groups of victims. 

- Time-based is the element that changes dynamically with time. 

It does not need to be necessarily influenced by time or date, 

and some other event can trigger it; the only condition is that 

it changes over a period of time. 

- Top-level domains (TLDs) are the final part of DGA-created do- 

main names. The first two create the body of a domain name 

by being combined, and then a predetermined TLD is added. 

TLDs like “.xyz,” “.top,” and “.bid” are very popular when creat- 

ing DGA ( Arntz, 2016 ). 

Ransomware C2 servers’ communication plays a prominent role 

n many proposed ransomware detection mechanisms that detect 

2 IPs and domain names in the ransomware tools and network 

raffic. These can be used in activities from deny-listing all the 

ay to detecting DGA-created domain names in DNS queries to 

e used with DNS sinkholes ( Dynamic Resolution: Domain Gen- 

ration Algorithms, Sub-technique T1568.002 - Enterprise | MITRE 

TT&CK®). 

.1.3. Encryption 

The Encryption phase of a ransomware attack includes the fol- 

owing phases: encryption key generation, obtaining a public key 

rom the C2 server, searching file system, encryption, exfiltration 

f data with specific extensions or in particular folders, and dele- 

ion of possible backups like shadow volumes. 

Different ransomware families use various encryption schemes 

o encrypt their victims’ data. Whether the attacker chooses to 

se symmetric, asymmetric, or a combination of both encryptions 

irectly influences cryptographic key generation and management 

uring the Encryption phase of the attack. Table 1 names promi- 

ent ransomware families since 1989 and their choice of encryp- 

ion. The distribution of cryptographic methods with symmetric 

nd a combination of symmetric and asymmetric are most com- 

only used, while asymmetric alone is used much less. While re- 

earching sources for information contained in Table 1 , the au- 

hors have compiled data from these sources to create Fig. 4 , 

hich shows the distribution of various encryption algorithms’ us- 

ge from the first ransomware attack in 1989 to the end of 2021. 

n the case of exclusive symmetric encryption use, key generation 
5 
s done by either using local operating system cryptographic capa- 

ilities or a custom implementation of cryptographic algorithms. 

In Microsoft Windows, ransomware uses the function BCrypt- 

enRandom Cryptography API: Next Generation (CNG), as exem- 

lified by Noberus ransomware ( Noberus ) or CryptGenRandom - 

aze ransomware ( Ransomware Maze, 2020 ). In Apple’s macOS 

nd IOS, the SecRandom function carries similar capabilities to 

ryptGenRandom and Linux, along with several other UNIX-like 

perating systems that implement getrandom as a system call. 

ansomware for the latter operating systems uses open source li- 

raries like mbedtls - examples seen in 

KeRanger ( New OS X Ransomware KeRanger Infected Transmis- 

ion BitTorrent Client Installer, 2016 ) and RansomEXX (RansomEXX 

rojan attacks Linux systems, n.d.) ransomware re. The secret key 

s sometimes protected when utilizing an asymmetric encryption 

cheme in remote secure storage. In the case of the local gen- 

ration of keypair, the secret key is encrypted with another C2- 

rovided public key. The public key is either locally generated with 

 secret key, supplied by a C2 server, or both. Ransomware like Cer- 

er used C2 supplied RSA public key to encrypt locally generated 

SA secret key that was used to encrypt locally generated RC4 key 

sed for victim’s files encryption ( Sala ). On the other hand, Cryp- 

oWall ransomware would not start encryption unless a 2048-bit 

SA key is received from C2 ( Cabaj et al., 2015 ). 

In most cases, successful ransomware attacks combine sym- 

etric ciphers like Rijndael, ChaCha/Salsa20, or RC4 together with 

symmetric ciphers like RSA or ECC. This is primarily due to the 

peed of encryption advantage that symmetric cipher provides 

ver asymmetric encryption when encrypting a large volume of 

ata. In scenarios where the secret key remains on C2, asym- 

etric encryption is a good option to encrypt the symmetric key. 

his way, the victim’s responders to that attack would not be able 

o use it in decryption before paying the ransom. The speed is 

lso a factor in locating the files to be encrypted by ransomware. 

ome attackers infect all drives alphabetically (in Windows-based 

ttacks), while some limit infection to specific user folders like 

esktop or Documents. Most sophisticated ransomware provides 

hitelist exclusion of specific system folders and system config- 

ration files to maintain the operating system’s functionality after 

he encryption ( Lemmou et al., 2021 ). 

During the actual encryption, ransomware applies four tactics: 

eading, encrypting in memory, writing to the file system, and re- 

oving original files. While reading a file, ransomware like Cryp- 

oWall tries to read files in one read, reducing the number of 

ead/write operations ( Lemmou et al., 2021 ). On the other hand, 

ansomware can use fixed block lengths for reading and writing 

les during encryption. WannaCry or LockerGoga ransomware read 

les in 256 kb and 64 kb blocks, respectively ( Loman, 2019 ). The

hird approach to encryption is when ransomware performs a read 

f the fixed buffer from the beginning or from the end of the file 

wice before committing a write to the file system. This behavior 

as been observed in ransomware Spora which uses two read oper- 

tions checking for ransomware added specified values to the con- 

ent of each file before encryption from the end to establish if the 

le is already encrypted ( Lemmou et al., 2021 ). 

Finally, ransomware can write directly to the original file and 

hen optionally rename it during the destruction of the original 

les. Another way of destruction is by saving encrypted files in the 

ew location and then deleting, moving, or overwriting the orig- 

nal. Also, the third method includes moving the original file to 

ome temporary location, overwriting it with encrypted data, and 

hen moving it back to its original place in the file system. 

RIPlace is a new technique of replacing the original files with 

ncrypted files that have been able to bypass all of the known 

rotection systems for the Windows family of operating systems 

 CISOMAG, 2019 ). Found in ransomware like Thanos ( Walter ), the 
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Table 1 

Major ransomware families’ usage of encryption schemes during the Encryption phase of the attack in chronological order 1989 - 2021. 

Encryption scheme Ransomware families in chronological order 

Symmetric encryption AIDS trojan (PC Cyborg) ( Case Study ), GPCode ( Emm, 2008 ), Cryzip ( Cryzip Ransomware Trojan Analysis ), MayArchive 

( MayArchive.B Description | F-Secure Labs ), SympLocker ( Ameer et al., 2018 ), TeslaCrypt ( Lemmou and E. M. Souidi, 2018 ), 

Tox ( Meet “Tox,” 2015 ), TorrentLocker ( Wyke and Ajjan, 2015 ), DMALocker ( Raheem et al., 2021 ), Xorist ( Reshmi, 2021 ), 

Jigsaw ( Conti et al., 2018 ), Cerber ( Pletinckx et al., 2018 ), CryptXXX ( Berrueta et al., 2019 ), Enigma ( Berrueta et al., 2019 ), 

Bart ( Reshmi, 2021 ), Fsociety ( Berrueta et al., 2019 ), Raa ( Berrueta et al., 2019 ), Satan ( Reshmi, 2021 ), Spora ( Labs, 2017b ), 

KillDisk(Linux) ( Conti et al., 2018 ), CryptoShadow ( Reshmi, 2021 ), DoubleLocker ( Lipovský et al., 2018 ), CryptoShield 

( Berrueta et al., 2019 ), Patcher ( Ransomware Recap ) , Revenge ( GoldSparrow, 2017 ), BTCWare ( Wood and Eze, 2020 ), 

Erebus(Win) ( Ransomware Recap ), WannaLocker ( Hu et al., 2020 ), Gibon ( GIBON Ransomware ), Locker ( Berrueta et al., 

2019 ), Retwyware ( Reshmi, 2021 ), Scarab ( Berrueta et al., 2019 ), Netwalk ( Take a “NetWalk” on the Wild Side, 2020 ), 

Try2Cry ( Try2Cry Ransomware - IBM X-Force Collection ), EKING ( Zhang, 2020 ), Conti ( Conti Ransomware ), LV 

( LV Ransomware ), 54BB47H/Rollcast/Arcane ( Kitten.gif: Meet the Sabbath Ransomware Affiliate Program, Again | Mandiant ) 

Asymmetric encryption Archievus ( Case Study ), CryptoDefense ( Herzog and Balmas, 2016 ), CryptoWall ( Cabaj et al., 2015 ), VirLock (crypto version) 

( Zavarsky and Lindskog, 2016 ), CryptVault ( Berrueta et al., 2019 ), Linux.Encoder ( Berrueta et al., 2019 ), Chimera 

( Conti et al., 2018 ), SamSam ( Berrueta et al., 2019 ), GlobeImposter ( Berrueta et al., 2019 ), Hermes2.1 ( Shevchenko et al., 

2017 ), Katyusha ( Reshmi, 2021 ), Thanos ( Thanos Ransomware, 2020 ), Hive ( Walter ), N3tw0rm ( N3TW0RM ransomware 

emerges in wave of cyberattacks in Israel ) 

Combination of symmetric 

and asymmetric 

encryption 

GPCode ( Blackmailer ), CryptoLocker ( Hansberry et al., 2014 ), CTBLocker ( Weckstén et al., 2016 ), DMALocker4.0 

( Raheem et al., 2021 ), Locky ( Almashhadani et al., 2019 ), Petya ( Aidan et al., 2017 ), KeRanger ( Conti et al., 2018 ) , Anubis 

( GoldSparrow, 2016 ) , Matrix ( Threat Assessment, 2021 ), KillDisk(Win) ( Conti et al., 2018 ), Sage ( Labs, 2017c ), Erebus(Linux) 

( Erebus Resurfaces as Linux Ransomware, 2017 ), WannaCry ( Chen and Bridges, 2017 ), Crysis ( Crysis Ransomware Gaining 

Foothold, Sets Sights to Take Over TeslaCrypt - Wiadomo ́sci bezpiecze ́nstwa ), NotPetya ( NotPetya Ransomware 

Attack [Technical Analysis], 2017 ), BadRabbit ( Alotaibi and Vassilakis, 2021 ), GandCrab ( Usharani et al., 2021 ), Ryuk 

( Umar et al., 2021 ), LockerGoga ( Adamov et al., 2019 ), PewCrypt ( Jegede et al., 2022 ), Zeppelin ( blogs.blackberry.com ), PXJ 

(PXJ Ransomware Campaign Identified by X-Force IRIS, 2020 ), REvil ( Analyzing the REvil Ransomware Attack, 2021 ), Maze 

( Ransomware Maze, 2020 ), SunCrypt ( When Viruses Mutate, 2021 ), Cyrat ( Hahn, 2021 ), SMAUG ( SMAUG Ransomware ), 

Mount Locker ( Mount Locker Ransomware In The Mix - IBM X-Force Collection ), Fonix ( Walter ), Exorcist ( Velasco, 2020 ), 

Egregor ( Egregor Ransomware, Used in a String of High-Profile Attacks, Shows Connections to QakBot, 2020 ), Zeoticus2.0 

(Walter, n.d.), RansomEXX ( RansomEXX Trojan attacks Linux systems ), BlackMatter ( Updated, 2021 ), Grief ( Dark Web 

Threat Profile, 2021 ), BlackByte ( BlackByte Ransomware – Pt. 1 In-depth Analysis ), Karma ( Karma Ransomware | An 

Emerging Threat With A Hint of Nemty Pedigree - SentinelOne ) 
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IPlace utilizes IRP_MJ_SET_INFORMATION system callback in com- 

ination with the legacy DefineDosDevice function to delete origi- 

al files. At the same time, renaming is performed on both original 

nd encrypted files. 

Deletion of backup files most commonly occurs with the dele- 

ion of Windows Volume Shadow Copy using operating system 

ools or through encryption of shared drives when some sort of 

AS solution is deployed for backup purposes. 

.1.4. Extortion 

Once the files are entirely or, in some cases, partially encrypted, 

he ransomware creates a ransom note as a text or HTML file in- 

tructing the victim on what to do in order to retrieve their data. 

Payment of ransom in the extortion phase of ransomware attack 

as represented difficulty for cyber-criminals since ransomware’s 

rst appearance in 1989. The inability to remain anonymous has 

ushed early ransomware attackers to use payment means like 

remium-rate text messages or pre-paid vouchers like Paysafe 

ards ( Oz et al., 2022 ) in the times before the appearance of cryp-

ocurrency. After the introduction of BitCoin in 2009, most ran- 

omware attackers moved towards cryptocurrency ransom pay- 

ents in the Extortion phase of the attack. In 2012, locker ran- 

omware Reveton was the first Ransomware-as-a-Service (RaaS) 

nd the first ransomware to demand payment in BitCoin. Among 

ryptographic ransomware, CryptoLocker in 2013 was the most ad- 

anced and among the first to strongly emphasize payment by Bit- 

oin ( Liao et al., 2016 ). 

The section 2.1 has outlined the main characteristics of all four 

ill chain phases. We identified the most common instances of 

rypto-ransomware behavior and methodology. However, in order 

o adapt this kill chain into actionable recommendations necessary 

or the effective prevention of ransomware, the following sections 

ill introduce a novel approach where the focus in detecting ran- 

omware is concentrated on the detection of Encryption as concep- 

ualized in the previous section. 
6

. Detection of encryption 

Research in detecting ransomware in general through various 

hases of attacks has snowballed in the past several years. Focused 

esearch on cryptographic ransomware follows a general trend of 

he tremendous increase in published research; however, most sur- 

eys remain focused on all attack phases described previously in 

ection 2.1. Encryption is the defining characteristic of a crypto- 

ansomware attack. The usage of different encryption algorithms, 

s shown in Fig. 4 , choice of symmetric, asymmetric, or combina- 

ion (hybrid) of different encryption schemes, as shown in Table 1 , 

hows how cryptographic ransomware closely followed the trend 

n its evolution and how encryption itself continues to be the one 

ifferentiating characteristic that is the most obvious candidate to 

e the factor in the detection of the attack. 

When researching the phenomenon of cryptographic ran- 

omware through time, we observe that despite the evolution of 

his threat from malware to something similar to advanced persis- 

ent threat (APT), encryption remained a uniquecharacteristic that 

eparates this ransomware from other information security threats. 

he capability to encrypt without any control gives ransomware at- 

ackers the primary motivation and purpose for executing the at- 

ack. With that in mind, we surveyed and classified methodologies 

sed to detect ransomware while operating inside the Encryption 

hase of the attack. The scholarly literature on ransomware detec- 

ion largely clusters around the following three major groups: 

- API and system call monitoring-based detection 

- I/O monitoring-based detection 

- file system operations monitoring-based detection that include 

- scanning for high entropy in files and 

- monitoring deception tokens in file system-based detection. 

Machine learning (ML), even though sometimes covered as a 

eparate methodology in encryption detection, is cross-cutting the 

hree previously mentioned methodologies depending on informa- 
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Table 2 

A list of the most significant Windows API calls for crypto-ransomware detection was collected from surveyed papers. 

API Calls Description 

FindFirstChangeNotificationA Creates a change notification handle and sets up initial change notification filter conditions. Await on a notification handle 

succeeds when a change matching the filter conditions occurs in the specified directory or subtree. 

SHEmptyRecycleBinA Empties the Recycle Bin on the specified drive. 

SHFileOperation Copies, moves, renames, or deletes a file system object. 

SHBrowseForFolder Displays a dialog box that enables the user to select a Shell folder. 

SHLoadInProc Creates an instance of the specified object class from within the context of Shell’s process. 

SHGetFileInfo Retrieves information about an object in the file system, such as a file, folder, directory, or drive root. 

SHQueryRecycleBinA retrieves the Recycle Bin’s size and the number of items in it for a specified drive. 

SHPathPrepareForWriteA Checks to see if the path exists. This includes remounting mapped network drives, prompting for ejectable media to be reinserted, 

creating the paths, prompting for the media to be formatted, and providing the appropriate user interfaces, if necessary. 

SetUserFileEncryptionKey Sets the user’s current key to the specified certificate. 

EncryptFileA Encrypts a file or directory. All data streams in a file are encrypted. All new files created in an encrypted directory are encrypted. 

DecryptFileA Decrypts an encrypted file or directory. 

OpenEncryptedFileRawA Opens an encrypted file in order to backup (export) or restore (import) the file. This group of Encrypted File System (EFS) 

functions is intended to implement backup and restore functionality while maintaining files in their encrypted state. 

FileEncryptionStatusW Retrieves the encryption status of the specified file. 
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ion used as features in the dataset that the ML model is trained 

n. The usage of machine learning in ransomware detection is 

revalent in hybrid proposals that employ data from different 

roups. The same is true for detecting activities in the Encryption 

hase of the attack. While some of the proposals are included in 

he survey for their specific use and discussion of machine learning 

ssues related to the detection of ransomware pre-encryption and 

ncryption activities, often in combination with other methods, 

ategorization to each major group that was described previously 

as done based on the models’ input features. ML ransomware en- 

ryption detection includes machine learning techniques and al- 

orithms used to detect encryption and related activities by ran- 

omware attacks in hybrid and pure implementations. 

The following section presents the state-of-the-art methodolo- 

ies used to detect ransomware inside the Encryption phase of the 

ttack. 

.1. API and system calls monitoring 

Monitoring of function and system calls to detect activity re- 

ated to file encryption aims at detecting encryption at early stages. 

t this point, API functions and system calls related to encryp- 

ion operations appear in the dynamic monitoring of events in an 

perating system or static analysis of binary files. Depending on 

he operating system, the dynamic detection mechanism focuses 

n API functions or system calls, and static analysis employs a 

ore comprehensive observation for a set of function calls and 

ext strings. This method is often part of a hybrid solution for ran- 

omware detection. While proposing machine learning solutions 

or static and dynamic analysis of files suspected of being ran- 

omware, Sheen and Yadav (2018) identified ransomware’s most 

ommonly used API calls. Table 2 presents those API calls in de- 

ecting the Encryption phase of ransomware attacks with a brief 

xplanation of their purpose in the Windows operating system. 

heir solution’s performance was measured on the ML model’s 

uccess in differentiating between benign and malicious utilization 

f all defined features. In contrast, these API functions were also 

ound in other research. 

Some authors propose a detection model for ransomware using 

onitoring API calls and developing pre-encryption detection algo- 

ithms ( Yadav et al., 2021 ). Even though their paper outlines meth- 

ds and goals, it still needs to provide concrete solutions. Others 

se NLP (Natural Language Processing) using convolutional neu- 

al networks to analyze API sequences retracted from both ran- 

omware and benign processes in the secure sandbox ( Qin et al., 

020 ). Observing sequences of API calls in machine learning so- 

utions was also applied by Ahmed et al. (2020) , in their en- 
7

anced Minimum Redundancy Maximum Relevance methods, and 

he most relevant features fine-tuned from system calls were not 

ecessarily encryption-related. Similarly, Almousa et al. (2021) con- 

olidated Windows operating system API calls found in 51 col- 

ected ransomware families with common API calls in software to 

rain machine learning models to detect ransomware. In the case of 

ehnaz et al. (2018) , with their RWGuard proposal and CryptoAPI 

unction Hooking (CFHk) Module, they implement a technique of 

ntercepting CryptoAPI calls by hooking function through memory 

ddress space, shifting and mandatory JMP instructions intercepts, 

nd securely stored CryptoAPI activities. Kok et al. (2020a ) focus 

heir research on extracting API calls in various ransomware sam- 

les prior and the call of APIs containing the word ‘crypto’ while 

he sample was running in a sandbox. Their pre-encryption de- 

ection algorithm used a machine learning model trained on the 

xtracted API calls dataset. The limitation of their algorithm is 

ts reliance on Windows API calls which disable them in order 

o detect ransomware by using custom encryption functions. An- 

ther example of looking at pre-encryption API calls is the work 

f Al-Rimy et al. (2020) , who established a two-component de- 

ection system consisting of DynamicPre-encryption Boundary Def- 

nition (DPBD) and Features Extraction (FE). The former creates 

he pre-encryption boundary vector with all cryptography-related 

PIs used to create the boundary of the pre-encryption activi- 

ies that define the boundary of pre-encryption. The latter ex- 

racted all relevant pre-encryption features for use in detection. 

rabo et al. (2020) observation of API calls by DLLs in Windows in 

heir hybrid solution proposal pointed out the correlation between 

rocess behavior and ransomware activity in the pre-encryption 

nd encryption stages. A similar proposal, focusing on the Android 

perating system, came from Scalas et al. (2019) , who argued that 

sing System API observation in detection systems performs better 

han complex solutions that combine more complex ransomware 

ndicators. 

On the static observation of API functions related to encryption, 

u et al. (2017) proposed CryptoHunt deals with obfuscation in bi- 

ary files that prevents detecting Windows Cryptographic API or 

penSSL functions. While this proposal was resilient to various ob- 

uscation techniques, some crucial elements of the process, detect- 

ng custom cryptographic functions, were not described. API moni- 

oring and system calls are also widely used as input features in 

achine learning-based detection of activities in the Encryption 

hase. In their proposal, Al-Rimy et al. (2021) argue that feature 

xtraction in the early Encryption phase of a ransomware attack 

nd phases before creating a situation of too few data and high 

imensional features leads to a substantial risk of overfitting. As a 

emedy, they proposed “a novel redundancy coefficient gradual up- 
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eighting approach.” The calculation of redundancy terms of mu- 

ual information was introduced to improve the feature selection 

rocess and enhance the accuracy of the detection model. The ex- 

eriment showed better accuracy with the proposed approach by 

esting multiple classifiers in all cases. 

Similarly, Hwang et al. (2020) propose two-stage detection of 

rypto-ransomware, first building the Markov model from Win- 

ows API call sequence patterns capturing the characteristics of 

ansomware behavior and then using a Random forest classifier 

ver remaining data (registry keys operations, file system oper- 

tions, strings, file extensions, directory operations, and dropped 

le extensions) to control false-positive and false-negative rates. 

heir two-stage mixed detection model gives 97.28% overall accu- 

acy, 4.83% false-positive rate, and 1.47% false-negative rate. Also, 

ok et al. (2020b ), as an extension to their already mentioned pro- 

osal of the Pre-encryption Detection Algorithm (PEDA), proposed 

 set of conventional and unconventional metrics for PEDA’s learn- 

ng algorithm (LA) component performance. By introducing metrics 

ike Likelihood Ratio (LR), Diagnostic odds ratio (DOR), Youden’s 

ndex (J), Number needed to diagnose (NND), Number needed to 

isdiagnose (NNM), and net benefit (NB), they improved the per- 

ormance in this unique use case when compared to using only 

onventional metrics. 

Al-rimy et al. (2019) focused on pre-encryption activities detec- 

ion in their proposal for a crypto-ransomware detection model. 

hey proposed two combined approaches, the first incremental 

agging (iBagging) technique and enhanced semi-random sub- 

pace selection (ESRS), which act as an ensemble model. iBag- 

ing creates subsets depending on the observation of ransomware 

ehavior, while ESRS then creates subspaces that were used to 

rain a pool of classifiers. The best classifiers were modeled us- 

ng a grid search, and a voting system was employed. While ac- 

uracy was higher than in competing approaches for the same 

atasets, there were limitations related to feature selection in 

ifferent subspaces. Since the features were selected within one 

ubspace independently, the same feature could be selected in 

ore than one subspace. This decreases the accuracy of the 

odel. 

Although this literature is very developed and ever-growing, 

t still needs a comprehensive focus on researching the detec- 

ion of Encryption phase-related activities in the case where en- 

ryption algorithms are custom-implemented using third-party li- 

raries. The development of static analysis methods, as well as the 

iscovery of patterns in API and system calls for dynamic analy- 

is when custom encryption implementation is used, would signif- 

cantly improve the overall success of this method. 

.2. I/O (input/output) monitoring 

Monitoring I/O is another technique that monitors internal be- 

avior in an operating system. It aims to use information from 

/O requests related to memory, file system, and even network for 

he detection of ransomware encryption (and other phases). Like 

PI and system calls monitoring, this technique is often part of a 

ore comprehensive detection solution involving several different 

ethodologies and techniques. Kharaz et al. (2016) used a com- 

ination of techniques and methodologies in their proposal for a 

etection system named UNVEIL. Their monitoring of I/O estab- 

ished that regular applications could generate I/O access requests 

enerated by ransomware encryption tools. However, due to the 

ommon design where these regular applications do not block ac- 

ess to the original files, their sequence patterns of I/O operations 

iffer from ransomware. The paper also describes zero-day ran- 

omware detection by observing entropy between read and write 

perations. McIntosh et al. (2021) , as a part of the broader pro- 

osal for an access control framework, utilized I/O monitoring us- 
8

ng various models of the framework name RANACCO. Their solu- 

ion nested its modules between Windows I/O and Storage class 

river. While the overall framework proposed has limitations, the 

/O monitoring part is said to detect encryption successfully. RW- 

uard by Mehnaz et al. (2018) implements a hybrid solution with 

RPParser that logs I/O requests and passes them further to other 

odules. 

Network monitoring is also used to detect pre-encryption and 

ncryption events. Almashhadani et al. (2019) proposed network- 

ased crypto-ransomware detection using Locky ransomware as 

he case study. Their proposal was built using multiple indepen- 

ent classifiers over both packet and flow data. Using a total of 18 

eatures that were extracted from TCP, HTTP, DNS, and NBNS traffic, 

he proposal achieved 97.92% accuracy for packet-based and 97.08% 

ccuracy for flow-based data. By using TCP and UDP features com- 

uted from network flows, Fernández Maimó et al. (2019) , as a 

ontinuation of their previous proposal for an integrated clinical 

nvironment named ICE ++ , proposed a machine learning detec- 

ion and protection system that was capable of anomaly detection 

nd ransomware classification. It also uses Network Function Virtu- 

lization (NFV) and Software-Defined Networking (SDN) paradigms 

o prevent the spread of crypto-ransomware activity. They trained 

ultiple models using multiple algorithms and achieved a preci- 

ion/recall of 92.32%/99.97% in anomaly detection and an accuracy 

f 99.99% in ransomware classification. Roy and Chen (2021) pro- 

osed a solution named DeepRan that prevents the spreading of 

he Encryption phase across network-connected computers. Deep- 

an utilizes attention-based bi-directional Long Short Term Mem- 

ry (BiLSTM) with a fully connected layer to model the normalcy 

f networked hosts. Its behavior anomaly detection processes sub- 

tantial amounts of logging data collected from bare metal servers. 

onditional Random Fields (CRF) model was used to extend BiL- 

TM for detected anomalies to be classified as potential ran- 

omware attacks. Semantic information extraction from “high di- 

ensional host logging data’’ was done by the Term Frequency- 

nverse Document Frequency (TF-IDF) method. Early ransomware 

etection had a 99.87% detection accuracy (F1-score of 99.02%). 

On the hardware monitoring level, Paik et al. (2016) propose 

onitoring I/O for encryption detection in addition to their SSD 

ardware monitoring. Similarly, Dimov and Tsonev (2020) mon- 

tor HDD performance and utilize the I/O performance rate for 

isk read and disk write operations to detect ransomware in 

he Encryption phase. Finally, as a unique type of I/O moni- 

oring, Park and Park (2020) propose hardware tracing for de- 

ecting symmetric key cryptographic routine detection in mali- 

ious binaries that employ anti-reverse engineering techniques. 

zmoodeh et al. (2018) proposed detecting crypto-ransomware ac- 

ivity in IoT by monitoring power consumption and applying ma- 

hine learning models to the collected data. Their proposal em- 

loys Dynamic Time Warping (DTW) as a distance measure with 

NN as a classifier, outperforming conventional classifiers like Neu- 

al Networks, KNN, and SVM. Their approach achieved a detection 

ate of 95.65% and a precision rate of 89.19%. 

Only a few research papers that include I/O monitoring in re- 

ation to detecting activities related to the Encryption phase of a 

ansomware attack are available. The success of some of the men- 

ioned proposals in detecting encryption as activity and overall 

vents that are a consequence of the Encryption phase indicates 

hat much more can be done in this field and that more innova- 

ive hybrid solutions are possible. 

.3. File system monitoring 

Monitoring file system activity to detect the Encryption phase 

f ransomware attacks focuses on collecting information about the 

tate of the file system and the files themselves. The early ideas, 
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ike Young et al. (2012) , to use different sector hashes to detect 

arget files, including encrypted files, paving the way for file sys- 

em usage in the fight against cryptographic ransomware. 

By using raw binary files as ML features, Khammas (2020) pro- 

osed a Random Forest classifier that uses 10 0 0 n-gram features 

xtracted directly from raw bytes using frequent pattern mining. 

he selection of features was made using the Gain Ratio to re- 

uce the dimensionality of features. The proposal maintains an op- 

imal number of trees to be 100 with achieved accuracy of 97.74%. 

hile this proposal focused on the analysis of binaries that con- 

ain ransomware attack tools and recognition of the same among 

enign binaries, due to the nature of crypto-ransomware behavior, 

t is safe to assume that many of the n-gram features were related 

o the Encryption phase. Furthermore, using APK files containing 

he source code of an Android app, Sharma et al. (2021) extracted 

eatures from the file related to ransomware attacks. Their pro- 

osal, named RansomDroid for detecting crypto-ransomware ac- 

ivity in Android devices, uses an unsupervised machine learning 

odel. Unlike K-Means clustering, the proposal used a Gaussian 

ixture Model with a flexible and probabilistic approach to mod- 

ling the dataset. Feature selection and dimensionality reduction 

or improvement of the model were also utilized. The model de- 

ects Android ransomware with an accuracy of 98.08% in 44 ms. 

lmomani et al. (2021) also use analysis of Android APK files for 

eature extraction in their proposal. They rely on an “evolutionary- 

ased machine learning approach” to detect cryptographic ran- 

omware in Android devices. They used the binary particle swarm 

ptimization algorithm (BPSO) to tune the classifier’s hyperparam- 

ters and feature selection. Synthetic minority oversampling tech- 

ique (SMOTE) with support vector machine (SVM) algorithm was 

sed for classification. The combination name SMOTE-tBPSO-SVM 

sed g-mean as a metric and achieved a result of 97.5%. 

Tang et al. (2020) proposed a detection and prevention sys- 

em named RansomSpector that monitors the file system and 

etwork activities. It is a virtual machine-based system that re- 

ides in the hypervisor, thus making it difficult to bypass through 

rivilege escalation. The crypto-ransomware was detected with 

xtraordinarily little overhead to performance - less than 5%. 

ontinella et al. (2016) , in their proposal for ShieldFS, offer a 

hole new file system, which, combined with the machine learn- 

ng portion of their proposal, can detect ransomware behavior as 

n anomaly, including operations related to the Encryption phase. 

imilarly, Lee et al. (2022) proposed statistical analysis to dif- 

erentiate between regular and encrypted blocks in the file sys- 

em. Their solution, Rcryptect, utilizes extracted heuristic rules us- 

ng FUSE (File system in Userspace) to avoid kernel modification. 

cryptect, among the other methods, detects high entropy files cre- 

ted by cryptographic operations. Nevertheless, the solution faces 

ommon issues of false positives for benign files with high entropy 

nd the issue that prevention mechanisms can cause damage to 

ome files under attack before the ransomware encryption process 

s killed. Entropy, in combination with fuzzy hashing, as a means 

o detect files encrypted by ransomware in the file system was pro- 

osed by Joshi et al. (2021) . They used a mini-filter driver that in-

eracts with file system behavior as kernel mode. While achiev- 

ng more than 95% of detection success in their experiment, the 

ethod is susceptible to explorer.exe process DLL injection that 

ould bypass the security measures proposed. Lee et al. (2019) use 

ntropy estimation to detect files encrypted by ransomware in a 

loud environment. When using the cloud as a backup, there ex- 

sts a risk that encrypted files could be synchronized to the cloud. 

he authors thus observed the number of ransomware encryption 

ttacks and divulged the baseline used in entropy estimation over 

les in the cloud. Their experiment reported a 100% success rate 

n detecting encryption. Jung and Won (2018) used the entropy 

f files in their comprehensive ransomware detection and protec- 
9 
ion system. They utilized context-aware analysis that used infor- 

ation from APIs, file system metadata, systems to detect large- 

cale read/write operations, and entropy analysis capable of detect- 

ng benign usage of encryption with enhanced classification to im- 

rove entropy analysis results. Similarly, Jethva et al. (2020) pro- 

osed their system to detect and prevent crypto-ransomware us- 

ng entropy in multilayer detection. The technique was combined 

ith monitoring registry key operations, file signatures in the 

indows operating system, and machine learning. By improving 

he already mentioned method of analyzing the entropy of files, 

su et al. (2021) examined 22 different file formats of encrypted 

les and extracted features to be used with the Support Vector 

achine algorithm. They achieved a detection rate of 85.17% using 

he SVM Linear model, which increased to over 92% when using 

he SVM kernel trick (with the polynomial kernel) model. 

Not all of the research favors entropy use in detecting ran- 

omware encryption. McIntosh et al. (2019) propose depreciation 

f this method in the fight against ransomware, arguing that tech- 

iques they identified to mitigate entropy usage in encryption de- 

ection are sufficient to invalidate reliance on entropy information. 

n their experiment, BASE-64 encoding and partial file encryption 

ave shown their effectiveness in “confusing” entropy information; 

hus, the usage of File Integrity and File Type Identification have 

een proposed as alternatives to using entropy measures. 

RWGuard is a proposal by Mehnaz et al. (2018) that combines 

ultiple techniques in the real-time detection of cryptographic 

ansomware. The solution includes monitoring the file system for 

alicious activity through File Monitoring and File Classification 

odules. Also, it has the capability to automatically generate de- 

oy files in the file system using a feature called Decoy Files Gen- 

rator. Some of the techniques used for detection are inherently 

robabilistic and prone to false positives. Another decoy-in-the- 

le-system-based solution is the proposal of R-Locker by Gómez- 

ernández et al. (2018) , a novel approach to creating honeyfiles as 

ecoys to detect and stop ransomware in action. To achieve this in 

ractical implementation on UNIX-like operating systems, a new 

amed pipe is created in the file system containing a specially 

rafted small-size honeyfile. An alert is raised to kill the process 

hen ransomware attempts to read the file. Due to the fact that 

he kernel manages synchronization, these regular applications do 

ot block access to the original files between reading and writ- 

ng; if a process attempts to read more data than expected, read- 

ng is blocked until the writer makes up for expected data. This 

eature allows time to raise alerts about suspected ransomware be- 

avior. In another approach using deception, honeypots for IoT de- 

ices were proposed by Sibi Chakkaravarthy et al. (2020) based on 

ocial Leopard Algorithm (SoLA) to model honey folders. The In- 

rusion Detection Honeypot (IDH) also introduces an Audit Watch 

odule that monitors the entropy of files in the device, together 

ith a module called Complex Event Processing (CEP) that collects 

nformation from multiple external security sources used to confit 

nd stop ransomware activity. SoLA algorithm is critical to this pro- 

osal with its capabilities to process extracted features from pro- 

esses that accessed the honey folder. 

Usage of entropy to detect encryption is present in var- 

ous operating systems, including Android. A proposal by 

iao et al. (2021) detects custom encryption with an accuracy 

ate of 98.24% in Android platforms using only entropy informa- 

ion. 

In a more ML-focused approach, using the activity logs for 

eatures extraction that contain all of the filesystem events, 

omayoun et al. (2020) proposed applying Sequential Pattern Min- 

ng to find Maximal Frequent Patterns (MFP) in logged activities 

or known ransomware. This created candidate features to be used 

n classification by multiple machine learning classification algo- 

ithms. In their experiment, authors used J48, Random Forest, Bag- 
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ing, and Multi-Layer Perceptron (MLP) classifiers and achieved an 

-measure of 0.994 with a minimum AUC value of 0.99 in the de- 

ection of ransomware samples from benign activities using Win- 

ows registry, DLL, and file system to registry log of activities. F- 

easure of more than 0.98 with a false-positive rate of less than 

.007 in the detection of a given ransomware family using 13 se- 

ected features whose significance was recognized during the re- 

earch. Their results were not short of impressive, creating datasets 

f ransomware logs for 1624 ransomware binaries sourced from 

irustotal.com, as well as separate sampling for overfitting. How- 

ver, no indication was given that testing was performed on an 

ndependent dataset. 

Even though an impressive amount of research has been found 

n relation to file system monitoring for the purpose of detecting 

he Encryption phase activities in a ransomware attack, we feel 

hat research went truly little in the direction of tying the tech- 

iques mentioned above into access control systems used to con- 

rol file systems. Entropy detection is an auspicious tool in fight- 

ng cryptographic ransomware; more proposals are needed on this 

opic. 

.4. Commercial solutions brief survey 

Most of the commercial offering for protection against crypto- 

ansomware focuses on providing capabilities in the area of En- 

erprise Backup and Recovery. Companies that focus solely on 

ansomware protection in their products are almost nonexistent. 

any vendors focus on delivering recovery capabilities through 

ir-gapped backup and immutable backup copies, and detection is 

ased chiefly on integrity and anomaly behavior monitoring. Even 

hough vendors offer markets as comprehensive data protection 

olutions, it is indicative that most of them emphasize that the 

ackup is the last line of defense against ransomware, which in 

ome instances indicates that other ransomware protection con- 

rols are expected to be in place for the product to live to its ex-

ectations. 

According to Gartner’s Magic Quadrant for Enterprise Backup 

nd Recovery Software Solutions ( Rao et al., 2021 ), the major ca- 

ability for the evaluation of a product was Ransomware detec- 

ion and protection. An example is Acronis ( Ransomware Protec- 

ion with Backup for Business - Acronis ) which offers both cloud- 

ased and on-premise solutions that include the capability to ac- 

ively scan for ransomware activity and verify the authenticity and 

ecoverability of backup copies. Another major player in this field 

s Arcserve ( Ransomware Protection Solution for an Impenetrable 

usiness ) which does not have its own capabilities to detect and 

rotect against crypto-ransomware built into its product but rather 

as excellent cooperation with security giant Sophos that provides 

he capability for them. Cohesity ( Ransomware Recovery | Reduce 

owntime with Rapid Recovery ) is the leader in enterprise backup 

nd recovery. They offer cloud service with immutable backup us- 

ng the write-once-read-many (WORM) feature and RBAC access 

ontrol model. Also, they utilize machine learning for anomaly be- 

avior detection to detect crypto-ransomware activity. Commvault 

ansomware Recovery - Commvault offers one of the most com- 

rehensive lists of capabilities against ransomware. Their approach 

mploys a zero-trust model, built architecture using NIST’s Cy- 

ersecurity Framework (CSF). Their detection capability mostly re- 

ies on anomaly detection in both networks and file systems. Dell 

echnologies ( Dell EMC Cyber Recovery Solution – Cyber and Ran- 

omware Data Recovery ), another leader in this vertical, provides 

etection using their Intelligent CyberSense Analytics. It utilizes 

achine learning for anomaly detection. Other important vendors 

nd leaders in this area, like Veeam ( Ransomware Protection: Learn 

ow Veeam Can Protect Your Data ) and Rubrik ( Ransomware Re- 
10 
overy ), use similar techniques, and there are no serious differen- 

iating factors in detecting crypto-ransomware. 

Other groups of vendors that focus on ransomware detec- 

ion are traditional threat detection and response companies. 

hey rely on anomaly detection utilizing various monitoring tech- 

iques that provide hybrid solutions of API calls and I/O moni- 

oring, and file system changes. Some are using machine learn- 

ng models, and there are occasional claims of artificial intelli- 

ence (AI) that are difficult to confirm. The most significant ones 

re Carbon Black ( Endpoint Protection Platform | VMware Car- 

on Black Endpoint ), Trend Micro ( Enterprise Ransomware Protec- 

ion & Removal ), Darktrace ( Darktrace for Ransomware ), Extrahop 

 Ransomware Mitigation & Detection Solution - ExtraHop ) , and 

ectra AI ( Ransomware Detection and Response - Ransomware So- 

utions | Vectra AI ). 

Concerning the relationship between academic research 

chievements surrounding the detection of ransomware executing 

he pre-encryption and encryption activities and commercial 

olutions, it has been noted and observed that an apparent dis- 

repancy exists between the two ( Scala et al., 2019 ; Nicol et al.,

015 ). The persistence of these differences is not uncommon in 

ybersecurity-related topics and has been driven by a series of 

actors categorically branched into categories. Therefore, we have 

actors that are technical, procedural, or bureaucratic in origin 

nd nature. Amongst those most substantially addressed by the 

iterature are the factors identified as distinctly technical in origin: 

- Integration 

Industry solutions utilize different detection methods and mea- 

sures in a coordinated schema of safeguards, where a com- 

prehensive set of firewalls, intrusion prevention systems, 

and endpoint protection defenses are adopted to combat 

real-world threats. Antithetically, the academic approach ne- 

cessitates the separation of specific detection techniques and 

their study in isolation, in effect, obfuscating principles of 

translation. 

- Scalability 

Detection solutions developed in an isolated academic environ- 

ment tend to need help with monitoring and analysis ca- 

pabilities for the vast amounts of data generated by mod- 

ern industry networks ( Scala et al., 2019 ). Forasmuch as the 

complexity and diversity of commercial networks are not 

to be understated; scaling assumes an integral role in the 

application of research outcomes in the real-world market 

( Nicol et al., 2015 ). 

- Complexity 

The algorithms developed through mechanisms of academic in- 

quiry often involve complex and resource-intensive modus 

operandi, which fail to be practical for real-world deploy- 

ment or, within the nature of their construction, cannot 

evolve into more flexible setups ( Nicol et al., 2012 ). 

- Adaptability 

With standardized models built on specific ransomware sam- 

ples and behavior patterns in training academically devel- 

oped technologies, limitations arise in adaptability for real- 

world applications ( Scala et al., 2019 ). Ransomware, in real 

world attacks, rarely follows the uniformity established in 

these test models. On the contrary, its behavior constantly 

evolves in a race to outmaneuver newly forged preventative 

measures as they emerge. 
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Likewise, while procedural factors present similar practical lim- 

tations as those found with technical factors, the nominal core of 

hese limitations lies in qualities inherent to the experimental pro- 

ess and research objectives rather than market translation: 

- Validation 

The process of testing and validation notably differ across aca- 

demic and industry borders. Research validation roots it- 

self in the accuracy of simulations and the control of ex- 

perimental conditions. Commercial solutions require rigor- 

ous real-world validation against various extraneous vari- 

ables and incorporating existing infrastructure to ensure ef- 

fectiveness, reliability, and compatibility ( Grossman et al., 

2001 ; Nicol et al., 2015 ). 

- False positives 

Concerning research goals, the process of addressing false pos- 

itives should be addressed to achieve high detection rates 

( Bold et al., 2022 ; Kok et al., 2020b ). Comparatively, greater 

emphasis is placed on false positives in the industrial con- 

text, as the losses incurred through the resultant disruptions 

are of greater interest. Hence, commercial solutions seek a 

compromise between adequate detection accuracy and min- 

imizing false positives. 

- Time to market 

Rapid response is necessary to combat the emergence rate of 

new threats and meet the demands of the commercial mar- 

ket. Concurrently, academic research development, testing, 

and refinement require heavy time investments for the an- 

alytic procedure, translating to a natural lag in the pace 

of ransomware evolution ( Kashef et al., 2023 ; Nicol et al., 

2015 ). 

In contrast to technical and procedural factors, which are deter- 

ined by objectively measurable discrepancies, bureaucratic fac- 

ors are interpretational, based on institutional inefficiencies of an- 

hropogenic origin. The most effective of which present themselves 

n restrictions of: 

- Intellectual property and licensing 

Hesitancy in adopting newly developed technologies based on 

academic research is often directly tied to the risks involved 

with an investment in new IPs where precedents have yet to 

be set on the extent of its protected status. Similar contin- 

gencies arise with licensing restrictions that introduce ad- 

ditional expenditures in the form of permissions and ap- 

provals. 

.5. Other applications of detection of encryption 

Detection of encryption is not always related to cryptographic 

ansomware defense. There are numerous use cases where it 

ould be necessary to recognize if encryption happened or is hap- 

ening. 

An example is Ameeno et al. (2019) proposal using the Naive 

ayes algorithm to differentiate between compression and encryp- 

ion and identify file types. Li and Liu (2020) proposed an encryp- 

ion detection method using deep convolutional neural networks 

CNN). The proposal uses converted raw data into two-dimensional 

atrices as an input to CNN. The results showed a higher detection 

ate than competitive storage and network encryption methods. In 

nother proposal that utilizes the power of machine learning and 
11
eep learning, Yang et al. (2021) propose the usage of natural lan- 

uage processing (NLP) in combination with the two in detecting 

ncrypted network traffic. The technique usually used for weight- 

ng in message retrieval and keyword extraction, Term Frequency- 

nverse Document Frequency (TF-IDF), was used in modeling de- 

ection due to its capability not to need analysis of each field in 

etwork traffic. Both ensembles of various machine learning clas- 

ifiers and CNN were used with high accuracy and their own ad- 

antages. The advantage of CNN in deep learning is that it effi- 

iently deals with sparse matrices (compressed or uncompressed) 

enerated by TF-IDF in situations where there is an “abundance”

f hardware resources. 

On the other hand, encrypted traffic detection in limited hard- 

are resources is better suited for ensemble classifiers. Finally, 

ven though somehow similar to crypto-ransomware encryption 

etection, a proposal by Dong et al. (2021) named MBTree deals 

ith the detection of encrypted traffic between Remote Access Tro- 

an (RAT) and Command & Control server (C2). The proposal relies 

n building the kind of baseline by integrating flow-level DirPiz 

equences as a synthesis of host-level Multi-Level Tree (MLTree). 

ctual detection was done by measuring path similarity and node 

imilarity of actual traffic with the baseline. The F-1 score reported 

s 94%. 

. Conclusion 

In closing, our journey through the myriad proposals relating 

o the detection of pre-encryption and encryption activities by 

ryptographic ransomware has surfaced some findings and lessons 

earned. The dynamic nature of ransomware necessitates con- 

tant vigilance, innovation, and adaptation. Each of the surveyed 

ethodologies has its own advantages and disadvantages. This all 

s the reason we present section 4.1, Lessons learned. Our findings 

n section 4.2 underscore the importance of multi-layered, robust 

etection mechanisms and the need for more research focusing on 

ncryption as the major motivation for the attack. We hope this 

nalysis serves as a catalyst for further advancements and a guide- 

ost for future endeavors in combating cryptographic ransomware. 

.1. Lessons learned 

In this paper, we reviewed cryptographic ransomware from 

he perspective of what we believe is its differentiating factor 

rom other families of cyberattacks, namely encryption. Here we 

ummarize the lessons learned in this survey. Foremost, crypto- 

ansomware is an increasing threat that cripples critical capabil- 

ties for both public and commercial services for an extended 

eriod of time. When we add the amounts of paid ransoms, 

osses are in the tens of millions of dollars. They could result in 

oss of human life, taking into consideration ransomware groups’ 

taste” for medical facilities during the time of the COVID-19 pan- 

emic, or even involve themselves in cyber warfare. Secondly, re- 

earchers have seen a discrepancy in describing and categorizing 

ansomware ranging from plain malware to sophisticated cyber 

ill chains representing the activity of sophisticated APT-like threat 

ctors. We observed ransomware through our cyber kill chain. 

hirdly, from a research perspective, we have seen many proposals 

ealing with different aspects of crypto-ransomware, and most of 

hem take a hybrid approach to deliver the solution. Fourthly, we 

ave seen that despite the academic community’s mature and fo- 

used research, commercial solutions mainly apply machine learn- 

ng and anomaly detection solutions. Finally, we have seen that 

pecialized research around the problem of encryption detection 

nd general control of encryption operations is in the apparent mi- 

ority among the research topics into crypto-ransomware. 
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Table 3 

Pros, Cons and Effectiveness of different methodologies for detecting ransomware’s pre-encryption and encryption activities. 

Methodology Pros Cons Effectiveness 

API and system call 

monitoring-based 

detection 

It provides real-time detection, as system 

calls and APIs are used during the 

ransomware’s activities. 

It can reveal information about the 

ransomware’s inner workings, which may aid 

in further developing or fine-tuning the 

countermeasures. 

It can be combined with other detection 

techniques for increased accuracy. 

Enables the identification of specific attack 

vectors and potentially vulnerable system 

components. 

False positives may arise due to 

benign software with similar system 

call patterns. 

Ransomware can evolve to avoid 

detection by using different APIs or 

obfuscating system calls. 

It can be resource-intensive, requiring 

monitoring and analyzing many API 

and system calls. 

It can be bypassed by advanced 

ransomware that utilizes 

unconventional techniques or exploits 

vulnerabilities in system calls. 

Usage in signature-based solutions 

might be ineffective, as new 

ransomware strains may use different 

API and system call patterns. 

This approach can be highly effective 

because ransomware often uses 

specific system calls and APIs to 

access and manipulate files. 

Monitoring for unusual patterns in 

these calls can help identify 

ransomware activities. 

I/O monitoring-based 

detection 

It can be used as an early warning system, as 

I/O spikes might indicate ongoing ransomware 

activity. 

It can be less resource-intensive compared to 

monitoring system calls and APIs. 

It can detect ransomware even if it uses 

unconventional or previously unseen system 

calls and APIs, if the I/O patterns are 

consistent with encryption activities. 

Relatively easier to implement compared to 

monitoring system calls and APIs. 

Allows for the identification of affected files 

and systems, enabling targeted response and 

recovery efforts. 

It may produce false positives, as high 

I/O activity can be generated by 

legitimate applications. 

May not detect ransomware with low 

I/O activity, such as those that encrypt 

files selectively or over an extended 

period. 

It can be circumvented by 

ransomware that employs techniques 

to blend its I/O activity with normal 

system behavior. 

Continuous monitoring and 

fine-tuning of detection thresholds are 

required to maintain accuracy and 

reduce false positives. 

This approach is moderately effective, 

as ransomware typically generates 

high I/O activity while encrypting 

large numbers of files. 

Filesystems 

monitoring-based 

detection 

It allows ransomware detection based on its 

unique file manipulation behavior. 

It can provide insights into the ransomware’s 

encryption strategy, aiding in decryption and 

recovery efforts. 

It can detect ransomware that employs 

file-level encryption, which is a common 

feature in many ransomware strains. 

It can help identify the specific encryption 

algorithms used by ransomware, which may 

aid in decryption effort s. 

It provides opportunities for early 

intervention, as filesystem-related activities 

typically occur before actual encryption. 

It may produce false positives due to 

benign applications with similar 

filesystem-related activities. 

Ransomware can adapt its filesystem 

activities to bypass detection 

mechanisms. 

It may not be effective against 

ransomware that operates at the disk 

or partition level, as such strains may 

not exhibit the same 

filesystem-related activities. 

It can be bypassed by ransomware 

that employs file-less techniques or 

unconventional filesystem access 

methods. 

Requires continuous updates to the 

detection rules and heuristics, as new 

ransomware strains may exhibit 

different filesystem-related behavior. 

This approach can be highly effective, 

as ransomware often exhibits specific 

file access and modification patterns, 

such as renaming files, changing file 

extensions, or modifying file 

attributes. 
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Overall, there is no one-size-fits-all answer to the most effective 

pproach. The effectiveness of each method depends on the spe- 

ific ransomware and its behavior. Combining all approaches and 

achine learning may offer the best defense against ransomware 

ttacks. Adding to that behavioral analysis and user awareness, ef- 

ectiveness increases significantly. The information in Table 3 sum- 

arizes the pros and cons of each methodology, providing the ar- 

ument for the hybrid approach advantage. These conclusions re- 

ult from a review and study of different proposals presented in 

his survey and our research into commercial solutions that offer 

apabilities that could be used to detect pre-encryption and en- 

ryption activities by ransomware attacks. 

.2. Main findings 

We focused on the Encryption phase described in our cyber kill 

hain and divided various methodologies into three major groups: 

- API and system call monitoring-based detection 
12 
- I/O monitoring-based detection 

- file system monitoring-based detection 

Reviewing the work of researchers through the prism of those 

hree detection methodologies, it was not surprising that, in the 

ase of complete proposals for detection, researchers preferred a 

ybrid approach utilizing primarily combinations of the three or 

ewer methodologies, with machine learning being the preferred 

ool in many proposals. 

Most of the research was focused on Windows operating sys- 

ems, but Android mobile operating systems and a variety of Inter- 

et of Things applications were also present in the reviewed work. 

The overall conclusion of this survey is that more methods and 

echniques described in the surveyed research efforts should be 

tilized in real-life products by trying to remove some of the com- 

on obstacles already described. Detecting pre-encryption and en- 

ryption activities provides a high level of confidence that ran- 

omware can be intercepted before doing severe damage. Introduc- 

ng some benchmark methods in the detection of encryption along 
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ith appropriate datasets is a desperate need in this area of re- 

earch. 
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