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Abstract. Variety selection in perennial pasture crops involves identifying best varieties from data collected from
multiple harvest times infield trials. For accurate selection, the statisticalmethods for analysing such data need to account for
the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data
from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the
variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods
provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by
harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method
provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.
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Introduction

Variety selection in perennial pasture crops is usually based on
measurements taken at multiple harvest times from field trials
which cover a potentially large and variable area. Critical to
identifying the best varieties for selection and increasing the rate
of genetic gain is the implementation of statistical methods that
accurately predict the true potential of varieties (Smith and
Spangenberg 2014). Statistical methods for analysing data
from perennial pasture variety selection trials need to account
for the spatial variation and correlation within a trial and the
temporal correlation between repeated measurements. The
methods also need to appropriately model the genetic effects
over time.

Accounting for spatial variation in perennial pasturefield trials
is not anewconcept.Anumberofpapers havepromoted theuseof
spatial analysis methods in pasture crops. For example, Casler
(1999), Smith and Kearney (2002) and Smith and Casler (2004)
used Nearest Neighbour methods (first introduced by Papadakis
in 1937, see Bartlett (1978) for an account). In annual field crop
evaluation trials, the methods of spatial analysis have been
developed extensively since the early Nearest Neighbour
methods, with advancements including the one dimensional
models of Gleeson and Cullis (1987), where trend is modelled

using time series models, and their extension to 2 dimensions
by Cullis and Gleeson (1991), using a separable correlation
structure. Gilmour et al. (1997) extended the method of Cullis
and Gleeson (1991) by identifying three major components of
spatial variation to be modelled, namely local and global smooth
spatial trend and extraneous variation.

Gilmour et al. (1997) demonstrated that no one spatial
model will be applicable to every trial and that models need to
be formulated to incorporate the unique spatial trends and
correlation that might be present at each individual trial.
They presented a complete spatial modelling approach that
incorporates diagnostic aids and tests for model selection. This
is the approach that has been used in the analysis of cereal crop
breeding trials across Australia for many years and has been
shown to provide more efficient variety predictions than
previous methods (see Gilmour et al. 1997; Cullis et al. 1998;
Smith et al. 2001; Stefanova et al. 2009). While the application
of this method in perennial pasture variety selection trials is not
yet well documented, it has been implemented in other perennial
crops such as sugarcane (Stringer and Cullis 2002; Smith et al.
2007); tea (Resende et al. 2006); and forestry trees (Dutkowski
et al.2002). The approachused in this paperwill be basedon these
methods.
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In perennial pasture variety selection trials, data is usually
obtained frommultiple harvests over a number of years. There is a
need to account for temporal correlation in the residuals (due to
the repeated measurements on each plot). This serial correlation
often decreases with increasing intervals between harvests
(Bjornsson 1978). Diggle (1988) presents an approach to
modelling repeated measurements that accounts for variation
between experimental units and serial correlation within units.
In this paper this approach is extended to account for spatially
referenced data.

Smith et al. (2007) present a method to analyse multi-
harvest data in perennial crops in the case of a short sequence
of measurements in sugarcane. These methods may not be
entirely suitable when there are longer sequences of
measurement times, as in perennial pasture field trials. In these
situations, it is usually not of interest to simply obtain predictions
at each harvest time, but rather to investigate the varietal response
profile over time, or at specific times of interest, and to obtain an
insight into variety by harvest interaction. One approach to
investigating variety by harvest interaction in perennial pasture
crops is to use a clustering approach as in Hayward et al. (1982)
and Cullis et al. (2010). Piepho and Eckl (2014) also present an
approach to analysing a series of variety trials in perennial
crops which accounts for serial correlation between repeated
measurements but their approach ignores any spatial correlation
that may be present.

The approach used to model the genetic effects over time will
depend on the aim of the experiment and the trait involved. One
approachmay be to model the deviations of each variety from the
harvest means (Evans and Roberts 1979) rather than the actual
means themselves. An alternative approach may be to model the
genetic response over time. A method suitable for modelling the
genetic profile over time is the random regression (or random
coefficients) model, as used commonly in the animal sciences.
Random regression is commonly used to model lactation curves
and cattle growth data (Meyer 1998; Schaeffer 2004; Meyer and
Kirkpatrick 2005) and has also been used in forestry breeding
(Apiolaza et al. 2000).

In this paper an approach will be presented for analysing data
frommulti-harvest, perennial pasture field trials that accounts for
both spatial and temporal variation and correlation within a trial
and genetic correlation between harvests. Suitable approaches
will be applied tomodel the genetic effects over time. Themethod
of analysis will be applied to data from a lucerne breeding trial
conducted by the Tamworth Breeding Program in the New South
Wales Department of Primary Industries.

Materials and methods
Motivating data

The motivating data considered in this paper arises from a
lucerne variety assessment trial conducted by the New South
WalesDepartment ofPrimary Industries (NSWDPI), atTerryHie
Hie in NSW from 2003–2006. The trial was designed as a
Randomized Complete Block (RCB) with 3 replicate Blocks
and was laid out in a rectangular array of 180 plots consisting of
30 rows by 6 columns (with each Block consisting of 30 rows by
2 columns). The number of varieties tested in the trial was 60

(with eleven being commercial varieties). The trial was sown
on 22/7/2003.

Lucerne yield

The first trait of interest was lucerne yield. Yield was measured
by cutting all trial plots at a consistent defined height at each
harvest time and drying the samples to obtain dry matter weights
expressed as kg/ha. There were 10 harvest times. The data was
transformed prior to analysis using a cube root transformation
((y+ 1)1/3), to stabilize the variance and better approximate the
assumed Normal distribution. The cube root transformation was
chosen (over the more commonly used log transformation) after
careful consideration of residual plots, in particular Normal
Quantile-Quantile plots of residuals from analyses of each
harvest. The cube root transformation provided a less severe
transformation, that better approximated theNormal distribution,
than the log transformation. The cube root transformation is
often used in transforming volume data and given the lucerne
yield data arose from cutting lucerne at a certain height from a
plot of set length and width, it was considered sensible for this
application. A plot of the transformed yield data for the 11
commercial varieties is presented in Fig. 1.

Figure 1 demonstrates that the lucerne yield response is not
smooth over time even though the pattern is consistent over
varieties. This is due to the nature of the trait where the yield
data involves growth between cuts, with the cuts occurring at
varying time spacings, and the growth being very dependent
on the environment and management of the trial during these
different time intervals. Knowing the actual level at each time
may not be imperative but the differential impact of each variety
from the overall performance of all varieties is of most interest;
that is, comparative inference for varieties is required.

Lucerne persistence

The second trait recorded at Terry Hie Hie was persistence.
Persistence is a critical component in perennial pasture variety
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Fig. 1. Plot of mean lucerne yield (on transformed scale) for each of the 11
commercial varieties across harvests at Terry Hie Hie.
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improvement as a measure of sustained productivity (Bouton
2012). The persistence of each variety was recorded as the
percentage P of unit squares in a grid of 10 by 10 squares that
had a lucerne plant(s) present at each of six assessment dates. The
details of this method are given in Lodge and Gleeson (1984)
where it is shown that this method reliably reflects changes in
plant populations, for all but very high plant densities. The data
was transformed prior to analysis, using a logit transformation
(log((P+ 0.5)/(100�P + 0.5)). This transformation aims to serve
two purposes, namely to map the percentage data from the
(0,100) range to the real line, and to stabilize the variance,
thereby providing a better approximation to the Normal
distribution. This transformation was also chosen based on
consideration of plots of residuals. A plot of the transformed
persistence data for the 11 commercial varieties is presented in
Fig. 2.

In the case of the lucerne persistence data, the continuous
nature of the trait results in a relatively smooth profile over time
(see Fig. 2). In this situation the actual level of variety response is
of interest and predictions of time to a certain level of persistence
are desired. Hence predictions are required for the actual variety
response at times other than the harvest times. In the analysis
presented in this paper the time until the persistence of each
variety declines to 30% (or –0.838 on the transformed scale) is
investigated.

Statistical methods

We begin by establishing some notation for the general approach
presented in this paper. Consider a perennial crop variety
selection trial consisting of n plots in a rectangular array of c
columns by r rows (n= cr), in which m genotypes are grown and
multiple harvests are made. Let h denote the number of harvests
(or assessment dates) for the trial and let y be the hn� 1 vector of
data observations across all the harvests, ordered as rows within
columns within harvests.

A linear mixed model for the data may be written as:

y ¼ Xtþ Zgg þ Zouo þ e ð1Þ
where t is a (p� 1) vector of p fixed effects with design matrix
X(hn� p), g is the hm� 1 vector of random variety (or genetic)
effects for individual harvests with associated design matrix
Zg

(hn� hm), uo is a vector of other random effects with
associated designmatrixZo and e is the hn� 1 vector of residuals.

The random effects from the linear mixed model (1) are
assumed to follow a Normal distribution with zero mean
vector and variance-covariance matrix:
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Therefore, the distribution of the data y is normal with mean
Xt and variance matrix:

H ¼ varðyÞ ¼ ZgGgZ
T
g þ ZoGoZ

T
o þ R

This linear mixed model provides the basis for analysis.
The actual modelling approach will depend on the trait

involved and the aim of the experiment.
If the response is not a smooth function over time and/or

interest lies in the differences between varieties more than the
actual level of a trait then it may be best to base the analysis on the
deviations from the harvest means. Hence, the ideal approach to
analysing the yield data is to model the variety deviations from
the harvest means. In terms of the mixed model (1) this means
that the vector t contains the main effects for harvests. If the
response of the trait over time is a smooth continuous function
and the actual level of the trait is of interest then the ideal approach
would be to model the response over time using a smooth curve.
Hence in the case of the persistence data, the ideal approach is to
model the underlying overall trend over time using a smooth
curve (for example using apolynomial or cubic smoothing spline)
and then investigate the departures from this underlying trend for
each variety. These variety departures may be modelled using
linear functions or may require more complex models including
splines (Verbyla et al. 1999).

Modelling involves a sequential process to arrive at a best
model in terms of the fit to the data. The steps involve allowing
for non-genetic variation, through design, management and other
sources of variation such as spatial trends in the field, accounting
for temporal variation and correlation that is inherent in the
multiple harvests, and importantly from the breeding point of
view, modelling the genetic variation through genotypes that
are investigated in the trial. The following subsections detail
modelling of the genetic and non-genetic variation that may be
present.

Modelling non-genetic effects

In order to obtain accurate predictions of genetic effects it is
essential to suitably model the non-genetic effects such as spatial
variation in the field and temporal correlation between repeated
measurements. Spatial variation has long been recognized as
an important issue in field trials. The classic Fisherian or
randomization approach (see Brien and Bailey 2006 and
references therein) attempts to minimize the effect of spatial
variation through careful selection of the trial sites, application
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Fig. 2. Plot ofmean lucerne persistence data (on transformed scale) for each
of the 11 commercial varieties at Terry Hie Hie.
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of randomization of plots to varieties, and inclusion of sources
of variation due to the design in the analysis. Often this
randomization approach is not sufficient to account for all
sources of spatial variation inherent in field trials. Variation
may occur due to management practices impacting on the
experiment, non-stationary spatial trend occurring across the
field, and neighbouring plots being more similar than those
further apart due to soil fertility or moisture levels. The spatial
analysis method of Gilmour et al. (1997), in which spatial
variation is partitioned into three components, namely local
and global smooth spatial trend and extraneous variation,
provides a means for accounting for these additional forms of
variation. Our approach to modelling the spatial variation is to
commence with the randomization model and to build on this
using themethod ofGilmour et al. (1997).As the lucerne trialwas
designed as a RCB, the randomization model includes a Block
effect for each harvest time.

Following the approach of Gilmour et al. (1997) and
Stefanova et al. (2009), diagnostics such as the sample
variogram and residual plots are used to identify departures
from the randomization model based on the experimental
design. Identified additional sources of variation may be
included in some or all of t, uo and e in (1), depending on
their origin. For example, global and extraneous variation can be
accounted for by includingmodel-based terms (usually involving
row or column co-ordinates) in uo and t. Local smooth spatial
trendwhich arises because data fromplots close together aremore
similar to those further apart, is modelled in e, typically using a
separable correlation structure in the residuals. For example, if a
separate model for each harvest within the trial is assumed, and�
denotes the Kronecker product, the residual variance matrix for
harvest j, Rj, may be written as:

Rj ¼ s2
j Scj � Srj ð3Þ

where Scj and Srj are the c� c and r� r spatial correlation
matrices corresponding to the column and row dimensions
respectively as in Gilmour et al. (1997). These two matrices
are typically assumed to arise from autoregressive processes
of order 1 (labelled ar1 using the notation presented in
the Appendix 1), so that correlation is allowed in both
column and row directions. The joint model is denoted by
ar1(Column).ar1(Row).

In a multiple harvest trial it is expected that harvests will be
correlated, as measurements are made on the same plots
(Bjornsson 1978; Diggle 1988; Piepho and Eckl 2014). Smith
et al. (2007) incorporate suchcorrelationbyassuminga three-way
separable process for the residual variance structure, denoted by
R, with:

R ¼ Rh � Sc � Sr ð4Þ
where Rh is a h� h covariance matrix that incorporates temporal
correlation (between harvests) and possibly heterogeneous
variance across harvests and Sc and Sr are the c� c and r� r
column and row spatial correlation matrices; in this formulation
these latter structures are common to all harvests within a trial.

Smith et al. (2007)modelRh using an unstructuredmatrix, the
most general form of covariance matrix, requiring the estimation
of h(h + l)/2 parameters. For a small number of harvests (as in

(Smith et al. 2007)) thismay be achievable but formore extensive
sequences of repeated harvests the number of parameters to be
estimatedmaybecomeprohibitive. For example for yield at Terry
Hie Hie this is 10� 11/2 = 55 parameters. More parsimonious
covariance structures such as the uniform structure (with
equal variances and equal correlation between harvests) or
heterogeneous covariance model (with differing variances and
equal correlation) could be considered but are unlikely to be
suitable in practice as correlations between the different harvest
times are unlikely to be constant.

A more suitable parsimonious model can be based on the
repeated measures analysis approach of Diggle (1988). The
model proposed by Diggle (1988) for yij (where yij denotes
the jth measurement on the ith unit (or plot), with tij denoting
the time that measurement yij was made) is given by:

yij ¼ mij þ eij

with

eij ¼ zi þ hij þ xiðtijÞ
where mij is the mean at time tij, zi is a unit (or plot) effect, hij is a
measurement error and xi(tij) is a temporally correlated process
to account for the serial correlation between measurements on
the same unit. The latter three effects are random. If ei is the
vector of residuals for unit i, the variance matrix of ei is:

varðeiÞ ¼ s2
pJh þ s2

mIh þ s2R�
hð�Þ ð5Þ

where sp
2 is a between plot or unit variance, Jh is a h� h matrix

with all elements equal to 1, sm
2 is the measurement error

variance, Ih is the identity matrix of order h, s2 is the error
scale parameter and Rh

*(f) is a smooth (typically) correlation
structure over time.

Diggle (1988) assumes independent units, however in the
case of multi-harvest data the units are plots in the field
experiment which may be spatially correlated. Our model for
multi-harvest data should include terms for plot effects,
measurement error and serial dependence and allow for these
effects to be spatially correlated. Thus in the linear mixed model
for multi-harvest data (1) the residual term e can be partitioned
into a vector of random plot effects z, a temporal correlation
process j and a vector of measurement errors h, where each of
these three random effects may have their own spatial structure.
Hence,

e ¼ zþ hþ j ð6Þ
where (z, h, j) are pairwise independent, jointly normal, mean
zero and have variance matrix:

var
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pJh�SðpÞ

c �SðpÞ
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where Sc
(p) and Sr

(p) are the spatial correlation matrices (in
column and row directions respectively) for the overall plot
term, and Sc

(m) and Sr
(m) are similar terms for the measurement

error component. We note that if the same spatial correlation
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structure is assumed for the three random effects (z, h, j), the
variance model generalizes to:

varðeÞ ¼ ðs2
pJh þ s2

mIh þ s2R�
hð�ÞÞ � Sr � Sc

which is a separable spatial extension of (5) (the model of Diggle
(1988)).

Whilst this separable extension may be theoretically
appealing, it may be questionable as to whether the
measurement error term should be spatially correlated. For a
purely spatial (single harvest time) model the measurement error
is assumed to be independently and identically distributed (i.i.d)
random “white noise”, and similarly in the temporal case with
spatially independent measurements, the measurement error is
also assumed to be i.i.d. It may be more reasonable to assume
the measurement error term in the spatio-temporal context is also
independent and not spatially correlated. It may however, be
reasonable to assume the same spatial structure for the overall
plot (or unit) effect and the plot by harvest effects and hence the
variance matrix can be modified to:

varðeÞ ¼ ðs2
pJh þ s2R�

hð�ÞÞ � Sc � Sr þ s2
mIh � I c � I r ð7Þ

Model (7) is still restrictive, and a more desirable model may
be to allow z and j to have differing spatial correlation structures
and to assume an independent measurement error. Thus, we may
assume:

varðeÞ ¼ s2
pJh � S

ðpÞ
c � S

ðpÞ
r þ s2

mIh � I c � I r

þ s2R�
hð�Þ � Sc � Sr

ð8Þ

This model has the advantage of increased flexibility and an
independent measurement error component. Other models are
possible and these are discussed in De Faveri (2013).

Following Diggle (1988), Rh
* may be modelled using a

decaying correlation model, which implies the correlation
between harvests decreases as the time between harvests
increases. For unequally spaced time points the exponential (or
power model) (exp) may be appropriate, while for equally (or
close to) spaced measurements the autoregressive (ar1)
correlation process may be suitable. This structure may be
generalized to a heterogeneous variance process (for example
a heterogeneous autoregressive model (ar1h), a heterogeneous
exponential model (exph), or antedependence model (ante))
to account for differing variances at each harvest. Details of
models and notation used in relation to the models are given in
the Appendix. Note that the serial temporal correlation models
have correlations that typically decay to zero as the separation
between harvests increases; however by also including an overall
plot term a positive correlation is induced between plots and
hence the overall temporal correlation need not decay to zero.

ModellingRh
* (in 8) as anar1hprocess, enables the spatial and

temporal residual correlation structure to be modelled using
a maximum of h+ 7 parameters, in comparison to the h(h+ 1)/
2 + 2 parameters required for the separable model used in Smith
et al. (2007). For a trial with 10 harvests this equates to a
difference of 40 parameters.

The original temporal model of Diggle (1988) and the
spatial model of Gilmour et al. (1997) were both motivated

biologically. Similar motivation carries over to the spatio-
temporal case. Thus the terms can be motivated as follows.
The overall plot effect reflects the fact that some plots perform
better than others, for example producing higher yield over all
times while others have reduced performance. These overall plot
effects are likely to be spatially correlated due to local spatial
soil fertility or moisture trends, with plots closer together more
highly correlated than those further apart. The separable spatial
temporal component models the temporal serial correlation
between repeated measurements (where measurements close
together in time are likely to be more highly correlated than
those further apart in time), the local spatial structure of the plot
by harvest effects, and also the interaction between spatial and
temporal components. As for the plot effects the dynamics of
both spatial and temporal changes in local trends such as soil
fertility andmoisture are accommodated. Themeasurement error
term represents the possibility that repeating the measurement
process on a plot will not result in exactly the same value. It is
assumed to be i.i.d. random white noise. Some traits may have
highermeasurement error thanothersdependingon thecomplexity
andaccuracy of themeasurement process.The global smooth trend
and extraneous spatial variation may arise due to management
practices, for example serpentine harvesting or irrigation systems
aligned with rows and or columns, or global soil trends and slope
effects across the trial.

Modelling genetic effects

Smith et al. (2007) present various models for the genetic effects
in the multi-harvest situation where only a small number of
harvests are involved. In particular they represent the variance
matrix Gg for such effects by:

Gg ¼ Gh � Im ð9Þ
where Gh is a h� h matrix representing the harvest genetic
covariance structure (variances and correlations for the
harvests) with possible forms being unstructured and factor
analytic models, and Im is the assumed structure for the varieties.

In the case of perennial pasture variety selection trials the
number of harvests is likely to be much greater than that in Smith
et al. (2007). While it may be possible to estimate the h� h
variance covariance matrix Gh using factor analytic models
(Smith et al. 2001) and predict genetic effects for each harvest
time, itmay bemore desirable for selection purposes to reduce the
estimation of genetic effects to a smaller dimension. Two
approaches that may reduce the dimension of the selection
problem are detailed in the next section. One approach is the
method of random regression. A second approach is to use factor
analytic models in conjunction with clustering to group the
harvests into target groups and form predictions for each group.

Random regression

A suitable model for estimating the genetic response over time
is the random regression (or random coefficients) model (Laird
and Ware 1982). Random regression models involve fitting
regression coefficients on time (or other explanatory variables),
for each variety, as random effects. This allows for variation
between varieties in the shape of the response profile over time.

Analysis of multi-harvest data Crop & Pasture Science 951



The covariances among random regression coefficients implicitly
model the genetic covariance structure of the varieties over
time. The random regression model allows the dimension of
genetic effects of interest to be reduced to the smaller number of
coefficients in the random regression model.

Let gij denote the random effect for variety i at harvest j
(where j= 1, . . ., h), and xj represent the value for the explanatory
variable x (e.g. time) at harvest j, then a polynomial random
regression model of order p, over x for variety effects gij can be
formulated as:

gij ¼ upi0 þ upi1xj þ . . .þ upipx
p
j þ �ij

¼ xTpjupi þ �ij
ð10Þ

wherexTpj ¼
�
1 xj x2j . . . xpj

�
andupi ¼

�
upi0 upi1 upi2 . . . upip�T .

The term eij represents a residual term for genetic effects, assumed
to be independent and identically distributed, with variance s2

g.
This model can also be written as:

gi ¼ Xpupi þ ei

where gi ¼ gi1 gi2 gi3 . . . gih½ �T and

X p ¼
xTp1

..

.

xTph

2
664

3
775 ¼

1 x1 x21 . . . xp1

..

.

1 xh x2h . . . xph

2
664

3
775

If upi � N(0, Gp), where Gp is a (p+ 1)� (p+ 1) covariance
matrix for the random polynomial terms, then

Gh ¼ varðgiÞ ¼ X pGpX
T
p þ s2

gI

Gp is taken as an unstructured matrix to ensure translation
invariance of the model.

In the case of p= 1, (10) reduces to the linear random
regression for modelling linear trends:

gij ¼ ui0 þ ui1xj þ �ij

where ui0 and ui1 are the random intercept and slope terms
(respectively) for variety i.

By including further polynomial terms in the random
regression model non-linear trends may be modelled.
Alternatively it may be preferable to use natural cubic
smoothing splines (Verbyla et al. 1999) to provide a more
flexible specification.

Firstly, in some cases it is appropriate tomodel themean trend
over harvests using a cubic smoothing spline. This also enables the
notation to be established for the variety by harvest interaction. So
consider the mean effect vector m (h� 1). Verbyla et al. (1999)
formulate the cubic smoothing spline as a mixed model:

m ¼ X 1tþ Zsus þ ed

where X1 is Xp with p = 1; thus X1t is a fixed effects linear
regression on harvest time. The random effects term Zsus
provides the smooth nonlinear component of the cubic
smoothing spline. If dj = xj+1-xj, then Zs= D (D DT)–1 and us �
N(0, s2

sGs) where the non-zero elements of D (h� (h-2)) andGs

((h-2)� (h-2)) are for j= 2,3, . . ., h – 1

Dj�1;j ¼ 1
dj�1

; Djj ¼ � 1
dj�1

þ 1
dj

� �
; Djþ1;j ¼ 1

dj

and

Gs; j�1; j ¼ Gs; j; j�1 ¼ dj
6
; Gs;j�1; j�1 ¼ dj�1 þ dj

3

Note that ed � N(0, s2
d Ih) provides for the non-smooth

deviations from the cubic smoothing spline. In the notation
used later in the paper, the model is represented symbolically as:

1þ linðxÞ þ splðxÞ þ devðxÞ
where the first two terms are the linear regression terms, spl(x) is
the curvature term in the cubic smoothing spline and dev(x)
represents the non-smooth deviations.

Cubic smoothing splines can be used to model the variety by
harvest effects using:

gi ¼ X1ti þ Zsusi þ edi

where in this model linear random coefficients are used instead of
a fixed linear regression. Symbolically this may be written as:

Varietyþ Variety:linðxÞ þ Variety:splðxÞ
þ Variety:devðxÞ

so that Variety is interacted with each term in the basic spline
model.

Factor analytic models

The application of Factor Analytic (fa) models to multi-
environment trials is outlined in Smith et al. (2001). Similar
principles could apply in the case of multi-harvest data where
measurements fromdifferent harvests can be regarded as separate
traits and variety effects at different harvest times are assumed
correlated.

An fa model (of order s) can be fitted to the variety effects at
each harvest, with the genetic effects given by:

gij ¼
Xs

r¼1

ljrfir þ dij ð11Þ

where gij is the random effect for variety i, i= 1, . . .,m at harvest
j, j= 1,..., h, fir is the score for variety i in the rth factor, ljr is
the loading for harvest j for the rth factor and dij is a residual.

In vector notation the genetic effects are given by:

g ¼ ðL� ImÞf þ d

where L is a h� s matrix of loadings, [l1 l2 . . . ls], f is a
ms� 1 vector of factor scores, [f1

T, f2
T, . . ., fs

T]T, and d is amh� 1
vector of residuals, {dij}.

The joint distribution of f and d is assumed to be:

f

d

� �
� N

0

0

� �
;

Gf � Im 0

0 C� Im

� �� �

whereC is a diagonal matrix of specific variances, one for each
harvest, that is C= diag (Y1 . . . Yh). The factor scores are
commonly assumed to be independent and scaled to have unit
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variance, so thatGf = Is. Hence the variancematrix for the variety
effects at each harvest is given by:

varðgÞ ¼ ðL� ImÞvarðf ÞðLT � ImÞ þ varðdÞ
¼ ðLLT þCÞ � Im

Therefore the fa model results in Gh, a h� h genetic variance
matrix, of the form:

Gh ¼ LLT þC

In theory this enables predictions for each variety at each
harvest (g), to be calculated and these predictions can be
combined to form a weighted selection index, see Smith et al.
(2007).However, in practicewhen the number of harvests is large
this may not be ideal and it may be desirable to form a selection
index based on a smaller number of ‘traits’. The approach of
Cullis et al. (2010) may be used in which cluster analysis is
performed, based on the genetic correlation matrix, to group the
harvests into target groups and form variety predictions for each
selection group. This method allows investigation of variety by
harvest interaction.

Estimation, model selection and software

Estimation of variance parameters from the mixed model
was performed using Residual Maximum Likelihood (REML)
(Patterson and Thompson 1971), using the Average Information
algorithm as implemented in ASReml in the R environment
(Butler et al. 2009). The variance parameters were used to
obtain Best Linear Unbiased Estimates (BLUEs) of the fixed
effects and Best Linear Unbiased Predictions (BLUPs) of the
random effects (Robinson 1991).

To test the significance of random effects in the linear mixed
model theResidualMaximumLikelihoodRatio Test (REMLRT)
can be used. The REMLRTmay be used to compare the fit of two
models only if they are nested and contain the same fixed effects.
For two nested models, M0 and M1 with M1 having p1 variance
parameters and M0 having p0 variance parameters, with p1> p0,
the Residual Maximum Likelihood Ratio Test Statistic
(REMLRS) is calculated as –2(l0–l1) where l0 is the residual
log-likelihood for modelM0 and l1 is the residual log-likelihood
for model M1.

The standard REMLRS is asymptotically distributed as a chi-
squared statistic with p1–p0 degrees of freedom. If however
the test involves a null hypothesis where the parameter is on
the boundary of the parameter space the REMLRT needs to be
adjusted. For a test of a single variance component the theoretical
asymptotic distribution of the REMLRS is a mixture of chi-
squaredvariateswhere themixingprobabilities are0.5, onewith0
degrees of freedom (a spike at 0) and the other with 1 degree of
freedom. The approximate P value for the REMLRS is 0.5(1 –Pr
(x2� d)) where d is the observed value of the REMLRS (see
Stram and Lee 1994).

To compare the goodness of fit of two models (with the same
fixed effects) that may be non-nested, the Akaike Information
(AIC) criterion may be used. The AIC value for a model is
calculated as –2(l – p), where l is the residual log-likelihood for
themodel and p is the number of variance parameters in themodel.
Models with smaller AIC values provide a better fit to the data.

Results

Lucerne yield analysis

The analysis of yield was based on the linear mixed model (1).
This analysis requires appropriate variancemodels for the genetic
(Gg) and residual effects (R). As it is difficult to find optimal
models for both R and Gg at the same time, the sequential
approach of Smith et al. (2007) was followed, by firstly
assuming a simple genetic model in order to determine a
suitable residual model. Using this residual model more
complex models for the genetic effects were investigated. The
initial simple genetic model has genetic variance matrix Gg

given by:

Gg ¼ diag ðs2
gjÞ � Im ð12Þ

where sgj
2 is the genetic variance for harvest j. This initial genetic

model therefore allows for a different genetic variance for each
harvest and assumes the genetic effects are independent between
harvests. It also assumes the varieties are unrelated.

The description of the sequential model-building process has
been separated into two sections below, namely modelling the
non-genetic (residual) effects and modelling the genetic effects,
with the residual models given in Table 1 and the genetic models
given in Table 3. In all models, a fixedHarvest term is fitted in the
linear mixed model (in t), so the variety deviations from the
harvest means are being modelled.

The notation for terms used in the residual and genetic models
are defined in the Appendix 1.

Modelling non genetic effects

The first step in modelling the non-genetic (residual) effects was
to account for any spatial variation in the data. Initially this
involved investigating spatial models for each harvest
separately, using Eqn 3.

The sequence of residual models fitted is presented in
Table 1. The initial model fitted to each of the harvests was
the RCBmodel (in this case Scj and Srj in Eqn 3 are given by the
identity matrices Ic and Ir respectively) and the random effects
vector uo contains the replicate block effects for each harvest.
This represents the baseline model (Y1). In this model (and Y2–
Y8, see Table 1) the simple genetic model of Eqn 12 was
included at the genetic level.

Model Y2 includes the local spatial correlation between plots
at each harvest time, using a separable autoregressive (ar1
(Column).ar1(Row)) process for each harvest. Model Y2 was
a significant improvement on Y1 as can be seen formally by the
Residual Maximum Likelihood Ratio Test Statistic (REMLRS)
of 233.08 on 20 df (P< 0.001).

Using diagnostic tools such as the variogram and plots of
residuals, as in Gilmour et al. (1997) and Stefanova et al. (2009),
further terms were identified and included in the model to
account for global and extraneous spatial variation at each
harvest time. These terms included a random column effect for
harvests 2, 3, 4, 5, 6, 8 (included in uo) and a fixed effect for row 1
for harvest 10. These terms are included in models Y3-Y12 in
Tables 1 and 3.

In model Y4 a common ar1(Column).ar1(Row) spatial
model was included across the harvests (common spatial
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parameters for each harvest) and allowed for heterogeneity of
variance over time. This model was not significantly different to
Model Y3 (REMLRS= 17.17 on 18 d.f., P= 0.511). This
suggests that common spatial correlation parameters across the
harvests may be a reasonable assumption. Models Y1 to Y4 did
not attempt to account for the temporal correlation between the
multiple harvests. Subsequent models allowed for such
correlation at the residual level.

To decide on an appropriate model for the residual
covariance matrix, the empirical variance and covariance
matrix of the residuals from Y3 was calculated. The
empirical variances and correlations are presented in Table 2.
This matrix suggests possible models for the residual variance
structure. It is apparent that there is positive correlation between
all harvests with the correlations generally decaying as the
time between measurements increases, but the correlations do
not decay to zero.

Based on these observations, a plausible model is to assume an
overall average plot effect (Column.Row), a decaying correlation
process for the plot by harvest effects and a measurement error
effect as given by the extension of Diggle (1988) in Eqn 8.

To build up to this model, firstly a simpler model was fitted
(Y5), using a 3 way separable process (ar1v(Harvest).ar1
(Column).ar1(Row)) for the plot by harvest effects, thereby
modelling the temporal correlation and the spatial correlation in
each direction (row and column) each with an autoregressive
process of order 1, with a common residual variance across the
harvests. In this model the spatial correlation model for plots
was common for all harvests. The variances for each harvest
in Table 2 (ranging from 0.095 to 0.253), indicate that it may be
more suitable to assume heterogeneous residual variances for
each harvest, despite the transformation to cube root. Model Y6
allowed for differing variances across the harvests and was a
significant improvement on model Y5 (P value <0.001).

Table 1. Summary of models (given in both statistical and ASReml notation) fitted for yield at Terry Hie Hie investigating different residual variance
models. In all models the simple genetic effects model of (12) has been fitted (with 10 variance parameters). In all models a randomBlock effect has been
included for each harvest andmodelsY3–Y9 include global and extraneous spatial effects as outlined in the text. Residual log-likelihoods (denoted by ‘),
number of parameters in R (par), number of other non-genetic variance parameters (Other par) and AIC values (given as differences from the best
model) are presented for each model. Horizontal lines in the table indicate that fixed effects have been added or removed, and residual likelihood ratio

tests and AIC comparisons are therefore not appropriate between models above and below the line. Model terms are detailed in the Appendix

Model Residual variance matrix R Other
R ‘ par par AIC

Y1 diag(sj
2 Ic � Ir) 443.490 10 10 998.1

at(Harvest).id(Col).id(Row)
Y2 diag(sj

2 Scj � Srj) 560.030 30 10 795.0
at(Harvest).ar1(Col).ar1(Row)

Y3 diag(sj
2 Scj � Srj) 606.156 30 16 714.8

at(Harvest).ar1(Col).ar1(Row)
Y4 diag(sj

2 Sc � Sr) 597.859 12 16 695.3
diag(Harvest).ar1(Col).ar1(Row)

Y5 s2 Sh � Sc � Sr 801.129 4 16 272.8
ar1v(Harvest).ar1(Col).ar1(Row)

Y6 DShD � Sc � Sr 834.460 13 16 224.1
ar1h(Harvest).ar1(Col).ar1(Row)

Y7 DShar2D � Ic � Sr+ sp
2Jh � Ic � Sr(p) +sm

2 Ih � Ic � Ir 927.338 16 16 44.4
ar2h(Harvest).id(Col).ar1(Row) + id(Col).ar1v(Row) +Harvest.Col.Row

Y8 Sh
ante2 � Sc � Sr+sp

2Jh � Ic � S(p)r +sm
2 Ih � Ic � Ir 965.309 32 16 0.5

ante2(Harvest).ar1(Col).ar1(Row)+ id(Col).ar1v(Row) +Harvest.Col.Row
Y9 Sh

ante2 � Sc � Sr + sp
2Jh � Ic � Sr(p) 964.532 31 16 0

ante2(Harvest).ar1(Col).ar1(Row)+ id(Col).ar1v(Row)

Table 2. Empirical/sample variances (on diagonal) and correlations (off diagonals) of residuals from model Y3

Harvest 1 2 3 4 5 6 7 8 9 10

1 0.241
2 0.481 0.253
3 0.475 0.597 0.155
4 0.354 0.469 0.393 0.114
5 0.470 0.420 0.440 0.576 0.096
6 0.288 0.376 0.280 0.594 0.523 0.115
7 0.438 0.359 0.405 0.501 0.550 0.409 0.130
8 0.303 0.280 0.392 0.496 0.557 0.478 0.615 0.153
9 0.344 0.304 0.372 0.308 0.456 0.245 0.543 0.479 0.095
10 0.351 0.405 0.373 0.386 0.440 0.174 0.420 0.358 0.273 0.204
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On closer inspection of the empirical correlations of residuals
in Table 2 it appears that while the correlations are decaying
they are not decaying as quickly as what would be expected
from an ar1 process and it may be more reasonable to fit a
correlation process of higher order (for example ar2).

The next model (Y7) includes an ar2 correlation process for
the temporal correlation and allows for a spatially correlated
plot effect as well as a measurement error term. In this model
the spatial correlation at the overall plot level in the column
direction was dropped (set to zero) in order to achieve
convergence (this is not surprising as the correlation in the
column direction was very small for all harvests in models Y2
and Y3.

Antedependence structure (Gabriel 1962) was also
investigated for modelling the temporal covariance
component. An antedependence model of order s assumes that
the jth observation (j > s), given the s proceeding observation, is
independent of all other proceeding observations. The model is
more flexible than the exponential or autoregressive models in
that it allows the variances for each harvest time to differ and
allows for different antedependence coefficients for each harvest.
Initially the antedependence model of order 1 (ante) was tried.
The antedependence model of order 2 (ante2) proved a better fit
and model Y8 which incorporates the ante2 model was
significantly better than previous models based on AIC values.
In model Y8 the spatial correlation at the overall plot level in the
columndirectionwas set to zero to achievemodel convergence. In
the final model (Y9) the measurement error term was dropped
from Y8 but did not result in a significant drop in log-likelihood
(P = 0.106). Hence the final ’best’ residual model was deemed to
be model Y9 and this model was used in the following section
where more complex genetic models are incorporated.

Modelling genetic effects
The genetic models fitted are presented in Table 3. The first
attempt at improving the genetic model from the simple model of
Eqn 12, was to fit an overall variety main effect plus variety by
harvest interaction model (model Y10 in Table 3). This model
allowed for heterogeneous genetic variances across the harvests
and assumed a common genetic covariance between each pair of
harvests. This model was not a significant improvement on the
previous model.

The next genetic model to be fitted was the factor analytic
model. Thefitting of the factor analyticmodel had two purposes.
Firstly, it enables the h by h genetic variance matrix to be

estimated and hence variety predictions to be obtained for
each of the harvest times. Secondly it may be used to identify
a reduced number of traits that separate out the varieties. The
number of factors required to explain a sufficient amount of the
variation and the interpretation of their loadings are both of
interest.

The genetic model in Y11 is a factor analytic model with a
single factor (fa1). As model Y10 is nested within the fa1model
a direct comparison can be made using a REMLRT. The fa1
model provided a significant improvement in log-likelihood
(REMLRT= 55.030 on 9 d.f., P < 0.001).

Model Y12 fitted an fa2 model, which whilst not providing
a significant improvement in log-likelihood to the fa1 model,
(REMLRT = 12.456 on 9 d.f., P = 0.189), explained a much
greater percentage of variation for many of the harvests which
had low percent variance accounted for (%VAF) with the fa1
model. The fa1 model also implied a very simplistic and
restrictive structure in this case with the first four harvests
being perfectly correlated (genetic correlation of 1) which is
unlikely to be the case biologically. In the fa2 model fitted to
this data the correlations are shown to be quite different to 1.
The fa2 model was therefore chosen as the most suitable model
as the resulting genetic correlation structure between harvests
made more sense biologically and the model explained more of
the total genetic variance. Beeck et al. (2010) and Cullis et al.
(2014) also use the %VAF as a tool to aid in model selection for
factor analytic models.

The loadings and %VAF for the two factor model is given
in Table 4. The first factor shows harvest 6 (the Winter harvest)
as being most important, with the highest genetic variance.
This factor also shows harvest 9 being negatively correlated
with the other harvests (but with low genetic variance). The
second factor is more difficult to interpret but it may be
interpreted as a contrast between harvests 1 and 2 and
harvests 3, 5, 8 and 9, which may reflect an establishment
effect.

The genetic correlations between harvests and the genetic
variances for each harvest from the fa2 model are presented
in Table 5. As an aid to interpreting the genetic covariance
structure between harvests and investigate any variety by
harvest interaction the approach of Cullis et al. (2010) was
followed. These authors use cluster analysis and heat map
representation of the genetic correlation matrix in the aim of
grouping the harvests into meaningful clusters that may be used
for prediction and selection.

Table 3. Summary of genetic models fitted for yield at Terry Hie Hie. Residual log-likelihoods (denoted by ‘), number of
parameters in Gg (par), AIC values (given as differences from the best model), are presented for each model

Model Genetic model Genetic variance matrix ‘ Gg AIC
Gg par

Y9 diag(Harvest).Variety diag(sgj
2) � Im 964.532 10 29.87

Y10 Variety + diag(Harvest).Variety (sg
2Jh+ diag (sgj

2)) � Im 964.722 11 31.49
Y11 fa(Harvest,1).Variety (L1L1

T+ C) � Im 992.237 20 –5.54
Y12 fa(Harvest,2).Variety (L2L2

T+ C) � Im 998.465 29 0

All models incorporate the residual model Y9 in Table 1
L1 is a h� 1 matrix of factor loadings.
L2 is a h� 2 matrix of factor loadings.
C= diag (y1, . . ., yh) is a diagonal matrix of specific variances.
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A cluster analysis, using the agglomerative (nested)
hierarchical clustering algorithm in the agnes package in R
(R Development Core Team 2012), was performed using the
average clustering method (Kaufman and Rousseeuw 1990).
The dendrogram of the REML estimates of the dissimilarity
matrix (Ih – Cmat), where Cmat is the correlation matrix
obtained from the fa2 model, is presented in Fig. 3.

Cullis et al. (2010) suggests that clusters formed above a
cutoff of approximately 0.6 may not be meaningful. Hence the
dendrogram (Fig. 3) suggests possibly 2 main clusters plus
harvests 7 and 9 in groups of their own (making 4 clusters).
The two main clusters include one cluster of harvests with most
harvests having higher genetic variance (harvests 1, 2, 4, 6, 10)
and the second cluster consisting of harvests 3, 8 and 5. These
conclusions on the groupings of sites are supported by the
correlations in Table 5. From these correlations it can be seen
that harvests 1, 2, 4, 6, 10 (group1) are highly correlatedwith each
other, harvests 3, 8, 5 (group 2) are highly correlated with each
other and also negatively correlated with the establishment
harvest 1, while there is little correlation between harvest 7
(group 3) and the other harvests and also harvest 9 (group 4)
and the other harvests.

The groups obtained from the cluster analysis provide a
starting point to identify potential target sets of harvests for
which predictions of variety effects may be made. Cluster
group 1 contains the winter harvest 6 (which has substantially
higher genetic variance than the other harvests), the
establishment harvest 1 (with little genetic variation) and

the early harvests with genetic variance (2, 4), plus harvest
10 which also has moderate genetic variance. This would seem
reasonable as winter active varieties are known to perform
better in early harvests than their winter dormant counterparts.
The varieties are also planted in winter so winter active
varieties may establish better and perform better in their
first year. The second cluster group is given by harvests 3,
8 and 5. These harvests have low genetic variance and are
negatively correlated with the establishment period (harvest 1).
Harvest 9 is in it’s own group possibly due to the very high
rainfall occurring near this harvest, with the time between
harvest 8 and 9 containing the highest recorded rainfall at
nearby weather stations.

Variety by harvest interaction is primarily seen between
harvest 1 and group 2 with the harvests in group 2 being
negatively correlated with harvest 1. Also harvest 9 is
negatively correlated with the harvests in group 1.

Selection indices may be formed for each variety based on
overall performance over the trial as well as for the cluster
groups (Cullis et al. 2010). Figure 4 presents the predicted
selection indices for each variety for each of the groupings,
assuming equal weights for each harvest in each group, and
also the total across all harvests. This figure can be used to see
how varieties rank overall and across the groups, thereby
providing insight into variety by harvest interaction. For
example it can be seen that variety 05 (a new test line)
performs well overall with high rankings in groups 1, 2 and
4 but is ranked lower in group 3. It can also be seen that the
variety predictions for group 1 are highly correlated with the
overall total predictions.

Discussions with the breeder can lead to different selection
indices being formed using different weightings of the harvests
within the groups.

Lucerne persistence analysis

While in some circumstances it may be sufficient and desirable,
to model the differences between varieties or variety contrasts
over time (as in the previous section for yield), in other instances
it may be important to model the actual underlying response
over time. For example prediction of actual persistence level for
each variety may be required for times other than the harvest
times. This prediction can not be obtained from an analysis
based on deviations from the harvest means and hence an

Table 4. REML estimates of rotated factor loadings and percentage
variance accounted for (%VAF) from the fa2 model (Y12) fitted to

lucerne yield data

Harvest L1 L2 C %VAF total

1 0.028 0.039 0.000 100.000
2 0.125 0.048 0.000 100.000
3 0.019 –0.040 0.000 100.000
4 0.177 –0.016 0.000 100.000
5 0.091 –0.088 0.000 98.984
6 0.545 0.006 0.025 92.271
7 0.027 –0.009 0.005 13.644
8 0.038 –0.120 0.000 100.000
9 –0.012 –0.067 0.015 23.541
10 0.137 0.037 0.005 80.461

Table 5. REML estimates of genetic variances �100 (on diagonal) and genetic correlations (off diagonals) from the fa2
model (Y12) fitted to lucerne yield data

Harvest 1 2 3 4 5 6 7 8 9 10

1 0.229
2 0.843 1.787
3 –0.476 0.072 0.191
4 0.513 0.894 0.511 3.145
5 –0.133 0.419 0.930 0.778 1.614
6 0.576 0.899 0.401 0.955 0.681 32.188
7 0.116 0.286 0.253 0.361 0.330 0.336 0.577
8 –0.589 –0.061 0.991 0.392 0.875 0.282 0.215 1.594
9 –0.437 –0.256 0.393 –0.044 0.265 –0.090 0.023 0.427 1.998
10 0.700 0.892 0.160 0.841 0.460 0.834 0.278 0.042 –0.188 2.490
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alternative approach must be applied. A specific example
requiring the modelling of the response over time, is when the
time to a certain event (for example time to persistence level
dropping to30%) is the required trait of interest. This problemwill
be investigated in this section.

Modelling non-genetic effects

Deciding on the most appropriate model to fit to the persistence
data involved a sequential approach similar to that of the yield
analysis (in the previous section). The process commencedwith a
simple geneticmodel in which harvests were treated separately in
order to find suitable residual models for modelling the spatial
correlation at each harvest. Then the harvests were combined and
a residual model incorporating the temporal correlation between
harvests was found. At this stage the genetic model was also
modified to model the data across the harvests (using a cubic
smoothing spline) and in subsequent models the residual model
was further refined. The sequence of residual models fitted is
given in Table 6 but is not described in detail. The final residual
variance model was given by sp

2Jh � Ic � Sr
(p) + DShD � Ic �

Sr+ sm
2Ih� Ic� Ir as in TP8. Once the final residual model was

selected then more complex genetic models were investigated.

Modelling genetic effects

Table 7 presents the genetic models fitted to the persistence
response over time. The first model listed is TP11. This
model included an overall mean spline (1+ lin(years) + spl
(years) + dev(years)) and a diagonal variance model for the
variety deviations from this overall spline (diag(Harvest).
Variety)).The residual variance model was given by TP8. This
residual model is common for all models presented in Table 7.

In the subsequent models (TP12-14) different structures
were fitted to the variety deviations from the overall underlying
spline. Model TP12 includes a factor analytic structure of
order 1 to the variety deviations (fa1) in a manner similar to
that in the analysis of yield. In model TP13 a fa2 model was
used which provided an improvement on the single factor

model. Table 8 presents the estimated genetic variances for
each harvest and genetic correlations between harvests based
on the fa2 model. The genetic correlations were very high
for successive times (ranging from 0.836 to 0.940) with the
highest genetic correlation for persistence occurring between
harvest times 4 and 5 (approximately two, and two and a
half years after sowing). It is interesting to note that the genetic
correlation between the first and final harvest times (six months
and three years after sowing) was negative (–0.280) which
may indicate a tendency for some varieties that performed well
early in the trial do not show as high persistence later.

Subsequent models followed the approach of Verbyla et al.
(1999), that is by modelling the overall mean profile over time
using a cubic smoothing spline and then random regressions
for the variety deviations from this overall mean spline. Model
TP14 includes a linear random regression over time for the
variety deviations. This linear random regression model
correlated the intercepts and slopes for varieties. Further
investigations were made to assess if there was any
additional curvature from the linear random regression for
each variety but for this data set there was not (see Verbyla
et al. 1999).

Predicting time to P%

Oneway to investigate the persistence of varieties is to determine
the time taken for each variety to decline to a fixed percentage
cover. For the lucerne persistence data model TP14 was used
and this required special code to be written because the model
involves the cubic smoothing spline for the overall mean harvest
trend. The approach uses the results from Green and Silverman
(1994), in particular their equation (4.14) and an algorithm that
firstly determines the interval (in terms of harvest times) where
the persistence response curve achieves the set percentage, and
then iterates to the estimated time. Details on the procedure and
R-code are available from the authors and are presented in De
Faveri (2013).

For the persistence data, and using 30% as the level of
coverage, the times were estimated for the 60 varieties. The
times were ranked and are presented in Fig. 5. It is interesting
to note that the most persistent variety (for 30%) is an existing
commercial variety, Genesis, and that there are many new
varieties that also perform well. The other commercial
varieties are dispersed among the new lines.

Discussion

The methods presented in this paper provide a new approach
for the analysis of multi-harvest variety selection data from a
single site, that accounts for both spatial variation between
plots and temporal correlation between harvests, and allows
the genetic effects to be modelled over time. In both data
sets analysed there was substantial spatial and temporal
correlation. The three components of temporal correlation of
Diggle (1988) for repeated measures and extended in this
paper were found across the two examples. There were
large plot effects and serial correlation in both analyses and
significant measurement error in the analysis of the persistence
data. The models were relatively easy to fit and converged
within minutes, however occasionally the measurement error

1

2

4 6

10

7

3 8

5

9

0.
0

0.
2

0.
4

0.
6

0.
8

Harvest

D
is

si
m

ila
rit

y

Fig. 3. Dendrogram of the dissimilarity matrix from the fa2 model (Y12)
fitted to the lucerne yield data.
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component was difficult to fit and caused convergence
problems.

The combined approach of fitting the new extended spatial
and temporal residual models plus the models for genetic
effects over time is a new approach that builds on the
models of Smith et al. (2007). At the residual level, it has
been shown that the models presented provide an approach that
is significantly better in fit than assuming independence
between harvest times. However the three way separable
(harvest by column by row) structure assumed for the

spatio-temporal correlation may not always be appropriate
(Smith et al. 2007). The model assumes common spatial
parameters over harvest times which may not always be the
case. It may be expected that the spatial variation between
harvest times may differ due to seasonal changes and
growth phase of the crop. Investigating alternatives for
these three way separable residual models is an area of
current research.

The genetic models presented relate to the repeated
measures nature of the data and performance is modelled at
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Fig. 4. Pairwise plots of the predictions for lucerne yield for each of the four groups described in the text plus the total over all harvests.
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specific times or as a trend over time. The genetic models aim
to provide a reduced set of genetic effects to enable varietal
selection to take place. In some instances the data may warrant
a random regression over time approach while in others a

different approach, for example predictions may be required at
each harvest time or for target groups of harvests. The factor
analytic models enable predictions to be made at each harvest
time, or for target groups of harvests which may be identified
using cluster analysis (Cullis et al. 2010). The random
regression models for genetic effects provide intercepts and
slopes for each variety giving the deviation of the variety from
the overall harvest mean profile. The random regression
models allow predictions to be made at any time during the
trial and also predictions of the time to a certain event.

Appropriate selection indices could be developed in
collaboration with breeders using the genetic parameters from
these models, and hence rankings of varieties presented for
selection (Kelly et al. 2007). Smith et al. (2007) present
selection indices based on a weighted sum of the predictions
from each harvest timewith user suppliedweights. This approach
can be used to form selection indices for the data in this paper,

Table 6. Summary of models (given in both statistical and ASReml notation) fitted for persistence at Terry Hie Hie investigating different residual
variance models. In all models the simple genetic effects model of (12) has been fitted (with 6 variance parameters). In all models a randomBlock effect
has been included for each harvest and models TP3-TP10 include global and extraneous spatial effects. In models TP1-TP5 a separate mean for each
Harvest has been fitted while in models TP6-TP10 the overall mean has been modelled over time using the spline model: 1+ lin(years) + spl
(years) +dev(years). Residual log-likelihoods (denoted by ‘), number of parameters in R (par), number of other non-genetic variance parameters
(Otherpar)andAICvalues (givenasdifferences fromthebestmodel)arepresentedfor eachmodel.Groupsofmodelsaboveandbelowthehorizontal line
have different fixed effects and are not comparable using residual likelihood ratio tests or AIC values. Model terms are detailed in the Appendix

Model Residual model R Other
R ‘ par par AIC

TP1 diag(s2
jIc � Ir) 673.848 6 6 1077.376

at(Harv).id(Col).id(Row)
TP2 diag(s2

j Scj � Srj) 693.421 18 6 1062.230
at(Harv).ar1(Col).ar1(Row)

TP3 diag(s2
j Scj � Srj) 711.817 18 12 1037.438

at(Harv).ar1(Col).ar1(Row)
TP4 s2Sh � Sc � Sr 1161.726 4 12 109.620

ar1v(Harv).ar1(Col).ar1(Row)
TP5 DShD � Sc � Sr 1168.007 9 12 107.058

ar1h(Harv).ar1(Col).ar1(Row)

TP6 DShD � Sc � S r 1170.350 9 14 103.196
ar1h(Harv).ar1(Col).ar1(Row)

TP7 DShD � Sc � Sr + sp
2Jh � Ic � Sr

(p) + sm
2Ih � Ic � Ir 1222.672 12 14 1.916

ar1h(Harv).ar1(Col).ar1(Row) + id(Col).ar1v(Row) +Harv.Col.Row
TP8 DShD � Ic � Sr + sp

2Jh � Ic � Sr
(p) + sm

2Ih � Ic � Ir 1222.445 11 14 0
ar1h(Harv).id(Col).ar1(Row) + id(Col).ar1v(Row) +Harv.Col.Row

TP9 DSh
expD � Sc � Sr + sp

2Jh � Ic � Sr
(p) + sm

2Ih � Ic � Ir 1222.267 12 14 3.248
exph(Harv).ar1(Col).ar1(Row) + id(Col).ar1v(Row) +Harv.Col.Row

TP10 Sh
ante � Sc � Sr + sp

2Jh � Ic � Sr
(p) + sm

2Ih � Ic � Ir 1223.968 16 14 6.564
ante(Harv).ar1(Col).ar1(Row) + id(Col).ar1v(Row) +Harv.Col.Row

Table 7. Summary of genetic variance models fitted to persistence at Terry Hie Hie. Residual log-likelihoods (denoted by ‘), number of parameters
in Gg (par) and AIC values (given as differences from the best model) are presented for each model.

Gg

Model Genetic model ‘ par AIC

TP11 diag(Harvest).Variety 1225.536 6 19.176
TP12 fa(Harvest,1).Variety 1237.473 16 15.302
TP13 fa(Harvest,2).Variety 1241.603 21 17.042
TP14 corh(1,years).id(Variety) + idv(Harvest.Variety) 1237.124 8 0

All models include the residual variance model TP8 of Table 6 (R=DShD � Ic � Sr + sp
2Jh � Ic � Sr

(p) + sm
2Ih � Ic � Ir) and have the overall mean over

time modelled using the spline model :1+ lin(years) + spl(years) + dev(years).

Table 8. REML estimates of genetic variances �100 (on diagonal) and
genetic correlations between harvests (off diagonals) from the fa2model

(TP13) fitted to the lucerne persistence data

Harvest 1 2 3 4 5 6

1 0.741
2 0.842 0.805
3 0.741 0.864 1.065
4 0.343 0.625 0.885 1.324
5 0.077 0.413 0.710 0.940 0.923
6 –0.280 0.079 0.384 0.732 0.836 0.799
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based on the predictions obtained at each harvest time, or for
groups of harvests, from the factor analytic model as in Cullis
et al. (2010).

Together the residual and genetic models proposed in this
paper have the potential to have a significant impact on improving
the accuracy of variety selections made in perennial crops.
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Appendix 1. Model functions and their associated correlation/covariance matrices that are used in analysis of the lucerne trial. Ih is the h�h
identity matrix and Jh is the h�h matrix of ‘ones’

Name Model Function Correlation
or variance

Example correlation or covariance matrix

identity id correlation id(Harvest) Ih
identity variance idv variance idv(Harvest) s2

hIh
1

diagonal diag variance diag(Harvest) diag (s2
hj)

1,4

heterogeneous correlation corh variance corh(Harvest) diag (shj) {Ih+rt (Jh – Ih)} diag (shj)
2,3

unstructured us variance us(Harvest) Gh
5

factor analytic, order k fa variance fa(Harvest,k) Lh Lh
T + Ch

6

autoregressive, order 1 ar1 correlation ar1(Row) Sr
ar1 = Ir+

P
j=1
r-1 rjr Fj

7

autoregressive variance, order 1 ar1v variance ar1v(Row) sr
2 Sr

ar11,3,7

autoregressive heterogeneous variance, order 1 ar1h variance ar1h(Row) DSr
ar1D1,3,7,8

exponential heterogeneous variance exph variance exph(HarvestTime) DSh
expD8 where Sh

exp
ij =f|ti-tj|

antedependence, order s ante variance ante(HarvestTime,s) Sh
ante where Sh

ante-1 = UTD*U9

at at compound at(Trait) separate structure for each level of Trait

1s2
h, s2

hj and s2
r are variances.

2shj are standard deviations.
3rt, rr and f are correlations.
4diag () is a diagonal matrix with elements specified.
5Gt is a fully parameterized covariance matrix of order t.
6Lt is a matrix of factor loadings, Ct is a diagonal matrix of order t.
7Fj is a matrix which has ‘ones’ on the jth sub and super-diagonals and zeros elsewhere.
8D is a diagonal matrix of standard deviations.
9U is a lower triangular matrix with ‘ones’ on the diagonal and –uij on (i-j)th sub-diagonal (where (i-j� s) and zeroes elsewhere and where Yj =

Psj
k¼1

uj(j–k)Yj–k + ej, with sj =min(j – 1, s). D* is a diagonal matrix.
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