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Persistence of orally administered Megasphaera elsdenii
and Ruminococcus bromii in the rumen of beef cattle fed
a high grain (barley) diet
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Abstract. When cattle are fed grain, acidotic ruminal conditions and decreased efficiency in starch utilisation can result
from the rapid production and accumulation of lactic acid in the rumen. The efficacy of drenching cattle with Megasphaera
elsdenii and Ruminococcus bromii to improve animal performance was investigated. A feedlot trial was undertaken with 80
Bos indicus crossbred steers (initial liveweight 347.1 (s.d. 31.7) kg) in 10 pens in a randomised complete block design. An
empty-pen-buffer was maintained between treated (inoculated) and untreated (control) groups to avoid transfer of inoculant
bacteria to the control steers. Inoculated steers were orally drenched with M. elsdenii YE34 and R. bromii YE282, and
populations increased rapidly over 3—14 days. The steers were fed for a total of 70 days with commercial, barley-based,
feedlot rations. High growth rates (1.91 kg per day) were achieved throughout the experiment in both the inoculated and
control steers. Intakes averaged 21.3 g dry matter (DM) per kg liveweight per day. There was probably no acidosis achieved in
this trial following challenge (i.e. no change in pH occurred). There were no differences in any production or carcass
measurements between the control and inoculated steers overall. However, the control group acquired dense ruminal
populations of M. elsdenii by Day 14, while R. bromii populations established at high densities within the first 2 weeks but
then declined and were undetectable by Day 50. R. bromii appears to be only transiently dominant, and once its dominance
waned, it appeared that Ruminobacter spp. established in the rumen. Ruminobacter spp. became dominant between 14 and
28 days in all the steers examined and persisted through to the end of the study. These Ruminobacter spp. may be of future
interest in the development of probiotics for grain-fed cattle.
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Introduction In a previous study, Klieve et al. (2003) pursued a probiotic

In cattle fed grain-based diets, ruminal pH often falls to low
levels (below pH 5) (Dunlop 1972; Nocek 1997; Owens et al.
1998). This decreases the efficiency by which substrate is
converted to volatile fatty acids and microbial protein for
animal production (Strobel and Russell 1986). The decrease in
pH is often associated with the accumulation of lactic acid,
which can lead to acute lactic acidosis (Dawson and Allison
1988). Preventative measures that have been considered both
to increase the efficiency of starch digestion and utilisation and
prevent the onset of an acidotic condition, include the use of
antibiotics (Godfrey et al. 1995; Owens et al. 1998), probiotic
bacteria (Kung and Hession 1995; Wiryawan and Brooker 1995;
Klieve et al. 2003) and immunisation against Streptococcus
bovis (Shu et al. 1999).
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approach whereby lactic acid-utilising and competitive starch-
utilising bacteria were selected from the rumen of cattle adapted
to ahigh-grain dietand introduced to cattle entering a feedlot. This
should augment indigenous populations of these bacteria, thereby
preventing acute lactic acidosis, allowing a faster introduction to
grain and improving the efficiency of starch utilisation by cattle.
Initial work identified a strain of Megasphaera elsdenii (YE34)
as a promising lactic acid-utilising bacterium capable of rapidly
colonising the rumen of barley-fed cattle (Klieve ef a/. 2003). In
the same study, a strain of Butyrivibrio fibrisolvens (YE44) was
selected as a non-lactic acid-producing starch-utiliser but this
strain failed to colonise and real-time Tag nuclease assay (TNA)
enumeration suggested that all strains of this species of bacterium
were rapidly lost from the ecosystem when the cattle were fed a
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barley-based diet. A subsequent study (Klieve et al. 2007) using
denaturing gradient gel electrophoresis (DGGE) to identify the
dominant bacteria in ruminal contents of these cattle found that
the commonly dominant bacterium present at 9—14 days after
introduction of the barley diet was Ruminococcus bromii. This
species was subsequently isolated using traditional culture-based
techniques and its dominance in the grain-fed cattle was
confirmed using real-time TNA (Klieve et al. 2007). In some
cattle, the population of R. bromii reached densities above 10'°
R. bromii cell equivalents per mL, or ~10% of the total bacterial
population.

In the current study, we orally drenched cattle on induction
into a grain feedlot with M. elsdenii YE34 and R. bromii YE282 to
assess their ability to colonise the rumen, persist in the ruminal
ecosystem, and to determine whether liveweight gain increased.

Materials and methods
Pen trial — experimental design

A feedlot growth study over 70 days was undertaken at the
Department of Employment, Economic Development and
Innovation’s  Brigalow  Research  Station, Theodore,
Queensland (24°50’S, 149°48'E). The trial had the ethical
approval of Staff Access Animal Ethics Committee (approval
number SA 2005/09/49). Animals used were a combined group
of high-grade Bos indicus steers, predominantly Droughtmaster
and Droughtmaster X Brahman crossbreds (~50% B. indicus)
from two properties. The estimated age of both groups was
12 months and initial average liveweight was 347.1 £ 31.7
(+£s.d.) kg. Eighty steers were divided among 10 pens in a
randomised complete block design with five replicates of
two treatments (control and inoculated). Steers were allocated
to pens by stratified randomisation on the basis of unfasted
liveweight, property of origin and for one property group,
phenotype description. Within each pen, three steers from the
same property of origin and the same liveweight blocks were
selected for rumen sampling during the trial. Treatment groups
were assigned to pens such that an empty-pen-buffer was
maintained between control and inoculated groups to avoid
transfer of inoculant bacteria to controls.

Bacteria, culture and storage

Stock cultures of M. elsdenii YE44 and R. bromii YE282 were
grown in a rumen fluid-based medium, with either lactate or
maltose as the sole source of energy, respectively (Klieve et al.
2003, 2007), and stored at —80°C by the method of Teather
(1982). Starter cultures (5 mL) were incubated at 39°C overnight.
Under anaerobic conditions (Coy laboratory anaerobic chamber,
Coy Laboratory Products Inc., Ann Arbor, MI, USA; 95% CO,,
5% H,), each 5-mL culture was added to a 500-mL serum bottle
(Wheaten, Millville, NJ, USA) containing 250 mL of broth and
incubated at 39°C overnight. A 250-mL volume of anaerobic
rumen fluid-based medium to glycerol (1: 1, vol/vol) solution
was added anaerobically, the bottle resealed, contents mixed well
and stored frozen at —20°C (Klieve et al. 2002). Cultures were
thawed, well mixed and three bottles from each bacterial species
were subsampled for later enumeration by real-time polymerase
chain reaction (PCR) and determination of inoculum dose, before
inoculation.
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Induction, inoculation and feeding

Following allocation into treatment groups, all control replicates
were moved to pens. Inoculated groups were then inoculated with
M. elsdenii YE34 and R. bromii YE282, before being moved
to pens. These steers each received 100 mL [M. elsdenii YE34 at
1.32 x 107 cell equivalents per mL and R. bromii YE282 at
2.89 x 107 cell equivalents per mL] of each bacterial species
by oral inoculation, using standard drenching equipment.

The steers were fed for a total of 70 days with commercial
feedlot diets incorporating starter (Days 1-6), intermediate
(Days 7-12) and finishing (Days 13-70) rations (Table 1). The
steers were fed once daily around noon, using a ‘clean bunk at
midday’ management system (Lawrence 1998). At all times, the
control groups were fed first, then the inoculated groups, to reduce
the likelihood of transfer of inoculant bacteria. The same rule
was applied to all other management and sampling procedures
where close proximity to the steers was expected. Daily feed
allocation was determined on the basis of the amount of feed
remaining just before feeding but once weekly any residual
feed was removed, weighed, subsampled for DM content,
and returned to the bunk. Feed that became wet was removed,
weighed, subsampled for DM content and discarded. Samples of
the ration fed were taken daily, refrigerated (4°C), bulked weekly,
and two subsamples were taken, one for DM determination and
the other, which was stored frozen, for chemical analysis. All
samples for DM determination were dried at 100°C for 24 h. Atthe
end of the experiment, one bulked subsample of the starter and
intermediate feeds, and two of the final ration (Weeks 3—6, 7-10)
were mixed, dried to constant weight at 60°C and ground to pass
through a 1-mm screen before analysis.

Sampling and data collection

The health status of animals was checked using a pen walk each
morning and any symptoms of acidosis, e.g. lameness, were
recorded.

Table 1. Proportional and chemical compositions of the three rations
fed
Parameter Starter Intermediate Finisher
(1-6 days)  (7-12 days) (13-70 days)
Ration composition (g/kg total, as fed)
Barley 500 610 705
Sorghum silage 60 90 90
Wheat straw 60 60 20
Lucerne hay 100 - -
Cottonseed — high lint 70 80 90
Molasses 150 80 30
Copra meal 35 35 -
Vegetable oil - 10 20
Pre-mix 25 35 45
Chemical composition (dry matter basis)

Organic matter (g/kg) 939 946 951
Crude protein (g/kg) 139 141 144
Fat (g/kg) 33 48 67
Crude fibre (g/kg) 111 94 90
Ca (g/kg) 5.9 5.7 6.0
P (g/kg) 2.6 2.7 3.0
Metabolisable energy (MJ/kg) 124 12.9 134
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The steers were weighed at Days 14, 28, 50 and 70. Rumen
sampling of the selected steers (three steers per pen) was carried
out on Days 3, 14, 28 and 50. Rumen fluid was collected per os
with a stomach tube and vacuum pump, as previously reported
(Klieve et al. 1998), for pH determination and microbial analysis.
At all times, the control groups were sampled first and returned
to pens before sampling the inoculated groups. Rumen fluid
(50-100 mL) was collected, strained through nylon gauze into
an open-mouthed jar and the pH was recorded immediately. From
each sample, four 1-mL aliquots were placed in 1.5-mL eppendorf
tubes and centrifuged at 12 000g for 15 min. The supernatant
fluid was discarded and remaining pellets frozen on dry ice before
transport and storage at —20°C. An additional 4 mL aliquot of
rumen fluid was placed into a container with mercuric chloride
(to prevent further fermentation) for determination of lactic acid
content, as previously reported (Ouwerkerk and Klieve 2001).
The samples for lactic acid determination were frozen on dry ice
before transport and storage at —20°C. Lactic acid concentration
was determined as previously reported (Ouwerkerk and Klieve
2001).

DNA extraction, PCR amplification, DGGE
and bacterial enumeration

DNA was extracted from rumen samples by physical disruption
using abead beater as described previously (Whitford ez al. 1998).
The hypervariable V3 region of the bacterial 16S rRNA gene was
amplified from all of the bacteria in each sample using primers
341F-GC (5'-CGC CCG CCG CGC GCG GCG GGC GGG GCG
GGG GCA CGGGGGGCCTACGGGAGGCAGCAG-3")and
534R (5'-ATT ACC GCG GCT GCT GG-3') (Muyzer et al.
1993).

DGGE was used to separate the PCR products to produce a
profile from which the diversity of bacteria present in the sample
could be estimated (Klieve et al. 2007). The PCR products were
loaded onto a DGGE gel with a 30-60% denaturant range.
A reference ladder (Klieve et al. 2007) was also loaded onto
the gel to allow comparison within denaturing gradient gels.
The gel was then electrophoresed at 100 V for 18 h in 0.5 x
TAE (Tris—acetic acid-EDTA) buffer, at 60°C. Following
electrophoresis, the gel was silver-stained to visualise the
DNA (Kocherginskaya et al. 2005).

Populations of M. elsdenii, R. bromii and S. bovis were
enumerated using real-time TNAs as previously reported
(Ouwerkerk et al. 2002; Klieve et al. 2003, 2007).

Identification of bacterial species from DGGE gels, DNA
sequencing and sequence analysis

The DNA from selected bands was isolated and sequenced to
identify the bacterial species represented by that band. The
materials and methods involved in this process were identical
to those reported in detail by us previously (Klieve et al. 2007).
Briefly, a sample of the DNA was obtained by stabbing through
the band of interest with a needle (or pipette tip). The V3 region
was re-amplified by PCR and a clone library of the PCR products
produced in E. coli cells (TA Cloning Kit, Invitrogen, Carlsbad,
CA,USA). Approximately 20 clones for each band were selected,
plasmid DNA containing a copy of the original product was
extracted from the clones and the V3 region was amplified and
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run on a DGGE gel alongside the DNA banding profile from the
original rumen sample to confirm the clones contained the correct
insert, i.e. the V3 PCR product migrated to the same position as
the band that the stab was taken from. Five clones containing
the correct insert had their V3 region sequenced (Griffith
University sequencing facility) and three identical sequences
from different clones were deemed sufficient for assigning the
sequence to a specific band (Klieve et al. 2007). The sequence was
subsequently compared with others in the GenBank database
to determine species identity and phylogenetic position
(Ouwerkerk and Klieve 2001).

Statistical analysis

Live animal data (weight, body condition score and hip height)
and carcass data (carcass weight, dressing percentage and P8 fat)
were analysed by standard ANOVA, with pen as the experimental
unit and animal as a sampling term. Further, liveweight growth
profiles were examined by repeated-measures analysis using
the method of residual maximum likelihood and modelling the
variance—covariance matrix.

Average daily pen feed intakes were calculated for selected
periods. Feed conversion efficiency over the selected periods was
calculated for each pen as the ratio of average DM intake (DMI)
and the average liveweight gain over the respective periods.
Because feed intakes were collected on a pen basis, average
feed intake (DMI) and feed conversion efficiency over the
selected feedlot periods were analysed by ANOVA, excluding
the sampling term. Weekly DMI profiles were also assessed by
repeated-measures analysis using residual maximum likelihood
and modelling the variance—covariance matrix.

Results
Feed intake, liveweight gain and carcass measurements

There were no statistically significant differences between
treatments in relation to liveweight, intake, height, body
condition, rumen fluid pH or carcass measurements (see
Table 2). The steers in general ate well throughout the trial
and this was reflected in the high rate of liveweight gain. For
reasons of interpretation, the trial period has been divided into
the first 4 and last 6 weeks. There was little difference in
DM intake between treatment groups in the first 4 weeks of
the trial (see Table 2). While intakes were marginally higher for
the inoculated steers in the last 6 weeks and overall, these
differences were not significant. The pattern of intakes (Fig. 1)
indicates a trend towards higher intakes by the inoculated steers in
the latter part of the trial. However, this coincides with poor
performance of one pen in the control group (Pen 7), and one steer
in that pen in particular. This steer lost 2 kg over the last 3 weeks
for reasons unknown but not apparently related to acidosis.

High growth rates were achieved throughout the experiment
in both groups (Table 2), but particularly in the first 4 weeks.
Liveweight changes generally reflect changes in intake and
growth rates were slightly higher for inoculated than control
steers for the final 6 weeks.

Acidosis — physical symptoms, ruminal pH and lactic
acid concentrations

There was only one obvious case of laminitis, a control steer
at 4 weeks, but this steer subsequently recovered and was not
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Table 2. Feed intake, liveweight gain, body condition and carcass "r
characteristics averaged across steers in the control and inoculated
treatments 10 |-
Parameter Control Inoculated 5 or
Dry matter intake (kg/day) g 8
Weeks 1-4 7.69 7.57 2
Weeks 5-10 9.48 9.74 g ,L Control
Weeks 1-10 8.76 8.87 s ——— Inoculated
[a)
Dry matter intake (g/kg LW per day) 6
Weeks 1-4 20.3 20.2 //
Weeks 5-10 21.3 22.0 5
Weeks 1-10 21.1 21.5
Initial liveweight (kg) 349.8 3453 4 L ] ] ] | | | 1 1 |
Final liveweight (kg) 480.5 481.4 1 2 3 4 5 6 7 8 9 10
Liveweight change (kg/day) Weeks
Weeks 1-4 2.11 2.08 Fig. 1. Changes in dry matter intake by steers over the trial period (weekly
Weeks 5-10 1.71 1.85 avera
ges).
Weeks 1-10 1.87 1.94
Feed conversion ratio (kg/kg) — Weeks 1-10 4.70 4.57 removed from the experiment. One other control steer appeared
Carcass weight (kg) 250.0 2510 lethargic at Week 5 but showed no signs of laminitis and was
PD;efSSt“(‘lg pt;rcemage ? (2)8 i é; monitored but not removed.
at depth (mm) ’ ’ Ruminal pH was not affected (P > 0.05) by inoculation at any
Body condition score change 2.19 2.36 di . d ined relatively hich (~6.8). E f
Final body condition score 6.8 6.8 recording time and remaine re. ath.e y hig . (~6.8). Except for
three control-group steers, lactic acid remained at trace levels
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Fig. 2. Frequency of occurrence (percentage of cattle population) within the sampled cattle of Megasphaera elsdenii
at given population densities. The scale is based on grouping on a logarithmic population density basis; e.g. 10°°
represents a bacterial population density between 10° and 10° of M. elsdenii cell equivalents per mL of rumen fluid,
where Und represents a population density below detectable limits.
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(below 1 mM). Even in these three steers, the maximum lactic
acid concentration was 11.45 mM, well below the normal
concentrations of 100 mM or greater, generally associated
with acidotic cattle (Klieve et al. 2003).

Bacterial population changes

Numbers of the inoculant bacteria, M. elsdenii and R. bromii, and
also S. bovis, a lactic acid-producing bacterium often implicated
in acute lactic acidosis (Mackie ef al. 2002), in ruminal contents
of the sampled cattle at Days 3, 14, 28 and 50 are presented in
Figs 2—4, respectively. Data are presented as frequency graphs,
with the percentage of sampled animals in each treatment group
with populations within each log-value range (e.g. numbers of
bacteria between 10° and 10° per mL) being plotted.
Populations of M. elsdenii were present in all inoculated steers
generally at densities between 10° and 107 cells per mL by Day 3
(Fig. 2). By this day, M. elsdenii was also detected in 70% of the
control steers, generally at a lower density but as high as 10° per
mL. Megasphaera elsdenii populations rapidly increased in all
steers of both groups, and by Day 14, were present at relatively
high densities (10’—10® cells per mL of rumen fluid), where they
appeared to stabilise for the remainder of the experiment.
Changes in R. bromii populations are presented in Fig. 3. At
Day 3, R. bromii had established in all inoculated steers at
densities between 10° and 10° cells per mL, but numbers were
below detection limits in all the control steers. By Day 14, the
R. bromii population in inoculated steers had increased markedly,

1009
3 days
—3 Control
80 4 = [noculated
60

40

20

Percentage of cattle population
o
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with numbers above 107 cells permLin 50% of'steers. Atthe same
time, the population density was increasing in the control steers,
with a few steers (~20%) having high numbers (10°~10° cells per
mL), 40% having 10*-10° cells per mL and ~30% still having
undetectable populations. By Day 28, populations had declined
markedly in both groups of steers, with all the inoculated animals
having populations of <10 cells per mL, while R. bromii was not
detectable in 55% of the control steers. At Day 50, the R. bromii
population had declined to undetectable levels in all but one
control-group steer.

Streptococcus bovis populations (Fig. 4) were generally
between 10° and 107 cells per mL throughout the entire trial.
A few control steers had higher population densities at Day 3
(above 108 cells per mL) but these did not persist. As the trial
progressed, the population density of S. bovis decreased in many
ofthe sampled steers and even became undetectable in a few steers
at 28 and 50 days into the trial.

Identification of starch utilisers displacing R. bromii

To determine what changes had occurred in the rumen ecosystem
over the time period involved and whether the bacteria replacing
R. bromii were always the same or not, DGGE gels were run on
total DNA from ruminal contents from eight of the steers (six
inoculated and two control) on Days 3, 14, 28 and 50. The steers
selected were those in which R. bromii had initially established
and then disappeared. Results for one representative steer are
presented in Fig. 5. In this steer, R. bromii appeared dominant at
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Fig.3. Frequency of occurrence (percentage of cattle population) within the sampled cattle of Ruminococcus bromii
at given population densities. The scale is based on grouping on a logarithmic population density basis; e.g. 10°°
represents a bacterial population density between 10° and 10° of R. bromii cell equivalents per mL of rumen fluid,
where Und represents a population density below detectable limits.
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Fig. 4. Frequency of occurrence (percentage of cattle population) within the sampled cattle of Streptococcus bovis
at given population densities. Scale is based on grouping on a logarithmic population density basis; for example, 10°°
represents a bacterial population density between 10° and 10° of S. bovis cell equivalents per mL of rumen fluid,
where Und represents a population density below detectable limits.

Day 14 but decreased in prominence after that, and two other
bands, in particular, became very prominent and remained that
way through to Day 50. While R. bromii was not as evident in the
DGGE profiles of all steers, the two very prominent bands that
arose after Day 14 also dominated the banding profiles of the
other steers examined (and in some were prominent from Day 14
onwards) and remained so. A comparison of DGGE patterns for
the eight steers at Day 50 is presented in Fig. 6. This clearly shows
the similarity in the bacterial population profiles of the steers
by Day 50 and the prominence of these two bands (designated A
and B).

The sequences from Bands A and B were 96% similar to
each other over 193 base pairs. Band A shared 98% similarity
over 193 base pairs with the uncultured bacterial Clone 12—11,
and Band B had 98% similarity over 193 base pairs with the
uncultured bacterial Clone 12—18. In a study by Whitford et al.
(1998), these clones originated from the rumen and branched
with Ruminobacter amylophilus and the cluster had a bootstrap
value of 100%. However, Bands A and B had only 85%
similarity to R. amylophilus ATCC 29744, which is
sufficiently different from known culturable bacteria to be
regarded as a novel species within a different genus [as
defined by Bond ez al. (1995)].

Discussion

High growth rates were achieved throughout the experiment in
both the inoculated and control steers (Fig. 2), but particularly in

the first 4 weeks, which could have resulted partly from some
re-alimentation after transport and depasturing in unfamiliar
paddocks before induction. Growth rates generally reflected
changes in intake and were slightly higher for inoculated than
control steers for the final 6 weeks, but poor performance of a few
individual steers in the control group may have contributed to this.
These differences were not significant.

It is unlikely that acidosis occurred in this experiment. Lactic
acid concentrations and pH in rumen fluid of the steers tend to
indicate that ruminal lactic acidosis was not affecting steers in this
experiment, even though monensin was not included in the diet.
Although pH and lactic acid concentrations were measured only
once on the day of sampling, and then early in the morning before
feeding when pH in particular would be expected to be at a high
point (least acidic), no values for pH at any time fell below 5.5.

The general lack of differences in performance between the
inoculated and control steers and the fact that all performed at
expected levels for cattle in feedlots, may be due to the rapid
acquisition of one of the inoculant bacteria in control-group cattle,
and the transient dominance of the other. The acquisition of
detectable populations of M. elsdenii in control steers was much
more rapid than expected and more rapid than previously
observed. Klieve et al. (2003) inoculated M. elsdenii directly
into the rumen of steers and did not detect M. elsdenii in any
uninoculated steers (all were sampled) for at least 5 days. It is
possible that in the present study the control group had M. elsdenii
naturally present at higher levels than previously observed, or
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Day
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Fig. 5. Denaturing gradient gel electrophoresis profiles of bacterial
diversity and abundance in the ruminal contents of steer 3620 (an
inoculated group steer) on Days 3, 14, 28 and 50 post-inoculation.

Banding typical of Ruminococcus bromii (Klieve et al. 2007) is circled
and bands that became extremely prominent after Day 28 are arrowed.

=

M. elsdenii may have been acquired from the inoculated steers,
despite considerable precautions being put in place to prevent this
from happening. Determining the reason for the rapid acquisition
of M. elsdenii by control-group steers will require further study
but it also may question whether there is need to inoculate
with M. elsdenii to achieve rapid population densities under all
circumstances.

Ruminococcus bromii did not appear in the control steers until
after Day 3, suggesting that it did not spread to, or was not able to
colonise as quickly in uninoculated control steers, in the manner
that M. elsdenii may have done. It appears that R. bromii is only
transiently dominant during the early weeks of grain feeding
and was not detected at any time in more than 30% of the control
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Fig. 6. Denaturing gradient gel electrophoresis profiles from the rumen
contents of eight steers fed grain for 50 days. Lanes 1, 6 and 11 are reference
markers. Bands arrowed had DNA excised, cloned and sequenced.

steers. Furthermore, the presence or absence of this bacterium
does not appear to have had an influence on intake or liveweight
gain of the steers. It was noted with hindsight that in previous
work where R. bromii had been shown to be the dominant -starch-
utilising bacterium in barley-fed cattle (Klieve et al. 2007),
these cattle had been on grain for 14 days, the time at which
the R. bromii populations were maximal in the current work. The
importance of the transient dominance of R. bromii in the
development of an efficient and stable microbial ecosystem
that is capable of utilising a high grain diet remains an open
question. Previous work with Bos taurus steers (Klieve et al.
2007) indicated that at 14 days, R. bromii was a dominant
component of the ruminal ecosystem in all of the cattle used
(10 in total), which was a natural occurrence as none of these
animals had been inoculated with this bacterial species. This
contrasts with the low detection threshold (30% in control steers)
of R. bromii in the current work.

Streptococcus bovis is often implicated in lactic acidosis
(Nocek 1997) but recent work has suggested that the
population density rarely increases unless the ruminal
ecosystem is compromised (Mackie et al. 2002; Klieve et al.
2003). S. bovis populations were generally 10°~10 cells per mL
of rumen fluid throughout the entire trial, which is in agreement
with previous reports (Mackie et al. 2002; Klieve et al. 2003).
A few control steers had higher populations at Day 3 (above 10®
cells per mL) but these did not persist. As the trial progressed, the
population density of S. bovis decreased in many of the sampled
steers and became even undetectable in a few steers at 28 and
50 days into the trial.

Given the transience of R. bromii in the rumen of steers in our
study, it was important to find out what bacterial species became
dominant when R. bromii declined and whether they persisted in
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the ecosystem when the steers were using the grain-based diet
efficiently. The rumen bacterial populations of eight steers were
examined by DGGE and it was found that stable communities
generally developed in the steers between 14 and 28 days on grain.
The communities were very similar among all steers investigated,
as indicated by the similarity of DGGE profiles across animals,
with two bands in particular remaining prominent in all steers
once the communities had stabilised. These bacteria appear to
be related to the genus Ruminobacter but are likely to be novel
species within a novel genus. However, further sequencing
will be required to clarify the relationship to Ruminobacter,
because the current sequencing data are based on a short (193
base pair) piece of DNA from the 16S rRNA gene and across a
hypervariable region. In future, we will endeavour to isolate these
bacteria because they may be important in the establishment of
a stable bacterial community in cattle fed a grain-based (at least
barley-based) diet.

It should also be considered that there may well be other, as yet
unknown and uncultured, rumen bacteria that play a direct role in
acidosis and it may be too simplistic to base the understanding
of the overall process on the metabolic activity of a handful of
culturable bacterial species.

In conclusion, in the present study, augmenting ruminal
populations of M. elsdenii and R. bromii did not increase
liveweight gain. However, in all the steers, the rate of
liveweight gain was high and the incidence of acidosis
negligible. The rapid acquisition of M. elsdenii in the present
study could question the need to inoculate with the bacterium.
The situation in terms of changes in dominant starch-utilising
populations when animals are introduced to a grain diet appears
more complex than initially thought, with R. bromii becoming
transiently dominant after approximately 2 weeks on the diet.
Numbers of this species then rapidly waned and bacteria related
to Ruminobacter appeared in the ecosystem, and at apparently
high density, although this will require future clarification.
Whether it is important for R. bromii, or other species, to
dominate in the ecosystem for short periods of time while the
ecosystem is adapting to the dietary change, remains to be
determined but could be an important step in the adaptation
process.
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