On p-fold Partitions
and a Certain Form of Infinite Products
, o
Ryuji Kaneiwa

1'. Let M be a. sét and R,,...R, cMx M be equi{ralence
‘relations among M. A structure M=(M; R,,...,Ry) i‘s called an #- fold
partition of set M if R,C..CR,. Let M= (M: Ry...R,) and M'=
(M'; R/,...,R) be two 7-fold partitions of sets M and M’ respec-
tively. A bijection ¢: M—>M' islcalled isomorphism if ¢ (R;)=Ry
for all 1<i<r. we then say that M and M’ are isomorphic and
denote M=M’. Thus “ = ” is an equivalence relation. We write thé
set of all 7-fold partitions of {l,..n} by P(#;n) and the quotient
set P(r;n)/= by P(rm). Let us call an element of P(r;n) an
r-fold partition of n. we note Card P(0; n) =Card P(0; n)=1, since
in this case M is regarded‘ as a no-structured set, and that Card

P(r; —Card P(ry 0) =1, since in this case MIS the empty set. An
r-fold part1t1on of #=1 can be interpreted as a representatlon of n
as the sum of any number of positive integral parts such that
every part is closed »—1 tames by parenthe es.

Example. Let M={1,...,6} and M/R,={{1}, {2, 3} {4}, {5, 61},
M/R,={{1}, {2, 3}, {4, 5, 6}}, M/Rg;{{l 2, 3}, {4, 5, 6}}. Then M=
(M; R, R,, R;) is a 3-fold partltlon of M. M has 6'/4 180 different
isomorphic 3-fold partitions in P(3 6) (see Fig. ).
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Fig. The structure tree of M and *» sufn representation with two

- tames parentheses of M.

| We can get same “structure tree” and “sum representation with »—1
times parentheses”, for all elements of each isomorphic class of M
e P(r; n) as above, without difference of order.

We define the 7-fold sét partition function and the v-fold par-

tition function by
‘ p(r; n) = Card P(r; n)
‘and
p(r;, n) = Card P(r;. n)

respectively. Under combinatorial consideration, we have

5(r; my = n! p(r-1; 1)St plr-1; 2)S2-me.
W Frm = B s e
$1,8, =20

and

2 pr; n) = S ot Hsl po-e Hspooo

1.8 +2. 854 000=
S.I;SZ’.UZO
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TABLE OF p(r;n)

n p(rm)

1 1

2 . ‘ r+1

3 Q2DE+DE+2)

4 A/3DE+DLE+)@r+3)

5 Q4D+ D+2)Gre+1ir+12)

6 QA/sDE+D+2)(A6r3+52724+9274+60)

7 /6D r+1)(r+2)(6lrt+252r3+52772+6007 +360)

8 (UT)(r+1)(r+2)(27275+ 136174+ 34727+ 558772+ 52687 +2520)
p(rm)

, 1 0.1 2 3 4 5 6 7 8 9 10
111 1 1 1 1 1 T 1 1 1
2| 1 2 3 4 5 6 7 8 9 10 1
3 1 3 6 10 15 21 28 36 45 55 66

4| 1 5 14 30 55 91 140 204 285 385 506
5| 1 7 27 75 170 33 602 1002 1575 2365 - 3421
6| 1 11 58 206 571 1337 2772 5244 9237 15367 24368
711 15 111 518 1780 5026 12166 26328 52221 96613 168861
8 | 1 22 223 1344 5727 19193 54046 133476 297633 611644 1175845

for r>1, where ,H, -is the number of repeated combinations of

choosing m objects from a collection of » distinct objects, namely

-
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The numbers p(7; #) have been treated b~ . T. Bell [1]. He
defines this numbers by ’

® 7 B =3 Bsm B
where {E(O; x). =é*

E(r; x) exp (E(»-1; x)-1) .

Conversely we can easily see (3) from (1), using Faa di Bruno’s
formula

- dr ooz W v 1 1181 [t Ss...
T 1) = B r ) pR g et éﬁsg?j

summed over 1- 5,42 85,4+ = #n and s, +s,+--- = & p(l; n) is
well-known as the #-th Bell number. On the other hand, p(n) = p(1;n)

is the number of the usual partitions of ». The generating function
of p(n) was found by Euler, and is

P ) = 5 p0n) o% = T (-w™, 5] <1

Cayley [2] refered to the numbers p(2; ») and found the generating
function

F 1) = ;:p(z; n) 2" = mi'i}(l—xmw(m) .

More generally, we can derive the following
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Turorem 1. Let {a(#)}p=1.2,... be any complex number sequence

and let

fa U9,

1.5¢42 g0 =1

@ b =

where x[s] = x(x+1) (x+2)---(x+s—1)/s!, s=1 and £[01 =1,
Then the infinite product '

ool - o e8] [k] E
(A © I A=2")0M = T (A4 3% a(m)™ " 2"%)
. m=1 m=1 k=1
is convergent. in the formal power series ring C[[2]] and is equal to

(B) 1+ ﬁ Bz

If 342, a(n) 2" has a positive or infinite radius R of converg-
ence, then (A) is uniformly convergent in any compact subset of

{z]z| <min(l, R} and is equal to (B).

Corovrary. {b(n)} holds the recurrence formﬁla

| ® 0 b(n) = o(n) + o(n=1) b() +-+ o(1) b(n -1,

wheré Ce(n) = d-a(d) .

armn

Proof. we can get easily

i ' %
f A-amem = 1+ 5 bin) 2,
m=1 ) n=1
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where

bj(n) = = g a .

1.Sl+--~+]‘.sj=7l
It is plain that bj(n) =b(») , for n<j. Thus we have

® A+ by M — i QA — gmy-am
n=1 m=_1

= 3 ) — b () 2
27+t ‘

and so for the wvaluation o(Zs2 axz™ =min 7 (0(0)=+wx),
- . apFo

3 n 7 L mN-aum
| o(Q + n; b(n) 2™ mIL (.1 2™ )
is greater than j and tends to infinity as j—c Hence (A)
converges to ’(B) in C[[z]1.

Assume that 3142, a(n) 2" has a positive or infinite radius
R of convergence and D is a compact subset of {z; |z|<min (1,R )}.

we may show that

o, 1 o co ka
© e, 8 Jog—m = B 2 alm)—

converges unifomly in D instead of that (A) do. Let 0o = r;méai)x !
and p,<p;<min (1, R) , p, = 0p, (0<<1) . From the assumption,
la(m)|p,”™ (m=1, 2, ---) is bounded. Let |a(m)|p,"*<<M. Then We
have a majorant

0nk
k

||M8
<

(o] (0] .
2 = M log mII (1—9™)-1
=1

-

— M log F(l; 6)
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of (C). Hence (C) and so (A) converge unifomly in D. Since

DOIESS IS OIS

1+2 So+
we have

1+ Szt i (A—|zfmy-lem]
r=1 . m=

1
. [ee]
< I (1_|Z|m)-|a<m)[ .
m=1 !
Hence (B) is convergent in |z|<min(l, R). Now, since
(o) o0 ’
lim 3 b(m) 2" = lim X b () 2"

J—co ﬂ=j+1 ]—-»00 n=j+1

0, |z]<min (LR)

© by (6) we have

1+ S o) e = T A=z™9™  |z]<min (1, R).
%=1 m=1
We shall show (5) without R>0. The map d/dz: C[[z]]—CL[z]],
(@/dD)( TwZy anz™ = S, n ay 27! is a derivation of C[[z]].

When we define log(1+F) and (1+F)* by

log+my = F - B B pesiorren
aﬁd ‘ " .
A+F)* = 1 + oF + % G
Fe z.C[[z]1], aC,
we get .
(a) log{(1+F) A+G)} = log(l+F) + log(14+G) ,
(b) lim log §1+Fk> = log(1+F) , if lim Fp = F,

(© a-p=1+ 5 "7
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(b) log. (1+F)% = g log (1+F)

(e C(A+FPYDE = A+ F)eb
€9) log((A-F)1)y = 3 <~
(g) A+F)+ (d/dz) log(1+F) (d/dz) F ,

for F,G,Fp € z+C[[2]] and a« geC. From (a), (b) and the fact that
(B) coincides (A) in C[[z]], we have

1 : ) o) o) [k] mk
log(1+ F) = ngl log(1+ kg a(m) PR

where F = 312, b(n) 2”. From (c) ~ (), we have

log(1+F) = § '_"("3

- By (g), we get

1+ 5 6w ) 5 om = 3w b

Hence we have (5). This combletes the proof.
The theorem with (2) leads to

F(r; x) = {.j plr; n) £ = 1?[o (A —x"M)y-P -1 ', |x]<1.
7n=0 m=1 .
And by the corpllary we have
M by ) = —— k?l o(r=1; B) p(r; n—=k) , n=1
=1 :
where  o(r—1; &) =dZ[}kd- pr—1: d) ,

Bell [1] showed that P(#; n) #>1, is a polynomial of degree n-—1
in Q[7], and is divisible by r+1. We can show here the following
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Prorosition 1. p(7; n) , n=1, is a polynomial of degree‘ n—1 in
Q [.r] , and is divisible by r+1 (if n=2) and by r+2 (if n=3).

Proof. By induction on  #. Clearly p(r; 1) is a polynomial of
degiee 0 in 7. From (7) we have that
(8 dk; n)=p(k; n)— .b(k —1; 1)

—11' kLo ks nj depCh—1; d
‘ d<n

is a polynomial of degrée n—2 in QLE] , if p(k; ) is of degree

j—1 for j<n. Hence p(r; n) = 1 + 3 kCl d(k; n)_ is a polynomial
;‘of degree n—1 in QL7] .
We can now regard (7) as a formula between‘polynomials in 7.
We have to show that p(— 1 n) =0 (n=2) and p(—2; n) =0 (n>3)
. From (8
. s N
p(=Lm) =1 ~ 7[[,2 2 dp(=1; )+ E d-p(—1; d)
=tali f
. : d <n
and so p(—1; 2)=0. By induction from 2,... z—1 to » we get

p(-Lm) =1 —(/m)(¥i 1 + 1) = 0. Similarly

(=2 n) = n{ 23 dp(=2 )+ d-p(-2 d)}
dn 1 gi% .

derives p(~2; %) =—1 and p(—2 m)=0 (n>3).
Moreover we have
Prorosirion 2. The polynomial p(r; )€ Qlr] n > 1, has the leading

coefficient An J/(n— 1)' , where Ap, k=0, are positive integers and
defined by '

8

tanx+secx==k »Ak?-y

1]
=]
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more precisely

214k+1 = ‘kj (f) Ai Api , k>1°

with Ay=A,=1 (see E. Netto [5]§63).

Proof. Let p(7; n+1) = A” ™ + ..., A,=Q. Then

s(b=1; D=3 dep(h— 1d>—j-Af‘
dli o G=D!

Bt Foy

p(k; @—j) = _(;;i o7 K

oy jAj—lAn-j—l

' 1
B = w2 GDImGD

}k”"2+... , n=3.

= 1 el jAj-, A 1 -1
Hence p(r;n) = J[n(n—l) ]z:‘,l G—i)'_(_n’jfi—l)'} i, w23,

. 4 n rn+1 )
since as Well-known.kg1 E" = STt Q7]

Thus we have

, 1 #-1 1
Ay = n+12 (.7+1>(n]‘ )Aj Ap-1-j

1 7y rp—1 ] '
-7 ,]ZJO ( j ) Aj Anerj , 2.
p(r; 1)=1and p(r; 2)=7+1 imply A,=A,=1. This completes the proof.
Proposition 2° means that for fixed n

by m) = ff‘ﬁl "1+ 0,(r"%)  as r—oo.
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On the other hand for fixed 7, paticularly for »=1

| o

pm) = p(im) ~ e exp (2D
is well-known (Hardy-Ramamujan [3] ). For the case of =2, the
auther [4] proved recently the following

log 52 m) = 5 n(UGn) 1+ og %) + O L% B

wn
6 log =

where I(n)=log n — (3/2)log log » + (1/2)log(=®/3).

~
y

2. Let {a(n)},=1.:,:.- be any complex number sequence and be

the transformation such that

E: {a(m}—{b(m}],

where - ()= X , ﬁa(i) L .

1.81+2. Sg+-r-=8 1=1

we pote that if {a(n)} is an integer sequence, then {b(n)}.is also an
integer seguence. |

'In this section we consider the inverse of transformation E and
the converse of Theorem 1, that is following

Treorem 2. For any given complex number sequence
(W)} p=1,2.... let
@ o =-_ _n DT R (L, s s,

_ 1.8142 Sg4ee =N

wher;z T=s,++sp .
And. let
(10) n a(n) = d% p(n/d) o(d),
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where ;,e(h) is the Mobius function. Then the transformaton
{b(n)Y—{a(n)} is the inverse of E. If {b(n)} is an integer Sequence
then {a(n)} is also an integer. sequence. If h(2)=1+31 ;2 b(n)z" is

regular and has no zevo in |z|<< R, then

an Mo = I — M4 |z|<minl, Ry).

=T

1

And then right hand side of (11) and S°,a(n)z” converge uniformiy
in any compact subset D of {zC; |z] <min(l R,)}. Moreover we have

h'(2)
h(z)

" where p is a positive number such that p<< min (1, R,).

=1 p(m/5)
a2 malm) = f|z|=P<6|ZYﬂ 222 dz ,

2xi

Proof. It is easy from (4) or (5) that the traﬁsformation E is
‘invertible. It is also easy from (4) by mathematical induction that
if b(n) are integers for all n=1, 2,... then E~' b (#) are also integers
for ali n. we shall show E-'6(n)=a(n) for given {a(n)} by (9) and
(10). It is sufficient to shov&-/v (5). From (9) we have

n b(n) — o(m—1bA) — ... — ¢(Db(n—1)

-1

I

D (T )

< BOS e B(m) b(n—m)

N
n b(n) +
MW=1 1.81/+2. Sgl4eme=

n b(n) + 2 B b (n—1)Sns

1.83+2. Sgbee s+ (B-1) Spy_ =7

X

DI DL e G et §

1<mEn-1 T-1
Sm=o

where T'=s,’ +s,’ +-- and T'=s,+s;+-- . We have
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L R—m T-1
(—1)T i T-1 ( Syeeee s S=1s " Spp1 )

iLmLr-1
S0
= — D7 p= 1)< Tons ) r<niBn, BT

~(-DT % (31 Tonr )

Thus we have ‘ .
nbn) — e(n— 1)b(1) — . — a)b(n-1)

= - 2 NS DL (ENI B 1SR B OV

1. 814N, sn=n
= o(n).
The equation ¢(n)=>;l, d+a(d) is obtamed from (10) by Mobius

invertion formula. We must show (11) and (12). Since 2(z) =
1+ 2 b(m)z" is regular and has no zero in |z|<R, V
2110:1 n b(n)zn z W'(2)

% o(m)z" = = = g(z), say,
(13) n=1 1+Z nflb(n)z" h(z) ‘

is regular in |z|<R,. Let [z|<p< min(l, R,) and { be a cbmplex

number which has the absolute value p. Then we have

d n
O - 6D 4 B0 5 D) T

o

This series is uniformly convergent on |[{|=p. Hence by Cauchy’s

theorem we have

as @ =gy f S
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o0 zn .
= 3 na(n) 7=z > |2I<min(, R,).
n=1 —2Z )

The last Lambert series of (14) and so F2, a(n)z” converge
. uniformly in any compact subset D of {2e C; |z|<< min(1, Ry)}.
Since Ea(n)=5b(n), by Theorem 1 we have -

oo
nz) = ”11 = zm>-a<m>

1

and right hand side converges uniformly in D. (14) leads (12). This

completes the proof.

Remark. Let {8(n)} and {¢(#)} be two complex number
sequences. Then we get that the follwing three equations are

equivalent:

(i) n b(n) = a(n)+a(n—1)b(1)+...+a(1)b§n—1) ,

Lo o (D)1 g (n)n

(i) b(m —.1.sl+2.§z}+---'=n Bregloneee nnesy!

L n( T '
i) ot == 5 DR (sl ) BB bn

where T = s,+---+s, .
The equivalency of (i) and (iii) is already shown. We shall
show (ii). From (13) we have

as . h(z) = exp LJ‘ %z)_ dz ,

where 2(2) =1+ 352, b(n)z" and g(2)=31w2, o(m)z" , if T2, a(n)z”

has a positive or infinite radius R of convergence.v Using Faa di
Bruno’s formula for (15) we get (ii), if R>0. Since b(n) is determind
only by a(),..., () from (i) in the case of R=0 we get (ii),
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considering the sequecne

o) ..., a(m), 0, 0,...
instead of {c(n)}.

'

E;:amplev'z +1. Let o(w) =u. From (10), (15) and (ii) we have

, )
exp ———~1iz= : + g P 1

=1 N=1.5,4%. Sg+--- S1! +=Sp!

Sp!

- n A=y~ =w2dlm p(m/d) d
M=

o —@umyjm
=1 A= 2] <1,
m=1
where ¢(m) is the Euler’s function.
Example 2.2 Let s =1, 6(2)=6(3)=...=0. In this case we have
e _ 1 ® M ® ; m_p(m)/m" l21<1
e = +7§1—ﬁ——w1;1=1(—z) ,2," .

Example 2+3. Let

h(z)

14+ 8,2+ ... + by 2" (b, #+0)

Il
~
oy
|
R
N
A
N
e
|
$
N
/

In this case we have
S h(z) = mﬁl <1_zm>%2d]mﬂ(m/d>('ad) ’

lz|<min(l, |a|,...,Jap]"D),
where ‘

—og = afd + ... + ad
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d oy
- >3 (_1)17( s Lo )‘b1s""bns" ,

1. 81+ +R. Sp=4
T=5;+...+$y .

Example 2 . 4,
sin z = z I A—zmaum - z1<1,
=1

where

| " |
a(m) = 5 o3im 2T Ba #m/2d)

B, is the d-th Bernoulli number, that is defined by

o] n
2By o

xcotx=1—n=1~(27)r

, lxl<m.
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