COMPARISON OF GROWTH RATES OF RELOCATED AND LOCAL STEERS

P.J.S. HASKERAB, R.G. HOLROYDAB and V.J. DOOGANAB

Beef producers have expressed concern that cattle moved from one location to another do not always perform as well as comparable local cattle. Research station records and field trial data were examined to determine the effect of relocation on growth rate using data sets for animals of different age and liveweight at relocation and of different genotypes. In most cases, the average daily gains (ADG) compared were for the period between the first and second weighing; it was assumed that any effect of relocation would occur during the initial 3–9 months after transfer. The ADG of steers compared were adjusted for differences in initial liveweight using covariance analysis where necessary.

Table 1. Average daily gains (ADG) and standard deviation (SD) for steers relocated to a new environment and local steers (in italics)

Data set	Property destination Property of origin	n ^A , genotype and age	Date 1st weighed	Initial weight	Days ^B	ADG ^c (kg/day)	SD
1	Blackwater	50, BrahmanX 1 year	19Jul90	273	82	0.34°	0.10
	Swans Lagoon RS	22, BrahmanX 1 year	21Aug90	175	51	0.65°	0.12
2	Brigalow RS	20, Belmont Red 30 months	<i>26Jul89</i>	585	<i>63</i>	0.04 ^a	0.18
	Calliope	106, BrahmanX 30 months	5Jul89	423	78	0.34 ^b	0.13
3	Goondiwindi Brigalow RS	18, Hereford weaners 22, Hereford weaners	20Oct82 20Oct82	252 212	98 98	0.51 0.53	0.08 0.09
4	Brian Pastures RS	12, Brahman X 2½ years	3Mar93	485	75	0.86 ^a	0.12
	Gracemere-1	25, Brahman 2 years	16Feb93	409	90	0.50 ^b	0.20
	Miriam Vale	9, Brahman 2½ years	8Feb93	498	94	1.38 ^c	0.46
	Gracemere -2	30, Brahman 2 years	16Feb93	373	86	0.39 ^d	0.13
5	<i>Brian Pastures RS</i>	12, Brahman 1 year	<i>1 Jun93</i>	221	97	-0.07 ^a	0.04
	Miriam Vale	10, Brahman 1 year	13 May 93	253	118	0.06 ^b	0.09
	Miriam Vale	50, Brahman 1 year	20 Jul 93	210	50	0.30 ^c	0.16
6	Brigalow RS St Lawrence	20, Belmont Red weaners32, Droughtmaster weaners	23Jul87 5Aug87	230 226	97 84	0.38 ^a 0.54 ^b	0.09 0.12
7	Brigalow RS	20, Belmont Red 1 year	19Aug87	233	70	0.49	0.11
	Swans Lagoon RS	20, BrahmanX 18 months	3Sep87	295	69	0.38	0.17

ANumber of steers measured.

Relocated cattle grew as fast or faster than local cattle except the Gracemere steers (set 4, Table 1). The Gracemere steers were undersized when purchased and finished quickly. The results should be viewed with caution because it was not possible to have comparable control groups and standardised post transport weighing intervals and procedures. The comparisons between relocated and local animals that involved different genotypes (sets 2,6 and 7) were considered valid because the growth rates of *taurindicus* genotypes generally are similar (Barnett and Mayer 1982; Durand *et al.* 1984).

The results suggest that relocated cattle often do better than local cattle, possibly due to compensatory gain, and support the principle of breeding in the north and then transferring south for finishing to reduce age-of-turnoff of northern cattle.

We thank I. Loxton, J. Lindsay, W. Burrows, R. Roberton and M. Jeffery for supplying data.

BARNETT, R.A. and MAYER, B.G. (1982). *Proc. Aust. Assoc. Anim. Breed. and Genet.* 3: 104-5. DURAND, M.R.E., RUDDER, T.H. and HOLROYD, R.G. (1984). *In* "Evaluation of Large Ruminants for the Tropics, (Ed. J.W. Copland) (ACIAR Proc. Series No. 5), pp. 150-1.

^A Dept of Primary Industries, Animal Research Institute, Yeerongpilly, Old 4105

^B CRC Cattle and Beef Industry (Meat Quality), University of New England, Armidale, N.S.W. 2351

^BNumber of days used to calculate ADG.

^c ADG followed by a different superscript differ significantly (P<0.01).