www.publish.csiro.au/journals/ajar

Mapping and QTL analysis of the barley population Chebec × Harrington

A. R. Barr^{A,J}, A. Karakousis^A, R. C. M. Lance^B, S. J. Logue^A, S. Manning^A, K. J. Chalmers^{A,C}, J. M. Kretschmer^A, W. J. R. Boyd^D, H. M. Collins^A, S. Roumeliotis^A, S. J. Coventry^A, D. B. Moody^E, B. J. Read^F, D. Poulsen^G, C. D. Li^B, G. J. Platz^G, P. A. Inkerman^H, J. F. Panozzo^E, B. R. Cullis^F, A. B. Smith^F, P. Lim^I, and P. Langridge^A

^ADepartment of Plant Science, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.

^BCrop Improvement Institute, Department of Agriculture Western Australia, South Perth, WA 6151, Australia.

^CCRC for Molecular Plant Breeding, Glen Osmond, SA 5064, Australia.

^DUniversity of Western Australia, Crawley, WA 6907, Australia.

^EDepartment of Primary Industries, Horsham, Vic. 3400, Australia.

^FNSW Agriculture, Wagga Wagga Agricultural Institute, PMB Wagga Wagga, NSW 2650, Australia.

^GHermitage Research Station, Queensland Department of Primary Industries, Warwick, Qld 4370, Australia.

^HLesley Research Institute, Queensland Department of Primary Industries, Toowoomba, Qld 4350, Australia.

^IBiometricsSA, SARDI, Waite Campus, Glen Osmond, SA 5064, Australia.

^JCorresponding author; email: andrew.barr@adelaide.edu.au

Abstract. A doubled haploid population of 120 individuals was produced from the parents Chebec, an Australian 2-row barley of feed quality with resistance to the cereal cyst nematode, and Harrington, a 2-rowed, Canadian variety of premium malting quality. This paper describes 18 field and laboratory experiments conducted with the population and summarises the traits mapped and analysed. The genomic location of 25 traits and genes is described and marker–trait associations for 5 traits (malt extract, diastatic power, resistance to cereal cyst nematode, early flowering, resistance to pre-harvest sprouting) important to Australian efforts to improve malting barley varieties have been used in practical breeding programs. Detailed maps for these populations are shown in this paper, while a consensus map incorporating these maps and further experiments on the populations are described elsewhere in this issue.

Introduction

The single most important issue facing breeders of malting barley in Australia is the improvement of malt extract. Australian breeders have targetted Canadian, Japanese, and European varieties as the most likely donors of genes to improve malt extract. Hence, Harrington was chosen as one potential donor of such genes. Harrington was bred by the University of Saskatchewan and released in 1981 (Harvey and Rossnagel 1984). Harrington has been a leading variety in Canada and neighbouring states of the USA since its release in 1981 until 2001. Its key features include spring growth habit, tall stature, wide adaptation, long basic vegetative period (bvp), high malt extract, low wort viscosity, and very high diastatic power (SD1 allele for β -amylase, Eglinton et al. 1998). The genetic control of key traits in Harrington has also been studied in the population Harrington × TR 306 by the North American Barley Genome Mapping Project (Tinker et al. 1996; Hayes et al. 1997; Mather et al. 1997).

The other parent is the Australian variety Chebec. Chebec was bred by D. H. B. Sparrow and R. C. M. Lance in South Australia and released in 1992. Chebec has some desirable features for malting, including moderate levels of malt extract, high free amino nitrogen, low wort viscosity, and low wort β -glucan, but it was not approved by the Australian malting industry because of its low diastatic power (*SD2L* allele for β -amylase, Eglinton *et al.* 1998) and low fermentability. Chebec has moderately tall straw, plump grain, short basic vegetative period, early maturity, adult plant resistance to net form net blotch, and resistance to the cereal cyst nematode (*Heterodera avenae* Woll.). Chebec was previously known as WI2737.

Population construction

Initially, the cross Chebec \times Harrington was made at the Waite Campus in 1990. Doubled haploid plants were produced from F₁ donors using the anther culture system. These were multiplied in 2-row by 4-m plots in 1993, to

Frait typePhenotype		Chebec	Harrington	
Malt	Extract	Moderate	High	
	Diastatic power	Low	Very high	
	Viscosity	Low	Low	
	β-amylase isoform	SD2L	SD1	
	Post harvest dormancy	Low	Very low	
Disease	Cereal cyst nematode	Resistant	Susceptible	
	Spot form net blotch	Moderate seedling resistance	Susceptible	
Plant type	Stature	Moderately tall	Tall	
J. J. J.	Spikelet	2 row	2 row	
	Bvp	Short	Long	
	Early growth	Erect	Erect	
Grain size	Size	Moderately large (av. 48 mg)	Moderately small (av. 42mg)	

Table 1.	Comparison of Chebec and Harrington for key traits when grown under South Australian
	conditions

provide seed for the South Australian and National Barley Molecular Marker Program (a nationally coordinated and funded program in Australia) field experiments in the period 1994–96.

One hundred and twenty individuals were chosen for map construction and phenotyping. Table 1 shows the comparison of Chebec and Harrington for key traits when grown under South Australian conditions.

Table 2. Markers used in construction of maps

Marker type	Numbers
AFLP	47
RFLP	258
SSR	41
Other	2
Total	348

Туре	Locations	State	Lat.	Long.	Aim of experiment
			1996		
Field	Strathalbyn	SA	35	139	Yield, grain, malt quality ^A
Field	Pinery	SA	34.5	138.5	Yield, grain, malt quality ^A
Field	Tarranyurk	Vic.	36	142	Yield, grain, malt quality ^A
Field	Hermitage	Qld	28	152	Yield
Field	Kaimkillenbun	Qld	27	151	Yield, decimal growth stage
Field	Gairdner River	WA	34	119	Yield
Field	Wongan Hills	WA	32	117	Yield, decimal growth stage
Field	Wagga	NSW	35	147	Yield, decimal growth stage
Field	Blighty	NSW	35.5	145	Yield, decimal growth stage
			1995		
Field	Balliang	Vic.	38	144	Yield
Field	Horsham	Vic.	37	142	Yield
Field	Kaimkillenbun	Qld	27	151	Yield
Field	Tipton	Qld			Yield
Field	Strathalbyn	SA	34	139	Yield
Field	Roseworthy	SA	34.5	138.5	Yield
Field	Wagga	NSW	35	117	Yield, decimal growth stage
Field	Wongan Hills	WA	32	117	Yield, decimal growth stage
			2001		
Field	Esperance	WA	34	122	Black point, pre-harvest sprouting, grain colour

 Table 3. Experiments conducted with the Chebec × Harrington population

^AGrain and malt quality includes hardness, grain diameter, and grain weight (measured with SKCS system); grain protein; malt traits including soluble protein, wort β-glucan, Kolbach Index, free α-amino nitrogen, diastatic power, IOB and EBC hot water extract and viscosity (J. F. Panozzo *et al.*, unpublished data).

1128 Australian Journal of Agricultural Research

Trait	Locus	Chrom.	Reference
	Physiological		
Cereal cyst nematode resistance	Ha2	2H	Kretschmer et al. (1997)
Powdery mildew resistance	PM	1H	B. Stephenson, pers. comm. (1998)
Leaf rust resistance gene	Rph19	7H	Park and Karakousis (2002)
	Mapped genes		
α -L-arabinofuranosidase I (isoform I)	XAraI	2H	Lee et al. (2001)
Pollen specific gene family phalaris	XAWPPCB7B	5H	Baumann (1995)
Midgit clone from rye	Xawrm1	1H	Franki (1995)
WM1 gene family	XAwwm1	3Н	Whitford (2001)
β-amylase	Xbmy (1–2)	2H, 4H	Li et al. (1996); Li et al. (2002)
Cellulose synthase 5–3' fragment	XCesA(1,2,5a,6)	2H, 3H, 5H, 6H	R. Burton and G. B. Fincher, pers. comm. (2002)
Cellulose synthase-like gene	XCslE1(a,b)	3H, 5H	R. Burton and G. B. Fincher, pers. comm. (2002)
β-glucan exo hydrolase isoenzyme exo 1	XEXO1a	5H	A. Harvey and G. B. Fincher, pers. comm. (1999)
β -glucan exo hydrolase isoenzyme exo 2	XEXO2(c,d,e,f)	4H, 5H	A. Harvey and G. B. Fincher, pers. comm. (1999)
Sucrose transporter	Xfh11	4H	P. Whitfield, CSIRO, pers. comm. (2000)
β-Gluconase	XGIV	3H	Li et al. (1996)
Galactosyl transferase gene	XhvGalT(a,b,c)	4H, 3H, 4H	N. Farrokhi and G.B. Fincher, pers. comm. (2001)
Xylanase gene	X-I	5H	Banik et al. (1997)
Iso-amylase 5'	Xiso-amyl5p	7H	Burton et al. (2002)
Limit dextrinase	XLD	7H	Li (1997)
Managanese efficiency	XMnea,b,c	4H,7H	Pallotta et al. (2000)
Ds flanking region fragment from transposon-tagged population	XpA(2,3,6)	4H, 2H, 3H	T. Koprek, pers. comm. (2001)
Protein phosphortase	XPP	7H	Li (1997)
Disease resistance gene analogues	XRlch4N(a,c,d,e)	5H, 7H, 7H, 2H	Seah et al. (1998)
Resistance gene analogue, cDNA probe	XS120	2H	L. Madsen, pers. comm. (2000)
cDNA for soluble starch synthase 1	XSSS1	7H	S. J. Coventry, pers. comm. (2000)

Table 4. Physiological traits and known gene markers mapped in Chebec × Harrington

Table 5. Key trait-marker associations implemented in Australian Breeding programs

Trait	Locus	Chrom.	Positive allele	Reference
Malt extract	Xabg57, XGMS01	5H	Harrington	Collins <i>et al.</i> (2003, this issue)
Cereal cyst nematode resistance	Aawbma21 Bmag125	5Н 2Н	Chebec	Kretschmer <i>et al.</i> (2003 <i>a</i> , this issue)
Early flowering	Xabg2	2HS	Chebec	Coventry <i>et al.</i> (2003 <i>b</i> , this issue)
Resistance to pre-harvest sprouting	Xabg14, Xbmag140 Xabg57, XGMS01	2HL 5H	Chebec Chebec	Coventry <i>et al.</i> (2003 <i>b</i>) Li <i>et al.</i> (2003, this issue)

Construction of map

Methods used for DNA extraction, type of markers assayed, linkage map construction, and quantitative trait loci (QTL) analysis are as described by Barr *et al.* (2003, this issue). Table 2 summarises the markers used to construct the map. The total genetic length of the map is \sim 1330 cM. Distorted segregation ratios to the expected 1:1 were detected for specific chromosome segments located on 2H, 5H, 6H, and 7H. This observation has been previously documented by Logue *et al.* (1995). Detailed maps of the 7 chromosomes are shown as Fig. 1.

Phenotypic data collected

Following seed multiplication in 1993, the full population was available for field experiments in 1994, 1995, and 1996 and 2001. Experiments were conducted at 16 locations spread over 5 states (Table 3). Two experiments were chosen from the 1995 and 1996 experiments on the basis of grain

Mapping and QTL analysis of Chebec × Harrington

protein (preferably 9.5–12.0%) and grain plumpness for malting.

In addition to the field trial program, Chebec \times Harrington has been extensively used in mapping, genetic, and physiological studies (Table 4) which, when combined with the North American Barley Genome studies of Harrington \times TR306 and Harrington \times Morex (Tinker *et al.* 1996; Mather *et al.* 1997), make the Harrington genome a very well characterised model.

QTL analysis

MapManager QTX (Manly *et al.* 2001) was used to develop associations between markers and QTLs. Statistical associations were based on regression analysis. The likelihood ratio statistic (LRS) was calculated using the interval mapping functions in MapManager QTX. Permutation analyses (1000 iterations) were carried out to determine whether a particular value of the LRS was highly significant (99.9%). The Q-gene analytical package (Nelson 1997) was used to confirm associations using interval mapping and maximum likelihood statistics [logarithm of odds ratio (LOD) values] and to generate graphical representations of maps and marker–trait associations.

The yield data from 15 experiments conducted in 5 states of Australia were analysed using spatial models. Yield and yield stability were associated with the basic vegetative period locus on 2H (B. R. Cullis and A. B. Smith, unpublished data). Additional detailed analyses of the malt quality data by Patrick Lim, Joe Panozzo, Monica Radcliffe, Belinda Evans, Brian Cullis, and Alison Smith have also been conducted.

Validation

Two major studies have been conducted to validate the effect of alleles identified from Chebec × Harrington. They involve the Harrington alleles associated with diastatic power (Coventry *et al.* 2003*a*, this issue) and malt extract (Collins *et al.* 2003, this issue). These studies confirm that loci of crucial importance to breeding malting barley for Australian conditions were identified in this population.

A QTL for pre-harvest sprouting has been identified on chromosome 5H at the marker locus ABG57-GMS01, which explains over 70% variation for pre-harvest sprouting (Li *et al*. 2003, this issue). This marker was validated in a Stirling \times Harrington doubled haploid population.

Implementation

The most important traits identified in the Chebec \times Harrington population are resistance to cereal cyst nematode (Kretschmer *et al.* 1997) and the QTL controlling malt extract and diastatic power, although other traits are also significant (Table 5).

Conclusions

The Chebec \times Harrington population has been a valuable source of many genes, QTLs, and marker loci, 5 of which have been implemented in Australian breeding programs (Tables 4 and 5). These marker loci have been very valuable in Australian breeding programs as breeders attempt to transfer resistance to cereal cyst nematode from Chebec and the malt quality traits from Harrington into new malting barley lines. Through the work of Karakousis *et al.* (2003, this issue), several simple sequence repeat markers are now available for monitoring these traits in Australian breeding programs.

References

- Banik M, Li CD, Langridge P, Fincher GB (1997) Structure, hormonal regulation and chromosomal location of gene encoding barley, 1,4β-xylan endohydrolases. *Molecular and General Genetics* 253, 599–608. doi:10.1007/S004380050362
- Barr AR, Jefferies SP, Broughton S, Chalmers KJ, Kretschmer JM, Boyd WJR, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Moody DB, Read BJ, Poulsen D, Lance RCM, Platz GJ, Park RF, Panozzo JF, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003) Mapping and QTL analysis of the barley population Alexis × Sloop. *Australian Journal of Agricultural Research* **54**, 1117–1123.
- Baumann U (1995) Pollen mRNA of *Phalaris coerulescens* and their possible role in self-compatibility. PhD Thesis, Department of Plant Science, University of Adelaide.
- Burton RA, Jenner H, Carrangis L, Fahy B, Fincher GB, Hylton C, Laurie DA, Parker M, Waite D, van Wegen S, Verhoeven T, Denyer K (2002) Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. *The Plant Journal* **31**, 97–112. doi:10.1046/J.1365-313X.2002.01339.X
- Collins HM, Panozzo JF, Logue SJ, Jefferies SP, Barr AR (2003) Mapping and validation of chromosome regions associated with high malt extract in barley (*Hordeum vulgare L.*). *Australian Journal of Agricultural Research* **54**, 1223–1240.
- Coventry SJ, Collins HM, Barr AR, Jefferies SP, Chalmers KJ, Logue SJ, Langridge P (2003*a*) Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (*Hordeum vulgare* L.). *Australian Journal of Agricultural Research* **54**, 1241–1250.
- Coventry SJ, Barr AR, Eglinton JK, McDonald GK (2003b) The determinants and genome locations influencing grain weight and size in barley (*Hordeum vulgare* L.). Australian Journal of Agricultural Research 54, 1103–1115.
- Eglinton JK, Langridge P, Evans DE (1998) Thermostability variation in alleles of barley β-amylase. *Journal of Cereal Science* **28**, 301– 309.
- Franki MG (1995) The Midget chromosome as a model to study cereal chromosome structure. PhD thesis, Department of Plant Science, University of Adelaide.
- Harvey BL, Rossnagel BG (1984) Harrington barley. *Canadian Journal* of Plant Science **64**, 193–194.
- Hayes PJ, Cerono WHM, Kuiper M, Zabeau K, Sato A, Kleinhofs D, Kudrna A, Kilian M, Saghai-Maroof D, Hoffman and North American Barley Genome Mapping Project (1997) Characterizing and exploiting genetic diversity and quantitative traits in barley (*Hordeum vulgare*) using AFLP markers. *Journal of Agricultural Genomics* 2, http://www.ncgr.org/jag/
- Karakousis A, Barr AR, Chalmers KJ, Ablett GA, Henry R, Langridge P (2003) Potential of SSR markers for plant breeding and variety

1130 Australian Journal of Agricultural Research

identification in Australian barley germplasm. *Australian Journal of Agricultural Research* 54, 1197–1210.

- Kretschmer JM, Chalmers KJ, Manning S, Karakousis A, Barr AR, Islam AKMR, Logue SJ, Choe YW, Barker SJ, Lance RCM, Langridge P (1997) RFLP mapping of the Ha 2 cereal cyst nematode resistance gene in barley. *Theoretical and Applied Genetics* 94, 1060–1064. doi:10.1007/S001220050515
- Lee RC, Burton RA, Hrmova M, Fincher GB (2001) Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. *The Biochemical Journal* **356**, 181–189. doi:10.1042/0264-6021:3560181
- Li CD (1997) Genetic control of hydrolytic enzymes in germinating barley (Hordeum vulgare L.). PhD thesis, Department of Plant Science, University of Adelaide, S. Aust.
- Li CD, Langridge P, Lance RCM, Xu P, Fincher GB (1996) Seven members of the (1–3)-beta-glucanase gene family in barley (*Hordeum vulgare*) are clustered on the long arm of chromosome 3 (3HL). *Theoretical and Applied Genetics* **92**, 791–796. doi:10.1007/S001220050194
- Li CD, Langridge P, Zhang XQ, Eckstein PE, Rossnagel BG, Lance RCM, Lefol EB, Lu MY, Harvey BL, Scoles GJ (2002) Mapping of barley (*Hordeum vulgare* L.) beta-amylase alleles in which an amino acid substitution determines beta-amylase isoenzyme type and the level of free beta-amylase. *Journal of Cereal Science* 35, 39–50. doi:10.1006/JCRS.2001.0398
- Li CD, Tarr A, Lance RCM, Harasymow S, Uhlmann J, Westcot S, Young KJ, Grime CR, Cakir M, Broughton S, Appels R (2003) A major QTL controlling seed dormancy and pre-harvest sprouting/ grain α-amylase in two-rowed barley (*Hordeum vulgare L.*). *Australian Journal of Agricultural Research* 54, 1303–1313.
- Logue SJ, Oti-Boateng C, Karakousis A, Kretschmer J, Manning S, Lance R, Langridge P (1995) Segregation analysis of DNA markers in anther culture-derived populations of barley (*Hordium vulgare* L.). In 'Proceedings of the 7th Australian Barley Technical Symposium'. Perth. pp. 210–217.

- Mather DE, Tinker NA, Laberge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KG, Irvine RB, Falk DE, Kasha KJ (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. *Crop Science* 37, 544–554.
- Nelson JC (1997) Q-gene: software for marker-based genomic analysis and breeding. *Molecular Breeding* 3, 239–245. doi:10.1023/ A:1009604312050
- Pallotta MA, Graham GC, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. *Theoretical and Applied Genetics* **101**, 1100–1108.
- Park RF, Karakousis A (2002) Characterization and mapping of gene *Rph19* conferring resistance to *Puccinia hordei* in the cultivar 'Reka 1' and several Australian barleys. *Plant Breeding* **121**, 232–236.
- Seah S, Sivasithamparam K, Karakousis A, Lagudah ES (1998) Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. *Theoretical and Applied Genetics* 97, 937–945.
- Tinker NA, Mather DE, Blake TK, Briggs KG, Choo TM, Dahleen L, Dofing SM, Falk DE, Ferguson T, Franckowiak JD, Graf R, Hayes PM, Hoffman D, Irvine RB, Kleinhofs A, Legge W, Rossnagel BG, Saghai-Maroof MA, Scoles GJ, Shugar LP, Steffenson B, Ullrich S, Kasha KJ (1996) Loci that affect agronomic performance in tworow barley. *Crop Science* **36**, 1053–1062.
- Whitford R (2001) From intimate chromosome associations to wild sex in wheat (*Triticum aestivum*). PhD thesis, Department of Plant Science, University of Adelaide.

Manuscript received 15 November 2002, accepted 31 October 2003