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ABSTRACT

INTERSECTION COHOMOLOGY OF RANK ONE LOCAL

SYSTEMS FOR ARRANGEMENT SCHUBERT VARIETIES

SEPTEMBER 2023

SHUO LIN, B.S., HUAZHONG UNIVERSITY OF SCIENCE AND

TECHNOLOGY

M.S., NATIONAL CENTRAL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tom Braden

In this thesis we study the intersection cohomology of arrangement Schubert va-

rieties with coefficients in a rank one local system on a hyperplane arrangement

complement. We prove that the intersection cohomology can be computed recur-

sively in terms of certain polynomials, if a local system has only ±1 monodromies.

In the case where the hyperplane arrangement is generic central or equivalently the

associated matroid is uniform and the local system has only ±1 monodromies, we

prove that the intersection cohomology is a combinatorial invariant. In particular

when the hyperplane arrangement is associated to the uniform matroid of rank

n − 1 over n elements, and the local system has ±1 monodromies, we can give a

closed formula for the intersection cohomology.
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C H A P T E R 1

INTRODUCTION

This thesis investigates the intersection cohomology of an “arrangement Schu-

bert variety” with coefficients in a rank one local system on a hyperplane arrange-

ment complement.

Let V be a vector space over complex numbers C, with a central hyperplane

arrangement A = {H1, H2, . . . , Hn} such that H1 ∩ H2 ∩ · · · ∩ Hn = {0} . The

arrangement Schubert variety Y (V ) associated to V is defined to be the closure of

V via the embedding

V ↪−→ V/H1 × V/H2 × · · · × V/Hn
∼= Cn ⊂ (CP1)n.

It is a singular space in general, so that intersection cohomology is a suitable

topological tool in this context.

For the above vector space V , we also define an associated matroidM(V ) on the

ground set [n] = {1, 2, ..., n}, which is characterized by the condition that F ⊂ [n]

is a flat of M(V ) if and only if there exists a vector (x1, x2, ..., xn) in the image of

V ↪−→ V/H1 × V/H2 × · · · × V/Hn such that F = {i | xi = 0}. We will see that the

combinatorics of M(V ) encodes a lot of geometry of Y (V ) in Chapter 4.1

1Conversely, assume that M is realizable over C, realized by a spanning set of vectors
{w1, w2, ..., wn} in a vector space W ∼= Crk(M). This induces a surjective map Cn → W , whose
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The arrangement Schubert variety, an analogue of the Schubert varieties in the

flag variety of a semisimple algebraic group, has been studied by many people.

It was first studied by Ardila and Boocher, who showed that the arrangement

Schubert variety has an algebraic cell decomposition [AB16, Theorem 1.3] (which

is the coarse stratification we describe later in Chapter 4). Huh and Wang [HW17]

used the intersection cohomology of the arrangement Schubert variety to prove the

Dowling-Wilson top-heavy conjecture and Rota’s unimodal conjecture for matroids

in the realizable case.

In the paper [EPW16], Elias, Proudfoot, andWakefield introduced the Kazhdan-

Lusztig polynomial PM(t) of a matroid M , in analogy with Kazhdan-Lusztig poly-

nomial in representation theory. In particular they showed that if a matroid M is

realizable, then PM(t) is equal to the Poincaré polynomial in t
1
2 of the intersection

cohomology of the reciprocal plane, which is the intersection of the arrangement

Schubert variety and the affine chart (C∗ ∪{∞})n ⊂ (CP)n at (∞)n. Later Proud-

foot, Xu and Young [PXY18] introduced the Z-polynomial ZM(t) as a weighted

sum of the Kazhdan-Lusztig polynomials of all possible contractions of M . They

showed that in the case where M is realizable, ZM(t) is equal to the Poincaré poly-

nomial in t
1
2 of the intersection cohomology IH•(Y ) of an associated arrangement

Schubert variety Y .

In fact ZM(t) and PM(t) can be computed by the following identity, which is

the definition of ZM(t) [PXY18, Definition 2.1]:

ZM(t) =
∑

F∈L(M)

trkFPMF
(t), (1.1)

dual gives an injection W ∗ → Cn. The image of this dualizing map is a vector subspace of Cn,
isomorphic to Crk(M), whose closure inside (CP1)n, the arrangement Schubert variety of the image
is an associated arrangement Schubert variety to M (see [PXY18, Section 7] and [BV20, Section
1]).

2



where L(M) denotes the lattice of flats of M , rkF is the rank of the flat F , and

MF is the contraction matroid of M at F . For those who are not familiar with

matroids, we discuss these terminologies in §2.4. For now, it is enough to know

that the lattice of flats L(MF ) consists of the flats {G\F | G ≥ F}. There are two

facts which are essential in computation for ZM(t) and PM(t). For any realizable

matroid M ,

(a) Since Y is compact, IH•(Y ;C) satisfies Poincaré duality, so ZM(t) is palin-

dromic.

(b) If M is a matroid of rank 0, then PM(t) = 1. If M has rank at least 1,

then the degree of PM(t) is strictly less than 1
2
rkM because of the degree

restriction of intersection cohomology.

Remark 1.1. In fact, the constant term of PM(t) is equal to 1 for any matroid M

(see [EPW16, Proposition 2.11]). Both PM(t) and ZM(t) vanish in odd degree if

M is realizable (see [EPW16, Propsition 3.12] and [PXY18, Theorem 7.2]).

With those two facts one can recursively compute ZM(t) and PM(t) for any

realizable matroid M . For instance if M = Un,n+k, the uniform matroid of rank n

over n + k elements, then the contraction MF is a matroid of the same type, i.e.

the uniform matroid UcrkF ,crkF+k (where crk means corank of flat) as long as F is

not the ground set [n] = {1, 2, . . . , n}. We will present some computation for the

cases when k = 1, 2 in Section 7. For more examples, see the tables in Appendix.

Example 1. We give an example here to illustrate how to obtain polynomials PM(t)

and ZM(t) by an inductive argument.

Suppose we want to find PM(t) and ZM(t) for M = U3,4. Because of the degree

restriction and the fact that the constant term of PM(t) is equal to 1, we have

PU1,2(t) = PU2,3(t) = 1.

3



It is intuitive to represent a matroid by its lattice of flats. Through the whole

article, we will omit the brackets for a flat so it does not look too bulky. The lattice

of flats of U3,4 is shown in Figure 1 below.

1234

12 13 14 23 24 34

1 2 3 4

∅

Figure 1: The lattice of flats of U3,4

There are six rank 2 flats in total, including 12, 13, 14, 23, 24 and 34. At each

rank 2 flat of M , the contraction matroid is isomorphic to U1,2. For instance, the

lattice of flats of M12 is

1234

12

4



There are four rank 1 flats in total, including 1, 2, 3 and 4. At each rank 1 flat

of M , the contraction matroid is isomorphic to U2,3. For example, the lattice of

flats of M1 is

1234

12 13 14

1

Note that U1,2, U2,3 and U3,4 are all matroids of the type Un,n+1.

From Equation (1.1), we know that

ZM(t) = t3 +

(
4

2

)
t2 · PU1,2 +

(
4

1

)
t · PU2,3 + PM(t)

= t3 + 6t2 + 4t+ PM(t)

Because the degree of PM(t) is strictly less than 1
2
rkM = 3

2
and ZM(t) is palin-

dromic, the only possibility is that PM(t) = 2t + 1, and it follows that ZM(t) =

t3 + 6t2 + 6t+ 1.

The geometry behind (1.1) will be explained here. The arrangement Schu-

bert variety associated to V can be equipped with a coarse stratification Y (V ) =∐
F∈L(M(V )) SF

∼=
∐

F∈L(M(V ))CrkF , due to Ardila and Boocher [AB16]. This cell

decomposition implies a long exact sequence of compactly supported hypercoho-

mology.

By the parity vanishing property [PXY18, Theorem 7.2], the long exact sequence

splits. So the intersection cohomology of Y is isomorphic (although not canonically)

to a direct sum

IH•(Y ;C) = H•
c

(
Y ; IC•(Y )

) ∼=⊕
SF

H•
c

(
SF ; IC

•(Y )|SF

)
. (1.2)

5



We will show that in §4.4 (in a more general setting where the constant sheaf C is

replaced by a rank one local system on the hyperplane arrangement complement),

at each point of SF , there exists a neighborhood in Y which is isomorphic to a

product of CrkF and a neighborhood of the most singular point of the arrangement

Schubert variety YF , associated to the contraction matroid MF . This product

structure yields that

H•
c

(
SF ; IC

•(Y )|SF

) ∼= H•
c

(
SF ;C

)
⊗H•(IC•(YF )∞

)
. (1.3)

In terms of the Poincaré polynomial, the algebraic isomorphism (1.3) together

with Equation (1.2) implies Equation (1.1).

Remark 1.2. We emphasize that when M is realizable the polynomials PM(t) and

ZM(t) only depend on the matroid M , not on the choices of spanning vector spaces

and arrangement Schubert varieties.

1.1 Main results

Our goal in this article is to extend the results on computation for Kazhdan-

Lusztig polynomials and Z-polynomials of realizable matroids in the papers [EPW16]

and [PXY18] to the setting in which the constant sheaves on the hyperplane ar-

rangement complements are replaced by rank one local systems.

For a rank one local system L on the hyperplane arrangement complement

U = V \
⋃

1≤i≤n Hi, its monodromy around each hyperplane Hi is multiplication

by a complex number ai. Regarding the intersection cohomology of Y (V ), if we

replace the constant sheaf CU on the arrangement complement by the local system

L, we add into new data of a set of complex numbers. So it is reasonable to expect

6



that the intersection cohomology with coefficients in L will change in some certain

pattern when one chooses different monodromy numbers around hyperplanes.

Our main theorem (Theorem 1.3) is a generalization of Equation (1.1).

Suppose that V is a vector subspace of Cn such that no coordinate hyperplane

of Cn contains V . Under this assumption, the hyperplanes Hi = {x ∈ V | xi = 0}

form a generic central arrangement of V . Now we explain new notations that we

will use:

(i) Let ZV,L(t) be shorthand for Poin
(
IH•(Y (V );L), t 1

2

)
, the Poincaré polyno-

mial of IH•(Y (V );L
)
in t

1
2 . We call it the generalized Z-polynomial for V

and L.

(ii) The computation for the twisted intersection cohomology of a vector space

stratified by generic central hyperplanes is a new problem for us, so it is

worth giving new notation for that. We let AV,L(t) = Poin
(
IH•

c (V ;L), t 1
2

)
,

the Poincaré polynomials of intersection cohomology with compact support

IH•
c (V ;L) in t

1
2 .

(iii) Lastly, we let PV,L = Poin
(
H•(IC•(Y (V );L)∞

)
, t

1
2

)
be the Poincaré poly-

nomial of the stalk cohomology of IC•(Y (V );L
)
at the most singular point

(∞n). We call it the generalized Kazhdan-Lusztig polynomial for V and L.

In the case of local system L, we no longer have the parity vanishing property

for intersection cohomology. Some examples that have nonvanishing intersection

cohomology in odd degree can be found in the tables of the Appendix.

However, because of the additive group action of V on Y = Y (V ), we can

imitate an argument by Kirwan [Kir88, Lemma 1.12, Lemma 2.8] to conclude that

when L has ±1 monodromies, i.e. all ai ∈ {±1}, the long exact sequence for

7



intersection cohomology splits (see Theorem 5.1). So the intersection cohomology

of Y is isomorphic (although not canonically) to a direct sum

IH•(Y ;L) ∼= H•
c

(
Y ; IC•(Y ;L)

) ∼= ⊕
F∈L(M(V ))

H•
c

(
SF ; IC

•(Y ;L)|SF

)
. (1.4)

It will be shown in §4.4 that there exists a local product structure of each

stratum, which is a vector space V F in tangent direction and a reciprocal plane of

Y (VF ) in normal direction. That implies a local product structure of the twisted in-

tersection cohomology complex. We will identify its tangential factor IC•(V F ;LF )

and normal factor IC•(VF ;LF ) in §4.5. Analogous to Equation (1.3), there exists

an isomorphism

H•
c

(
SF ; IC

•(Y ;L)|SF

) ∼= IH•
c (V

F ;LF )⊗H•(IC•(VF ;LF )|∞
)
. (1.5)

In terms of Poincaré polynomials, using Equations (1.4) and (1.5) we obtain

the following:

Theorem 1.3. If L is a rank one local system with ±1 monodromies around hy-

perplanes, then

ZV,L(t) =
∑

F∈L(M(V ))

AV F ,LF (t) · PVF ,LF
(t). (1.6)

Remark 1.4. In Equation (1.6), the polynomial AV F ,LF (t) replaces the term trkF

in Equation (1.1).

Remark 1.5. The assumption on local system in Theorem 1.3 may be relaxed to

the condition that the monodromies are given by the p-th roots of unity for some

integer p.

As before two facts give restrictions on the polynomial identity:

8



(A) Suppose L is a rank one local system with ±1 monodromies around hyper-

planes, then L ∼= L∨. Since Y (V ) is compact, IH•(Y (V );L) satisfies the

Poincaré duality, so ZV,L(t) is palindromic.

(B) The degree of PV,L(t) is strictly less than 1
2
dimV because of the degree re-

striction of intersection cohomology.

With these facts and Equation (1.6), assuming that the polynomial AV F ,LF (t) are

known we can recursively compute ZV,L(t) and PV,L(t).

When the monodromies of a local system L are multiplication by ±1 and the

hyperplane arrangement in V is generic central, we are able to compute AV,L(t)

and conclude that AV,L(t) is a combinatorial invariant in §3.4. As a consequence,

PV,L(t) and ZV,L(t) are also combinatorial invariants.

In particular when V is of dimension n − 1 in Cn, or M(V ) is the uniform

matroid Un−1,n, not only can we recursively compute PV,L(t) and ZV,L(t), but we

can also give closed formulas for them in Theorem 6.4. In that case, both PV,L(t)

and ZV,L(t) only have integer degree terms, in other words the corresponding in-

tersection cohomology vanishes in odd degree. But this is not true for the uniform

matroid Un−2,n (see the tables in the Appendix).

Naturally we are inclined to ask if the three polynomials AV,L(t), PV,L(t) and

ZV,L(t) are still combinatorial invariants if we remove the restriction that L only

has ±1 monodromies and the hyperplane arrangement in V is generic central.

Conjecture 1.6. The polynomials AV,L(t), PV,L(t) and ZV,L(t) are combinatorial

invariants.

9



1.2 Structure of the paper

Chapter 1 is the overview of the thesis.

In Chapter 2, we collect the basic tools that we use through the article. Section

2.1 is a quick review of intersection cohomology theory. Section 2.2 is about the

localization of constructible sheaf complex with respect to multiplicative group

action. In Section 2.3, we recall a fundamental result on the topology of hyperplane

arrangement complements. We also discuss the terminologies that we need from

matroid theory in Section 2.4.

Chapter 3 discusses for the computaion of AV,L(t). We study the intersection

cohomology of a vector space with coefficients in a rank one local system.

We discuss the geometry of arrangement Schubert varieties in Chapter 4. The

main results are the local product structure of a stratum (see Proposition 4.4)

and the product structure of the restricted intersection cohomology complex on a

stratum (see Theorem 4.6). We will show how to determine the tangential data V F

(resp. the normal data VF ) with associated LF (resp. LF ).

In Chapter 5 we prove that the long exact sequence for intersection cohomology

of an arrangement Schubert variety breaks down to short exact sequences so that

ZV,L(t) can be computed by a summation of products of AV F ,LF (t) and PVF ,LF
(t).

We conclude that if the hyperplane arrangement in V is generic central and L has

only ±1 monodries around hyperplanes, then AV,L(t), PV,L(t) and ZV,L(t) are all

combinatorially invariant (see Theorem 5.3 and Theorem 5.5). We conjecture this

statement is still true if the assumption on L and hyperplane arrangement of V is

removed.

Chapter 6 includes one of our main results, the closed formulas for polynomials

PV,L(t) and ZV,L(t) in the uniform matroid Un−1,n case.

10



We give some concrete examples in Chapter 7. Appendix includes polynomial

tables for Un−1,n and Un−2,n.

11



C H A P T E R 2

PRELIMINARIES

2.1 A few things about intersection cohomology

2.1.1 Introduction

In this section, we will collect some basic results from the theory of intersection

cohomology that are needed for the purposes of this paper. We are not going to

write down the formal definitions of concepts, but refer interested readers to the

standard references [GM83], [Bea08, V] and [CGJ92].

One of the motivations in the development of intersection cohomology theory of

Goresky and MacPherson was to obtain a generalized version of Poincaré duality

for singular spaces, where the ordinary Poincaré duality fails. (See the theorem on

the duality of intersection chains IC• and its corollaries below.)

For an n-dimensional piecewise linear (PL) topological stratified pseudomani-

fold X equipped with a local system L on the open stratum, one defines IHp
i (X;L),

called perversity p intersection homology with coefficients in L, as the i-th ho-

mology of the intersection chain complex ICp
• (X;L); this is a subcomplex of the

PL locally finite chains of X with coefficients in L. The intersection chains are

those chains ξ characterized by the condition that ξ and its boundary ∂ξ meet

strata of stratification in sets of suitably small dimensions controlled by the per-

12



versity function p, which is a parameter measuring the deviation of chain from

transversality. Since this condition is local, there exists a cochain complex of fine

sheaves IC•
p(X;L) such that Γ

(
U, ICi

p(X;L)
)
= ICp

n−i(U ;Q) for open subsets U of

X.1 The hypercohomology of IC•
p(X;L) is called perversity p intersection co-

homology with coefficients in L, and we have Hi
(
X; IC•

p(X;L)
) ∼= IHp

n−i(X;L).

Its compactly supported hypercohomology is the intersection homology for corre-

sponding finite chains, and we write Hi
c

(
X; IC•

p(X;L)
) ∼= IHp

c,n−i(X;L). Following

the Borel indexing schemes, we use the notations

IH•
p (X;L) := H•(X; IC•

p(X;L)
)
,

IH•
c,p(X;L) := H•

c

(
X; IC•

p(X;L)
)
.

A more profound definition of intersectiom cohomology, which is independent of

the PL structure and choice of stratification, involves giving criteria that uniquely

characterize the sheaf complex IC•
p(X;L) up to quasi-isomorphism, hence as an

object in the constructible bounded derived category Db
c(X). The sheaf theoretic

point of view allow us to use the functorial apparatus. (See section §2.2.)

2.1.2 Elements that we need

We will list some standard results that we need from the intersection cohomology

theory, without giving proofs.

The following is a stratification free characterization of IC•
p(X;L), which implies

that intersection (co)homology is a topological invariant.

Theorem 2.1 (Uniqueness Theorem, [GM83, §4.1]). For any topological pseudo-

manifold X of dimension n, there exists a constructible bounded sheaf complex

1For the sheaf complex we follow the Borel indexing scheme, which is different from the one
used by Goresky and Macpherson by a shift of degree n.
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IC•
p(X;L) in Db

c(X) which is uniquely characterized up to canonical isomorphism

in Db
c(X) by the following axioms:

(a) Normalization: There exist a closed subset Σ ⊂ X and a local system L on

X \ Σ such that IC•
p(X;L)|X\Σ = L.

(b) Lower bound: Hj
(
IC•

p(X;L)
)
= 0 for all j < 0.

(c) Support condition: For all j > 0, dim
{
x ∈ X | Hj

(
i∗x
(
IC•

p(X;L)
))

̸= 0
}
≤

n− p−1(j), with ix : {x} ↪→ X denoting the point inclusion.

(d) Cosupport condition: For all j < n, dim
{
x ∈ X | Hj

(
i!x
(
IC•

p(X;L)
))

̸=

0
}
≤ n− q−1(n− j), where q is the complementary perversity to p.

Because IC•
p(X;L) is constructible, its stalk cohomology at a point can be

computed as the hypercohomology of a small distinguished open neighborhood

around the point. For a stratified topological pseudomanifold, the calculation can

be reduced further to the link of the point as follows.

Let X be an n-dimensional stratified topological pseudomanifold and L be a

local system on the top stratum U . Let x ∈ Sn−k a point in the stratum of

codimension k, and U ∼= Rn−k × o
c(L) be a distinguished neighborhood of x with

link L (a stratified space of dimension k−1 satisfying certain conditions compatible

with the stratification of X). Then we have

Proposition 2.2 (Calculation of the Local Intersection Cohomology). The stalk

cohomology at x ∈ Sn−k of IC•
p(X;L) is

Hj
(
IC•

p(X;L)x
) ∼= Hj

(
U ; IC•

p(X;L)
)

∼=


Hj
(
L; IC•

p(L;L|L∩U)
)

if j ≤ p(k),

0 if j > p(k).
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For a proof for the above result, one may see [Bea08, Lemma V.3.15]. In [GM83,

§2.4] Goresky and MacPherson give a more geometric approach to the calculation.

One of the most important properties of intersection chain complex is the duality

between IC•
p and IC•

q , when p and q are complementary perversities. (See [GM83,

§5.3] and [Bea08, V. §9.B].)

Theorem 2.3 (Duality on IC•). Suppose k is a field. Let X be k-orientable strat-

ified topological pseudomanifold of dimension n and L be a local system of finite

dimensional k-vector space, on the nonsingular open set of stratification. The dual

local system L∨ has stalks Hom(Lx, k), and the Verdier dual of L denoted by DL

has an isomorphism DL ∼= L∨[n] in Db
c(X).

If p and q are complementary perversities, then there exists an isomorphism in

Db
c(X):

IC•
p(X;L∨)[n] ∼= DIC•

q (X;L).

In this article we are mostly interested in the cases that k = C.

Upon applying hypercohomology, one has the following

Corollary 2.4 (Generalized Poincaré Duality). Under the same asssumption of

the above theorem

IHn−j
p (X;L∨) ∼= IHj

c,q(X;L)∨.

Corollary 2.5 (Duality with Middle Perversity). If it is assumed further that X

has only even codimensional strata, then there exists a unique self-complementary

perversity m, called the middle perversity. If moreover X is compact (e.g. a

complex projective variety) with p and q being both the middle perversity m, then

there exist an isomorphism

IHn−j
m (X;L∨) ∼= IHj

m(X;L)∨.
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CONVENTION. Since this point, what we will use are all with the middle per-

versity, so we just simply use notations with scripts m omitted.

The Künneth formula for intersection cohomology is another tool we need. In

this article, we restrict ourselves to the case that the middle perversity is taken, and

sheaves have field coefficients. Suppose X and Y are topological pseudomanifolds,

but are not necessarily compact. Let LX and LY be local systems of vector spaces

on the nonsingular parts of X and Y . Let π1 and π2 be the projections of X × Y

to X and Y respectively. For the proof of the following theorem, see [CGJ92,

Proposition 2, Remark 5].

Theorem 2.6 (Künneth Formula). Under the assumptions above, there exists an

quasi-isomorphism,

π∗
1

(
IC•(X;LX)

)
⊗ π∗

2

(
IC•(Y ;LY )

) ∼= IC•(X × Y ;LX ⊠ LY ),

which implies that

IH•
c (X;LX)⊗ IH•

c (Y ;LY ) ∼= IH•
c (X × Y ;LX ⊠ LY ).

We state the decomposition theorem of Beilinson, Bernstein, Deligne, and Gab-

ber (see [BBD82]).

Theorem 2.7 (BBDG Decomposition Theorem). Suppose f : X → Z is a proper

map between complex algebraic varieties. Then there exist closed subvarieties Zα of

Z, local systems Lα on the nonsingular part of Zα and a quasi-isomorphism

f∗IC
•(X;C) ∼=

finite⊕
α

(iα)∗IC
•(Zα;Lα)[−lα]

where iα : Zα → Z is the inclusion of the closed subvariety Zα, and lα is a suitable

integer. Taking hypercohomology, it follows that

IH i(X;C) ∼=
finite⊕
α

IH i−lα(Zα;Lα).
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An important application is that when f is a resolution of singularities of Z, a

unique one of the direct summands will be IC•(Z;C). It follows that IH•(Z;C)

is one of the direct summands of IH•(X;C) ∼= H•(X;C), where the intersection

cohomology and the cohomology coincide as X is smooth.

2.2 Localization with respect to a multiplicative group ac-

tion

The following technical result will be needed in §4.5, where we prove Proposition

4.6, the product decomposition of the restricted intersection cohomology of each

stratum of an arrangement Schubert variety. For a proof, see [Bra03, Lemma 6,

Lemma 7].

Lemma 2.8 (Attracting Lemma). Let X be a variety equipped with an attracting

Gm-action. Let Z = XGm be the set of fixed points. Let i : Z ↪−→ X be the inclusion

map, and p : X → Z be the attracting map given by p(x) = lim
t→0

t · x. For any

F• ∈ Db
c(X), there are natural maps

p∗F• → i∗F• and i!F• → p!F•.

If F• is Gm-constructible, these maps are isomorphisms.

2.3 Topology of hyperplane arrangement complement

We collect a standard result on the topology of hyperplane complements in this

section. Good references include [Dim17] and [C+09].
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Proposition 2.9. Suppose A = {H1, H2, . . . , Hn} is a hyperplane arrangement in

Cd, with the complement M(A) = Cd \
⋃

1≤i≤nHi. Then

H1(M(A),Z) = Z{σ1, σ2, . . . , σn},

where σi is a cycle represented by an elementary loop γi around the hyperplane Hi,

for 1 ≤ i ≤ n.

Let L be a rank one local system on M(A) with a monodromy representation

ρ : π1(M(A)) → C∗. As C∗ is abelian, ρ factors through H1(M(A),Z). Hence

L is determined a n-tuple (a1, a2, . . . , an) ∈ (C∗)n, where ai = ρ(γi) is the local

monodromy around the hyperplane Hi.

2.4 Review of matroids

We collect the basic terminologies from matroid theory here. For further details,

readers may refer to the book [Oxl11].

Matroids are combinatorial objects that generalize the notion of linear indepen-

dence for vectors. There can be axiomatized in a number of equivalent ways. The

rank function and flats are the two axiomatizations we consider in this article. We

first explain these two notions for a finite set of vectors in a vector space.

Example 2. Let E be a finite set of vectors in a vector space. The rank function

of E is the integer-valued function on the power set of E that assigns to each subset

S ⊂ E the dimension of the span of the vectors in S. A subset F ⊂ E is a flat if

every vector in E that lies in the span of the vectors in F is already contained in

F . It turns out that these two pieces of data are equivalent.

Let E be a finite set. A matroid M on E is defined by one of the following

two axiomatizations:
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1. A function rk : P(E) → Z named rank for which

• If S is a subset of E, then 0 ≤ rk(S) ≤ |S|.

• If S, T are subsets of E for which S ⊂ T , then rk(S) ≤ rk(T ).

• If S, T are subsets of E, then rk(S ∩ T ) ≤ rk(S) + rk(T )− rk(S ∪ T ).

2. A collection of subsets of E are called flats for which

• The set E is flat.

• If F1 and F2 are flats, then F1 ∩ F2 is a flat.

• If F is a flat, then any element of E \ F is contained in exactly one flat

that is minimal among flats properly containing F .

The set E is called the ground set of M . The rank of M denoted by rk(M), is

defined to be rk(E). The corank of a subset S ⊂ E denoted by crk(S), is defined

to be rk(M)− rk(S).

The flats of M under the order of inclusion, form a lattice, denoted by L(M).

Let F be a flat of M . The localization of M at F denoted by MF , is the

matroid on F whose flats are the flats of M contained in F . The contraction of

M at F denoted by MF , is the matroid on E \F whose flats are {G \F | G ≥ F}.

If the ground set E of a matroid M is a finite set of vectors in a vector space,

then it is not hard to verify that both the rank function and the flats of E satisfy

these axioms. We call M a linear matroid on E. Two matroids are isomorphic if

there exists a one-to-one correspondence between their ground sets which preserves

the additional structure in the obvious way. We say a matroid is realizable if there

exists a field k for which it is isomorphic to the linear matroid on a set of vectors

in a vector space over k. In this article, we are mainly interested in the case that

k = C.
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Example 3. Uniform matroids form the main example we consider through this

article. The uniform matroid Ud,d+m is the matroid on the ground set E = [d+m] =

{1, 2, . . . , d+m−1, d+m} such that E and the subsets of E with d or fewer elements

are flats. It is realizable over C (or any infinite field).
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C H A P T E R 3

INTERSECTION COHOMOLOGY OF A VECTOR

SPACE WITH COEFFICIENTS IN A LOCAL SYSTEM

ON AN ARRANGEMENT COMPLEMENT

One ingredient in our computation for the intersection of an arrangement Schu-

bert variety is the compactly supported intersection cohomology of the vector space

part, or the associated polynomial AV,L(t). In this section, we will present that how

to solve the general problem under the following assumptions. Suppose V is a vector

space of complex dimension d, and

1. there is a generic central hyperplane arrangementA = {H1, H2, . . . , Hn}

of V , in the sense that all the hyperplanes Hi pass through the origin point,

and

dimHi1 ∩Hi2 ∩ · · · ∩Hij =


d− j if j ≤ d,

0 if j > d.

Note that this assumption can be characterized by matroid that M(V ) is the

uniform matroid of rank d over the ground set {1, 2, . . . , n};

2. A rank one local system L on the arrangement complement V \
⋃

1≤i≤nHi is

given by numbers ±1 for each hyperplane, so L ∼= L∨.
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We will start with some computations for the complex line with the one point

stratification. First, one can ignore the point in stratification that have trivial

monodromies and delete the points from X that have −1 monodromies, without

affecting the intersection cohomology. This trick will be discussed in §3.1.

Example 4. Let X = (C, {0}), the complex line with the one-point stratification

C ⊃ {0}, where 0 denotes the origin point. Let L+1 be the rank one local system on

the punctured disk C∗, with the monodromy determined by +1 around the origin. In

that case we can ignore the stratification (see §3.1 below). In fact, as the monodromy

around the origin point is trivial, the intersection cohomology complex is quasi-

isomorphic to the constant sheaf CX . Thus the intersection cohomology is the same

as the cohomology:

IH i(X;L+1) =


C, if i = 0,

0, otherwise.

By the generalized Poincaré duality (see Corollary 2.4), the intersection cohomology

with compact support is

IH i
c(X;L+1) =


C, if i = 2,

0, otherwise.

Note that in both cases the intersection cohomology vanishes in odd degrees.

Example 5. For the same space X = (C, {0}) as in Example 4, now we consider

instead the rank one local system L−1 with the monodromy determined by −1 around

the origin. In that case, IC•(X;L−1) is the pushforward of L−1 from C \ {0} to

C from the Deligne’s complex construction (see [GM83] or [Bea08]). The twisted

intersection cohomology of X is the same as the twisted cohomology of C \ {0}.

Since C\{0} is homotopy equivalent to a circle, we only need to compute the twisted
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cohomology H•(S1;L−1), which can be done using the cochain complex from the CW

decomposition of a circle, with one single 0-cell in degree zero, and one single 1-cell

in degree one (for computation details, a good reference is [C+09, Chapter 8]):

· · · → C Γ−id−−−→ C → · · · ,

in the boundary map Γ is the monodromy −1. Thus

H i(S1;L−1) =



ker(Γ− id) = 0, if i = 0,

coker(Γ− id) = 0, if i = 1,

0, otherwise.

It follows that IH i(X;L−1) vanishes for all i, and so does the intersection coho-

mology with compact support.

More generally, we have the following proposition:

Proposition 3.1. Let X be the complex plane C with some distinguished points

as its singularity, and L a rank one local system on X with monodromies of either

+1 or −1 around those points. Suppose that n > 1 and there are n points around

which the monodromies are −1, then the intersection cohomology is

IH i(X;L) =


Cn−1, if i = 1,

0, otherwise.

If all the monodromies are multiplication by −1, then the intersection cohomology

is the same as cohomology of the complement.

Proof. One can think of the space X as C with n points deleted which is homotopy

equivalent to a wedge product of n circles, and the twisted intersection cohomology

is the same as the twisted cohomology. Consider the cochain complex, consisting
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of one 0-cell in degree zero, n 1-cells in degree one, and zero in other degrees with

a boundary map Γ − id associated to the monodromy data Γ = (−1,−1, . . . ,−1)

in that case:

· · · → C Γ−id−−−→ Cn → · · ·

The twisted intersection cohomology is the same as the twisted cohomology:

H i
(∨

n

S1;L−1

)
=



ker(Γ− id) = 0, if i = 0,

coker(Γ− id) = Cn−1, if i = 1,

0, otherwise.

⋄

3.1 Hyperplanes with trivial monodromy can be ignored

A very useful trick is that, if any hyperplane has +1 monodromy, then we can

remove it from the arrangement without changing the intersection cohomology of

the vector space. This can be proved by using the following cohomology sheaf stalk

calculation: Let X be a pseudomanifold and x ∈ X with Ux a distinguished open

neighborhood of x. If F• is a cohomologically locally constant complex of sheaves

with finitely generated stalks, i.e. F• is a constructible sheaf complex (for example

intersection cohomology complex), then

Hi(F•)x ∼= Hi(Ux;F•).

Let us go back the case of vector space V , stratified by the intersections of the

hyperplanes from the arrangement A = {H1, H2, . . . , Hn} (these intersections are

also called geometric flats). Let IC•(V ;L) be the intersection cohomology complex
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on V with coefficients in L. Now we assume x is a point of some hyperplane Hk

with +1 monodromy, but not lying on other hyperplanes. So its distinguished open

neighborhood Ux is isomorphic to R2(d−1) × o
cS1 where S1 is the link at x. By the

above cohomology sheaf stalk calculation, and Proposition 2.2 we have

Hi
(
IC•(V ;L)

)
x
∼= Hi

(
Ux; IC

•(V ;L)
)

= IH i(Ux;L)

∼=


H i(S1;L+1), if i ≤ 0,

0, otherwise,

=


C, if i = 0,

0, otherwise .

This tells us that cohomology stalk of IC•(V ;L) is the constant C in degree 0 at

each generic point of Hn. Let L′ be the rank one local system on V \
⋃

i ̸=k Hi with

the same monodromies as those of L around the hyperplanes except Hk. Note that

IC•(V ;L) and IC•(V ;L′) both satisfy the characterization axioms of Theorem 2.1

with respect to the stratification induced by A′ = A \ {Hk}. Therefore IC•(V ;L)

and IC•(V ;L′) are canonically isomorphic in the derived category Db
c(V ) and we

can take off the hyperplane Hk of trivial monodromy from the arrangement without

changing the intersection cohomology complex on V . With this observation we

obtain the following proposition immediately:

Proposition 3.2. Let V be a vector space of complex dimension d, stratified by

the hyperplanes of generic central arrangement. Let IC•(V ;L) be the intersection

cohomology complex with coefficients in a local system L. If all the hyperplanes
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have +1 monodromy, then

IH i
c(V ;L) =


C, if i = 2(d− 1),

0, otherwise.

By Poincaré duality,

IH i(V ;L) =


C, if i = 0,

0, otherwise.

If there exists at least one hyperplane of −1 monodromy and the number of

hyperplanes of −1 monodromy is not greater than d, then IH i
c(V ;L) and IH i(V ;L)

vanishes in all degrees i.

Proof. If all the monodromies are given by +1, we apply the above “ignorance trick”

inductively to conclude that IC•(V ;L) is isomorphic to the constant sheaf CV on V

inDb
c(V ). In fact all the stalks of IC•(V ;L) at each hyperplane (including the origin

point) is C. It follows that the (compactly supported) intersection cohomology and

the usual (compactly supported) cohomology coincide.

Next assume there exist at least one monodromy of −1, and the number of

hyperplanes of −1 monodromy is not greater than the dimension of V . We take off

or add into hyperplanes of +1 if necessary so that there are d hyperplanes in the

end, but IC•(V,L) remains the same in the derived category. Note that now V is

isomorphic to a product of d copies of C, with each as a stratified space carrying a

rank one local system on C∗ with monodromy of either +1 or −1 around the origin

point.

With the above observation, using Theorem 2.6 we obtain the following Künneth
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formula on the intersection cohomology complexes

IC•(V ;L) ∼= IC•(C× · · · × C;L)

∼= IC•(C;L+1)⊠ IC•(C;L+1) · · ·⊠ IC•(C;L−1),

(3.1)

where L±1 denote the rank one local system on C∗ with monodromy of ±1. The

last component of the exterior tensor product comes from a monodromy −1 around

some hyperplane. It follows that

IH•
c (V ;L) ∼= IH•

c (C;L+1)⊗ IH•
c (C;L+1) · · · ⊗ IH•

c (C;L−1). (3.2)

The last component of the right hand side is zero, hence IH•
c (V ;L) is zero, so is

IH•(V ;L). ⋄

3.2 Arinkin-Varchenko argument

Proposition 3.2 partially solves our problem, if there are not too many −1 mon-

odromy hyperplanes. When the number of −1 monodromy exceeds the dimension

of the ambient vector space, we cannot apply the Künneth formula. The work of

Arinkin and Varchenko [AV12] helps us resolve the difficulty. Roughly speaking,

with their results one can blow-up at the origin, then reduce the intersection co-

homology of a vector space with a hyperplane arrangement to the cohomology of

a induced projective hyperplanes arrangement complement of the exceptional divi-

sor, which can be thought as a vector space minus a finite number of hyperplanes

in general position.

In the next section, we will see that a formula of Hattori (see Equation (3.3))

can be applied to compute the cohomology of a vector space minus a finite num-

ber of hyperplanes in general position. So we are able to answer the question in
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the beginning of the section: how to find the rank one local system intersection

cohomology of a vector space stratified by central generic hyperplanes.

Now we start with notation. Let V be the vector space of dimension d with a

generic central hyperplane arrangement A = {H1, H2, . . . , Hn}. Denote by D the

union of all hyperplanes in V . Let L be a rank one local system on the hyperplane

arrangement complement U = V \ D with all monodromies given by −1, and let

j : U → V be the open inclusion.

Let π : Ṽ → V be the blow-up at the origin of V . The preimage π−1(D) is a

divisor in Ṽ , which is locally a union of hyperplanes. The pull-back π∗L is a local

system on the complement Ṽ \π−1(D), whose monodromy around each component

of π−1(D) is either +1 or −1. Let D̃ be the maximal divisor in Ṽ , where π∗L has

−1 monodromies around all of the connected components. Let Ũ = Ṽ \ D̃, and

Ũ0 = π−1(0)∩ Ũ . The local system π∗L extends to a local system on Ũ denoted by

L̃.

When H i(Ũ0; L̃|Ũ0
) vanishes for degree i > n − 2, we say the local system L

on U satisfies condition A with respect to the resolution π : Ṽ → V (see [AV12,

Definition 1]). We aim to find out the intersection cohomology of V . We can achieve

that by computing H i(Ũ0; L̃|Ũ0
) and H i(Ũ ; L̃) by using the following lemma.

Lemma 3.3. If the local system L and its dual L∨ with inverse monodromies

on hyperplane arrangement complement U satisfy condition A with respect to a

resolution π : Ṽ → V , then the intersection cohomology IH i(V ;L) ∼= H i(V ; j!∗L)

is isomorphic to H i(Ũ ; L̃).

Proof. See [AV12, Theorem 1]. ⋄

Since we only consider rank one local system with ±1 monodromy, we have L ∼=

L∨. Both L and L∨ satisfy condition A with respect to the blow-up resolution by the
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following argument. As Ũ0 is an n− 2 dimensional affine complex algebraic variety

if it is nonempty and both L̃ and L̃∨ are constructible sheaves, by Artin’s vanishing

theorem (see [Ach21, §2.6]), H i(Ũ0; L̃|Ũ0
) and H i(Ũ0; L̃∨|Ũ0

) both vanish in degree

i > dim Ũ0 = n − 2. Using the above lemma, we conclude that IH i(V ;L) ∼=

H i(Ũ ; L̃).

In fact we can further reduce the computation of the intersection cohomology

of V to that of Ũ0.

Lemma 3.4. If L only has ±1 monodromies, then H i(Ũ0; L̃|Ũ0
) and H i(Ũ ; L̃) are

isomorphic. As a consequence, we have IH i(V ;L) ∼= H i(Ũ0; L̃|Ũ0
).

Proof. If the number n of hyperplanes in V is odd, then D̃ contains the exceptional

divisor π−1(0), as its monodromy is given by a n-fold product of −1s, which is −1.

(Since Ũ0 is simply the empty set, H i(Ũ0; L̃|Ũ0
) is zero, L and L̃ satisfy condition A

trivially.) In this case, Ũ is a C∗-bundle over B = CPn−2 \ {n generic hyperplanes}

and the monodromy around a fiber is −1. Let f : Ũ → B be the projection. We

will show that f∗L̃ ∼= 0, so H i(Ũ ; L̃) = 0. For any point p ∈ B, consider the

fiber Fp at p. Let ip : p → B and iFp : Fp → Ũ be the inclusion maps, and let

fp : Fp → p be the projection of the fiber onto p. Using base change, we have that

i!pf∗L̃ ∼= fp∗i
!
Fp
L̃. Note that i!Fp

L̃ ∼= i∗Fp
L̃[−2]. Because i∗Fp

L̃ ∼= 0, we can conclude

that i!pf∗L̃ ∼= 0. But for the stalk at p, i∗pf∗L̃ ∼= i!pf∗L̃[n − 2] ∼= 0. It follows that

f∗L̃ ∼= 0, and consequently IH i(V ;L) ∼= H i(Ũ ; L̃) ∼= 0.

When the number n of hyperplanes in V is even, the exceptional divisor π−1(0)

does not belong to D̃, as its monodromy is given by an even product of −1s, which

is +1. In fact Ũ is a line bundle over B with Ũ0 being its zero section, equipped with

a C∗-action which attracts the whole line bundle onto Ũ0. Let i : Ũ0 → Ũ be the

inclusion map and let p : Ũ → Ũ0 be the projection map. Using the homotopy for
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constructible sheaves (see [Spr84, Proposition 1] and [Ach21, §2.10]), we have that

i∗L̃ ∼= p∗L̃. It follows that H i(Ũ0; L̃|Ũ0
) = H i(Ũ0; i

∗L̃) ∼= H i(Ũ0; p∗L̃) ∼= H i(Ũ ; L̃).

⋄

3.3 A formula of Hattori

Assume that there are n generic hyperplanes in a complex vector space V of

dimension d, where n > d (so the arrangement is noncentral). Let L be a nontrivial

rank one local system on the arrangement complement U , with stalk C, not neces-

sarily with ±1 monodromy around hyperplanes. In the paper [Hat75, Theorem 4],

Hattori proved the following theorem:

Theorem 3.5. The homology group Hi(U ;L) vanishes for i ̸= d. The d-th homol-

ogy group Hd(U ;L) is a C-vector space of dimension

n−d∑
i=1

(−1)i+1

(
n

d+ i

)
. (3.3)

3.4 Formula for polynomial AV,L(t)

With the preparation in Sections 4.1-4.3, we are ready to compute the polyno-

mial AV,L(t). Recall our notation that V is a vector space of complex dimension

d, and A = {H1, H2, . . . , Hn} is a generic central hyperplane arrangement of V . In

addition, we let Ll,n−l denote the rank one system with −1 monodromies around

the hyperplanes {H1, H2, . . . , Hl} and +1 monodromies around the remaining n− l

hyperplanes. Notice that (Ll,n−l)
∨ ∼= Ll,n−l.

30



Proposition 3.6. Let d = dimV . If 1 ≤ l ≤ d or l is odd, then AV,Ll,n−l
(t) = 0.

If l = 0, then AV,Ll,n−l
(t) = td. If l > d and l is even, then we have

AV,Ll,n−l
(t) =

l−d∑
i=1

(−1)i+1

(
l − 1

d− 1 + i

)
t
d+1
2 . (3.4)

Proof. If l ≤ d, then by Proposition 3.2, we know that AV,Ll,n−l
(t) = 0.

Also using Proposition 3.2, if l = 0, then one can remove all the hyperplanes

with +1 monodromy without changing intersection cohomology, so AV,Ll,n−l
(t) = td

as it is simply the Poincaré polynomial of compactly supported cohomology.

Assume that l is odd. Recall our notation in §3.2 that Ũ0 the exceptional divisor

at the origin with the nontrivial monodromy transforms of divisors removed, is the

empty set in that case. By Lemma 3.4, the twisted intersection cohomology of V

is zero, so AV,Ll,n−l
(t) = 0.

Finally if l > d and l is even, then Ũ0 is a vector space of complex dimen-

sion d − 1, with generic l − 1 hyperplane removed, and around each of them

the monodromy is −1. Let L̃|Ũ0
denote the pullback local system by blow-up

restricted to Ũ0. From Theorem 3.5, we have H•(Ũ0; L̃|Ũ0
) is concentrated in de-

gree d − 1, and Hd−1(Ũ0; L̃|Ũ0
) is of dimension

∑l−d
i=1(−1)i+1

(
l−1

d−1+i

)
. So the coho-

mology Hd−1(Ũ0; L̃|Ũ0
) as the dual is of the same dimension. From Lemma 3.4,

letting L = Ld
l,n−l, it follows that IH•(V ;L) is concentrated in degree d − 1 and

IHd−1(V ;L) ∼= Hd−1(Ũ0; L̃|Ũ0
). By the Poincaré duality, IH•

c (V ;L) is concen-

trated in degree d + 1 with IHd+1
c (V ;L) being of dimension

∑l−d
i=1(−1)i+1

(
l−1

d−1+i

)
.

Therefore the polynomial AV,Ll,n−l
(t) has the desired formula as Equation (3.4). ⋄

We see that as long as the hyperplane arrangement in V is generic central,

AV,Ll,n−l
only depends on the dimension of V , the number of hyperplanes and the

number of −1 monodromies. In other words, we have
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Corollary 3.7. AV,Ll,n−l
(t) is a combinatorial invariant.

Example 6. We present here the special case that V is a vector space of dimension

n − 1 and equipped with a generic central arrangement of n hyperplanes (n ≥ 3),

or equivalently M(V ) is the uniform matroid of rank n − 1 over the ground set

[n] = {1, 2, . . . , n}. We will see later that ZV,Ll,n−l
(t) and PV,Ll,n−l

(t) can be written

in some closed forms in this case (proved in Chapter 6).

For ease of notation, in this case we simply write Al,n−l(t) for AV,Ll,n−l
(t). Sim-

ilarly Zl,n−l(t) and Pl,n−l(t) have the obvious meanings.

Using Proposition 3.6, one can verify that the polynomial is nonzero only if

l = 0 or l = n. In fact,

A0,n(t) = tn−1

for any n ≥ 3, and

An,0(t) = t
n
2

for any even number n ≥ 4.

We also take A0,1(t) = A0,2(t) = t by convention.
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C H A P T E R 4

GEOMETRY OF ARRANGEMENT SCHUBERT

VARIETY

4.1 Arrangement Schubert variety and its associated ma-

troid

Let M be a realizable matroid on the ground set E = [n] = {1, 2, . . . , n} and

choose a realization W = Span{w1, w2, . . . , wn}. We may assume M is a simple

matroid, so every element in the spanning set is nonzero, and any two of them

are linearly independent. Denote L(M) the lattice of flats of M . With the chosen

realization, there exists a surjective linear map f from Cn to W and its dual f ∗ is

a linear injective map from W ∗ to Cn. We denote the image of this dual map by

V , a vector subspace of Cn. Under this setting, a subset F ⊂ E is a flat in L(M) if

and only {wi}i∈F span a subspace in W such that adding any other wj with j /∈ F

to it results in a larger subspace.

Besides the above characterization of flats, we have one more which is useful in

practice.

Proposition 4.1. F is a flat if and only if there exists a vector x = (x1, x2, . . . , xn) ∈

V such that xi = 0 for i ∈ F , and xi ̸= 0 for i /∈ F .
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Proof. In the above notations, we consider the matrix Mf given by the dual linear

map f ∗ with respect to standard basis of Cn. Reduce Mf to a row echelon form.

As the matroid M is simple, each column of Mf is nonzero and every two columns

of Mf are linearly independent, hence each column of the row echelon form is also

nonzero, and every two columns of the row echelon are linearly independent. From

this, using the first characterization and simple linear algebra, one can see that the

second characterization holds. ⋄

Or one can start with a vector subspace V ⊂ Cn then obtain an associated

matroid through geometric flats. Consider the coordinate hyperplanes Hi = {x ∈

V | xi = 0}, where 1 ≤ i ≤ n. The intersections of these hyperplanes form a poset,

in which every element is called a geometric flat. Actually a matroid M(V ) on the

ground set [n] shows up here, whose flats are characterized by the condition that F

is flat if and only if there exists a vector x = (x1, x2, . . . , xn) ∈ V such that xi = 0

for i ∈ F , and xi ̸= 0 for i /∈ F .

The associated “arrangement Schubert variety” of a vector space V ⊂

Cn, denoted by Y (V ), is defined to be the closure of V under the inclusion V ⊂

Cn ↪−→ (CP1)n. When the the vector space V and its associated matroid M(V )

are clear from the context, we simply use the notations Y and M to denote the

arrangement Schubert variety and the matroid. The “arrangement” here refers

to the hyperplane arrangement in V consisting of the coordinate hyperplanes Hi =

{x ∈ V | xi = 0}.
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4.2 Coarse stratification by additive group action orbits

indexed by flats

In fact an arrangement Schubert variety is very “linear”. There exists a strati-

fication for Y , given by the cells

SF = {x ∈ Y | xi = ∞ if and only if i /∈ F},

where F ⊂ E = [n] are flats in L(M). In particular, the whole ground set E,

the top flat gives the top cell SE, which is the vector space V . For the other

extreme, the bottom flat is the empty set ∅, and correspondingly S∅ is the most

singular point (∞,∞, . . . ,∞) of an arrangement Schubert variety. We can see that

SF =
⋃

G≤F SG.

The group action (V,+) on V given by vector addition naturally extends to the

whole variety Y . Moreover, using the above characterization of a stratum SF we

see that the group action (V,+) preserves the stratification, i.e. V · SF = SF .

4.3 Fine stratification indexed by comparable flat pairs

Since we are going to use local systems on arrangement complements and in-

vestigate twisted intersection complexes, a fine stratification for the variety will be

required.

As follows we take a fine stratification for an arrangement Schubert variety,

given by the locally closed subsets

SG
F = {x ∈ Y | xi = ∞ if and only if i /∈ F, xj = 0 if and only if j ∈ G},

where G is any flat contained in F , or G ≤ F with respect to the partial order

given by inclusion. Note that SG
F ⊂ SG′

F ′ if and only if G′ ≤ G ≤ F ≤ F ′.
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In particular, if F is a nonempty flat, then for rank-one flats {i} ⊂ F , the

locally closed subsets S
{i}
F are the same as the intersections Hi ∩ SF . Note that SF

is naturally a vector space of dimension rkF , and these S
{i}
F give a hyperplane ar-

rangement of SF . So the original hyperplane arrangement in V induces hyperplane

arrangements in each SF . Moreover, we will see that SF is identified naturally with

some quotient of V , so SF can act additively as a subgroup of V , under a choice of

embedding SF ↪−→ V (see the next subsection).

4.4 Local product structure along strata

We will show that each stratum is “very equisingular” in the sense that there

exists a local product structure along it. Then for an intersection complex along

a stratum with coefficients in a local system, it has a tensor product decomposi-

tion induced by the topology product structure of stratum, with one intersection

complex in the tangential direction, and the other one in the normal direction.

We will start with a big Zariski open neighborhood UF of SF . It turns out that

UF has a nice product structure.

We denote by 0F the “origin” of SF , i.e. the point (x1, x2, . . . , xn) with coordi-

nates xi being 0 if i ∈ F , and ∞ if i /∈ F . In the fine stratification, {0F} = SF
F . Let

UF be the union of strata
⋃

F≤G SG and πF : UF → SF be the projection given by

πF (p) = q, where qi =


pi, if i ∈ F,

∞, if i /∈ F.

We are going to show that UF is isomorphic to the product of π−1(0F ) and SF .

But at first we have to check that πF is well-defined, in other words the image of

πF lies in SF . Moreover, it turns out that πF is actually a surjective map.
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Proposition 4.2. The projection πF is well-defined and surjective.

Proof. First we show that the image is inside SF . Suppose F is a flat. Then by

Proposition 4.1 there exists a vector y = (y1, y2, . . . , yn) ∈ V such that yi = 0 for

i ∈ F , and yi ̸= 0 for i /∈ F . For an element x = (x1, x2, . . . , xn) ∈ UF , we take the

sum x + ty, where t varies in real numbers. As t tends to infinity, the coordinates

of x + ty not indexed by F tend to infinity, but the coordinates indexed by F are

constant, hence πF (x) = lim
t→∞

(x+ ty), an element of SF .

Next we prove that the image of πF is exactly SF , so πF is a surjective map. It

will suffice to show that SF is contained in the image of the restricted projection

πF |SE
= πF |V : V → SF . Consider the inclusion V ⊂ Cn ↪−→ CF × (CP1)E\F ↪−→

(CP1)n. Let V be the closure of V inside CF ×(CP1)E\F , which is exactly UF . Note

that πF (UF ) = πF (V ) ⊂ πF (V ) = πF (V ) as πF is continuous and πF (V ) is a closed

set. Since πF (SF ) = SF , we have SF ⊂ πF (UF ) ⊂ πF (V ). ⋄

The restriction πF |V : V → SF is a surjective linear map, and its kernel is

VF =
⋂

i∈F Hi. We can identify SF with the quotient V/VF , or view it as the image

of V under the natural projection Cn → CF . It is worth keeping a notation V F for

SF when we want to emphasize its vector space structure, rather than it being a

stratum of the variety. Recall that V F = SF as a vector space, has dimension rkF ,

and is equipped with an hyperplane arrangement consisting of {SF ∩Hi | i ∈ F}.

Next we study the normal slices along each stratum SF . Note that under the

additive group action, two normal slices along a cell SF are different only by a

linear translation. The normal slice at 0F the “origin” point of SF , π
−1(0F ) is the

closure of VF in {0}F ×(CP1)E\F ⊂ (CP1)n, which is isomorphic to the arrangement

Schubert variety Y (VF ) where VF may be thought of as a vector subspace of CE\F .

Under the fine stratification of Y , π−1(0F ) is the closure of SF
E in Y , which equals
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the union
⋃

F≤G2≤G1
SG2
G1
.

We want to show that there exists a product structure near each point of a

stratum. We will take advantage of the additive group action (V,+).

Proposition 4.3. The union of strata UF =
⋃

F≤G SG is isomorphic to the product

π−1
F (0F )× SF .

Proof. There exist splitting maps of the surjective map πF |V : V → SF , or embed-

dings of SF into V . We choose one from these embeddings such that its image is a

linear complement of VF =
⋂

i∈F Hi in V , and denote it by σ : SF → V .

Using the additive group action, we define a map ΘF : π−1(0F ) × SF → UF

given by

(a, b) 7→ a+ σ(b).

It is useful to note that πF (a + σ(b)) = πF (a) + πF (σ(b)) = b. We define a map

ΦF : UF → π−1(0F )× SF given by

p 7→ (p− σ(πF (p)), πF (p)).

It is not hard to see that ΦF and ΘF are the inverse of each other, so the isomor-

phism holds. ⋄

As we are interested in local systems and twisted intersection complexes on

each factor of the product structure, we want not only a regular product but a

stratification-preserving product for the fine stratification.

We denote MF the localization matroid of M at the flat F and MF the

contraction matroid of M at the flat F . The lattice of flats L(MF ) collects flats

G ≤ F , and the lattice of flats L(MF ) collects flats G ≥ F .

Proposition 4.4. Locally near the point 0F , UF is a stratified product of π−1(0F )

and SF .
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Proof. We have seen that π−1(0F ) is isomorphic to the arrangement Schubert va-

riety Y (VF ). As a vector space with a hyperplane arrangement {SF ∩Hi, }i∈F , SF

is stratified by the intersections of the hyperplanes.

The union
⋃

F≤G2
SF
G2

is an affine neighborhood of 0F in π−1(0F ), in fact
⋃

F≤G2
SF
G2

=

π−1(0F ). Meanwhile the union
⋃

G1≤F SG1
F is SF . For G1 ≤ F ≤ G2, however the

product component SF
G2

× SG1
F is not mapped into SG1

G2
, under the map ΘF . The

issue is that in SF
G2
, the coordinates in G2 \ F are nonzero finite numbers, and in

σ(SG1
F ), the coordinates outside of F are also nonzero finite numbers. The points

of the sum SF
G2

+ σ(SG1
F ) possibly have zero coordinates in G2 \ F , so then land

outside of SG1
G2
. Here we recall from the proof of Proposition 4.3 that σ : SF → V is

a chosen splitting map of πF : V → SF . Under the Zariski topology, ΘF does not

preserve stratification. We want to show that there exist topological neighborhoods

of 0F , N ⊂ π−1(0F ) and N ′ ⊂ SF so that ΘF |N×N ′ respects strata.

We can choose a topological open neighborhood N of 0F inside π−1
F (0F ), and

a topological neighborhood N ′
σ ⊂ σ(SF ) ⊂ V , and a number η > 0 such that for

all x ∈ N , 2η < |xi| < ∞, and for all y ∈ N ′
σ, 0 < |yi| < η, where i ∈ G2 \ F .

The condition that under the map ΘF , the magnitudes 0 < η < |xi + yi| < ∞ for

all i ∈ G2 \ F , fixes the above issue. Let N ′ = σ−1(N ′
σ). The restricted ΘF |N×N ′

respects the fine stratification. ⋄

4.5 Twisted intersection complex and product structure

Let L be a rank one local system on the biggest stratum of Y under the fine

stratification, i.e. the hyperplane arrangement complement S∅
E. Suppose that the

monodromy of L around the hyperplane Hi is given by a number ai (see Proposition
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2.9).

In this subsection we are going to show that at each point of the cell SF , the

intersection complex IC•(Y ;L)|SF
has an exterior product structure, using the

geometric product structure in Proposition 4.4.

We have seen that around the origin point 0F of the stratum SF , there exists a

neighborhood UF which is a product of the normal slice π−1(0F ) and SF . To obtain

an exterior product structure for the intersection complex IC•(Y ;L)|SF
, we need

to figure out the local system LF on π−1(0F ) in the normal direction and the local

system LF on SF in the tangential direction. And then on the induced biggest

stratum of NF ×N ′
F , L ∼= LF ⊠ LF .

For our purpose, we modified the product structure bijection Θ in Proposition

4.3 to be a stratified isomorphism by restricting it to topological open sets as in

Proposition 4.4. In particular, we can find topological open neighborhoods around

0F , NF inside SF
E , and N ′

F inside S∅
F , such that the image of the restriction Θ|NF×N ′

F

lies entirely in S∅
E, hence does not hit any hyperplane Hi.

Note that NF is homotopy equivalent to SF
E via the deformation retraction,

hence H1(NF ;Z) ∼= H1(S
F
E ;Z). Restricting the original hyperplane arrangement of

V onto SF
E , we see that each flat G such that G > F and rkG = rkF + 1 gives

a hyperplane
⋂

i∈GHi on SF
E . Hence H1(NF ;Z) = Z{aG | G > F, rkG = rkF +

1} by Proposition 2.9. With similar arguments, we conclude that H1(N
′
F ;Z) ∼=

H1(S
∅
F ;Z) = Z{bi | i ∈ F}. We also recall that H1(S

∅
E;Z) = Z{σi | 1 ≤ i ≤ n}.

The loop representatives for the generators in each homology group are clear from

geometry.

Proposition 4.5. Suppose that the monodromies of L are given by numbers ai,

for 1 ≤ i ≤ n. The local system LF on NF ⊂ SF
E has monodromies

∏
i∈G\F ai,
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for each G > F with rkG = rkF + 1, and the local system LF on N ′
F ⊂ S∅

F has

monodromies ai for i ∈ F .

Proof. We will figure out what the monodromies of LF (respectively LF ) are by

embedding the elementary 1-cycles or loops around corresponding hyperplanes of

NF (respectively N ′
F ) into S∅

E.

ΘF induces a map on homology groups,

(ΘF )∗ : H1(NF ;Z)×H1(N
′
F ;Z) → H1(S

∅
E;Z).

For each flat G with G > F and rkG = rkF + 1, for instance we may choose

a loop as a representative of the generator aG in H1(NF ;Z), parameterized by θ in

the form

λG = (0, . . . , 0︸ ︷︷ ︸
F

,Mk1e
iθ,Mk2e

iθ . . . ,Mkpe
iθ︸ ︷︷ ︸

G \ F

,Ml1 ,Ml2 , . . . ,Mlq︸ ︷︷ ︸
E \G

)

where p and q are the numbers of G\F and E\G respectively, and M ’s are nonzero

complex numbers with sufficiently large magnitudes (based on the choice of NF ),

and satisfy some suitable linear relations as the loop lives in a vector subspace of

V ⊂ Cn, and G is a flat that covers the flat F .

On the other hand, we may choose a constant loop as a representative of the

zero element in H1(N
′
F ;Z)

λ′
F = (m,m, . . . ,m︸ ︷︷ ︸

F

,∞,∞, . . . ,∞︸ ︷︷ ︸
E \ F

)

where m is a complex number with a sufficiently small magnitude (based on the

choice of N ′
F ). Recall from the construction in Proposition 4.4 that ΘF (λG, λ

′
F ) =

λG + σ(λ′
F ) will live in S∅

E as required with well chosen M ’s and m.
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Let pj be the projection from (C∗)n to its j-th factor C∗, for 1 ≤ j ≤ n. Then

pj∗(ΘF )∗(aG × {0}) =


1, if j ∈ G \ F,

0, otherwise.

(4.1)

Geometrically, an elementary loop around the hyperplane ∩i∈GHi, say λG in

SF
E , after an additive translation by a small vector of V , is homologous to the

composition of the elementary loops of σi around Hi, for i ∈ G \ F .

With an argument in the same flavor, we also conclude that

pj∗(ΘF )∗({0} × bi) =


1, if j = i,

0, otherwise.

(4.2)

Therefore (ΘF )∗(aG × {0}) =
∑

i∈G\F σi and (ΘF )∗({0} × bi) = σi. Then the

statement about the local system monodromies of LF and LF follows. ⋄

It is time to give the main result in this section:

Theorem 4.6. Locally around 0F , the restricted intersection cohomology com-

plex IC•(Y ;L)|SF
is isomorphic to the external product of IC•(Y (VF );LF

)
and

IC•(V F ;LF ). As a consequence,

H•
c

(
SF ; IC

•(Y ;L)|SF

) ∼= H•(IC•(Y (VF );LF )∞
)
⊗ IH•

c (V
F ;LF ). (4.3)

Proof. With appropriately chosen neighborhoods as in Proposition 4.4, we see that

ΘF : π−1(0) × SF → UF restricts to a stratified isomorphim from a product of

neighborhoods N ×N ′ to some open set W = ΘF (N ×N ′) ⊂ UF . Recall that we

use the notation V F for SF , when considering SF as a vector space. Also VF is the

vector space
⋂

i∈F Hi.
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Let us consider the following commutative diagram

{0F} ×N ′ N ×N ′

{0F} × {0} {0F} × V F π−1(0F )× V F

{0F} SF UF Y

j0

j

θF ΘF

i

where the lower three vertical arrows are isomorphims, in particular θF is the

natural identification between two points induced by ΘF , and the other arrows

denote the obvious inclusions.

Regarding the intersection cohomology complexes, we have the isomorphisms

by chasing the diagram

θ∗F i
!
(
IC•(Y ;L)|SF

) ∼= j!
[(
Θ∗

F IC
•(UF ;L)

)
|{0F }×V F

]
∼= j!0

[(
Θ∗

F IC
•(UF ;L)

)
|{0F }×N ′

]
∼= j!0

[(
IC•(N ;LF )⊠ IC•(N ′;LF )

)
|{0F }×N ′

]
∼= j!0

(
IC•(N ;LF )|0F ⊠ IC•(N ′;LF )

)
∼= j!

(
IC•(N ;LF )|0F ⊠ IC•(V F ;LF )

)
(4.4)

where the third isomorphism comes from the Künneth formula for intersection

cohomology complex (see Theorem 2.6), and the last isomorphism is induced from

the upper left triangle in the commutative diagram.

Thinking about the multiplicative group action of C∗ on Y , which is stratifica-

tion preserving and induces the group action on SF or V F , then i and j are the

inclusion of contracting points {0F}×{0} and {0F} under corresponding C∗-actions.

Consider the inclusion i : {0F} → SF . Denote by p : SF → {0F} the attracting

map, with respect to the C∗-action, which is a constant map in that case. Using the

localization with respect to the C∗-action, by Lemma 2.8, for any C∗-constructible
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complex F• on SF , i
!F• ∼= p!F•. Apply this identity to IC•(Y ;L)|SF

, then we have

i!
(
IC•(Y ;L)|SF

) ∼= p!
(
IC•(Y ;L)|SF

)
.

Applying the cohomology functor to the both sides above, it follows that

H•(i!(IC•(Y ;L)|SF

)) ∼= H•
c

(
SF ; IC

•(Y ;L)|SF

)
. (4.5)

Since θF is an identification between two points, the cohomology of left side of

Equation (4.4) can be identified with H•
c

(
SF ; IC

•(Y ;L)|SF

)
.

Similarly as what we did to the inclusion i!
(
IC•(Y ;L)|SF

)
, we can apply Lemma

2.8 to the second component of j!
(
IC•(N ;LF )|0F ⊠IC•(V F ;LF )

)
, then replace the

last line of Equation (4.4) with

IC•(Y (VF );LF

)
|0F ⊗ p!IC

•(V F ;LF ),

where we should notice that 0F is the most singular point of the arrangement

Schubert variety Y (VF ).

Taking cohomology and using the Equation (4.4), we have

H•
c

(
SF ; IC

•(Y ;L)|SF

) ∼= H•(IC•(Y (VF );LF )|∞
)
⊗ IH•

c (V
F ;LF ). (4.6)

⋄
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C H A P T E R 5

LONG EXACT SEQUENCE FOR COARSE

STRATIFICATION

Let V be a vector subspace in Cn, with the associated matroid M and the

associated arrangement Schubert variety Y . Let L be a rank one local system on

the hyperplane arrangement complement S∅
E, with ±1 monodromy around each

hyperplane. For each 0 ≤ k ≤ rkM ,
∐

crkF≤k SF is an open subset of Y containing∐
crkF=k SF as a closed subset with the open complement

∐
crkF<k SF . To simplify

notation, we define Y (k) :=
∐

crk(F )≤k SF , then Y (k − 1) =
∐

crkF<k SF . We let

Y (k, k − 1) := Y (k) \ Y (k − 1) =
∐

crkF=k SF .

Let X be a general topological space with an open subset W . Let j : W → X be

the open inclusion and let i : X \W → X be the complementary closed inclusion.

There is an attaching triangle in the derived category of sheaves of modules on X

j!j
∗ −→ id −→ i∗i

∗ [1]−→ .

Consider the triad, Y (k) with the open subset Y (k−1), and the closed complement

Y (k, k − 1). Apply the above attaching triangle to IC•(Y ;L)|Y (k), and then ap-

ply the compactly supported hypercohomology functor. We obtain the long exact

45



sequence

· · · →Hi
c(Y (k − 1); IC•(Y ;L)|Y (k−1)) → Hi

c(Y (k); IC•(Y ;L)|Y (k)) →

Hi
c(Y (k, k − 1); IC•(Y ;L)|Y (k,k−1)) → Hi+1

c (Y (k − 1); IC•(Y ;L)|Y (k−1)) → · · ·

Since Y (k) is open, Hi
c

(
Y (k); IC•(Y ;L)|Y (k)

) ∼= IH i
c

(
Y (k);L

)
. We can rewrite the

above long exact sequence neatly as

· · · →IH i
c

(
Y (k − 1);L

)
→ IH i

c

(
Y (k);L

)
→

Hi
c

(
Y (k, k − 1); IC•(Y ;L)|Y (k,k−1)

)
→ IH i+1

c

(
Y (k − 1);L

)
→ · · ·

Our computation of IH•(Y ;L) = H•(Y ; IC•(Y ;L)
)
will be given by an induction

argument by adding one dimension at each time based on the following key theorem.

Theorem 5.1. If Y is the arrangement Schubert variety of a vector space equipped

with a rank one local system L on the hyperplane arrangement complement with

monodromies of multiplication by ±1, then the above long exact sequence breaks

down into short exact sequences

0 → IH i
c

(
Y (k−1);L

)
→ IH i

c

(
Y (k);L

)
→ Hi

c

(
Y (k, k−1); IC•(Y ;L)|Y (k,k−1)

)
→ 0.

Proof. To show the long exact sequence is breaking, it suffices to show that the

maps

IH i
c

(
Y (k − 1);L

)
→ IH i

c

(
Y (k);L

)
are injective. Applying the Verdier duality, by Corollary 2.4 it will be enough to

show that

IH i
(
Y (k);L∨)→ IH i

(
Y (k − 1);L∨)

are all surjective. Note that L∨ ∼= L under the monodromy assumption. (In fact

we only need the condition that the class of local systems we consider is closed

under duality. See Remark 5.2 after the proof.)
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The natural C∗-action on C given by multiplication extends to CP1, and then

the extension induces a component-wise action on (CP1)n. We also think of a

double C∗-action by squaring the natural C∗ multiplication. Consider the map

φ : (CP1)n → (CP1)n given by

([xi : yi])i 7→ ([x2
i : y

2
i ])i for i = 1, 2, . . . , n.

We equip the left (CP1)n of the map φ with the natural C∗-action, and the right one

with the double C∗-action, so that φ is an equivariant map. Since the arrangement

Schubert variety Y is invariant under the group action, the restriction of the double

C∗-action on (CP1)n to Y is a C∗-action on Y . Let Y ′ be the inverse image φ−1(Y ).

The restriction of φ to Y ′, denoted by π′ = φ|Y ′ : Y ′ → Y , is a generic 2n-to-1

cover map (except for the points with zero or infinity coordinates), which is also

equivariant.

Let π̃ : Ỹ → Y ′ be an equivariant resolution of singularities of Y ′, with respect to

the natural C∗-action. Such a resolution exists by Hironaka’s equivariant resolution

of singularities theorem, announced by Hironaka in 1976 [Hir77, 9, Remark 8].

Denote by S̃∅
E the inverse image φ−1(S∅

E) and by π′′ the restriction of φ to S̃∅
E. Let

φ : (C∗)n → (C∗)n be the component-wise squaring zi 7→ z2i for 1 ≤ i ≤ n, which is

also the restriction of φ to (C∗)n. We also write π for the composition of π′ with π̃.

A commutative diagram is shown as follows

Ỹ

(CP1)n (C∗)n S̃∅
E Y ′

(CP1)n (C∗)n S∅
E Y

π̃

π

φ φ π′′ π′

where the horizontal arrows are inclusions.
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Now we are going to study the sheaf complex π∗CỸ , in light of the BBDG

decomposition theorem (see Theorem 2.7). Note that π∗CỸ = π′
∗π̃∗CỸ , since π̃ is

a resolution, by the decomposition theorem, one of the decomposition summands

of π̃∗CỸ is IC•(Y ′;C). On the nonsingular part S̃∅
E of Y ′, IC•(Y ′;C) is restricted

to the constant local system CS̃∅
E
.

Furthermore π′′
∗CS̃∅

E
is a semisimple local system of rank 2n on S∅

E. This can

be seen from the fact that the push-forward φi∗CC∗ by φi : zi 7→ z2i of the constant

local system CC∗ , is a rank two local system whose monodromy transformation is

permuting the basis of a stalk. In other words, with some basis of a stalk C2, the

monodromy transformation matrix can written as

0 1

1 0

 with two eigenvalues +1

and −1. Hence φi∗CC∗ can be decomposed as L+1 ⊕L−1 on C∗, the rank one local

system with trivial monodromy and the rank one local system with −1 monodromy.

With this fact in mind, we can find that

π′′
∗CS̃∅

E

∼=
⊕

β∈(±1)n

Lβ

where β ranges among the n-tuples whose coordinates are ±1, and Lβ is the rank

one local system on S∅
E with monodromy determined by β. Therefore L is one of

these Lβ’s. By the BBDG decomposition theorem, π′
∗IC

•(Y ′;C) will have a direct

summand IC•(Y ;L).

Summing up, π∗CỸ = π′
∗π̃∗CỸ has one direct summand IC•(Y ;L) in its sheaf

decomposition.

Restricting the resolution π̃ to Ỹ (k) = π̃−1 ◦ φ−1
(
Y (k)

)
, we can find that

IC•(Y (k);L
)
is a direct summand of π∗CỸ (k). Hence with a chosen decomposition

we can find compatible projections from π∗CỸ (k) onto IC•(Y (k);L
)
for all k.

Let j : Y (k−1) → Y (k) denote the open inclusion. Applying the the adjunction

morphism id → j∗j
∗ to the projection π∗CỸ (k) ↠ IC•(Y (k);L

)
, and then applying
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the hypercohomology, we obtain the the commutative diagram

H i
(
Ỹ (k);C

)
H i
(
Ỹ (k − 1);C

)
IH i

(
Y (k);L

)
IH i

(
Y (k − 1);L

)
where the vertical projections are surjective. In order to show that the bottom

restriction IH i
(
Y (k);L

)
→ IH i

(
Y (k − 1);L

)
is surjective it suffices to show that

the top arrow is surjecitve. It was proved in [Kir88, Lemma 1.12, Lemma 2.8] that

the surjectiveness is guaranteed under an equivariant resolution. ⋄

Remark 5.2. With a slightly modified proof, Theorem 5.1 can be easily generalized

to a rank one local system with monodromies of multiplication by the p-th roots of

unity, for some p. For example, the equivariant map on (CP1)n will be changed to be

zi 7→ zpi , the generic cover map will be pn-to-1, and the monodromy transformation

matrix will be the matrix for the cyclic permutation (123 · · · p).

Note that Y = Y (rkM) =
∐

crk(F )≤rkM SF =
∐

k Y (k, k − 1) =
∐

F∈L(M) SF .

Since Y is compact, IH i
c(Y ;L) = IH i(Y ;L). Since S∅ = (∞,∞, . . . ,∞) a proper

subset in Y , one has thatHi
c

(
S∅; IC

•(Y ;L)|S∅

) ∼= Hi
(
IC•(Y ;L)∞

)
, where the right-

hand side is the same as the cohomology of the stalk of intersection cohomology

complex at the most singular point (∞,∞, . . . ,∞).

An immediate consequence follows from Theorem 5.1 and Theorem 4.6:

Theorem 5.3. If Y is the arrangement Schubert variety of a vector space V

equipped with a rank one local system L on the hyperplane arrangement comple-

ment with monodromies +1 and −1, then there exists an isomorphism

IH•(Y ;L) ∼=
⊕

F∈L(M(V ))

H•
c

(
SF ; IC

•(Y ;L)|SF

)
. (5.1)
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In terms of Poincaré polynomials, this isomorphism and Theorem 4.6 imply the

identity

ZV,L(t) =
∑

F∈L(M(V ))

AV F ,LF (t) · PVF ,LF
(t)

= AV,L(t) +
∑

E>F>∅

AV F ,LF (t) · PVF ,LF
(t) + PV,L(t).

(5.2)

Remark 5.4. Equation (5.2) still holds for local systems L with p-roots of unity

for some integer p.

Recall from §3.4 that if the hyperplane arrangement in V is generic central, then

AV,L(t) can be computed as a combinatorial invariant. We also have two facts:

(A) Since L ∼= L∨ and Y (V ) is compact, IH•(Y (V );L) satisfies the Poincaré

duality, so ZV,L(t) is palindromic.

(B) The degree of PV,L(t) is strictly less than 1
2
dimV because of the degree re-

striction of intersection cohomology.

With these two facts and the formula for AV,L(t) (see Proposition 3.6) we can

recursively compute PV,L(t) and ZV,L(t) by Equation (5.2). As a consequence we

have the following

Theorem 5.5. PV,L(t) and ZV,L(t) are combinatorial invariants when the hyper-

plane arrangement in V is generic central.

Naturally we want to ask if the following conjecture is correct, without the

assumption that the local system L only has ±1 monodromies and the hyperplane

arrangement in V is generic central.

Conjecture 5.6. The polynomials AV,L(t), PV,L(t) and ZV,L(t) are combinatorial

invariants.
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C H A P T E R 6

CLOSED FORMULAS FOR A UNIFORM CASE

Throughout this section we assume V is a vector space of dimension n − 1

and equipped with a generic central arrangement of n hyperplanes (n ≥ 3), or

equivalently M(V ) = Un−1,n, the uniform matroid of rank n− 1 over the ground

set E = [n] = {1, 2, . . . , n}. Recall from §3.4 that Ll,n−l denote the rank one

system with −1 monodromies around the hyperplanes {H1, H2, . . . , Hl} and +1

monodromies around the remaining n − l hyperplanes. Under this assumption,

ZV,Ll,n−l
(t), AV,Ll,n−l

(t) and PV,Ll,n−l
(t) can be written down in closed form. We

present these results in this section.

For ease of notation, we simply write Al,k(t) for AV,Ll,k
(t), or even Al,k. Similarly

we write Zl,k and Pl,k.

Remark 6.1. The reason we require n ≥ 3 is that if V is of dimension one, then

there cannot exist a central hyperplane arrangement consisting of two hyperplanes,

and V can be endowed with only one central arrangement, which is the origin. So

the exceptions are C with ±1 monodromy around the origin, which are Example 4

and Example 5.

Lemma 6.2. Assume l+k ≥ 3. Then Pl+2,k(t) = Pl,k(t)·t, and Zl+2,k(t) = Zl,k(t)·t.

If l is odd, then Pl,k(t) = Zl,k(t) = 0.
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Proof. First we notice that in many cases the term AV F ,LF in Equation (5.2) is

zero. In fact, if F is a middle flat, i.e. E > F > ∅, such that F contains a number

i ∈ [n] which is assigned with ai = −1 monodromy, then by Proposition 4.5, on

V F the local system LF has a −1 monodromy. Using a Künneth type argument

as in Equation (3.1) and Equation (3.2), we know that the twisted intersection

cohomology IH•
c (V

F ;LF ) = 0, consequently the polynomial AV F ,LF (t) is zero.

This observation greatly helps us to reduce the amount of computation. Under the

simplified notation, we have

Zl,k = Al,k +
k∑

j=0

(
k

j

)
tj · Pl,k−j.

Here tj appears as the A-polynomial for a vector space of dimension j, stratified

by j hyperplanes, equipped with the local system with trivial monodromies.

We recall the results in Example 6. If l ≥ 3 is odd and k = 0, then all the

polynomials Al,k are zero. In this case, from Equation (5.2) of Corollary 5.3, as

Zl,0 = Al,0 + Pl,0 is palindromic, Pl,0 is forced to be zero as well. Therefore the

statement of lemma holds for any odd l ≥ 3 and k = 0.

Next we assume l ∈ 2Z and l ≥ 2. We are going to prove the statement

by induction on k. First we show that the equations hold for k = 0. Using

Equation (5.2) of Corollary 5.3 and Example 6 we have

Zl+2,0 = Al+2,0 + Pl+2,0 = t
l+2
2 + Pl+2,0

and

Zl,0 = Al,0 + Pl,0 = t
l
2 + Pl,0.

where many AV F ,LF terms in the middle are zero, except the first term and the last

term, as we have analyzed at the beginning. Since Zl,k is a palindromic polynomial
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and the degree of Pl,k is not greater than
l−2
2
, the only possibility is that Pl+2,0 = t

l
2

and Pl,0 = t
l−2
2 . Therefore the statement holds when l ∈ 2Z and k = 0.

Now we prove the inductive step. Assume that the statement holds for integers

from 0 to k.

If l ≥ 2, then we have

Zl+2,k+1 =
∑
0≤i≤k

(
k + 1

k + 1− i

)
tk+1−i · Pl+2,i +

(
k + 1

0

)
t0 · Pl+2,k+1

and

Zl,k+1 =
∑
0≤i≤k

(
k + 1

k + 1− i

)
tk+1−i · Pl,i +

(
k + 1

0

)
t0 · Pl,k+1

where the binomial terms
(

k+1
k+1−i

)
tk+1−i are the A-polynomials of vector space of

flats, by Equation (5.2) of Corollary 5.3.

When l + k ≤ 2, Pl,k is not defined. But we abuse notation slightly by setting

P0,1 = P0,2 = P2,0 = 1, and P1,0 = 0 by convention. For the reason we do so, see

Remark 6.1.

Matching up terms Pl+2,i and Pl,i from the above two summations, using the

inductive assumption that Pl+2,i = Pl,i · t for 0 ≤ i ≤ k and the fact that Zl,k is

palindromic, we see that Pl+2,k+1 = Pl,k+1 · t, and consequently Zl+2,k+1 = Zl,k+1 · t.

If l = 0, again using Equation (5.2) of Corollary 5.3, we have

Z2,k+1 =

(
k + 1

k + 1

)
tk+1·P2,0+

(
k + 1

k

)
tk·P2,1+

k∑
i=2

(
k + 1

k + 1− i

)
tk+1−i·P2,i+

(
k + 1

0

)
t0·P2,k+1

and

Z0,k+1 = tk +
k∑

i=2

(
k + 1

k + 1− i

)
tk+1−i · P0,i +

(
k + 1

0

)
t0 · P0,k+1.

We claim that P2,1 = 0. One may find the concrete calculation in §7.3 later. We

still can match up terms as follows:
(
k+1
k+1

)
tk+1 ·P2,0 is equal t times the first term tk

in the second summation, and P2,i = P0,i · t for 2 ≤ i ≤ k by induction hypothesis.
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Using the same reasoning as in the case of l ≥ 2, we find that P2,k+1 is forced to be

P0,k+1 · t, and then Z2,k+1 = Z0,k · t follows. So the lemma is proved. ⋄

Remark 6.3. The condition l+ k ≥ 3 is necessary in Lemma 6.2, as we have seen

a counterexample that P0,1 = 1, but P2,1 = 0 ̸= t. However, the condition is not

quite strict since the identities of Lemma 6.2 hold for all other numbers l and k.

With the help of Lemma 6.2, we can find all the polynomials Pl,k and Zl,k, once

the extreme cases P0,k and Z0,k are known. From Equation (5.2), we find that the

computation for Zl,k can be traced down to Pl,k and A-polynomials. And we already

know how to compute A-polynomials from Proposition 3.2 and Proposition 3.6.

Proudfoot, Wakefield and Young [PWY16, Theorem 1.2] show that the in-

tersection cohomology of the symmetric reciprocal plane X, the closure of{
x ∈ (C∗)n | 1

x1
+ 1

x2
+ · · ·+ 1

xn
= 0
}
in Cn, vanishes in odd degree, and is nonzero

only for i < 1
2
(n− 1). Its dimensions in even degrees are given by the formula

dim IH2i(X;C) =
1

i+ 1

(
n− i− 2

i

)(
n

i

)
. (6.1)

Suppose Y is the arrangement Schubert variety of the uniform matroid Un−1,n.

With the reciprocal of coordinates, (0, 0, . . . , 0) of X corresponds to the most sin-

gular point (∞,∞, . . . ,∞) of Y , so we note that X = Y \
⋃

1≤i≤nHi is an affine

open neighborhood of the most singular point. Let L = L0,n be the constant sheaf

CU on the hyperplane arrangement complement U = V \
⋃

1≤i≤nHi, i.e. every

monodromy of L is given by +1. Note that the symmetric reciprocal plane X is a

conic affine neighborhood of the attracting set S∅ = {(∞,∞, . . . ,∞)} with respect

to the natural C∗-action. Using Lemma 2.8 we have

IH•(X;C) ∼= H•(IC•(X;L)0
)

∼= H•(IC•(Y ;L)∞
)
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where IC•(X;L)0 is the stalk of IC•(X;L) at the origin of X.

Recall that P0,n(t) = Poin
(
H•(IC•(Y ;L0,n)∞

)
, t

1
2

)
. Applying Equation (6.1),

we obtain

P0,n(t) =
∑

0≤i< 1
2
(n−1)

1

i+ 1

(
n− i− 2

i

)(
n

i

)
ti. (6.2)

Finally we are ready to give closed formulas for Pl,k(t) and Zl,k(t).

Theorem 6.4. Closed formulas for Pl,k(t) and Zl,k(t) are given as follows.

1. Suppose l + k ≤ 2. Then P0,1(t) = P0,2(t) = P2,0(t) = 1, Z0,1(t) = Z0,2(t) =

t+ 1, and P1,0(t) = Z1,0(t) = 0.

2. Suppose l + k ≥ 3. Except P2,1(t) = 0 and Z2,1 = t, there are three cases:

(i) When l is odd, Pl,k(t) and Zl,k(t) are both zero.

(ii) When l is even and k ̸= 0, we have

Pl,k(t) = P0,k(t) · t
l
2

=


t

l
2 , if k = 1,∑

0≤i< 1
2
(k−1)

1

i+ 1

(
k − i− 2

i

)(
k

i

)
ti+

l
2 , if k ≥ 2.

and

Zl,k(t) = Z0,k(t) · t
l
2

=


(t+ 1) · t l

2 , if k = 1,(
A0,k(t) +

k∑
i=2

(
k

k − i

)
tk−i · P0,i(t)

)
· t

l
2 , if k ≥ 2,

=


(t+ 1) · t l

2 , if k = 1,(
tk−1 +

k∑
i=2

(
k

k − i

)
tk−i ·

∑
0≤j< 1

2
(i−1)

1

j + 1

(
i− j − 2

j

)(
i

j

)
tj

)
· t

l
2 , if k ≥ 2.
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(iii) When l is even, l ≥ 2 and k = 0, we have

Pl,0(t) = t
l
2
−1,

and hence

Zl,0(t) = t
l
2 + t

l
2
−1.

Proof. (1) These are the degenerate cases. See Examples 4 and 5.

(2) (i) and (ii) come from Lemma 6.2 and Equation (6.2).

(iii) is a consequence of Example 6 and the palindromy of the Z-polynomial. ⋄

Remark 6.5. Proudfoot, Xu and Young [PXY18, Proposition 4.9] showed that the

coefficient of ti in Z0,k(t) is the Narayana number

N(k, i+ 1) =
1

k

(
k

i+ 1

)(
k − 1

i+ 1

)
.
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C H A P T E R 7

CALCULATION EXAMPLES

7.1 Stratification and Lattice of flats

We present the coarse stratification and the corresponding lattice of flats of

some arrangement Schubert varieties here. We let Bn denote the Boolean matroid

of rank n, and Un,n+k denote the uniform matroid of rank n on n+ k elements.

Example 7. Take V = {x1 + x2 + x3 = 0} in C4. In the natural stratification of

Y (V ), S1234 = V is the nonsingular part of Y (V ), the biggest stratum of dimension

3. There are four codimension 1 strata S123, S14, S24 and S34 (four flats of corank

1 respectively), and four codimension 2 strata S1, S2, S3, S4 (four flats of corank

2 accordingly). Finally S∅ corresponds to the most singular point (∞,∞,∞,∞).

The lattice of flats L(M(V )) is isomorphic to L(U2,3) × L(B1), presented in Fig-

ure 2. For the lattices of flats of restrictions, for instance L(M(V )1), L(M(V )2)

and L(M(V )3) are all isomorphic to L(U1,2) × L(B1), and but L(M(V )4) is iso-

morphic to L(U2,3)× L(B0) ∼= L(U2,3).

Example 8. Take V = {x1 + x2 + x3 + x4 = 0} in C4. The associated matroid

M(V ) = U3,4. The associated arrangement Schubert variety Y (V ) is the arrange-

ment Schubert variety of U3,4. In the natural stratification S1234 = V is the nonsin-

gular part of Y (V ), the biggest stratum of dimension 3. There are six codimension
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1234

123 14 24 34

1 2 3 4

∅

Figure 2: The lattice of flats of M(V )

1 strata S12, S13, . . . , S34 (six flats of corank 1 accordingly), and four codimension

2 strata S1, S2, S3, S4 (four flats of corank 2 accordingly). Finally S∅ corresponds

to the most singular point (∞,∞,∞,∞). The lattice of flats of U3,4 is shown in

Figure 3.

1234

12 13 14 23 24 34

1 2 3 4

∅

Figure 3: The lattice of flats of U3,4

7.2 Computation for the rank one case

In this and next subsections, we present some concrete examples of low dimen-

sions, the arrangement Schubert varieties of Un−1,n with n = 2, 3. These examples

will illustrate how the recursive method works for general computations.

Consider the codimension 1 vector space V = {x1 + x2 = 0} in C2 and the
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hyperplane arrangementA = {Hi : xi = 0, i = 1, 2}. Notice thatH1 = H2 = (0, 0).

Y = Y (V ) ⊂ CP1 × CP1 is isomorphic to CP1. Let L+1 (respectively L−1) be the

rank 1 local system on the hyperplane arrangement complement U ∼= C∗ with

monodromy of +1 (respectively −1) around the origin. The lattice of flats of U1,2

as in Figure 4 below, represents the stratification Y = S12 ∪ S∅ where S12 = V and

S∅ = (∞,∞).

12

∅

Figure 4: The lattice of flats of U1,2

According to Example 4 and Example 5, IH i
c(V ;L+1) = C, if i = 2, and vanishes

otherwise; IH i
c(V ;L−1) is trivial for all i. Thus the stalk intersection cohomology

at the infinity point is

H i(IC•(Y ;L+1)∞) =


C, if i = 0,

0, otherwise .

Therefore ZV,L+1(t) = t+1. Equivalently, the intersection cohomology IH•(Y ;L+1)

is as follows:

IH i(Y ;L+1) =


C, if i = 0 or 2,

0, otherwise.

Using a similar argument, we conclude that ZV,L−1(t) = 0, in other words

IH•(Y ;L−1) is zero. Notice that the above intersection cohomology groups all

vanish in odd degree.

We collect the above data and make a table below.
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Local systems A-polynomials of S12 P -polynomials of S∅ Z-polynomials of Y
L+1 t 1 t+ 1
L−1 0 0 0

Table 1: Polynomials for the rank one case

7.3 A rank 2 example

Since n = 3, things become more interesting. The arrangement Schubert variety

of U2,3 will be the first singular space we study.

Consider the codimension 1 space V = {x1 + x2 + x3 = 0} in C3 and the

hyperplane arrangement A = {Hi : xi = 0, 1 ≤ i ≤ 3}. The lattice of flats of

U2,3 is showed in Figure 5 below. The associated arrangement Schubert variety

Y = Y (V ) is stratified as Y =
∐

F∈L(U2,3)
SF . Let L be a rank 1 local system on the

123

1 2 3

∅

Figure 5: The lattice of flats of U2,3

hyperplane arrangement complement with monodromies of either +1 or −1 around

Hi’s. There are essentially four cases to be considered in total: L0,3,L1,2,L2,1 and

L3,0.

(a) L = L0,3. From Example 6, we conclude that

IH i
c(V ;L) =


C, if i = 4,

0, otherwise.

Hence the polynomial V = S123 contributes is t2. Using our polynomial notation

in Chapter 6, that means A0,3 = t2.

60



From the discussion in §4.4 and §4.5, we know that at each point of codimension

one strata Si, locally Si is a product of the origin of C in tangent direction and the

infinity point of the arrangement Schubert variety of U1,2, and the local systems

are trivial in both directions, so each Si contributes t · 1 from §7.2. Recalling the

notation used in Chapter 6, we have

Z0,3 = t2 + 3t · 1 + P0,3.

Because Z0,3 is palindromic, P0,3 has to be 1 under its degree restriction.

(b) L = L1,2. Now the monodromy for H1 is −1 but the monodromies around

H1 and H2 are 1. By Proposition 3.6, we know that the IH•
c (V ;L) is trivial. In

other words, A1,2 = 0.

The local topological product structure and the product structure of local sys-

tems on S1, implies that S1 contributes the polynomial 0, since the tangent data

is space C plus local system L−1. For other two strata S2 and S3, they contribute

the polynomial 0 too, because their normal data are both the infinity point of the

arrangement Schubert variety of U1,2, with local system L−1.

Then we conclude that P1,2 = 0, and hence Z1,2 = 0.

(c) L = L2,1. Now the monodromies for H1 and H2 are both −1 but the

monodromy around H3 is 1. By Proposition 3.6, we know that the IH•
c (V ;L) is

trivial. In other words, A2,1 = 0.

The strata S2 and S3 contribute the polynomial 0, as their tangent data are both

space C plus local system L−1. But the stratum S1 is locally a product of the origin

of C in tangent direction and the infinity point of the arrangement Schubert variety

of U1,2, and the local systems are L+1 in both directions. Hence S1 contributes the

polynomial t · 1.
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Consequently P2,1 = 0, and then Z2,1 = t.

(d) L = L3,0. By Proposition 3.6, we know that the IH•
c (V ;L) is trivial. In

other words, A3,0 = 0.

Each stratum Si contributes the polynomial 0 this time as their tangent data

are all space C plus local system L−1.

Therefore P3,0 = 0, and Z3,0 = 0.

As a summary, we put the above data into Table 2 below for a future reference.

Local systems A-polynomials of S123 Poincaré polynomials of Si P -polynomials of S∅ Z-polynomials of Y
L0,3 t2 3 · t 1 t2 + 3t+ 1
L1,2 0 0 0 0
L2,1 0 t 0 t
L3,0 0 0 0 0

Table 2: Polynomials for U2,3

7.4 Lines in a plane

As a comparison, we present an example of a family of line arrangements in

C2 associated to the uniform matroid U2,n, as n ≥ 3 varies. This gives a simple

example showing that for a hyperplane arrangement associated to a matroid other

than Ud,d+1, the intersection cohomology may not vanish in odd degree.

Consider a central line arrangement in C2 consisting of n lines L1, L2, . . . , Ln.

Suppose a rank one local system L is given by the data that around the first l

lines, the monodromies are given by −1, and around the remaining n− l lines, the

monodromies are given by +1. Let Y be the closure of C2 ↪→
∏

1≤i≤nC2/Li in

(CP1)n.
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If l is odd, the intersection cohomology vanishes. If l = 0, the intersection

cohomology coincides with the ordinary cohomology. If l is even and l ≥ 4, then

the intersection cohomology of the complex plane is given by

IH i(Y ;L) =



0, if i = 4,

Cα, if i = 3,

Cn−l, if i = 2,

Cα, if i = 1,

0, if i = 0.

Here α =
l−2∑
j=1

(−1)j+1

(
l − 1

j + 1

)
, computed based on Proposition 3.6. So we see that

the intersection cohomology does not vanish in degree 1 and degree 3.

When n = 3 and l = 2, the case is simply the arrangement associated to U2,3,

so there is nothing new but the example in §7.3.
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A P P E N D I X

POLYNOMIALS FOR UNIFORM CASES

We include here the tables of P -polynomials and Z-polynomials for uniform

matroids Ud,d+1 and Ud,d+2.

Table 3: P -polynomials for Ud,d+1 and Ll,d+1−l

(d, l) = (1, 0) (2, 0) (2, 2) (3, 0) (3, 2) (3, 4) (4, 0) (4, 2) (4, 4) (5, 0) (5, 2) (5, 4) (5, 6)

1 1 1 1 1 1
t 2 1 1 5 1 9 1
t2 5 2 1 1
t3

(d, l) = (6, 0) (6, 2) (6, 4) (6, 6) (7, 0) (7, 2) (7, 4) (7, 6) (7, 8) (8, 0) (8, 2) (8, 4) (8, 6) (8, 8)

1 1 1 1
t 14 1 20 1 27 1
t2 21 5 1 56 9 1 120 14 1
t3 14 5 2 1 1 84 21 5 1
t4

(d, l) = (9, 0) (9, 2) (9, 4) (9, 6) (9, 8) (9, 10)

1 1
t 35 1
t2 225 20 1
t3 300 56 9 1
t4 42 14 5 2 1 1
t5
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Table 4: Z-polynomials for Ud,d+1 and Ll,d+1−l

(d, l) = (1, 0) (2, 0) (2, 2) (3, 0) (3, 2) (3, 4) (4, 0) (4, 2) (4, 4) (5, 0) (5, 2) (5, 4) (5, 6)

1 1 1 1 1 1
t 1 3 1 6 1 1 10 1 15 1
t2 1 6 1 1 20 3 1 50 6 1 1
t3 1 10 1 50 6 1 1
t4 1 15 1
t5 1

(d, l) = (6, 0) (6, 2) (6, 4) (6, 6) (7, 0) (7, 2) (7, 4) (7, 6) (7, 8) (8, 0) (8, 2) (8, 4) (8, 6) (8, 8)

1 1 1 1
t 21 1 28 1 36 1
t2 105 10 1 196 15 1 336 21 1
t3 175 20 3 1 490 50 6 1 1 1176 105 10 1
t4 105 10 1 490 50 6 1 1 1764 175 20 3 1
t5 21 1 196 15 1 1176 105 10 1
t6 1 28 1 336 21 1
t7 1 36 1
t8 1

(d, l) = (9, 0) (9, 2) (9, 4) (9, 6) (9, 8) (9, 10)

1 1
t 45 1
t2 540 28 1
t3 2520 196 15 1
t4 5292 490 50 6 1 1
t5 5292 490 50 6 1 1
t6 2520 196 15 1
t7 540 28 1
t8 45 1
t9 1

Table 5: P -polynomials for Ud,d+2 and Ll,d+2−l

(d, l) = (1, 0) (2, 0) (2, 2) (2, 4) (3, 0) (3, 2) (3, 4) (4, 0) (4, 2) (4, 4) (4, 6)

1 1 1 1 1

t
1
2 2
t 5 3 1 14 4

t
3
2 2 4
t2
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(d, l) = (5, 0) (5, 2) (5, 4) (5, 6) (6, 0) (6, 2) (6, 4) (6, 6) (6, 8) (7, 0) (7, 2) (7, 4) (7, 6) (7, 8)

1 1 1 1

t
1
2

t 28 5 48 6 75 7

t
3
2 2 2 2
t2 21 10 3 1 98 30 4 288 63 5

t
5
2 4 4 6 10 4
t3 84 35 10 3 1

t
7
2

Table 6: Z-polynomials for Ud,d+2 and Ll,d+2−l

(d, l) = (1, 0) (2, 0) (2, 2) (2, 4) (3, 0) (3, 2) (3, 4) (4, 0) (4, 2) (4, 4) (4, 6)

1 1 1 1 1

t
1
2 2
t 1 4 2 10 3 1 20 4

t
3
2 2 2 2 4
t2 1 10 3 1 45 12 2

t
5
2 2 4
t3 1 20 4

t
7
2

t4 1

(d, l) = (5, 0) (5, 2) (5, 4) (5, 6) (6, 0) (6, 2) (6, 4) (6, 6) (6, 8) (7, 0) (7, 2) (7, 4) (7, 6) (7, 8)

1 1 1 1

t
1
2

t 35 5 56 6 84 7

t
3
2 2 2 2
t2 140 30 3 1 350 60 4 756 105 5

t
5
2 6 4 12 4 6 20 4
t3 140 30 3 1 616 120 12 2 2058 350 30 3 1

t
7
2 2 12 4 6 40 12 6
t4 35 5 350 60 4 2058 350 30 3 1

t
9
2 2 20 4
t5 1 56 6 756 105 5

t
11
2 2

t6 1 84 7

t
13
2

t7 1
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Birkhäuser Boston, Inc., Boston, MA, 2008, Notes on the seminar held
at the University of Bern, Bern, 1983, Reprint of the 1984 edition. 12,
15, 22

[Bra03] Tom Braden, Hyperbolic localization of intersection cohomology, Trans-
form. Groups 8 (2003), no. 3, 209–216. 17

[BV20] Tom Braden and Artem Vysogorets, Kazhdan-Lusztig polynomials of ma-
troids under deletion, Electron. J. Combin. 27 (2020), no. 1, Paper No.
1.17, 17. 2

[C+09] Dan Cohen et al., Complex arrangements: algebra, geometry, topology,
https://faculty.math.illinois.edu/~schenck/cxarr.pdf, 2009.
17, 23

[CGJ92] Daniel C. Cohen, Mark Goresky, and Lizhen Ji, On the Künneth formula
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