
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2023

Quantifying and Enhancing the Security of Federated Learning Quantifying and Enhancing the Security of Federated Learning

Virat Vishnu Shejwalkar
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Shejwalkar, Virat Vishnu, "Quantifying and Enhancing the Security of Federated Learning" (2023). Doctoral
Dissertations. 2988.
https://doi.org/10.7275/35985723 https://scholarworks.umass.edu/dissertations_2/2988

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/35985723
https://scholarworks.umass.edu/dissertations_2/2988?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

QUANTIFYING AND ENHANCING THE SECURITY
OF FEDERATED LEARNING

A Dissertation Presented

by

VIRAT SHEJWALKAR

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2023

Manning College of Information and Computer
Sciences

© Copyright by Virat Shejwalkar 2023

All Rights Reserved

QUANTIFYING AND ENHANCING THE SECURITY
OF FEDERATED LEARNING

A Dissertation Presented

by

VIRAT SHEJWALKAR

Approved as to style and content by:

Amir Houmansadr, Chair

Mohit Iyyer, Member

Daniel Sheldon, Member

Prateek Mittal, Member

Ramesh K. Sitaraman, Associate Dean for
Educational Programs and Teaching
Manning College of Information and Computer
Sciences

DocuSign Envelope ID: 2E5B6D82-898D-471A-A4E1-C91A6B7B2FEA

ABSTRACT

QUANTIFYING AND ENHANCING THE SECURITY
OF FEDERATED LEARNING

SEPTEMBER 2023

VIRAT SHEJWALKAR

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Amir Houmansadr

Federated learning is an emerging distributed learning paradigm that allows mul-

tiple users to collaboratively train a joint machine learning model without having to

share their private data with any third party. Due to many of its attractive prop-

erties, federated learning has received significant attention from academia as well as

industry and now powers major applications, e.g., Google’s Gboard and Assistant,

Apple’s Siri, Owkin’s health diagnostics, etc. However, federated learning is yet to

see widespread adoption due to a number of challenges. One such challenge is its sus-

ceptibility to poisoning by malicious users who aim to manipulate the joint machine

learning model.

In this work, we take significant steps towards this challenge. We start by provid-

ing a systemization of poisoning adversaries in federated learning and use it to build

adversaries with varying strengths and to show how some adversaries common in the

prior literature are not practically relevant. For the majority of this thesis, we focus

on untargeted poisoning as it can impact much larger federated learning population

iv

than other types of poisoning and also because most of the prior poisoning defenses

for federated learning aim to defend against untargeted poisoning.

Next, we introduce a general framework to design strong untargeted poisoning

attacks against various federated learning algorithms. Using our framework, we design

state-of-the-art poisoning attacks and demonstrate how the theoretical guarantees

and empirical claims of prior state-of-the-art federated learning poisoning defenses

are brittle under the same strong (albeit theoretical) adversaries that these defenses

aim to defend against. We also provide concrete lessons highlighting the shortcomings

of prior defenses. Using these lessons, we also design two novel defenses with strong

theoretical guarantees and demonstrate their state-of-the-art performances in various

adversarial settings.

Finally, for the first time, we thoroughly investigate the impact of poisoning in

real-world federated learning settings and draw significant, and rather surprising,

conclusions about robustness of federated learning in practice. For instance, we show

that contrary to the established belief, federated learning is highly robust in practice

even when using simple, low-cost defenses. One of the major implications of our

study is that, although interesting from theoretical perspectives, many of the strong

adversaries, and hence, strong prior defenses, are of little use in practice.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . xi

LIST OF FIGURES .xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Gaps in FL robustness literature and thesis contributions 4

1.1.1 No systemization of poisoning attacks against FL 5
1.1.2 No general framework to design FL poisoning attacks 6
1.1.3 Sub-optimal defenses against FL poisoning . 8
1.1.4 Poor understanding of the impacts of poisoning on real-world

FL . 9

1.1.4.1 Evaluating traditional FL . 10
1.1.4.2 Evaluating personalized FL . 11

1.2 Conclusions and future works . 12

2. BACKGROUND AND RELATED WORKS . 14

2.1 Federated Learning . 14
2.2 Poisoning Attacks on Federated Learning . 15

2.2.1 Existing Untargeted FL Poisoning Attacks 16
2.2.2 Existing Defenses Against Untargeted Poisoning 18
2.2.3 Robust AGRs Studied in This Thesis . 19

2.3 Related works . 21

vi

3. SYSTEMATIZATION OF POISONING ATTACKS AGAINST
FEDERATED LEARNING . 24

3.1 Systematization of FL Poisoning Threat Models . 25

3.1.1 Dimensions of Poisoning Threat to FL . 25

3.1.1.1 Adversary’s Objective . 25
3.1.1.2 Adversary’s Knowledge . 27
3.1.1.3 Adversary’s Capability . 28

3.2 Takeaways . 29

4. GENERAL UNTARGETED POISONING FRAMEWORK
AGAINST FEDERATED LEARNING . 31

4.1 Threat Models of Untargeted Poisoning We Use . 33
4.2 Our Generic Framework for Model Poisoning . 34

4.2.1 General optimization formulation . 34

4.2.1.1 Introducing perturbation vectors . 36

4.2.2 AGR-tailored attacks . 37

4.2.2.1 Krum . 37
4.2.2.2 Multi-krum . 37
4.2.2.3 Trimmed-mean . 38

4.2.3 AGR-agnostic attacks . 38

4.2.3.1 Intuition . 39
4.2.3.2 Attack-1 (Min-Max): Minimize maximum distance

attack . 39
4.2.3.3 Attack-2 (Min-Sum): Minimize sum of distances

attack . 40

4.2.4 Solving for the most effective scaling factor γ 40

4.3 Experimental setup . 41

4.3.1 Datasets and model architectures . 41
4.3.2 Learning and attacks settings . 42

4.4 Evaluation of Our Attacks . 43

4.4.1 Comparison with the state-of-the-art attacks 43

vii

4.4.1.1 Comparing AGR-tailored attacks . 43
4.4.1.2 Comparing AGR-agnostic attacks 46

4.4.2 Impact of our attacks on cross-device FL setting 48

4.5 Takeaways . 50

4.5.1 Lessons learned from our attacks . 51

5. DEFENDING FEDERATED LEARNING AGAINST
POISONING ATTACKS . 52

5.1 Divide-n-Conquer (DnC) . 53

5.1.1 Intuition . 53
5.1.2 Our DnC algorithm . 53
5.1.3 Theoretical analysis . 54
5.1.4 An adaptive attack against DnC . 56
5.1.5 Evaluation of Our Defense . 56

5.1.5.1 Robustness of DnC for iid data . 59
5.1.5.2 Robustness of DnC for non-iid data 61

5.2 Federated Rank Learning (FRL) . 62

5.2.1 Preliminaries for FRL . 65

5.2.1.1 Edge-popup algorithm . 65

5.2.2 Details of federated rank learning (FRL) . 66

5.2.2.1 Server: Initialization (only for round t = 1) 68
5.2.2.2 Clients: Calculating the ranks (for each round t) 69
5.2.2.3 Server: Majority vote (for each round t) 70

5.2.3 Robustness of FRL to poisoning . 71

5.2.3.1 Intuition behind robustness of FRL 71
5.2.3.2 The worst-case untargeted poisoning attack on

FRL. 71
5.2.3.3 Theoretical analysis of robustness of FRL

algorithm . 73

5.2.4 Robustness evaluation of FRL . 74

5.2.4.1 Experimental setup . 74
5.2.4.2 Robustness of FRL against untargeted poisoning 76

viii

5.2.4.3 Robustness of FRL against targeted poisoning 78

6. A CRITICAL EVALUATION POISONING ATTACKS ON
PRODUCTION FEDERATED LEARNING 82

6.1 Practical Considerations for Poisoning Threat Models 84

6.1.1 Salient Features of Production Federated Learning 84
6.1.2 Understanding the practicality of threat models 85
6.1.3 Practical Ranges of FL Parameters . 86
6.1.4 Threat Models in Practice . 88

6.1.4.1 Nobox Offline Data Poisoning (T4) 88
6.1.4.2 Whitebox Online Model Poisoning (T5) 89

6.2 Exploring The Space of FL Poisoning Attacks . 89

6.2.1 Improved FL Poisoning Attacks . 89

6.2.1.1 Improved Data Poisoning Attacks (DPAs) 90
6.2.1.2 Improved Model Poisoning Attacks (MPAs) 94

6.3 Analysis of FL Robustness in Practice . 96

6.3.1 Experimental setup . 96

6.3.1.1 Datasets and Model Architectures 97
6.3.1.2 Details of Federated learning and attack

parameters . 97
6.3.1.3 Attack impact metric . 98

6.3.2 Evaluating Non-robust FL (Cross-device) . 98
6.3.3 Evaluating Robust FL (Cross-device) . 100

6.3.3.1 Cross-device FL with robust AGRs is highly robust
in practice . 100

6.3.3.2 Investigating simple and efficient robustness checks
is necessary . 102

6.3.3.3 Thorough empirical assessment of robustness is
inevitable . 103

6.3.4 Effect of FL Parameters on Poisoning (Cross-device) 103

6.3.4.1 Effect of the Size of Local Poisoning Datasets (|Dp|)
on DPAs. 103

6.3.4.2 Effect of the Average Dataset Size of Benign FL
Clients (|D|avg) . 106

ix

6.3.4.3 Number of Clients Selected Per Round. 107
6.3.4.4 Effect of Unknown Global Model Architecture on

DPAs . 108

6.3.5 Evaluating Robustness of Cross-silo FL . 109

6.4 Takeaways . 111

7. ROBUSTNESS EVALUATION OF PERSONALIZED
FEDERATED LEARNING . 112

7.1 Need for personalization in FL . 112

7.1.1 State-of-the-art PFL algorithms that we evaluate 114

7.1.1.1 FedAvg + Fine-tuning (FedAvg-FT) 115
7.1.1.2 Ditto . 115

7.2 A robustness evaluation personalized FL . 117

7.2.1 Why should we care about robustness of PFL? 117
7.2.2 Methodology . 117

7.2.2.1 The backdoor attack we use . 118
7.2.2.2 Untargeted attack we use . 120

7.2.3 Experimental setup . 120

7.2.3.1 Datasets and model architectures 120
7.2.3.2 Attack settings . 121
7.2.3.3 FL training hyperparameters . 122
7.2.3.4 Measurement metrics . 122

7.2.4 Experimental results . 123

7.2.4.1 Personalized FL improves average per-client
accuracy . 123

7.2.4.2 Impact of personalization on edge-case backdoor
attacks . 124

7.2.4.3 Impact of personalization on untargeted attacks 125

7.3 Takeaways . 128

BIBLIOGRAPHY . 129

x

LIST OF TABLES

Table Page

2.1 Comparing state-of-the-art AGRs in terms of accuracy,
computation/memory cost, and theoretical guarantees. We show
results for CIFAR10 with 1,000 clients. Red cells show limitations
of the corresponding AGR. For brevity, we choose representative
AGRs (in bold) from each type and show that they are sufficient
to protect FL in practice. 17

3.1 The key dimensions of the threat models of poisoning attacks on FL.
Each combination of these dimensions constitutes a threat model
(Table 6.2). However, we argue in Section 6.1.2 that only two of
these combinations are practical threat models. 30

4.1 Knowledge-based classification of model poisoning adversaries in FL. 34

4.2 Comparing state-of-the-art model poisoning attacks and our attacks under

various threat models from Table 4.1, when cross-silo FL is used. In all

the settings, the impact of our AGR-tailored attacks is significantly

higher than that of AGR-tailored Fang attacks. While both of our

AGR-agnostic attacks outperform AGR-agnostic LIE attacks in most

cases. We assume 20% malicious clients and, except for ‘No attack’

column, report the attack impact Iθ (Section 4.3.2). For each

adversary, we bold Iθ of the strongest attack. MMax and MSum are

our Min-Max and Min-Sum attacks, respectively. 44

4.3 Comparing the state-of-the-art model poisoning attacks and our attacks

under all threat models in Table 4.1 when cross-device FL is used. Our

AGR-tailored attacks significantly outperform Fang attacks, while at

least on of our AGR-agnostic attacks significantly outperforms LIE

attack in most cases. Experimental setup is exactly the same as that of

Table 4.2. MMax and MSum are our Min-Max and Min-Sum attacks,

respectively. 49

xi

5.1 Our robust DnC AGR defends against all the existing model
poisoning attacks for independently and identically distributed
datasets. We consider the adversaries with complete knowledge of
gradients of benign clients with 20% malicious clients. For each
attack, we report its attack impact on DnC and on the existing
defense with the highest global model accuracy A∗

θ, computed as
(Aθ − Iθ) from Table 4.2. 58

5.2 Results of empirical robustness analysis of DnC for cross-device FL
setting. We consider the adversaries with complete knowledge of
gradients of benign clients with 20% malicious clients, and report
A∗

θ as described in Table 4.2. 58

5.3 For non-iid FEMNIST dataset, DnC cannot mitigate our attacks in
the worst case settings when the adversary knows gradients of the
benign devices. But, mitigates all the attacks in the more
practical settings when the gradients of benign devices are
unknown. We report Iθ on DnC of all adversaries in Table 4.1
with 20% malicious clients. ‘No attack’ accuracy Aθ for
FEMNIST with DnC is 86.6%. MMax and MSum refer to
Min-Max and Min-Sum attacks, respectively. 58

5.4 Resampling [73] significantly reduces the robustness of existing defenses

against our attacks (20% malicious clients) for all the adversaries from

Table 4.1. Because, resampling increases the number of malicious

updates processed, and therefore, their poisoning impacts. 62

5.5 State-of-the-art model architectures that we use for FRL
experiments. 75

5.6 Comparing the robustness of various FL algorithms: FRL and
Sparse-FRL (SFRL) (in bold) outperform the state-of-the-art
robust AGRs and SignSGD against our strong untargeted
poisoning attacks from Section 4.2. 76

6.1 Practical ranges of FL parameters based on the literature and
discussions on FL production systems [6, 82, 32] and the ranges
used in untargeted FL poisoning and robust AGRs
literature [64, 22, 132, 30, 108]. MPA means model poisoning
attack and DPA means data poisoning attack. Red (green) cells
denote impractical (practical) ranges. 84

6.2 The eight possible threat models for untargeted poisoning attacks on
FL. T3-T8 are valid, but only T4 and T5 represent practical FL
deployments (Section 6.1.4). 85

xii

6.3 The architecture of the surrogate model that we use to emulate the
unknown architecture setting (Section 6.3.4.4). 109

7.1 Personalization helps improve the overall performance of FL. 124

xiii

LIST OF FIGURES

Figure Page

3.1 Classes of FL poisoning attacks and their objectives defined using the
taxonomy in Section 3.1.1.1: Targeted attacks [148, 27] aim to
misclassify only a specific set/classes of inputs (e.g., certain 10
samples from CIFAR10), semantic backdoor attacks [18, 155] aim
to misclassify inputs with specific properties (e.g., cars with
stripes in background), artificial backdoor attacks [164] aim to
misclassify inputs with an artificial (visible or invisible) trigger
pattern (e.g., shape of letter ”F”), and untargeted
attacks [132, 64] aim to reduce model accuracy on arbitrary
inputs (e.g., the entire CIFAR10 distribution). 25

4.1 Schematics of our attacks: (a) Our AGR-tailored attack, unlike Fang

attack, fine tunes the malicious gradient (∇b + γ∇p), using optimal γ

and dataset-optimized ∇p. (b) Our AGR-agnostic Min-Max attack

finds its malicious gradient ∇m (red cross) whose maximum distance

from any other gradient is less than the maximum distance between

any two benign updates (black arrows). (c) Our AGR-agnostic

Min-Sum attack finds ∇m (red cross) whose sum of distances from the

other updates is less than the sum of distances of any benign gradient

from the other benign updates. Due to stricter constraints, ∇m of

Min-Sum attack is closer to the benign aggregate, ∇b, than ∇m of

Min-Max attack. LIE attack computes very suboptimal ∇m due to

extremely small amounts of noise additions. 35

5.1 DnC selects high fractions of malicious gradients (red plots) iff the
distances between µB and µM , the means of benign and malicious
gradients, are low (blue plots), i.e., poisoning impact of the
malicious gradients is low. Upper row is for MNIST and lower row
is for CIFAR10 + Alexnet. We use the strongest full knowledge
agr-updates adversary. 57

xiv

5.2 The space of client updates. Green circles represent benign updates
and red triangles represent malicious updates. To defend against
poisoning, existing robust AGRs filter the updates by creating a
safe space (continuous ∈ Rd). On the other hand, FRL limits the
choices of clients by enforcing a discrete space of updates (a
permutation of integers ∈ [1, d]). θbg (green square) demonstrates
the aggregated model for benign users, and θmg (red square)
demonstrates the aggregated model considering malicious updates.
Black objects are updates that are ruled out by the server. 63

5.3 A single FRL round with three clients and supernetwork of 6
edges. 68

5.4 Upper bound on the failure probability of Vote(.) function in FRL.
α is the percentages of malicious clients and p is the probability
that a benign client puts a good edge in its top k ranks. 74

5.5 FL backdoor poisoning attacks on CIFAR10 distributed over 1000
clients with Dirichlet (β = 1.0) for presence pf adversary in 1000
FL rounds. 80

6.1 Effect of varying the sizes of poisoned data, Dp, on the objectives of
DPAs (Section 6.2.1.1) on various AGRs. We compute Dp by
flipping the labels of benign data. 91

6.2 Schematic of our PGA attack: PGA first computes a poisoned update
∇′ using stochastic gradient ascent (SGA). Then, fproject finds the
scaling factor γ that maximizes the deviation between benign
aggregate ∇b and poisoned aggregate ∇p

γ. Robust aggregations
easily discard the scaled poisoned updates, γ∇′, with very high γ
(e.g., γ{4,5}), while those with very small γ (e.g., γ{1,2}) have no
impact. 93

6.3 Attack impacts (Iθ) of state-of-the-art data (DPA-DLF/SLF) and
model (MPA) poisoning attacks on cross-device FL with average
AGR. Iθ’s are significantly lower for practical percentages of
compromised clients (≤ 0.1%) than previously thought. 98

6.4 Even with a very large number of FL rounds (5,000), the
state-of-the-art model poisoning attacks with M=0.1% cannot
break the robust AGRs (Section 6.3.3). 99

6.5 FEMNIST with CNN architecture . 101

6.6 CIFAR10 with VGG9 architecture . 101

xv

6.7 Purchase with Fully connected architecture . 101

6.8 Attack impacts of various poisoning attacks (Section 6.2) on
cross-device FL with robust AGRs (Section 2.2.3). These AGRs
are highly robust for practical percentages of compromised clients ;
for in-depth analysis, please check Section 6.3.3. 101

6.9 Effect of varying sizes of local poisoned dataset Dp on impacts Iθ of
the best of DPAs. When |Dp| and M are in practical ranges, Iθ’s
are negligible for robust AGRs and are dataset dependent for
non-robust Average AGR. 104

6.10 With 1% compromised clients, increasing |D|avg has no clear pattern
of effects of on attack impacts, but it increases the global model
accuracy . 105

6.11 As discussed in Section 6.3.4.3, the number of clients, n, chosen in
each FL round has no noticeable effect on the attack impacts,
with the exception of model poisoning on Average AGR. We use
M = 1% of compromised clients. 107

6.12 Impacts of the DPA-DLF (Section 6.2.1.1) attack, which uses the
knowledge of model architecture, reduce if the architecture is
unknown. 108

6.13 All data poisoning attacks have negligible impacts on cross-silo FL,
when compromised clients are concentrated in a few silos or
distributed uniformly across silos (Section 6.3.5). 110

7.1 Conventional FL algorithms, e.g., FedAvg, compute a single global
model for all clients. As we can see in the two plots here, such
single model cannot provide good performance for all the clients.
In fact, for many clients (as in the case of Reddit) the accuracy of
the model trained only on the local data is more than the
accuracy of the global model on their local test data. This implies
participating in FL does not benefit these clients. 113

7.2 Samples from the tail of the distribution of CIFAR10 (a) and
FEMNIST (b) datasets. (a) Images of Southwest airline planes
which are not in the original CIFAR10 data although it has
multiple plane images (b) Images of digit ’7’ from ARDIS
dataset [93] written in a different style than ’7’ in the original
FEMNIST data. 119

xvi

7.3 Impact of varying the % of total edge data (660 samples in our case)
that the adversary holds; benign clients hold rest of the data.
Edge-case backdoor attacks are very effective against FedAvg, but
personalized FL algorithms are very effective in mitigating their
threat to FL. For cross-device FL here, adversary participates
every 10th round starting from round 1,000. We use FedAvg +
Norm-bounding here. 124

7.4 Impact of attack frequency. 125

7.5 Cross-device FL + local fine-tuning . 126

7.6 Cross-silo FL + local fine-tuning . 126

7.7 Cross-silo FL + Ditto . 126

7.8 Impact of our state-of-the-art untargeted poisoning attacks
(Chapter 4) on PFL algorithms. We make the following
observations. First, under production FL settings (e.g., with
practical percentages of malicious clients), PFL algorithms remain
highly robust. However, personalization algorithms fail to salvage
FL against stronger adversary, e.g., with higher percentages of
malicious clients. 126

xvii

CHAPTER 1

INTRODUCTION

“If a machine is expected to be infallible, it cannot also be intelligent.”

Alan Mathison Turning

Machine learning (ML) has made a tremendous progress over the past decade

and is the driving force of numerous modern applications, e.g., object detection in

self-driving cars [90], next word prediction on digital keyboards [104, 121], medical

diagnosis based on patients’ data [85], captions generation in YouTube videos, etc. It

is well known that these ML models are data hungry and the more the data they are

trained on the better they perform. Such large amounts of data are generally collected

directly (e.g., patients’ data) or indirectly (e.g., from Internet) from a large number of

users (to increase data quantity) with diverse backgrounds (to improve data quality).

However, increasing amounts of training data raises significant concerns about the

privacy of users who contribute to the data.

The training data of ML models can be of sensitive nature as it belongs to real

users, e.g., the training data of next word prediction models of digital keyboard ap-

plications may contain sensitive information about the data owner, while the clinical

data of a patient used to train a medical diagnosis model generally contains highly

sensitive information about the mental or physical health of the patient (i.e., data

owner). Numerous recent researches have demonstrated how various ML models leak

sensitive information [138, 143, 146, 145, 144, 142, 40, 41, 135, 117, 152, 131, 133, 40,

39, 71, 19, 142, 107, 144, 50, 31] about their training data, which has raised concerns

about the privacy of users who contribute data to train ML models.

1

To address the numerous concerns around privacy, research community has been

putting significant efforts to design privacy preserving ML algorithms. A major effort

towards privacy preserving ML is to develop differentially private ML algorithms [10,

34, 105, 106, 130, 92, 23, 62, 120, 77, 44, 141, 79, 16] that satisfy differential privacy

(DP) [60]. However, majority of the DP ML algorithms consider the centralized

ML [115, 26, 46, 10] setting, where a set of users share their private data with a

central ML service provider (e.g., Amazon AWS or Google Cloud) and then the service

provider trains a ML model on the entire data. Unfortunately, in such centralized ML

setting, due to sharing of data with the (honest but curios or potentially malicious)

service provider, users have no privacy from the service provider; note that this applies

even when the ML algorithms are differentially private. Furthermore, any other

privacy preserving ML solutions [116, 131, 133, 150] in centralized ML setting expose

the sensitive information of the users contributing to the training data to the ML

service provider.

Federated learning (FL) [104, 137, 33, 32, 81, 11, 20, 94, 128, 119, 166, 102, 174,

99, 149, 30, 168, 67, 14, 157, 101], another major effort towards privacy preserving

ML, aims to alleviate the aforementioned privacy issues due to sharing of private data

with untrusted third parties. For training ML models, FL service provider (called the

server) does not use the private data of the collaborating/participating users (called

the clients) in plaintext form, and instead uses some function of their data, e.g., gra-

dients [137], model updates [104] or model outputs [42, 101]. In a typical FL setting,

the server repeatedly collects some updates that the clients compute using their local

private data, aggregates the clients’ updates using an aggregation rule (AGR), and

finally uses the aggregated client updates to tune the jointly trained model (called

the global model), which is broadcasted to a subset of the clients at the end of each

FL training round. FL is increasingly adopted by various distributed platforms, in

2

particular by Google’s Gboard [3] for next word prediction, by Apple’s Siri [121] for

automatic speech recognition, and by WeBank [5] for credit risk predictions.

Although FL is a promising approach to alleviate many concerns around user data

privacy, there are numerous challenges to adopting FL in real-world applications, e.g.,

designing provably private FL algorithms [81, 20, 103, 17, 33, 80, 47], designing FL

algorithms that treat all clients fairly [74, 35, 100, 156, 49], designing communication

efficient FL algorithms [14, 15, 157, 25], designing FL algorithms robust to various

adversarial circumstances [171, 122, 84, 83, 64, 22, 30, 132, 108, 156], etc. There are

dire consequences of poisoning on the performance of FL (as we detail in the next

paragraph), yet relatively fewer works have tried to investigate the robustness aspect

of FL. To fill this gap, in this thesis, we focus on thoroughly quantifying and enhancing

the robustness of FL against poisoning attacks.

The threat of poisoning to FL: A key feature that makes FL highly attractive

in practice is that it allows training models via collaboration between mutually un-

trusting clients, e.g., Android users or competing banks. Unfortunately, this makes

FL susceptible to a threat known as poisoning : a small fraction of FL clients, called

malicious clients, who are either owned or controlled by an adversary, may act mali-

ciously during the FL training process in order to corrupt the jointly trained global

model. Specifically, the goal of the poisoning adversary is to attack FL by instructing

its malicious clients to contribute poisoned model updates during FL training in order

to poison the global model.

There are three major approaches to poisoning FL: Targeted attacks [148, 27]

aim to misclassify only a specific set/classes of inputs (e.g., certain 10 samples from

CIFAR10), semantic backdoor attacks [18, 155] aim to misclassify inputs with specific

properties (e.g., cars with stripes in background), artificial backdoor attacks [164]

aim to misclassify inputs with an artificial (visible or invisible) trigger pattern (e.g.,

shape of letter “F”), and untargeted attacks [132, 64] aim to reduce model accuracy

3

on arbitrary inputs (e.g., the entire CIFAR10 distribution). Figure 3.1 in Chapter 3

provides a visual illustration of these attacks and their differences.

Each of the poisoning types significantly impact the real users’ experience of FL

in specific settings. For instance, targeted [27] and backdoor [155] attacks can make

the FL model completely useless for a subset of minority FL population, some back-

door attacks [18] may allow unauthorized access to FL applications, while untargeted

poisoning can reduce the utility of FL for a large fraction of FL population.

Overview of our contributions: In this thesis, we first provide a comprehen-

sive systemization of poisoning adversaries in FL and provide a general framework

to design poisoning attacks in various adversarial settings. Using these attacks we

show that many of existing state-of-the-art defenses fall short of their theoretical ro-

bustness guarantees and also fail in the adversarial settings where they claimed to be

robust. Based on lessons from our evaluations, we design two novel defenses against

FL poisoning. For the above contributions, we considered very strong (theoretical)

adversaries that helped us assess the robustness guarantees of the FL poisoning de-

fenses, but such adversaries may not be very relevant in practical FL deployments.

Therefore, in the last part of the thesis, we analyze robustness of (robust) FL al-

gorithms under practical adversaries in production FL settings and make significant

conclusions about FL robustness in practice.

1.1 Gaps in FL robustness literature and thesis contributions

In this section, we discuss in detail the gaps in the literature on FL robustness

against poisoning and contributions of this thesis towards overcoming the gaps. Along

the discussion, we detail the structure of the thesis.

4

1.1.1 No systemization of poisoning attacks against FL

Since the inception of FL [104], numerous works [30, 108, 64, 22, 168, 155, 18,

27, 165, 132, 98] have proposed various poisoning attacks against FL under various

adversarial settings, and consequently many works have also proposed defenses to

mitigate these poisoning attacks. For instance, Sun et al. [147] introduce an attack

that is only applicable to multi-task learning based FL, while Cao et al. [38] introduce

a defense that is only applicable in cross-silo FL settings. Furthermore, different works

make different assumptions about the FL setting and adversary they consider while

designing their attacks/defenses. But there is no comprehensive taxonomy of attacks

or threat models that can help practitioners compare these various attacks/defenses

and to understand the suitability of certain threat models in the settings of their

interest.

In Chapter 3, we start by establishing a comprehensive systemization of threat

models of FL poisoning. Specifically, we discuss three key dimensions of the poisoning

threat to FL: the adversary’s objective, knowledge, and capability. We also provide a

wide spectrum of values for each of these dimensions, e.g., for knowledge, adversary

can have the knowledge of the global model and/or the knowledge of the data from

benign distribution. We detail the significance of each value of each of the dimension.

Any combination of these dimensions constitutes a threat model, but not all threat

models are valid threat models. For instance consider a model poisoning adversary

who directly manipulates the malicious model updates that they share with the server;

to achieve this, the adversary should have significant knowledge of about the security

protocols of the device running the FL application, and must break into the device

to be able to access the on-device FL model and updates. This is a challenging

task, but once done, the adversary has complete undeterred access to the device.

Also consider offline adversary, who poisons the model only once. However, note

combining model poisoning attacks with offline attacks will be wasting the efforts

5

that model poisoning adversary put into breaking into the FL application device.

Therefore, offline model poisoning adversary is not a valid threat model. In Chapter 6,

we discuss the practicality of all possible threat models obtained by combining these

dimensions.

1.1.2 No general framework to design FL poisoning attacks

As mentioned before, literature has introduced numerous poisoning attacks against

FL, and consequently, has also introduced a number of defenses [30, 108, 168, 68,

123, 58, 42, 99] to mitigate FL poisoning. Naturally, these defense works use the

attacks from the FL poisoning literature to assess the robustness of their proposed

defenses. However, we observe that many of these attacks are extremely sub-optimal

and perform poorly in the adversarial setting (also called, threat model) that they

consider. For instance, Baruch et al. [22] propose a model poisoning attack where

they assume complete access to the global model parameters and the local datasets of

all FL clients, in all FL rounds. This is a very strong threat model, but their attack

adds a very conservative amounts of Gaussian noise (they call their attack “Little-is-

enough” attack) which does not perform very well against FL unless the percentages

of malicious clients is impractically high.

An unfortunate consequence of using such sub-optimal attacks for robustness as-

sessment is that FL poisoning defenses may incorrectly claim to be robust against

FL poisoning. Furthermore, this may lead to FL practitioners using these defenses

to design FL applications that are vulnerable to poisoning.

To this end, in Chapter 4, we provide a general framework to design untargeted

poisoning attacks against FL. In this thesis, we choose to focus on the untargeted

poisoning attacks for two major reasons: (1) it is highly relevant to production FL

deployments, as it can be used to impact a large population of FL clients and it can

remain undetected for long duration, and (2) majority of the poisoning defenses aim

6

to defend FL against untargeted poisoning attacks; furthermore, we also discuss the

importance of untargeted poisoning in real-world FL systems (Section 3.1.1.1.1).

We consider the strong whitebox online model poisoning adversary, who can access

and directly manipulate their model updates in all FL rounds that they participate

in. However, unlike prior works [64, 22, 108, 165], we consider a comprehensive set

of possible threat models by further varying the adversary’s knowledge along two

dimensions: the knowledge of the updates of benign clients and the knowledge of

the poisoning defense that the server uses. The high-level approach of our attack is

as follows. The adversary computes a benign reference aggregate using some benign

updates they have; then they compute a malicious perturbation (whose generation

we explain in Section 4.2), e.g., a unit vector in the opposite direction of the benign

aggregate. Finally, the adversary computes their malicious model update by maxi-

mally perturbing the benign reference aggregate in the malicious direction, while also

evading detection by robust aggregation algorithms.

Our work is first to design strong poisoning attacks that do not use any knowledge

about server’s defense (Section 4.2.3). Through extensive evaluations (Section 4.4) on

four datasets, seven defenses and two types of FL settings, we demonstrate that the

poisoning attacks launched using our framework outperform state-of-the-art model

poisoning attacks against major, state-of-the-art FL poisoning defenses. Our attacks

lead to significant conclusions, e.g., (1) many of state-of-the-art FL defenses are

far more susceptible to poisoning than what their theoretical robustness guarantees

claim, (2) poisoning adversary can mount a strong poisoning attack even without the

knowledge of the server’s defense.

Finally, in Section 4.5, we provide concrete lessons we learn from our evaluations

that we hope will guide future designs of robust AGRs.

7

1.1.3 Sub-optimal defenses against FL poisoning

Our general poisoning attacks framework from Chapter 4 highlights the brittle

nature of seven of the major state-of-the-art FL poisoning defenses and highlights

the common shortcomings of the designs of prior defenses. For instance, as one

of the lessons in Section 4.5 highlights, for non-convex FL settings, many defenses

provide provable theoretical robustness guarantees in terms of the convergence of

global model. However, in non-convex settings, such guarantees are not very useful

due to a large number of sub-optimal local minima. This and other shortcomings

of prior defenses clearly motivates the need to design more principled and strong

defenses against FL poisoning.

To address this, in Chapter 5, we design two principled defenses: Divide-n-conquer

(DnC) and Federated rank learning (FRL). The design of both of these defenses

is motivated from our lessons from Section 4.5. For instance, most prior defenses

suffer from the curse of dimensionality : the theoretical error bounds of prior de-

fenses [30, 108, 168, 59, 95, 13] depend on the dimensionality of their inputs. Hence,

the theoretical as well as empirical errors of these defenses explode for high dimen-

sional gradients of neural networks [42] in FL. To address this issue, DnC uses a

random subnetwork of client updates to effectively filter out malicious updates, while

in FRL, clients compute optimal subnetwork of the received global model using their

local data and share these subnetworks (which are as small as 10% of the size of

global model) with the server. Furthermore, to address the aforementioned issue of

convergence based robustness guarantee, DnC provides theoretical guarantee on the

removal of malicious clients (Section 5.1.3), while FRL provides theoretical guarantee

on the optimality of the subnetwork (Section 5.2.3.3) it computes.

We perform extensive empirical analyses of our defenses and show that DnC and

FRL can defend FL against state-of-the-art model poisoning attacks. We evaluate

both the defenses against a very strong adversary with full knowledge of the global

8

model, benign data, and the defense algorithm; for this evaluation, we designed strong

adaptive attacks tailored to the defenses. We note that under extremely heterogeneous

settings, DnC fails to defend FL, but FRL, due the use of optimal subnetworks,

successfully defends FL from poisoning.

1.1.4 Poor understanding of the impacts of poisoning on real-world FL

As repeatedly mentioned above, a significant amount of work has investigated the

robustness of FL against untargeted poisoning from the lens of attacks and defenses.

The defense works generally aim to defend FL against a very strong, and sometimes

even hypothetical, poisoning adversary with significant knowledge and capabilities,

and consequently, attack works also claim the success of their attack assuming a

similarly strong adversary. However none of the prior works evaluates the practicality

of such strong assumptions about the poisoning adversary. Consequently, the current

literature lacks the understanding of impact of poisoning on real-world, production

FL systems [82, 32].

To this end, in Chapter 6, first, we perform a thorough investigation of practicality

of all the threat models that our systemization from Chapter 3 can build. We show

that, out of all possible combinations, only two threat models, i.e., nobox offline data

poisoning and whitebox online model poisoning, are of practical value to production

FL. We believe that prior works [22, 30, 64, 132] have neglected the crucial constraints

of production FL systems on the parameters relevant to FL robustness. Our work is

the first to consider production FL environments [82, 32] and provide practical ranges

for various parameters of poisoning threat models. As a result, our evaluations lead

to conclusions that contradict the common beliefs in the literature, e.g., we show that

production FL even with the non-robust Average AGR is significantly more robust

than previously thought.

9

1.1.4.1 Evaluating traditional FL

Next, we design improved data and model poisoning attacks for the two afore-

mentioned threat models. We present the first attacks that systematically consider

the data poisoning threat model for FL (Section 6.2.1.1). We propose novel model

poisoning attacks that outperform the state-of-the-art. Our model poisoning attacks

(Section 6.2.1.2) use gradient ascent to fine-tune the global model and increase its

loss on benign data.

Next, we extensively evaluate all existing poisoning attacks as well as our own

improved attacks across three benchmark datasets, for various FL parameters, and

for different types of FL deployments. We make several significant deductions about

the state of FL poisoning literature for production FL. For production cross-device

FL, which contains thousands to billions of clients, we provide four key lessons. For

instance, our evaluation shows that, enforcing a limit on the size of the dataset con-

tributed by each client can act as a highly effective (yet simple) defense against data

poisoning attacks with no need to any of the state-of-the-art, sophisticated robust FL

aggregation algorithms.

On the other hand, for production cross-silo FL, which contains up to hundred

clients [82], we show that data poisoning attacks are completely ineffective, even

against non-robust Average AGR. We also argue that model poisoning attacks are

unlikely to play a major risk to production cross-silo FL, where the clients involved

are bound by contract and their software stacks are professionally maintained (e.g.,

in banks, hospitals, etc.).

One of the major implications of our study in Chapter 6 is as follows. Numer-

ous recent works have proposed sophisticated aggregation rules for FL with strong

theoretical robustness guarantees [30, 108, 168, 13, 165, 123, 54, 61]. However, our

work shows that, when it comes to production FL deployments, even simple, low-cost

defenses can effectively protect FL against poisoning. We also believe that our sys-

10

tematization of practical poisoning threat models can steer the community towards

practically significant research problems in FL robustness.

1.1.4.2 Evaluating personalized FL

The key reason behind a major failure of traditional FL, i.e., fair treatment of

entire FL population, is that the traditional FL tries to cater to the heterogeneous

needs of the clients using a single global model. To alleviate this issue, personalized

FL algorithms aim to compute one model for each of the FL clients, that is tailored to

the client’s local data distribution. Multiple works have argued that personalization

is inevitable in FL [149, 99, 102, 82], as it improves the overall performance of FL as

well as mitigates the issues of robustness and fairness to some extent.

In spite of its popularity, the robustness of personalized FL is unclear. Therefore,

in Chapter 7, we evaluate the robustness of two state-of-the-art personalized FL al-

gorithms, FedAvg + local fine-tuning [169] and Ditto [99], against untargeted as well

as backdoor poisoning. We consider the stronger whitebox online model poisoning

threat model for the evaluations. The key observations from our evaluations are:

(1) For backdoor poisoning: the personalized FL algorithms can completely neutral-

ize the threat of backdoor attacks even under (impractically) strong threat models,

e.g., accuracy of the backdoor reduces from 100% in poisoned global model to close

to 0% after a few steps of local fine-tuning. (2) For untargeted poisoning: under

production FL environments, personalized FL remains robust, however as expected,

under impractical threat models, e.g., with a very large number of malicious clients,

personalized FL is not robust against our state-of-the-art untargeted attacks from

Chapter 4.

11

1.2 Conclusions and future works

In this thesis, we thoroughly evaluate federated learning (FL), an emerging pri-

vacy preserving ML solution, from the lens of robustness against poisoning attacks

and provide defenses to mitigate these attacks. We make many significant observa-

tions and conclusions about the state of robustness of FL that contradict the prior

beliefs of the scientific community. First, we use our general framework for design-

ing poisoning attacks to demonstrate that the theoretical guarantees and empirical

claims of robustness of many of existing state-of-the-art FL poisoning defenses do not

hold and provide concrete lessons that will aid future works to design more principled

defenses. Our study of the impact of poisoning on current real-world production FL

settings paints a very different picture of FL robustness. In particular, using our

comprehensive systemization of FL poisoning adversaries, we argue that in a specific

FL deployment, called cross-silo FL, certain adversaries that prior work commonly

uses, cannot exist. We also show that although numerous recent works have proposed

sophisticated aggregation rules for FL with strong theoretical robustness guarantees,

even simple, low-cost defenses, e.g., bounding the size of clients’ local data, can effec-

tively protect FL against poisoning.

FL is a very complex system and FL algorithms should fulfil multiple design

goals, including privacy, fairness, robustness, communication, to make FL useful in

practice. Some of these goals are contradictory to each other, e.g, using robust FL

algorithms produce models that are unfair to the minorities in FL population and

vice-versa. Hence an important direction for future work is to design FL algorithms

that can strike appropriate balance between these two goals. Similarly, in many FL

settings, FL applications run on resource-constrained devices and many benign client

updates may never reach the server, while adversary can ensure that the malicious

updates always reach the server thereby increasing the strength of poisoning. It

12

is critical to understand whether existing FL defenses can handle such practically

relevant adversarial setting, and if not, how can we design novel defenses.

13

CHAPTER 2

BACKGROUND AND RELATED WORKS

In this chapter, we discuss some of the preliminaries required to understand the

rest of the thesis. Specifically, we give (i) a technical background of federated learning

(FL), (ii) introduce the issue of poisoning attacks in FL and discuss prior state-of-the-

art poisoning attacks, (iii) discuss prior state-of-the-art defenses designed to mitigate

poisoning attacks in FL. Along the way, we also discuss any other existing works

related the above aspects of FL robustness.

2.1 Federated Learning

Section 1 gives a high level picture of federated learning (FL). In FL [82, 104, 86],

a service provider, called server, trains a global model, θg, on the private data of

multiple collaborating clients without directly collecting their data. In the tth FL

round, the server selects n out of total N clients and shares the most recent global

model, i.e., θtg, with them. Then, a client k uses her local data Dk to fine-tune θtg

using stochastic gradient descent (SGD) for a fixed number of local epochs E; we

denote the resulting updated model by θtk. Then, the kth client computes her FL

update as the difference ∇t
k = θtk− θtg and shares ∇t

k with the server. The server then

computes an aggregate of all client updates using some aggregation rule, fagg, i.e.,

using ∇t
agg = fagr(∇t

{k∈[n]}). Then, the server updates the global model of the (t+1)th

round using SGD as θt+1
g ← θtg + η∇t

agg; here η is the server’s learning rate.

FL can be either cross-device or cross-silo [82]. Each of these types have certain

salient features, e.g., in cross-device FL, N is large (from few thousands to billions)

14

and only a small fraction of them is chosen in each FL training round, i.e., n ≪ N .

While, in cross-silo FL, N is moderate (up to 100) and all of them are chosen in each

round, i.e., n = N . Please refer to Table 1 of the comprehensive survey by Kairouz

et al. [82] for more details on production FL environments.

2.2 Poisoning Attacks on Federated Learning

As briefly discussed in Chapter 1, FL is a distributed learning system with mutu-

ally untrusting clients, e.g., Android users or competing banks. Some of these clients,

called malicious clients, who are either owned or controlled by an adversary, may

act maliciously during the FL training process in order to corrupt the jointly trained

global model. Specifically, the goal of the poisoning adversary is to attack FL by

instructing its compromised clients to contribute poisoned model updates during FL

training in order to poison the global model.

We classify the approaches to poisoning FL in three categories: targeted [27, 151,

148] attacks aim to reduce the utility of the global FL model on specific test inputs of

adversary’s choice; untargeted [64, 132, 22] attacks aim to reduce the utility of global

model on arbitrary test inputs; and backdoor [18, 155, 164] attacks aim to reduce the

utility on test inputs that contain a specific signal called the trigger. In this thesis,

we focus on untargeted poisoning attacks, because we find them to be significantly

relevant to production deployments: it can be used to impact a large population of

FL clients and it can remain undetected for long duration. In this thesis, we focus on

untargeted poisoning as clarified in Chapter 1. Next, we first provide a brief overview

of existing untargeted poisoning attacks on FL, followed by defenses to mitigate these

attacks.

15

2.2.1 Existing Untargeted FL Poisoning Attacks

Recent works have presented various techniques to poison FL [64, 22, 132]. The

core idea behind these poisoning attacks is to generate poisoned updates (either by

direct manipulation of model updates, called model poisoning [18, 132, 64, 22, 27],

or through fabricating poisoned data, called data poisoning [151, 155]) that deviate

maximally from a benign direction, e.g., the average of benign clients’ updates, and

at the same time circumvent the given robust AGR, i.e., by bypassing its detection

criteria.

Data Poisoning Attacks (DPAs): DPAs have been studied mainly in the context

of centralized ML [162, 161, 167, 114, 48], and no prior work has studied untargeted

DPAs that are tailored to FL settings.

Label flipping (LF) However, the simplest form of data poisoning is label flipping,

where each malicious client flips the labels of their local data from true label l to false

label C − 1− l, where C is the number of classes. A number of works have used this

attack to assess the robustness of FL defenses [99, 64, 136].

Model Poisoning Attacks (MPAs): Multiple works have proposed MPAs on

FL [64, 22, 132]. They consider our whitebox online model poisoning threat model

(T4) from Section 6.1.4.2, but use unrealistic FL parameter values, e.g., very high

percentages of compromised clients.

Little Is Enough (LIE) attack [22] adds small amounts of noise to each dimension of

the average of the benign updates. Specifically, the adversary computes the average

(∇b) and the standard deviation (σ) of the available benign updates; then computes

a coefficient z based on the number of benign and compromised clients; and finally

computes the poisoned update as ∇′ = ∇b + zσ. [22] shows that such noises easily

evade the detection by robust AGRs as well as effectively poison the global model.

Static Optimization (STAT-OPT) attack [64] proposes a general FL poisoning frame-

work and then tailors it to specific AGRs. STAT-OPT computes the average (∇b)

16

Table 2.1: Comparing state-of-the-art AGRs in terms of accuracy, computa-
tion/memory cost, and theoretical guarantees. We show results for CIFAR10 with
1,000 clients. Red cells show limitations of the corresponding AGR. For brevity, we
choose representative AGRs (in bold) from each type and show that they are sufficient
to protect FL in practice.

Type of aggregation
rule (AGR)

AGR
Accuracy

in non-iid FL

Compute
cost

to server

Memory
cost

to client

Theoretical
robustness
based on

Non-robust Average [104] 86.6 O(d) O(d) None

Dimension-wise
filtering

Median [168] 84.2 O(dnlogn)
O(d)

convergence
Trimmed-mean [168] 86.6 O(dnlogn) convergence

Sign-SGD +
majority voting

[25] 35.1 O(d) convergence

Vector-wise scaling Norm-bound [148] 86.6 O(d) O(d) None

Vector-wise
filtering

Krum [30] 46.9 O(dn2)

O(d)

convergence
Multi-krum [30] 86.2 O(dn2) convergence

Bulyan [108] 81.1 O(dn2) convergence
RFA [123] 84.6 O(dn2) convergence
RSA [98] 35.6 O(d) convergence
DnC [132] 86.1 O(d) filtering

Certification Emsemble [37] 74.2 O(d)
Certification

CRFL [163] 64.1
O(Md)

Certification
Knowledge
transfer

Cronus [42]
Needs public

data
O(d) O(d) filtering

Personalization
Ditto [99]
EWC [169]

86.6 O(d) O(d) None

Singular value
decomposition

Sever [57], etc.
Prohibitive
computation

O(d3) O(d) filtering

Encoding Draco [45], etc.
Designed for settings with complete

control over all the data, e.g., data centers
filtering

of the available benign updates and computes a static malicious direction, ω =

−sign(∇b); the final poisoned update, ∇′, is −γω and the attack finds a subopti-

mal γ that circumvents the target AGR; for details please refer to [64]. Unlike LIE,

STAT-OPT attacks carefully tailor themselves to the target AGR, and hence, perform

better.

Gaussian attacks Xie et al. [165] introduce these simple model poisoning attacks,

where the adversary sends arbitrary updates that are Gaussian random vectors with

zero mean and isotropic covariance matrix with large standard deviations. We do not

consider these (and several other attacks that use arbitrary vectors drawn from some

probability distribution) attacks in this thesis as they are very suboptimal and are

not useful to understand the true robustness of FL.

17

2.2.2 Existing Defenses Against Untargeted Poisoning

To protect FL against such poisoning attacks, the literature has designed various

robust aggregation rules (AGRs) [30, 168, 42, 108, 64, 132], which aim to remove

or attenuate the updates that are more likely to be malicious according to some

criterion. For instance, Multi-krum [30] repeatedly removes updates that are far

from the geometric median of all the updates. Below we introduce the types of robust

AGRs designed to defend untargeted poisoning attacks. In Section 2.2.3, we provide

details of the robust AGRs that we study in this thesis.

Dimension-wise filtering techniques separately filter potentially malicious values for

each dimension of clients’ updates. Example systems are Median [168], Trimmed-

mean [168], and sign-SGD with majority voting [25].

Dimension-wise filtering techniques separately filter potentially malicious values for

each dimension of clients’ updates. Example systems are Median [168], Trimmed-

mean [168], and sign-SGD with majority voting [25].

Vector-wise filtering defenses aim at removing potentially poisoned client updates.

They differ from dimension-wise filtering, as they attempt to remove entire mali-

cious updates, as opposed to removing malicious values. Example techniques include

RFA [123], RSA [98], Krum [30], Multi-krum [30], Bulyan [108], and Divide-and-

conquer (DnC) [132].

Vector-wise scaling defenses, e.g., Norm-bounding [148], aim to reduce the impact of

malicious updates by scaling their norms.

Certified defenses [37, 163] provide certified accuracy for each test sample when the

number of malicious clients or perturbation to the test sample is below a certified

threshold.

Knowledge transfer based defenses [42, 101] aim to reduce the dimensionality of the

client updates, because theoretical robustness guaranty of most of robust AGRs is

directly proportional to updates’ dimensionality. Hence, they use knowledge transfer

18

and, instead of sharing parameters of client models, share predictions of client models

on some public data.

Personalization techniques, e.g. Ditto [99] and EWC [169], fine-tune the potentially

corrupt global model on each client’s private data to improve its performance for the

client.

Singular value decomposition based defenses [59, 58, 57, 95] filter poisoned updates

to robustly estimate the mean of input updates. Their computational complexity is

O(d3), where d is number of parameters in the model. These defenses are prohibitively

expensive in production FL, because it uses models with millions of parameters.

Hence, we omit them from our evaluations.

Encoding based defenses [125, 45, 70, 87, 55] use artificial redundancy, i.e., duplication

of client updates, to recover the failures due to compromised clients. These defenses

are designed for data-center environments, hence we omit them from our evaluations.

2.2.3 Robust AGRs Studied in This Thesis

There are more than 100 robust AGRs introduced in the literature that provide

robustness to FL in specific settings. For brevity, we study the state-of-the-art AGRs

compatible with general FL settings (i.e., do not need specific FL algorithm, e.g.,

clustering). Below, we detail the robust AGRs that we study in this thesis.

Norm-bounding Sun et al. [148] were the first to use Norm-bounding to defend

FL against poisoning. Norm-bounding bounds the L2 norm of all submitted client

updates to a fixed threshold, with the intuition that the effective poisoned updates

should have high norms. For a threshold τ and an update ∇, if the norm, ∥∇∥2 > τ ,

∇ is scaled by τ
∥∇∥2 , otherwise the update is not changed. The final aggregate is an

average of all the updates, scaled or otherwise.

Krum Blanchard et al. [30] propose Krum AGR based on the intuition that the

malicious gradients need to be far from the benign gradients in order to poison the

19

global model. Hence, Krum selects the gradient from the set of its input gradients

that is closest to its n−m− 2 neighboring gradients in the squared Euclidean norm

space; here, m is an upper bound on the number malicious clients in FL.

Multi-krum Blanchard et al. [30] modify Krum AGR to Multi-krum AGR in order

to effectively utilize the knowledge shared by the clients in each FL epoch [30]. Multi-

Krum selects a gradient using Krum from a remaining-set (initialized to the set of all

the received gradients), adds it to a selection-set (initialized to an empty set), and

removes it from the remaining-set. This way, Multi-krum selects c gradients such

that n− c > 2m+ 2. Finally, Multi-krum averages the gradients in the selection-set.

Multi-krum significantly outperforms Krum in terms of the global model accuracy.

Bulyan Mhamdi et al. [108] show that a malicious gradient can remain close to

benign gradients while having a single gradient dimension with a very large value (on

order of Ω(p
√
d)) and prevent convergence of the global model. As a remedy, they

propose Bulyan AGR, which requires n ≥ 4m + 3 for its robustness guarantees to

hold. Bulyan first selects θ(θ ≤ n−2m) gradients in the same fashion as Multi-krum,

and then computes Trimmed-mean of the selected gradients; please refer to [108] for

more details.

Trimmed-mean Trimmed-mean [168, 165] is a coordinate-wise AGR which aggre-

gates each dimension of input gradients separately. Specifically, for a given dimension

j, it sorts the values of jth-dimension of all gradients, i.e., sorts ∇j
{i∈[n]}. Then it re-

moves β largest and smallest values and computes average of the rest of the values as

its aggregate of dimension j. We use Trimmed-mean where β equals m, the number

of malicious clients. Yin et al. [168] show that Trimmed-mean achieves order-optimal

error rates when m ≤ β ≤ n
2
for strongly convex objective function.

Median Median [168, 165] is an another coordinate-wise AGR which aggregates its

input gradients by computing median of the values of each of the dimensions of the

gradients. Yin et al. [168] give theoretical guarantees on the robustness of Median

20

AGR, while Fang et al. [64] empirically show that Median AGR has better robustness

than the more sophisticated Krum AGR.

Adaptive federated average (AFA) AFA [113] removes malicious gradients based

on their cosine-similarities with a benign gradient. More specifically, in each FL

round, AFA computes a weighted average of collected gradients and computes cosine

similarities between the weighted average and each of the collected gradients. Then,

AFA discards the gradients whose similarities are out of a range; this range is a simple

function of mean, median and standard deviation of the similarities.

Fang defenses Fang et al. [64] propose defenses that are meta-AGRs and rely on

existing robust AGRs to detect malicious gradients. More specifically, consider a

robust AGR A. Given a set of gradients G, the corresponding Fang defense, called

Fang-A, computes a score for each gradient in ∇i ∈ G as follows. Fang-A computes

two aggregates using A, one with ∇i and one without ∇i in G, i.e., A(G) and A(G−

∇i). Fang-A then computes losses and/or errors of the models obtained by updating

the global model using the two aggregates. Then Fang-A assigns a score to each

∇i such that the lower the negative impact of ∇i on the loss and/or error of the

corresponding model, the higher the score. Finally, Fang-A discards the gradients

with the lowest scores. For any given AGR, [64] proposes three defenses, one based

on the loss of model, one based on error of model, and one based on both the loss

and error. The combination of loss and error works strictly better than either loss or

error, hence, we consider the defense based on the combination of loss and error.

2.3 Related works

Section 2.2 discusses the literature related to untargeted poisoning attacks in

detail. Below, we discuss existing works on targeted and backdoor attacks.

Targeted attacks [27, 148, 151] aim to make the global model misclassify a specific

set of samples at test time. Bhagoji et al. [27] aimed to misclassify a single sample and

21

proposed a model poisoning attack based on alternate minimization to make poisoned

update look similar to benign updates. [27] shows that their attack, with a single

attacker, can misclassify a single sample with 100% success against the non-robust

Average AGR. try Sun et al. [148] investigated constrain-and-scale attack [18] with

the aim to misclassify all samples of a few victim FL clients. Tolpegin et al. [151, 64]

investigated targeted data poisoning attacks when compromised clients compute their

updates by mislabeling the target samples.

Backdoor attacks [18, 155, 164] aim to make the global model misclassify the

samples with adversary-chosen backdoor trigger. Backdoor attacks are semantic, if

the trigger is naturally present in samples [18, 155] and artificial if the trigger needs to

manually added at test time [164]. Bagdasaryan at al. [18] demonstrate a constrain-

and-scale attack against simple Average AGR to inject semantic backdoor in the

global model. They show that their attacks achieve accuracy of >90% on backdoor

task in a next word prediction model. Wang et al. [155] propose data and model

poisoning attacks to inject backdoor to misclassify out-of-distribution samples. Xie

et al. [164] show how multiple colluding clients can distribute backdoor trigger to

improve the stealth of poisoned updates. Backdoor (as well as targeted) attacks can

be further divided in specific-label and arbitrary-label attacks. For a backdoored test

sample, specific-label attack aims to misclassify it to a specific target class, while

arbitrary-label attack aims to misclassify it to any class.

Note that, trivial extensions of the targeted and backdoor attack algorithms to

mount untargeted attacks cannot succeed, because untargeted attacks aim at affect-

ing almost all FL clients and test inputs. For instance, a simple label flipping based

data poisoning [155] can insert a backdoor in FL with state-of-the-art defenses. How-

ever, such label flipping based untargeted poisoning attacks have no effect even on

unprotected FL (Section 6.3.2).

22

Existing Defenses Against Targeted and Backdoor Attacks In Section 2.2.2,

we discuss the defenses against untargeted poisoning in detail. Here, we review exist-

ing defenses against targeted and backdoor attacks. FoolsGold [66] identifies clients

with similar updates as attackers, but incur very high losses in performances as noted

in [65]. Sun et al. [148] investigate efficacy of norm-bounding to counter targeted poi-

soning and, as we will show, is also effective against untargeted poisoning. CRFL [163]

counters backdoor attacks by providing certified accuracy for a given test input, but

incurs large losses in FL performance (Table 2.1). Defenses based on pruning tech-

niques [159, 154] remove parts of model that are affected by targeted/backdoor at-

tacks, and hence cannot be used against untargeted attacks which affect the entire

model.

23

CHAPTER 3

SYSTEMATIZATION OF POISONING ATTACKS
AGAINST FEDERATED LEARNING

In the previous chapter, we introduced various types of poisoning attacks and

defenses, i.e., robust aggregation rules(AGRs), in federated learning (FL). But, not

all of these attacks, and especially, defenses are generally applicable to all FL settings.

For instance, Sun et al. [147] introduce an attack that is only applicable to multi-task

learning based FL, while Cao et al. [38] introduce a defense that is only applicable in

cross-silo FL settings. Furthermore, different works make different assumptions about

the FL setting and adversary they consider while designing their attacks/defenses.

But there is no comprehensive taxonomy of attacks or threat models1 that can help

practitioners compare these various attacks/defenses. To this end, in this chapter, we

provide a systemization of the threat models of FL poisoning attacks.

In Chapter 1, we introduced FL framework and the threat of poisoning to FL. In

this chapter, we give a very detailed view of the poisoning threat to FL by providing

a comprehensive systematization of poisoning attacks on FL. Specifically, we discuss

three key dimensions of the poisoning threat to FL: The adversary’s objective, knowl-

edge, and capability, and in Section 3.1.1.1.1, justify in detail why we choose to focus

on untargeted poisoning attacks on FL in this thesis.

1In a nutshell, threat model specifies the setting, e.g., what is the FL setting under consideration,
who is the adversary, what knowledge they have about the FL, etc.

24

Specific target set/class
of images

Targeted attacks
(discriminate availability)

All the other images

Samples to
misclassify

Samples to
correctly classify

Car images with stripes
in background

Semantic
(discriminate availability)

All images without "cars with
stripes in background"

All images with the
trigger pattern

Backdoor attacks

Artificial
(indiscriminate integrity)

All images without
the trigger pattern

All images from the
distribution

Untargeted attacks
(indiscriminate availability)

No images

Figure 3.1: Classes of FL poisoning attacks and their objectives defined using the
taxonomy in Section 3.1.1.1: Targeted attacks [148, 27] aim to misclassify only a
specific set/classes of inputs (e.g., certain 10 samples from CIFAR10), semantic back-
door attacks [18, 155] aim to misclassify inputs with specific properties (e.g., cars
with stripes in background), artificial backdoor attacks [164] aim to misclassify in-
puts with an artificial (visible or invisible) trigger pattern (e.g., shape of letter ”F”),
and untargeted attacks [132, 64] aim to reduce model accuracy on arbitrary inputs
(e.g., the entire CIFAR10 distribution).

3.1 Systematization of FL Poisoning Threat Models

3.1.1 Dimensions of Poisoning Threat to FL

In this section, we build on previous systemization efforts for adversarial ML [21,

76, 112, 29] and present three key dimensions for the threat model of FL poisoning,

as shown in Table 3.1.

3.1.1.1 Adversary’s Objective

Inspired by [29], we define three attributes of the adversary’s objectives.

Security violation: The adversary may aim to cause an integrity violation, i.e.,

to evade detection without disrupting normal service operations, or an availability

violation, i.e., to compromise the service for legitimate users.

Attack specificity: The attack is discriminate if it aims to cause misclassification

of a specific set/class of samples; it is indiscriminate otherwise.

Error specificity: This attribute is especially relevant in multi-class classification

settings. It is specific if the attacker’s goal is to have a sample misclassified as a

25

specific class; the attack is generic if the attacker does not care about the wrong label

assigned to the misclassified samples.

Adversary objectives in different classes of poisoning: Here, based on the

above taxonomy, we discuss the adversary’s objective for different types of poisoning

attacks (Figure 3.1).

Targeted attacks [27, 151] aim to misclassify specific sets/classes of input, hence they

are “discriminate.” Such discriminate attacks can be either used for “integrity” or

“availability” violations, depending on how the poisoned data is used.

Semantic backdoor attacks [18, 155] have the same goal as the targeted attacks, but

the targeted inputs should have specific properties, e.g., a pixel pattern or a word

sequence. Hence, these are “discriminate,” “availability” or “integrity” attacks.

Artificial backdoor attacks [164] aim to misclassify any input containing a backdoor

trigger, hence these attacks are “indiscriminate” attacks. Note that, such test inputs

should be modified to have the backdoor trigger and only the adversary or a malicious

client know the trigger. Hence, these attacks aim to evade the detection, i.e., cause

an integrity violation. Hence, these are “integrity indiscriminate” attacks.

Untargeted attacks [132, 64, 22] aim to misclassify any test input, i.e., they are

“indiscriminate” attacks. But, test inputs need not be modified in order to misclassify.

Hence, these are “availability” attacks.

Finally, we note that the error specificity of each of these attacks can be either

“specific” or “generic.”

3.1.1.1.1 Focus of this thesis: In this thesis, we focus on untargeted attacks,

i.e., indiscriminate availability attacks with generic error specificity, for the following

reasons.

(1) Untargeted attacks pose a great threat to production FL: Untargeted attacks are

designed to impact all clients and all test inputs. For instance, FL on FEMNIST

26

achieves an 85% [127] accuracy in a benign setting, and untargeted attacks reduce

the accuracy to, e.g., [78, 82]% depending on the percentages of malicious clients. Such

an accuracy drop is significant for production FL, as a malicious service provider can

gain advantage over their competitors by causing such small, yet noticeable, accuracy

reductions in the competing services and such small accuracy reductions can impact

most clients and data from all classes in arbitrary fashion.

(2) Untargeted attacks can go undetected for long duration: As discussed above,

the untargeted attack aims at reducing the overall accuracy of the global model,

even by only a few percentage points. Such a small reduction in accuracy is hard to

detect in practical settings due to the absence of reliable benchmarks for the target

application. For instance, the affected service provider will never know that they

could have achieved an 85% accuracy and will believe that [78, 82]% is the highest

achievable accuracy.

(3) Constructing untargeted attacks is more challenging: Untargeted attacks aim to

solve a more challenging problem, which is affecting arbitrary test inputs. However,

while there exist several defenses to protect FL against untargeted poisoning [30,

108, 132, 168], these attacks are not studied under production FL environments (as

discussed later on).

3.1.1.2 Adversary’s Knowledge

Below we elaborate on two dimensions of adversary’s knowledge: knowledge of

the global model and knowledge of the data from the benign distribution.

Knowledge of the global model: This can be nobox or whitebox. In the nobox

case, the adversary does not know the model architecture, parameters, or outputs,

and is the most practical setting in FL [82], e.g., the data poisoning adversary has

nobox knowledge of the global model. In the whitebox case, the adversary knows

the global model parameters and outputs, whenever the server selects at least one

27

compromised client. The model poisoning adversary always has whitebox knowledge

of the global model. As we will explain in Section 6.1.3, this is a relatively less

practical setting in FL, as it assumes complete control of the compromised devices.

Knowledge of the data from benign distribution: This can be full or partial.

In full knowledge case, the adversary can access the benign local data of compromised

as well as benign clients. In partial knowledge case, the adversary can access the

benign local data only of the malicious clients. We only consider the partial knowledge

case, because accessing the data of all the clients is impractical in production FL.

3.1.1.3 Adversary’s Capability

Below, we elaborate on the the adversary’s capability in terms of access to client

devices and frequency of attack, i.e., the attack mode.

Capability in terms of access to client devices: Based on the FL stages (part

of FL pipeline on client device) that the adversary poisons, there can be a model

poisoning adversary or a data poisoning adversary. The model poisoning adversary

can break into a compromised device (e.g., by circumventing the security protocols

of operating systems such as Android) and can directly manipulate the poisoned up-

dates [64, 22, 132, 30, 108, 123]. This adversary can craft highly effective poisoned

updates, but due to unreasonable amount of access to client devices, it can compro-

mise very small percentages of FL clients [82, 6].

On the other hand, a data poisoning adversary cannot break into a compromised

device and can only poison its local dataset. The malicious clients use their local

poisoned datasets to compute their poisoned updates, hence this adversary indirectly

manipulates the poisoned updates. Due to the indirect manipulation, these updates

may have less poisoning impact than the model poisoning updates. But, due to

the limited access required to the malicious clients, this adversary can compromise

relatively large percentages of FL clients [82, 6].

28

Capability in terms of attack frequency (Attack mode): The mode of

poisoning attacks on FL can be either offline or online. In the offline mode, the

adversary poisons the malicious clients only once before the start of FL training,

e.g., the baseline label flip attack [64] flips the labels of data of malicious clients

once before the FL training starts. In the online mode, the adversary repeatedly and

adaptively poisons the malicious clients, e.g., existing model poisoning attacks [132,

22] repeatedly poison the updates of malicious clients selected by the server.

Finally, we assume that the malicious clients can collude to exchange their local

data and model updates in order to increase impacts of their attacks.

3.2 Takeaways

We provided a comprehensive systemization of FL poisoning threat models. We

hope that this systemization will help FL practitioners to classify existing threat

models and understand how they apply to the FL setting of their interest. A very

important use of the systemization is that it helps us understand which threat mod-

els are practically relevant, e.g., in Section 6.1 of Chapter 6 we discuss how only

two threat models, out of many that the literature has considered, are truly relevant

in practice. Finally, our systemization will help build new threat model for poten-

tial future threats and also will serve as a foundation to build more comprehensive

systemization.

29

Table 3.1: The key dimensions of the threat models of poisoning attacks on FL. Each
combination of these dimensions constitutes a threat model (Table 6.2). However,
we argue in Section 6.1.2 that only two of these combinations are practical threat
models.

Dimension Attribute Values Description

Objective
of the

adversary

Security
violation

Integrity Misclassify a (adversarially crafted) test input in order to
evade detection.

Availability Misclassify an unmodified test input to cause service disrup-
tion for benign users.

Attack
specificity

Discriminate Misclassify a small and/or specific set of inputs at the test
time.

Indiscrimin-
ate

Misclassify all or most of inputs at the test time.

Error
specificity

Specific Misclassify a given modified/pristine test input to a specific
class.

Generic Misclassify a given modified/pristine test input to any class.

Knowledge
of the

adversary

Knowledge of
the global
model

Whitebox
Adversary can access the global model parameters as well as
its predictions, e.g., in the model poisoning case.

...

Nobox
Adversary cannot access parameters or predictions of global
model, e.g., in the data poisoning case.

...

...

Knowledge of
the data from
the distribution

of benign
clients’ data

Adversary can access local data only of the compromised
clients, but not of the benign clients.

Adversary can access the local data of all of the collaborating
clients, i.e., benign and compromised clients, in FL.

Full knowledge Partial knowledge

Capabili-
ties of the
adversary

Capabilities in
terms of
access to

client devices

Model poison

Adversary breaks into the malicious clients (e.g., by circum-
venting security protocols of operating systems such as An-
droid) and directly manipulates their model updates.

Data poison

Adversary can only manipulate local data of the malicious
clients; the clients use this data to compute their updates.
Adversary does not break into the malicious clients.

Capabilities in
terms of

frequency of
the attack

(Attack mode)

Online

Adversary repeatedly and adaptively poisons the malicious
clients during FL, e.g., model poisoning attacks [27, 64, 132].
Impacts of these attacks can persist over the entire FL train-
ing.

...

Offline

Adversary poisons the malicious clients only once at the be-
ginning of FL, e.g., baseline label flipping attacks [64, 155].
Impact of such attacks may quickly fade away.

...

30

CHAPTER 4

GENERAL UNTARGETED POISONING FRAMEWORK
AGAINST FEDERATED LEARNING

In the previous chapter, we justified that the untargeted poisoning attacks on FL

are a severe threat in practice. To this end, multiple previous works have proposed

defenses, also called robust aggregation rules (AGRs), to mitigate the untargeted

poisoning by reducing the impact of malicious clients on FL. For instance, Krum

AGR [30] removes malicious-looking updates, while Trimmed-mean AGR [168] re-

moves values of each of the dimensions of model updates. Section 2.2.2 systematizes

the types of existing robust AGRs and gives representative AGRs of each type. This

chapter provides a general framework to empirically evaluate the robustness of such

robust AGRs in FL setting.

Necessity of general FL poisoning attacks framework: Many of the existing

robust AGRs [168, 30, 108] provide theoretical robustness guarantees against untar-

geted poisoning in FL. For a given percentage of malicious clients, the theoretical

robustness guarantees provide upper bounds on the error rates of resulting ML model

for convex ML settings. On the other hand, in case of non-convex ML settings, the

robustness guarantees can only claim that the global model will eventually converge,

but they cannot prove specific bounds on error rates.

Unfortunately, convergence of non-convex ML model does not mean that the

model will have low error rate [132, 108], because in the non-convex optimization

space there are a large number of local minimas. As non-convex ML is the most

widely used ML type in FL [104, 34], it is necessary to empirically evaluate the

robustness of robust AGRs to understand the true efficacy of the AGRs.

31

Note that, most of the existing robust AGRs [30, 108, 45, 168, 165] aim to defend

against poisoning attacks that arbitrarily reduce the performances of the global model.

In other words, these robust AGRs aim to defend against untargeted poisoning in FL.

Furthermore, as we are concerned with evaluating the robustness of AGRs, we consider

the stronger (although theoretical) threat model of model poisoning, and not of the

data poisoning. In Chapter 6, we will assess the robustness of FL in more practical

threat models of poisoning. There are two major works that propose untargeted

model poisoning attacks: little is enough (LIE) [22] and Static Optimization (STAT-

OPT) [64]; Section 2.2.1 details these two attacks. Unfortunately, as we will show,

these two model poisoning attacks are not optimal and may give a false sense of

security. This may lead to FL practitioners or academics using these AGRs and

designing FL applications that are vulnerable to poisoning.

These shortcomings of existing FL poisoning attacks motivates our work in this

chapter. We propose a general framework for model poisoning attacks on FL. Unlike

prior works [64, 22, 108, 165], we consider a comprehensive set of possible threat

models for model poisoning attacks along two dimensions of the adversary’s knowl-

edge: the knowledge of the updates shared by benign clients, and the knowledge of

the AGR algorithm that the server uses. We demonstrate that the model poisoning

attacks launched using our framework outperform state-of-the-art model poisoning

attacks in defeating all existing Byzantine-robust FL algorithms. Our attacks lead to

significant conclusions, e.g., (1) robust AGRs are far more susceptible to poisoning

than what their theoretical robustness guarantees claim, (2) poisoning adversary can

mount a strong poisoning attack even without the knowledge of the server’s robust

AGR.

We provide concrete lessons we learn from our empirical assessments that, we

hope, will guide future designs of robust AGRs. Finally, based on these lessons we

design a new robust AGR called Divide and Conquer (DnC and demonstrate its

32

state-of-the-art protection against our poisoning attacks. Full details of our general

poisoning attacks framework and proposed defense are in [132].

4.1 Threat Models of Untargeted Poisoning We Use

Here, we detail the threat models of untargeted poisoning that we consider for

investigations in this chapter.

Adversary’s objective: The goal of the adversary is to craft malicious gradients

such that when the malicious clients share the malicious gradients with the central

server, the accuracy of the resulting global model reduces indiscriminately, i.e., on

any test input. This is also known as untargeted model poisoning attack.

Adversary’s capabilities: We assume that the adversary controls up to m out of

n total clients, called malicious clients. We assume that the number of malicious

clients is less than the number of benign clients, i.e., (m/n) < 0.5; otherwise, no

Byzantine-robust AGR will be able to defeat poisoning attacks. Following the previ-

ous works [27, 22, 18, 64, 165, 73], we assume that the adversary can access the global

model parameters broadcast in each epoch and can directly manipulate the gradients

on malicious devices.

Adversary’s knowledge: We consider two important dimensions of FL setting:

knowledge of the gradient updates (simply gradients) shared by the benign devices

and knowledge of the AGR algorithm of the server. More specifically, we consider four

adversaries as shown in Table 4.1. agr-updates adversary is the strongest adversary

who knows both the gradients of benign devices and the server’s AGR. Although

agr-updates adversary has limited practical significance, it has been commonly used

in previous works [64, 165, 22] to understand the severity of the model poisoning

threat. Furthermore, it allows the service provider (the server in this case) to eval-

uate the robustness of its AGR algorithms. agr-only adversary knows the server’s

AGR, but does not have the gradients of benign devices. To compute malicious gra-

33

Table 4.1: Knowledge-based classification of model poisoning adversaries in FL.

Type
Gradients of Server’s AGR
benign devices algorithm

agr-updates ✓ ✓
agr-only ✗ ✓

updates-only ✓ ✗

agnostic ✗ ✗

dients, agr-only adversary uses benign gradients computed using the benign data on

malicious devices. updates-only adversary has the gradients of benign devices, but

does not know the server’s AGR. We consider this adversary in order to demonstrate

the empirical upper bound of the severity of our AGR-agnostic attacks. Finally, the

agnostic adversary does not have the gradients on benign devices or the server’s

AGR, and is the weakest possible adversary in FL.

Note that, none of the state-of-the-art untargeted model poisoning attacks thor-

oughly consider these two dimensions: Fang attacks [64] assume the complete knowl-

edge of the server’s AGR algorithm, while LIE attacks [22] assumes the complete

knowledge of the gradients of benign devices.

4.2 Our Generic Framework for Model Poisoning

In this section, we describe our generic framework to mount model poisoning at-

tacks on FL, followed by specific optimizations for different AGRs and threat models,

and finally give an algorithm to solve the optimizations.

4.2.1 General optimization formulation

In each FL training epoch, the malicious and benign clients share malicious and

benign gradients, respectively, and then the server updates the global model using

an aggregate of all of the gradients. To successfully mount an untargeted attack, our

34

(b) Our AGR-agnostic Min-Max attack (c) Our AGR-agnostic Min-Sum attack

LIE attack LIE attackOur attack
final aggregate

Scaled malicious
perturbations

(a) Our AGR-tailored attack (demonstrated for Krum)

Fang attack
final aggregate

Benign
aggregate

Large malicious gradients
rejected by Krum

Our attack

Our attack

Figure 4.1: Schematics of our attacks: (a) Our AGR-tailored attack, unlike Fang attack,
fine tunes the malicious gradient (∇b + γ∇p), using optimal γ and dataset-optimized ∇p.
(b) Our AGR-agnostic Min-Max attack finds its malicious gradient ∇m (red cross) whose
maximum distance from any other gradient is less than the maximum distance between
any two benign updates (black arrows). (c) Our AGR-agnostic Min-Sum attack finds ∇m

(red cross) whose sum of distances from the other updates is less than the sum of distances
of any benign gradient from the other benign updates. Due to stricter constraints, ∇m of
Min-Sum attack is closer to the benign aggregate, ∇b, than ∇m of Min-Max attack. LIE
attack computes very suboptimal ∇m due to extremely small amounts of noise additions.

general optimization problem aims to maximize the damage to the global model in

each FL epoch.

In order to maximize the damage to the global model, we craft the malicious

gradients, denoted by ∇m
{i∈[m]}, such that the aggregate computed by the server is far

from a reference benign aggregate, denoted by ∇b. A possible ∇b is the average of the

benign gradients that the adversary knows. For instance, the agr-only adversary can

compute m benign gradients using the benign data on malicious devices. The final

malicious gradient ∇m is a perturbed version of the benign aggregate ∇b, i.e., ∇m =

∇b + γ∇p, where ∇p is a perturbation vector and γ is a scaling coefficient. Therefore,

the objective of the full knowledge agr-updates adversary is given by (4.1).

argmax
γ,∇p

∥∇b − fagr(∇m
{i∈[m]} ∪∇{i∈[m+1,n]})∥2 (4.1)

∇m
i∈[m] = ∇b + γ∇p; ∇b = favg(∇{i∈[n]})

where ∇{i∈[n]} are the benign gradients that the adversary knows. Note that state-

of-the-art robust AGRs [30, 168, 108] are generally not differentiable. Hence, solving

(4.1), i.e., finding the optimal γ and ∇p, using gradient descent based optimizations

is not trivial. Our idea to overcome this challenge is to fix the perturbation vector

35

∇p and find the optimal γ, i.e., solve the modified objective in (4.2). Algorithm 1

(Section 4.2.4) describes our algorithm to optimize γ.

argmax
γ

∥∇b − fagr(∇m
{i∈[m]} ∪∇{i∈[m+1,n]})∥2 (4.2)

∇m
i∈[m] = ∇b + γ∇p; ∇b = favg(∇{i∈[n]})

4.2.1.1 Introducing perturbation vectors

A perturbation vector is any malicious direction in the space of gradients that the

adversary can use to perturb ∇b and find the malicious gradients ∇m
{i∈[m]}. In this

work, we experiment with the following three types of ∇p’s.

Inverse unit vector (∇p
uv). The intuition here is to compute the malicious gradient

by perturbing ∇b by a scaled unit vector that points in the opposite direction of ∇b.

Hence, we compute ∇p
uv as − ∇b

∥∇b∥2 .

Inverse standard deviation (∇p
std). The intuition here is that the higher the variance

of a dimension of benign gradients, the higher the perturbation that the adversary

can introduce along the dimension. Hence, we compute ∇p
std as −std(∇i∈[n]).

Inverse sign (∇p
sgn). We compute ∇p

sgn as −sign(favg(∇i∈[n])). The intuition here

is similar to that of (∇p
uv), but we observe that (∇p

sgn) is more effective for some

classification tasks, e.g., MNIST.

We show in [132] that the appropriate choice of perturbation vector ∇p is the key

to an effective attack. For instance, for Krum AGR, the attack using∇p
uv increases the

accuracy of global model of MNIST, while the attack using ∇p
uv reduces the accuracy

to random guessing for Purchase. Finally, we note that our experiments show that our

attacks destroy the global model accuracy and significantly outperform the existing

model poisoning attacks using one of these ∇p’s. Hence, we leave investigating the

optimal ∇p to future work.

36

4.2.2 AGR-tailored attacks

In this section, we consider agr-updates and agr-only adversaries, who know

the server’s AGR algorithm and tailor the general attack objective in (4.2) to the

known AGR. We consider the seven robust AGRs described in Section 2.2.3. For the

clarity of presentation, we provide the AGR-tailored optimizations for agr-updates

adversary with all the benign gradients ∇{i∈[n]}. The only change in optimizations

for agr-only adversary is to compute ∇b using the benign gradients computed using

the benign data of the m malicious devices, i.e., ∇{i∈[m]}.

4.2.2.1 Krum

Krum1 selects a single gradient from its inputs as its aggregate. Hence, a suc-

cessful attack requires Krum to select one of its malicious gradients, i.e., ∇m
i∈[m] =

fkrum(∇m
{i∈[m]} ∪ ∇{i∈[m+1,n]}). Therefore, we modify (4.2) to (4.3) for Krum. For

each of the input gradients, Krum computes a score that is the sum of distances of

n −m − 2 nearest neighbors of the gradient. Therefore, to maximize the chances of

Krum selecting a malicious gradient, we keep all the malicious gradients the same.

argmax
γ

∇m
i∈[m] = fkrum(∇m

{i∈[m]} ∪∇{i∈[m+1,n]}) (4.3)

∇m
i∈[m] = favg(∇{i∈[n]}) + γ∇p

4.2.2.2 Multi-krum

Multi-krum uses Krum iteratively to construct a selection set S and computes

average of the gradients in the selection set as its aggregate. Our attack on Multi-krum

ensures that all of the malicious gradients are in selected S, while maximizing the

perturbation γ∇p used to compute the malicious gradients. This strategy minimizes

the number of benign gradients in S, while maximizing γ∇p increases the poisoning

1We omit suffix AGR, when it is clear from the context.

37

impact of malicious gradients on the final aggregate. Therefore, we modify (4.2)

to (4.4) for Multi-krum; here |A| is the cardinality of A.

argmax
γ

m = |{∇ ∈ ∇m
{i∈[m]}|∇ ∈ S}| (4.4)

∇m
i∈[m] = favg(∇{i∈[n]}) + γ∇p

4.2.2.3 Trimmed-mean

For Trimmed-mean, we directly solve the optimization described by (4.2), by

fixing the perturbation ∇p and keeping all the malicious updates the same. Hence,

our objective is to maximize the L2-norm of the distance between the reference benign

update ∇b and the aggregate computed using Trimmed-mean on the set of benign

and malicious updates. This is formalized in (4.5).

argmax
γ

∥∇b − ftrmean(∇m
{i∈[m]} ∪∇{i∈[m+1,n]})∥2 (4.5)

∇m
i∈[m] = favg(∇{i∈[n]}) + γ∇p

Note that in (4.5), we aim to compute γ that maximizes the required L2-norm

distance. As we demonstrate in our evaluations, this extremely simple approach of

crafting malicious updates outperforms the complex approaches proposed by Fang et

al. [64] attacks by very large margins for all the datasets.

4.2.3 AGR-agnostic attacks

Now, we consider the AGR-agnostic adversaries, updates-only and agnostic,

who do not know the server’s AGR algorithm. This is an important practical consid-

eration, because the FL platforms can conceal the details and/or parameters of their

robust AGRs to protect the security of the proprietary global models. Below, we first

provide intuition behind our attacks and then propose two AGR-agnostics attacks to

craft malicious gradients.

38

4.2.3.1 Intuition

All the robust AGRs for FL tend to remove/attenuate malicious gradients based

on one or more of the following criteria: 1) distances from the benign gradients [30,

27, 108, 13, 168], 2) distributional differences with the benign gradients [27, 148], 3)

difference in Lp-norms of the benign and malicious gradients [148]. Figures 4.1-(b, c)

visualize the intuition behind our attacks based on the above criteria. The intuition

is as follows. The distance based defenses work by removing the gradients that lie

outside of the clique formed by the benign gradients. Therefore, our attacks maximize

the distance of malicious gradient from a reference benign gradient, while ensuring

that the malicious gradients lie within the clique of benign gradients. This also

ensures that Lp-norms of the malicious and benign gradients are similar. To ensure

distributional similarity, we use perturbations γ∇p with the similar distributions as

the benign gradients.

Next, we present optimization for two novel AGR-agnostic attacks based on the

intuition. We present the optimizations for updates-only adversary, who has all the

benign gradients ∇{i∈[n]}. The extension to agnostic adversary is similar to that

explained at the beginning of Section 4.2.2 for agr-only adversary.

4.2.3.2 Attack-1 (Min-Max): Minimize maximum distance attack

Our first attack ensures that the malicious gradients lie close to the clique of the

benign gradients (Figure 4.1-(b)). Hence, we compute the malicious gradient such

that its maximum distance from any other gradient is upper bounded by the maxi-

mum distance between any two benign gradients. (4.6) formalizes the corresponding

optimization. Note that in order to maximize the impact of our attack, we keep all

the malicious gradients the same. Hence, we formulate our attack objective in (4.6)

for a single malicious gradient.

39

argmax
γ

max
i∈[n]
∥∇m −∇i∥2 ≤ max

i,j∈[n]
∥∇i −∇j∥2 (4.6)

∇m = favg(∇{i∈[n]}) + γ∇p

4.2.3.3 Attack-2 (Min-Sum): Minimize sum of distances attack

Our second AGR-agnostic Min-Sum attack ensures that the sum of squared dis-

tances of the malicious gradient from all the benign gradients is upper bounded by

the sum of squared distances of any benign gradient from the other benign gradi-

ents (Figure 4.1-(c)). (4.7) formalizes the corresponding optimization. We keep all

malicious gradients the same for maximum attack impact. Hence, we formulate our

objective in (4.7) for a single malicious gradient.

argmax
γ

∑
i∈[n]

∥∇m −∇i∥22 ≤ max
i∈[n]

∑
j∈[n]

∥∇i −∇j∥22 (4.7)

∇m = favg(∇{i∈[n]}) + γ∇p

4.2.4 Solving for the most effective scaling factor γ

In previous sections, we formulated optimizations for various adversarial settings

such that the final objective is to search for the optimal scaling coefficient, γ. Algo-

rithm 1 describes our algorithm to optimize γ for any of the optimizations.

For clarity of presentation of Algorithm 1, we assume an oracle O that takes

the set of benign gradients, ∇{i∈[n]} and γ as inputs. Then, O computes malicious

gradients as ∇m
{i∈[m]} = ∇b + γ∇p, and outputs True if they satisfy the adversarial

objective, otherwise outputs False. For instance, for our AGR-tailored attack on

Krum, O outputs True if a malicious gradient is selected by fkrum, i.e., if (4.3) is

satisfied. For our Min-Max attack (Section 4.2.3.2), O outputs True if the maximum

distance of malicious gradient from any benign gradient is lower than the maximum

distance between any two benign gradients, i.e., if (4.6) is satisfied.

40

Now, we describe Algorithm 1. The core idea of our algorithm is as follows: We

start with a large γ value. We reduce γ in steps of size step until O returns True,

e.g., for Krum, we reduce γ until a malicious gradient is selected by fkrum, i.e., (4.3) is

satisfied for the first time. Our final γ is always greater than this minimum γ value

that satisfies the objective. We halve the step size each time we update γ in order to

make the search finer. From the minimum γ value, we increase γ using updated step

sizes step, until O returns False, i.e., for Krum, we increase γ until fkrum does not select

any malicious gradient, i.e., (4.3) is no more satisfied. Our final γ is always lower

than this maximum γ value that satisfies the objective. Then we modify γ repeatedly

and oscillate between the minimum and maximum γ values until the change in γ is

below a threshold τ .

Algorithm 1 Algorithm to optimize γ

1: Input: γinit, τ , O, ∇{i∈[n]}
2: step← γinit/2, γ ← γinit
3: while |γsucc − γ| > τ do
4: if O(∇{i∈[n]}, γ) == True then
5: γsucc ← γ
6: γ ← (γ + step/2)
7: else
8: γ ← (γ − step/2)
9: end if
10: step = step/2
11: end while
12: Output γsucc

4.3 Experimental setup

4.3.1 Datasets and model architectures

CIFAR10 [88] is a 10-class class-balanced classification task with 60,000 RGB images,

each of size 32 × 32. ‘Class-balanced’ datasets have the same number of samples per

class, e.g., each class of CIFAR10 has 6,000 images. We use 50 clients each with 1,000

41

samples and use validation and test data of sizes 5,000 each. We use Alexnet [89] and

VGG11 [139] as the global model architectures.

Purchase [4] is a 100-class class-imbalanced classification task with 197,324 binary

feature vectors, each of length 600. We use 80 clients each with 2,000 training samples

and use validation and test data of sizes 5,000 each. We use a fully connected network

with layer sizes {600, 1024, 100}.

FEMNIST [36, 51] is a character recognition classification task with 3,400 clients, 62

classes, and a total of 671,585 grayscale images. Each of the 3,400 clients has her own

data made of her own handwritten digits or letters (62 classes: 52 for upper and lower

case letters and 10 for digits). The mean and standard deviation of the number of

samples per client are 226.83 and 88.94, respectively. In each FL epoch, we randomly

select 60 out of 3400 clients for FL training. FEMNIST is a non-iid, class-imbalanced

dataset commonly encountered in cross-device FL settings [82], while the previous

datasets are more common in cross-silo FL settings.

4.3.2 Learning and attacks settings

We train CIFAR10 with Alexnet using batch size of 250 and SGD optimizer with

learning rates of 0.5 from epochs 0-1000 and 0.05 from 1000-1200. We train CIFAR10

with VGG11 using batch size of 200 and SGD optimizer with learning rates of 0.1

from epochs 0-1000 and 0.01 from 1000-1200. We train MNIST for 500 epochs using

Adam optimizer with 0.001 learning rate and batch size of 100. We train Purchase

for 1000 epochs using SGD with learning rate of 0.5 and batch size of 500. We train

FEMNIST for 1500 epochs using Adam optimizer with learning rate of 0.001 and use

client’s entire data in a each batch.

Unless specified otherwise, we assume 20% malicious clients for all adversarial set-

tings, e.g., 20 malicious clients for MNIST. For most of our evaluation, we use inde-

42

pendently and identically distributed (iid) CIFAR10, MNIST, and Purchase datasets,

because poisoning FL with iid data is the hardest [64].

Measurement metrics. For a given FL setting, Aθ denotes the accuracy of the

best globel model, over all the FL training epochs, in the benign setting without

any attack, while A∗
θ denotes the accuracy under the given attack. We define attack

impact, Iθ, as the reduction in the accuracy of the global model due to the attack, hence

for a given attack, Iθ = Aθ − A∗
θ.

Baseline Model Poisoning Attacks: We use two state-of-the-art model poisoning

attacks, LIE [22] and STAT-OPT [64] described in Section 2.2.1 to compare with our

attacks.

4.4 Evaluation of Our Attacks

4.4.1 Comparison with the state-of-the-art attacks

In this section, we compare our attacks with state-of-the-art model poisoning

attacks, Fang [64] and LIE2 [22], for all the adversaries from Table 4.1. The results

are given in Table 4.2; ‘No attack’ column shows accuracy Aθ of the global model

in the benign setting, while the rest of the columns show the ‘attack impact’ Iθ, as

defined in Section 4.3.2.

For a fair comparison, we compare the attacks that use the knowledge of AGR, i.e.,

our AGR-tailored and Fang attacks under agr-updates and agr-only adversaries.

We separately compare the attacks that do not use the knowledge of AGR, i.e., our

AGR-agnostic and LIE attacks under updates-only and agnostic adversaries.

4.4.1.1 Comparing AGR-tailored attacks

Table 4.2 shows that, our AGR-tailored attacks outperform Fang attacks

for all the combinations of threat model, AGR, dataset, and model archi-

2We omit the suffix ’attack’ when it is clear from the context.

43

Table 4.2: Comparing state-of-the-art model poisoning attacks and our attacks under
various threat models from Table 4.1, when cross-silo FL is used. In all the settings, the
impact of our AGR-tailored attacks is significantly higher than that of AGR-tailored Fang
attacks. While both of our AGR-agnostic attacks outperform AGR-agnostic LIE attacks in
most cases. We assume 20% malicious clients and, except for ‘No attack’ column, report
the attack impact Iθ (Section 4.3.2). For each adversary, we bold Iθ of the strongest attack.
MMax and MSum are our Min-Max and Min-Sum attacks, respectively.

Dataset
(Model)

AGR

No
attack
(Aθ)

Gradients of benign
devices are known

Gradients of benign
devices are unknown

AGR tailored AGR agnostic AGR tailored AGR agnostic
(agr-updates) (updates-only) (agr-only) (agnostic)

Fang Ours LIE
Ours

Fang Ours LIE
Ours

MMax
(MSum)

MMax
(MSum)

CIFAR10
(Alexnet)

Krum 53.5 21.8 43.6 9.9 (17.4) 30.1 19.8 43.1 18.1 13.7 (30.2)
MKrum 67.6 12.6 36.8 20.5 (27.8) 30.8 11.2 35.3 19.7 31.7 (30.4)
Bulyan 66.9 12.3 45.6 33.8 (35.5) 44.5 11.8 34.6 30.0 40.6 (41.1)
TrMean 67.7 15.8 45.8 22.8 (41.6) 33.5 12.9 45.0 19.4 38.7 (27.9)
Median 65.5 12.9 40.9 20.7 (34.7) 39.6 12.6 39.1 19.7 34.1 (39.5)
AFA 66.8 7.0 47.0 5.9 (31.5) 16.9 6.1 46.8 5.5 22.2 16.0
Fang 66.8 8.9 56.3 6.5 (42.9) 21.5 8.5 56.0 6.3 42.1 (19.9)

Purchase
(FC)

Krum 62.1 6.0 61.3 -15.8 (60.6) 59.1 4.4 60.8 -17.7 61.1 (61.0)
MKrum 91.9 13.7 21.4 1.5 (20.4) 18.4 12.2 18.2 1.7 19.8 (16.4)
Bulyan 91.3 14.7 28.7 10.9 (23.4) 30.0 20.9 28.4 8.4 28.0 (30.3)
TrMean 92.0 1.8 23.4 2.3 (16.9) 5.4 1.6 22.2 1.9 26.8 (14.6)
Median 87.4 0.2 11.0 0.5 (11.6) 11.3 -1.0 14.1 -1.6 13.4 (12.6)
AFA 91.7 1.5 3.4 0.7 (1.4) 0.7 1.4 2.8 0.2 1.3 (0.5)
Fang 91.9 1.2 89.2 0.5 (18.9) 8.4 0.9 89.2 0.5 8.5 (7.8)

FEMNIST
(CNN)

Krum 69.3 18.3 30.0 0.9 (0.1) 9.8 1.9 2.9 0.2 1.1 (8.0)
MKrum 86.6 34.5 78.8 15.7 (79.5) 61.7 30.8 57.1 10.2 79.5 (61.4)
Bulyan 86.1 38.9 41.0 32.0 (20.1) 40.0 35.6 40.5 20.5 18.7 (30.4)
TrMean 86.7 7.2 24.3 19.1 (29.7) 26.8 7.9 20.1 14.4 24.7 (25.2)
Median 77.1 2.7 30.2 12.0 (26.7) 17.1 0.8 18.2 5.8 19.8 (16.6)
AFA 84.6 6.2 77.0 7.4 (74.4) 50.0 2.1 75.3 4.6 74.0 (46.0)
Fang 86.0 7.6 83.1 1.8 (81.6) 62.3 2.8 83.0 1.7 78.3 (60.1)

44

tecture by large margins. For CIFAR10 with agr-updates adversary, our attacks

are 2× more impactful than Fang. While with agr-only adversary, our attacks are

2.5× and 4.5× more impactful than Fang for Alexnet and VGG11 models, respec-

tively. For the rest of the AGRs, our attacks are 3× to 7× (2× to 4×) more impactful

than Fang attacks on CIFAR10 with Alexnet (VGG11) for both agr-updates and

agr-only adversaries.

Under agr-updates (agr-only) adversary, Fang and our attacks on Krum with

MNIST have impacts of 20.5% (17.4%) and 33.9% (24.1%), respectively, i.e., our at-

tack is 1.7× (1.5×) more effective than Fang. The impact of Fang attack on Trimmed-

mean (Median) with MNIST is just 1.2% (1.7%), while that of our attack is 11.0%

(4.4%), i.e., our attack is 10× (2.5×) more impactful. Even for AFA, which is the

empirically most robust AGR for MNIST, our attack is 3× more impactful than Fang.

For Purchase, our attacks reduce the accuracy of Krum to the random guessing,

i.e., close to 1% for all the adversaries and, except for AFA, our attacks are at least 10×

more impactful than Fang attacks. Similarly, with agr-updates adversary, impacts

of Fang attacks on Trimmed-mean and Median are 1.8% and 0.2%, respectively, while

impacts of our attacks are 23.4% and 11.0%. We note similarly higher impacts of our

attacks with agr-only adversary. For Multi-krum, Bulyan, and AFA, our attacks

are 2× more impactful than Fang attacks. For Fang-Trmean, the Fang defense that

uses Trimmed-Mean to discard malicious gradients, our attacks reduce the global

model accuracy to random guessing for all combinations of datasets and models; this

is expected as discussed in Section 2.2.3.

For FEMNIST the impacts of our attacks with agr-updates adversary on AFA,

Multi-krum, Trimmed-mean, and Median are respectively 12×, 2×, 3×, and 15×,

that of Fang attack. For Krum and Bulyan also, the impacts of our attacks are

moderately higher than that of Fang attacks.

45

Why our attacks are superior? For Krum AGR, although ours and Fang attacks

have similar attack objectives, they differ in two instrumental aspects: First, instead

of generalizing a single perturbation type across all datasets, our attacks tailor the

perturbation to the given dataset as explained in detail in [132]. Next, as Figure 4.1-

(a) demonstrates, our Algorithm 1 carefully fine tunes γ of our objective (4.3), while

Fang attack simply finds the first γ that satisfies its objective. Our attacks on AFA,

Bulyan, and Multi-krum AGRs are also carefully tailored to the AGRs, while Fang

attack uses the same objective as Krum for these AGRs.

Fang proposes the same attack for Trimmed-mean and Median AGRs, which crafts

the values of each dimension of malicious gradients using the available benign gra-

dients. But our attacks have more tailored and impactful objectives of diverging

the final aggregate as far away from a benign aggregate as possible using the most

malicious perturbation direction.

4.4.1.2 Comparing AGR-agnostic attacks

Table 4.2 shows that, both of our AGR-agnostic attacks significantly out-

perform LIE, the state-of-the-art AGR-agnostic attack for most of the FL

settings that we evaluate. For MNIST with Krum, the impact of Min-Sum attack

(simply Min-Sum) is 3× that of LIE, for both updates-only and agnostic adver-

saries. Except for CIFAR10 with VGG11, we note significantly higher impacts of

Min-Sum on Krum than that of LIE. Note that LIE, due to its small noise addi-

tion, regularizes and increases accuracy of the global model trained on Purchase using

Krum. For Bulyan, with agnostic and updates-only adversaries, Min-Sum signif-

icantly outperforms LIE by amounts varying from 1.8% (for MNIST) to 22.1% (for

Purchase) depending on the classification task.

On the other hand, Min-Max is more effective against Multi-krum and outperforms

LIE by amounts varying from 10.2% (MNIST) to 18.1% (Purchase) depending on the

46

classification task. Min-Max is more effective against AFA, which also computes

an average of gradients in a selection set. On AFA, Min-Max outperforms LIE for

all datasets but MNIST dataset; for MNIST the two attacks have almost the same

impacts. Min-Max is also more effective than LIE and Min-Sum attacks against

Trimmed-mean, Median, and Fang-Trmean AGRs. For instance, depending on the

classification task, Min-Max is almost 1.2× (for CIFAR10 + VGG11) to 8× (for

Purchase) more impactful than LIE against Trimmed-mean, while it is almost 1.2×

(for CIFAR10 + VGG11) to 20× (for Purchase) more impactful than LIE against

Median.

LIE attack is ineffective, because it adds very small amounts of noises to compute

its malicious gradients, while our AGR-agnostic attacks are much more impactful as

they find the most malicious gradient within a ball formed by the benign gradients

(Figure 4.1-(b,c)). For the same reason, for all the considered scenarios, except for

the combination of Krum and FEMNIST dataset one or more of our AGR-

agnostic attacks also outperform AGR-tailored Fang attacks. Due to the

extreme non-iid nature of FEMNIST, the malicious gradients of our AGR-agnostic

attacks can be arbitrarily far from benign gradients, which Krum can easily discard.

Reasons for the differences in the impacts of Min-Max and Min-Sum at-

tacks: Min-Max finds the malicious gradient whose maximum distance from a benign

gradient is less than the maximum distance between any two benign gradient. While,

Min-Sum finds the malicious gradient such that the sum of its distances from all the

other gradients is less than the sum of distances of any benign gradient from other

benign gradients. Therefore, as Figures 4.1-(b, c) demonstrate, the radius of search

of malicious gradients of Min-Max is much larger than that of Min-Sum. Therefore,

the malicious gradients of Min-Sum more effectively circumvent the filtering of Krum

and Bulyan AGRs, and therefore, are more impactful against these AGRs. For the

same reason, Multi-krum selects a lesser number of malicious gradients of Min-Max

47

than that of Min-Sum. But, as Multi-krum averages the selected gradients, Min-Max,

with significantly more malicious gradients, damages the Multi-krum aggregate more

effectively than Min-Sum.

Finally, we note that for AGR-agnostic attacks, we observe a few cases in Table 4.2

where agnostic adversary has slightly more impact than updates-only adversary.

For example, Min-Max attack on (CIFAR10 + Alexnet + Multi-krum) with agnostic

adversary has 3.9% more impact than with updates-only adversary. The reason for

this are various sources of randomness in our experiments. More specifically, we

do not use the exact same set of gradients to compute malicious gradients under

the two adversaries. Instead, we instantiate the whole FL training every time we

compute the attack impact. Therefore, empirical randomness, e.g., random initial

model parameters, in running the two different instantiations may cause this behavior.

Our experimental results are the average of three such instantiations for each of the

presented result, and such empirical anomalies can be mitigated in various ways,

including setting the seed for different random number generators and averaging over

multiple runs of experiments.

4.4.2 Impact of our attacks on cross-device FL setting

In this section, we evaluate the impact of our attacks when cross-device FL is

used to learn on CIFAR10 dataset. More specifically, in each FL epoch, instead of

processing all of the 50 clients, we process only 10 clients. As before, we evaluate for

two model architectures, Alexnet and VGG11. The attack procedures for different

AGRs do not change.

Table 4.3 shows the results. Similar to cross-silo setting, our AGR-tailored attacks

outperform the state-of-the-art Fang attacks for both Alexnet and VGG11 architec-

tures. For Alexnet with agr-updates adversary, our attack is 2× (Trimmed-mean) to

48

Table 4.3: Comparing the state-of-the-art model poisoning attacks and our attacks under
all threat models in Table 4.1 when cross-device FL is used. Our AGR-tailored attacks
significantly outperform Fang attacks, while at least on of our AGR-agnostic attacks signif-
icantly outperforms LIE attack in most cases. Experimental setup is exactly the same as
that of Table 4.2. MMax and MSum are our Min-Max and Min-Sum attacks, respectively.

Dataset

(Model)
AGR

No

attack

(Aθ)

Gradients of benign

devices are known

Gradients of benign

devices are unknown

AGR tailored AGR agnostic AGR tailored AGR agnostic

(agr-updates) (updates-only) (agr-only) (agnostic)

Fang Ours LIE
Ours

Fang Ours LIE
Ours

MMax

(MSum)

MMax

(MSum)

CIFAR10

(Alexnet)

Krum 53.9 11.0 34.0 19.9 8.7 (19.7) 4.5 15.8 14.9 8.7 (13.7)

MKrum 64.5 2.2 22.2 11.5 15.9 (17.2) 1.2 14.4 9.2 14.5 (15.5)

Bulyan 63.9 2.0 28.8 13.0 28.4 (26.4) 1.9 27.9 9.9 22.3 (8.6)

TrMean 64.9 8.3 14.0 9.3 9.4 (7.3) 3.2 9.8 4.9 6.5 (4.2)

Median 62.4 1.8 20.3 4.1 20.3 (17.8) 0.2 16.4 -1.6 15.8 (10.3)

AFA 66.2 1.6 41.4 3.8 3.8 (2.6) 1.0 36.7 3.4 3.6 (1.9)

Fang 64.5 7.2 54.3 3.6 9.1 (6.5) 4.3 54.3 2.3 5.7 (5.3)

CIFAR10

(VGG11)

Krum 59.3 3.8 26.3 15.0 6.7 (20.1) 1.2 12.7 11.8 1.8 (10.7)

MKrum 72.0 1.4 13.2 9.8 9.0 (8.5) 1.0 9.4 8.8 7.3 (8.3)

Bulyan 72.0 2.8 18.8 9.2 24.0 (14.9) 2.6 17.6 6.7 16.6 (12.3)

TrMean 72.1 5.9 8.7 4.1 6.0 (3.6) 3.6 8.1 4.0 5.2 (3.0)

Median 70.2 0.3 11.2 1.0 12.8 (11.3) 0.1 10.7 0.8 9.9 (7.2)

AFA 71.8 2.1 15.0 2.3 1.8 (1.5) 2.0 14.7 2.1 1.7 (1.1)

Fang 71.9 1.9 60.9 3.6 8.9 (4.4) 0.6 58.1 2.7 7.1 (4.0)

49

11× (Median) more impactful than Fang attack. We note similar results for agr-only

adversary as well as VGG11 architecture in Table 4.3.

For AGR-agnostic adversaries with Alexnet, we note that at least one of our Min-

Sum and Min-Max attacks has up to 5× more attack impact than the state-of-the-art

LIE attack, for all but Krum AGR. For Krum AGR, LIE outperforms our attack by

0.2% and 1.2% under updates-only and agnostic adversaries, respectively. We note

similar results for Alexnet with agnostic adversary. In case of VGG11 as well, at

least one of our AGR-agnostic attacks has up to 10× more impact than LIE, for all

but Multi-krum and AFA AGRs. For Multi-krum and AFA, the LIE and Min-Max

have almost equal attack impacts.

Finally we note that, overall the attack impacts are lower in cross-device setting

than in cross-silo setting; the reduction in impacts varies widely based on AGR and

model architecture. For instance, for Alexnet with Krum, Multi-krum, and Trimmed-

mean, the impacts reduce by 9.5%, 14.6%, and 31.8%, respectively. The reason for

this is that, in cross-device FL, the adversary cannot constantly corrupt the global

model. Because, in many cross-device FL epochs, the number of malicious clients

that the server selects can be negligible.

4.5 Takeaways

We provide a general framework to design tailored untargeted poisoning attacks

against robust AGRs that aim to defend FL against poisoning. We also demonstrated

the simplicity of using the framework by designing poisoning attacks against seven

robust AGRs. Our framework also facilitates designing AGR-agnostic attacks that

do not require the knowledge of the server’s AGR. Our experiments clearly show

that both AGR-tailored and AGR-agnostic attacks designed using our framework

outperform previous attacks.

50

Finally, the main goal of our framework is to understand the flaws in existing AGRs

and enable designing more robust AGRs for FL. To this end, below we summarize

three lessons we learned from our attacks that will guide the design of future robust

FL designs.

4.5.1 Lessons learned from our attacks

L1: The curse of dimensionality. The theoretical error bounds provided by

previous robust AGRs [30, 108, 168, 59, 95, 13] depend on the dimensionality of their

inputs. Hence, the theoretical as well as empirical errors of these defenses explode

for high dimensional gradients of neural networks [42] in FL. Therefore, reducing

the dimensionality of input gradients is necessary to improve robustness

against poisoning.

L2: Convergence is necessary but not sufficient. All prior robust AGRs [30,

108, 168] give provable convergence guarantees for non-convex FL. However, for non-

convex optimizations, such guarantees are meaningless due to large number of subop-

timial local optima. Our attacks exploit this and force the global model to converge

to a suboptimial local optimum. Therefore, providing convergence guarantees is not

enough and robust AGRs should provide guarantees on how well they de-

tect and remove outliers.

L3: Distance- or dimension-wise pruning is insufficient. Krum, Multi-krum,

and Bulyan use ℓp distance-based filtering, which, as [108, 22] point out and we show in

our work, allows malicious gradients to be close enough to benign gradients while far

enough to effectively poison the global model. Dimension-wise pruning in Trimmed-

mean and Median allows an adversary to craft gradients which significantly shift the

aggregate in bad directions as our and Fang [64] attacks show. Therefore, robust

AGRs need to go beyond just using dimension/distance-based filtering.

51

CHAPTER 5

DEFENDING FEDERATED LEARNING AGAINST
POISONING ATTACKS

Previous chapters highlight the threat of poisoning attacks, and specifically that

of untargeted poisoning attacks, to federated learning (FL) and discuss the robust

aggregation rules (AGRs) proposed in prior literature that claim to defend federated

learning from such poisoning. However, in 4, we demonstrate the fallacy of these

claims and motivate the need for more sophisticated FL poisoning defenses.

To this end, in this chapter, we present two defense mechanisms (robust AGRs)

that defend FL against untargeted poisoning: Divide-n-Conquer (DnC) and Federated

Rank Learning (FRL). The intuition behind our defenses stems from the lessons

(Section 4.5.1) learned from our poisoning framework, e.g., both defenses address

the curse of dimensionality in certain way:

Curse of dimensionality in FL: As explained by the Lesson-1 in Section 4.5.1, the

theoretical error bounds of previous robust AGRs [30, 108, 168, 59, 95, 13] depend on

the dimensionality of their inputs. Hence, the theoretical as well as empirical errors

of these defenses explode for high dimensional gradients of neural networks [42] in

FL. Therefore, reducing the dimensionality of input gradients is necessary to improve

robustness against poisoning.

Similarly, to satisfy the constraint of Lesson-2, our defenses provide theoretical ro-

bustness guarantees in terms of removal of malicious clients (for DnC) and optimality

of model updates (for FRL), as opposed to convergence based robustness guarantees

of prior defenses. None of our defenses are based on distance-wise filtering/pruning

52

(Lesson-3) Next, we discuss each of the three defenses in details. In particular, for

each of the defenses, we provide an overview, intuition, methodology, and finally

present empirical robustness evaluations.

5.1 Divide-n-Conquer (DnC)

5.1.1 Intuition

Our intuition behind DnC is based on the lessons from Section 4.5.1. To address

L3, DnC leverages singular value decomposition (SVD) based spectral methods to

detect and remove outliers. Previous works [153, 57, 28] have demonstrated the

theoretical and empirical performance of these methods in mitigating data poisoning

against centralized learning. To address L2, we provide theoretical analysis of our

defense in Section 5.1.3, giving guarantees on the removal of malicious gradients

under certain conditions. Furthermore, we also construct adaptive attacks against

DnC in Section 5.1.4 to provide empirical evidence of its robustness.

Note that SVD-based defenses require O(d3) memory and computational cost,

hence, performing SVD directly on high dimensional gradients in common FL set-

tings [104] is prohibitively expensive. To address this issue and the curse of dimen-

sionality (L1), DnC reduces dimensionality through random sampling on its input

gradients.

5.1.2 Our DnC algorithm

Algorithm 2 describes the algorithm of our DnC AGR. First, DnC randomly picks

a sorted set r of indices less than the dimensionality d of its input gradients (Line-4)

and constructs a subsampled set ∇̃ of gradients using r (Line-5). For instance, if

d = 5 and r = [0, 3], a subsample of gradient ∇i = {∇0, ...∇4} is ∇̃i = {∇0,∇3}.

Next, DnC computes a centered subsampled set ∇c of ∇̃ using dimension-wise mean

µ of ∇̃ (Lines 6-7). Then DnC computes projections of centered gradients along their

53

Algorithm 2 Our Divide-and-Conquer AGR Algorithm

1: Input: Input gradients ∇{i∈[n]}, filtering fraction c, number of malicious clients m,
niters, dimension of subsamples b, input gradients dimension d

2: Igood ← ∅
3: while i < niters do
4: r ← sorted set of size b of random dimensions ≤ d
5: ∇̃{i∈[n]} ← set of gradients subsampled using indices in r

6: µ = 1
n

∑
i∈[n] ∇̃i {Compute mean of input gradients}

7: ∇c = ∇̃{i∈[n]} − µ {∇c is a n× b matrix of centered input gradients}
8: Compute v, the top right singular eigenvector of ∇c

9: Compute outlier scores defined as si = (⟨∇i − µ, v⟩)2
10: I ← Set of (n− c ·m) indices of the gradients with lowest outlier scores from s
11: Append I to Igood
12: i = i+ 1
13: end while
14: Ifinal ← ∩ Igood {Compute intersection of sets in Igood as the final set of indices}
15: ∇a = 1

|Ifinal|
∑

i∈Ifinal ∇i

16: Output ∇a

top right singular eigenvector v, computes a vector of outlier scores s, and removes

c · m gradients with the highest scores (Lines 8-10). The remaining gradients are

added to the set of good gradients. Such niters number of good sets are computed

by randomizing r to reduce dependence on a single r. Finally, DnC computes its

aggregate ∇a as the average of the common gradients in all of the niters good sets

(Lines 14-16).

5.1.3 Theoretical analysis

Our theoretical analysis of DnC provides guarantees on the removal of malicious

gradients and leverages the analysis of SVD based defenses against data poisoning in

the centralized settings [57, 153, 59, 97]. Definition 1 from [153, 97] defines a condition

ϵ-spectral separability under which two distributions can be separated using spectral

methods, e.g., SVD.

Definition 1. (ϵ-spectral separability) Consider 0 < ϵ < 0.5 and two finite co-

variance distributions, B and M . Let U = (1 − ϵ)B + ϵM be a mixture of samples

54

from B and M , and denote the top right singular eigenvector of U by v. Then B and

M are ϵ-spectrally separable if there exists t such that

Pr
X∼B

[|⟨X − µU , v⟩| > t] < ϵ

Pr
X∼M

[|⟨X − µU , v⟩| < t] < ϵ

If we consider that B and M (the distributions of benign and malicious gradients,

respectively) are ϵ-spectrally separable, then by removing ϵ-fraction of gradients with

maximum projections along the top eigenvector direction we can remove malicious

gradients from a set of benign and malicious gradients. Lemma 1 formalizes the

theoretical filtering guarantees of DnC.

Lemma 1. Consider 0 < ϵ < 0.5 and two distributions B,M with means µB,µM

and covariances ΣB,ΣM ⪯ σ2I. Let U = (1− ϵ)B+ ϵM be a mixture of samples from

B and M . Then B and M are ϵ-spectrally separable if ∥µB − µM∥22 ≥ 6σ2

ϵ
.

For our FL poisoning setting, Lemma 1 implies that if the means of poisoned

and benign gradients are sufficiently separated, then the two types of gradients can be

reliably separated using spectral methods. Figure 5.1, demonstrates this exactly: the

means of malicious gradients which effectively poison FL are sufficiently far from the

means of benign gradients, and therefore, spectral methods can filter them. On the

other hand, the malicious gradients which circumvent the criterion given in Lemma 1

have no impact on the accuracy of global model. We note that the result in Lemma 1

is common to SVD based outliers detection [57, 153, 59, 97, 43]; we provide it here for

completeness and to give the intuition about the efficiency of DnC. Please check [132]

for complete proof of Lemma 1.

55

5.1.4 An adaptive attack against DnC

DnC provides provable theoretical guarantees on detection of malicious gradients.

However, to provide empirical evidence on the robustness guarantees of DnC, we

propose an adaptive attack by against the strongest agr-updates adversary who has

the complete knowledge of the gradients of benign devices and of DnC.

Our adaptive attack is based on the general optimization framework proposed

in Section 4.2.1. The attack is inspired by our AGR-tailored attack on Multi-krum

AGR, because both DnC and Multi-krum compute a selection set and average the

gradients in the final selection set. The intuition of the attack is to maximize the

number of malicious gradients selected by DnC to maximize the bad impact on the

final aggregate. This also ensures that the number of benign gradients selected and

their good impact on the final aggregate are minimized. Hence, our adaptive attack’s

optimization is:

argmax
γ

m = |{∇ ∈ ∇m
{i∈[m]}|∇ ∈ ∇m

{i∈Ifinal}}| (5.1)

∇m
i∈[m] = favg(∇{i∈[n]}) + γ∇p

where m is the number of malicious clients, Ifinal is the final set of candidate indices

selected by DnC,∇p is perturbation, and γ is scaling factor. Note that, it is reasonable

to assume that although the adversary knows DnC algorithm thoroughly, she cannot

know the exact random indices r from Algorithm 2. Finally, we solve the optimization

in (5.1) by finding the most impactful γ using Algorithm 1.

5.1.5 Evaluation of Our Defense

In this section, we first demonstrate the robustness of our DnC AGR against state-

of-the-art [64, 22] and our model poisoning attacks from Sections 4.2.1 and 5.1 for iid

datasets. We also analyze the effectiveness of spectral separability, and therefore of

56

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Best of AGR-tailored

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Best of Fang

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
LIE

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Min-Max
Malicious client fraction
Relative shift

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Min-Sum

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Adaptive

(a) MNIST with fully connected network

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Best of AGR-tailored

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Best of Fang

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
LIE

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Min-Max
Malicious client fraction
Relative shift

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Min-Sum

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0
Adaptive

(b) CIFAR10 with Alexnet

Figure 5.1: DnC selects high fractions of malicious gradients (red plots) iff the dis-
tances between µB and µM , the means of benign and malicious gradients, are low
(blue plots), i.e., poisoning impact of the malicious gradients is low. Upper row is for
MNIST and lower row is for CIFAR10 + Alexnet. We use the strongest full knowledge
agr-updates adversary.

57

Table 5.1: Our robust DnC AGR defends against all the existing model poisoning
attacks for independently and identically distributed datasets. We consider the ad-
versaries with complete knowledge of gradients of benign clients with 20% malicious
clients. For each attack, we report its attack impact on DnC and on the existing
defense with the highest global model accuracy A∗

θ, computed as (Aθ − Iθ) from Ta-
ble 4.2.

Dataset

(Model)

No
Fang LIE

Best of our AGR- Our AGR-agnostic attacks Adaptive

attack (Aθ) tailored attacks Min-Max Min-Sum attack

CIFAR10

(Alexnet)
67.6 3.2 (7.0) 3.0 (5.9) 4.3 (36.8) 3.5 (27.8) 2.0 (16.9) 6.1

CIFAR10

(VGG11)
75.5 3.3 (8.5) 1.7 (6.8) 3.4 (32.5) 2.5 (21.9) 2.2 (10.4) 6.3

Purchase

(FC)
92.0 0.8 (0.2) 0.5 (0.5) 0.9 (3.4) 0.6 (1.4) 0.8 (0.7) 1.8

MNIST

(FC)
96.2 0.1 (0.3) 0.2 (0.5) 1.8 (2.5) 0.2 (1.2) 1.2 (2.2) 1.9

Table 5.2: Results of empirical robustness analysis of DnC for cross-device FL setting.
We consider the adversaries with complete knowledge of gradients of benign clients
with 20% malicious clients, and report A∗

θ as described in Table 4.2.

Dataset

(Model)

No
Fang LIE

Best of our AGR- Our AGR-agnostic attacks Adaptive

attack (Aθ) tailored attacks Min-Max Min-Sum attack

CIFAR10

(Alexnet)
64.6 0.6 (1.6) 0.3 (3.8) 0.2 (14.0) 0.3 (3.8) 0.0 (2.6) 3.4

CIFAR10

(VGG11)
72.1 0.8 (1.4) 0.3 (2.3) 2.0 (8.7) 0.4 (1.8) 0.4 (1.5) 4.1

Table 5.3: For non-iid FEMNIST dataset, DnC cannot mitigate our attacks in the
worst case settings when the adversary knows gradients of the benign devices. But,
mitigates all the attacks in the more practical settings when the gradients of benign
devices are unknown. We report Iθ on DnC of all adversaries in Table 4.1 with 20%
malicious clients. ‘No attack’ accuracy Aθ for FEMNIST with DnC is 86.6%. MMax
and MSum refer to Min-Max and Min-Sum attacks, respectively.

AGR

Gradients of benign devices are known Gradients of benign devices are unknown

Best of

AGR-tailored

(agr-updates)

AGR-agnostic Adaptive Best of

AGR-tailored

(agr-only)

AGR-agnostic Adaptive

(updates-only) attack (agnostic) attack

MMax MSum MMax MSum

DnC 48.1 13.8 79.3 78.6 12.7 9.3 11.7 10.2

DnC +

resampling
79.3 80.5 45.9 77.6 77.5 79.1 43.4 70.6

58

DnC, in defending against model poisoning on FL. Finally, we discuss the effectiveness

of DnC for non-iid FEMNIST dataset.

5.1.5.1 Robustness of DnC for iid data

For iid datasets, i.e., MNIST, CIFAR10, and Purchase, we evaluate DnC against

a strong adversarial setting with 20% malicious clients and the adversaries with com-

plete knowledge of the gradients of benign clients, i.e., agr-updates when AGR is

known and updates-only when AGR is unknown. We evaluate DnC using Fang

and LIE, and our stronger AGR-tailored and AGR-agnostic attacks. For all these

datasets, we set niters, c, and b in Algorithm 2 to 1, 1, and 10,000, respectively.

Robustness comparison with previous AGRs. Table 5.1 shows, for each of the

attacks, the attack impact on DnC; in parentheses, we show the impact of the attack

on the most of existing AGRs, e.g., for Fang attack on CIFAR10 + Alexnet, Bulyan

is the most robust AGR, hence, for CIFAR10 + Alexnet, we show the impact of Fang

attack on Bulyan.

Below, we analyze the AGRs based on the increase in accuracy of the global model

under the strongest of the attacks, i.e., based on the minimum A∗
θ (Section 4.3.2) for

the AGR. For an AGR, the minimum A∗
θ is obtained by subtracting the impact of

the strongest attack, Iθ, from ‘No attack’ accuracy, Aθ. For instance, for CIFAR10

+ Alexnet, our adaptive attack is the strongest attack against DnC and the cor-

responding minimum A∗
θ is 61.5% (as Aθ is 67.6% and the maximum Iθ is 6.1%).

While our AGR-tailored attack is the strongest attack against the best of the existing

AGRs, thus the minimum A∗
θ is 30.8% (as Aθ is 67.6% and the maximum Iθ is 32.5%).

Hence, for CIFAR10 + Alexnet, DnC increases A∗
θ from 30.8% to 61.5%

(∼100% increase). For CIFAR10 + VGG11, DnC increases the minimum A∗
θ from

43.0% to 69.2% (∼150% increase). For Purchase, DnC increase the minimum A∗
θ from

88.6% to 90.2%.

59

DnC increases the minimum A∗
θ for MNIST from 90.7% (93.2%− 2.5%) to 94.3%

(96.2%− 1.9%). Although, the absolute increase due to DnC is small for MNIST, it

is significant due to the simplicity of the tasks.

Robustness comparisons under cross-device FL setting. Now we compare

robustness of previous AGRs and our DnC when cross-device FL is used. We use

CIFAR10 dataset with Alexnet and VGG11 architectures; Table 5.2 shows the results

in similar fashion as Table 5.1. As before, we analyze robustness of an AGR based on

the minimum A∗
θ for the AGR. We note that the impact of attacks on DnC reduces

in cross-device FL, as for the other AGRs. For CIFAR10 + Alexnet, with no

attack accuracy, Aθ, of 64.6%, DnC increases A∗
θ from 50.6% to 61.2%:

for best of existing AGRs, our AGR-tailored attack is the strongest attack with Iθ of

14.0%, i.e., A∗
θ (Aθ−Iθ) of 50.6%. While for DnC, our adaptive attack is the strongest

with Iθ of 3.4%, i.e., A∗
θ of 61.2%. Similarly, for CIFAR10 + VGG11, DnC increases

A∗
θ from 63.4% to 68.0%. The increase in A∗

θ due to DnC in cross-device FL is lower,

because the impact of attacks on previous AGRs is lower, which leaves smaller room

for improvements.

Why DnC is superior? The strong robustness of DnC stems from the

effective filtering guarantees of Lemma 1, which we empirically confirm in

Figure 5.1: Here, in each epoch of FL + DnC training, we compute the fraction of

malicious clients DnC selects and the norm of the difference between means of benign

and malicious gradients relative to the norm of mean of the benign gradients, i.e.

µshift =
∥µB−µM∥22

∥µB∥22
. We then average these entities over a few epochs for presentation

clarity.

We observe in Figure 5.1 that for MNIST (upper row), Fang and Min-Sum attacks

evade DnC’s detection, but have very small µshift which leads to high accuracy of

global model A∗
θ. DnC mitigates LIE even when LIE evades DnC’s detection to

some extent and introduces large µshift. We suspect that, this is because LIE uses

60

ineffective perturbation ∇b
std for MNIST as explained in [132]. Our AGR-tailored

and adaptive attacks evade DnC’s detection to some extent by maintaining low µshift.

Hence, MNIST, due to its simplicity, withstands their poisoning impact.

For CIFAR10 + Alexnet, we observe that DnC effectively filters malicious gradi-

ents of all but our adaptive attack. However, the adaptive attack manages to evade

DnC’s detection only due to low µshift, which is insufficient to poison DnC based FL.

5.1.5.2 Robustness of DnC for non-iid data

Table 5.3 shows the evaluation of DnC for FEMNIST, an imbalanced and non-

iid datasets. We set niters, c, and b in Algorithm 2 to 1, (n − 1)/n, and 10,000,

respectively. We note that, DnC cannot defend at least one of our attacks

by the strongest adversaries with complete knowledge of the gradients

of benign clients, i.e., agr-updates and updates-only adversaries. Min-sum has

attack impact of 79.3%, i.e., it reduces the accuracy from 86.6% in the benign setting

to 7.3%. Here, We omit evaluation of DnC against Fang and LIE attacks, as they are

strictly weaker than all of our attacks against FEMNIST.

Furthermore, resampling [73], a mechanism proposed to reduce non-iid nature of

the input gradients, exacerbates DnC’s robustness (also of existing AGRs as shown

in Table 5.4).

Even the benign gradients of FEMNIST with highly non-iid nature, do not point

in a single direction, and therefore, DnC cannot reliably detect malicious gradients.

This allows adversaries to easily circumvent DnC’s detection and mount strong at-

tacks. However, DnC mitigates all of the model poisoning on FL by more

practical adversaries who do not know the gradients on benign devices,

i.e., agr-only and agnostic adversaries. The maximum attack impact is only 12.7%,

i.e., the maximum accuracy of the global model due to DnC is 73.9%. The most robust

of existing AGRs is Krum and the corresponding maximum accuracy is 66.4%.

61

Table 5.4: Resampling [73] significantly reduces the robustness of existing defenses against
our attacks (20% malicious clients) for all the adversaries from Table 4.1. Because, resam-
pling increases the number of malicious updates processed, and therefore, their poisoning
impacts.

AGR
No

attack
(Aθ)

Updates of benign
devices are known

Updates of benign
devices are unknown

AGR-
tailored

AGR-agnostic AGR-
tailored

AGR-agnostic
MMax MSum MMax MSum

Krum
69.3

30.0 0.1 9.8 2.9 1.1 8.0
Krum-RS 47.8 64.0 43.6 45.2 63.6 58.0
Bulyan

86.1
41.0 20.1 40.0 40.5 18.7 30.4

Bulyan-RS 76.8 81.7 53.9 49.6 10.0 8.1
Trmean

86.7
24.3 29.7 26.8 20.1 24.7 25.2

Trmean-RS 70.3 81.2 46.0 46.4 80.6 68.5

We note that, defending the real-world non-iid FL settings from the worst case

model poisoning attacks is a well-known challenging task [64, 73, 68] and a limitation

of DnC in its current form. We leave investigating further to improve DnC to make

it robust to the non-iid settings to future work.

5.2 Federated Rank Learning (FRL)

In this section, we present federated rank learning (FRL) a novel defense against

FL poisoning. We first present a brief overview of FRL followed by our intuition

behind FRL. Then we detail FRL method and its evaluation.

High level overview of FRL: Figure 5.2 shows how the poisoning adversary

searches for malicious updates in the space of possible updates to maximize the dis-

tance between benign and malicious aggregates (Section 4.2). When the server’s AGR

is not robust, e.g., dimension-wise average [104], there is no limitation on the adver-

sary’s choices, so they can maximize their goal using a malicious update arbitrarily

far from benign updates; (Figure 5.2-(a)). Therefore, even a single malicious client

can jeopardize the accuracy of the global model trained using FedAvg [30]. Current

robust AGRs, such as Multi-krum [30] or Trimmed-mean [168] limit the space of

acceptable updates, i.e., the safe zone shown in Figure 5.2-(b). These robust AGRs

62

a) FedAVG
(Non-robust)

b) FL with Filtering (Shrink
the space of acceptable

updates, e.g., tream-mean)

c) FRL
(Sparsify the space

of acceptable updates)

Safe Space
All Space

Sparsified Space

Continuous Space Continuous Space Discrete Space

Figure 5.2: The space of client updates. Green circles represent benign updates
and red triangles represent malicious updates. To defend against poisoning, existing
robust AGRs filter the updates by creating a safe space (continuous ∈ Rd). On the
other hand, FRL limits the choices of clients by enforcing a discrete space of updates
(a permutation of integers ∈ [1, d]). θbg (green square) demonstrates the aggregated
model for benign users, and θmg (red square) demonstrates the aggregated model
considering malicious updates. Black objects are updates that are ruled out by the
server.

only consider the updates that are in the safe zone and thereby reduce the adversary’s

choices.

Figure 5.2-(c) shows how FRL limits the poisoning adversary’s choices of malicious

updates by making the space of acceptable updates discrete. FRL uses a novel learning

paradigm called supermasks training [173, 126] to create edge rankings, which, as we

will show, allows FRL to reduce communication costs while achieving significantly

stronger robustness. Specifically, in FRL, clients collaborate to find a subnetwork

within a randomly initialized neural network which we call the supernetwork (this is

in contrast to conventional FL where clients collaborate to train a neural network).

The goal of training in FRL is to collaboratively rank the supernetwork’s edges based

on the importance of each edge and find a global ranking. The global ranking can be

converted to a supermask, which is a binary mask of 1’s and 0’s, that is superimposed

on the random neural network (the supernetwork) to obtain the final subnetwork.

For example, in our experiments, the final subnetwork is constructed using the top

63

50% of all edges. The subnetwork is then used for downstream tasks, e.g., image

classification, hence it is equivalent to the global model in conventional FL. Note that

in entire FRL training, weights of the supernetwork do not change.

More specifically, each FRL client computes the importance of the edges of the

supernetwork based on their local data. The importance of the edges is represented

as a ranking vector. Each FRL client will use the edge popup algorithm [126] and

their data to compute their local rankings (the edge popup algorithm aims at learning

which edges in a supernetwork are more important over the other edges by minimizing

the loss of the subnetwork on their local data). Each client then will send their local

edge ranking to the server. Finally, the FRL server uses a novel voting mechanism to

aggregate client rankings into a global ranking vector, which represents which edges

of the random neural network (the supernetwork) will form the global subnetwork.

Intuitions on FRL’s robustness: In traditional FL algorithms, clients send

high dimensional model updates ∈ Rd (real numbers) to the server, providing ma-

licious clients significant flexibility in fabricating malicious updates. By contrast,

FRL clients merely share the rankings of the edges of the supernetwork, i.e., integers

∈ [1, d], where d is the size of the supernetwork. This allows the FRL server to use a

voting mechanism to aggregate client updates (i.e., ranks), therefore, providing high

resistance to malicious ranks submitted by poisoning clients, since each client can

only cast a single vote! Therefore, as we will show both theoretically and empirically,

FRL provides robustness by design and reduces the impact of untargeted poison-

ing attacks. Furthermore, unlike most existing robust FL frameworks, FRL does not

require any knowledge about the percentages of malicious clients.

64

5.2.1 Preliminaries for FRL

5.2.1.1 Edge-popup algorithm

The edge-popup (EP) algorithm [126] is an optimization to find supermasks within

a large, randomly initialized neural network, i.e., called supernetwork, with perfor-

mances close to the fully trained supernetwork. EP algorithm does not train the

weights (θw) of the network, instead only decides the set of edges to keep and re-

moves (pops) the rest of the edges. Specifically, EP algorithm assigns a positive score

to each of the edges in the supernetwork (θs). On forward pass, it selects top k%

edges with highest scores, where k is the percentage of the total number of edges in

the supernetwork that will remain in the final subnetwork. On the backward pass, it

updates the scores with the straight-through gradient estimator [24].

Algorithm 3 presents EP algorithm. Suppose in a fully connected neural network,

there are L layers and layer ℓ ∈ [1, L] has nℓ neurons, denoted by V ℓ = {V ℓ
1 , ..., V

ℓ
nℓ
}. If

Iv and Zv denote the input and output for neuron v respectively, then the input of the

node v is the weighted sum of all nodes in previous layer, i.e., Iv =
∑

u∈V ℓ−1 WuvZu.

Here, Wuv is the weight of the edge connecting u to v. Edge-popup algorithm tries

to find subnetwork E, so the input for neuron v would be: Iv =
∑

(u,v)∈E WuvZu.

Updating scores: Consider an edge Euv that connects two neurons u and v, Wuv

be the weight of Euv, and suv be the score assigned to the edge Euv by Edge-popup

algorithm. Then the edge-popup algorithm removes edge Euv from the supermask if

its score suv is not high enough. Each iteration of supermask training updates the

scores of all edges such that, if having an edge Euv in subnetwork reduces loss (e.g.,

cross-entropy loss) over training data, the score suv increases.

65

Algorithm 3 Edge-popup (EP) algorithm

1: Input: number of local epochs E, training data D, initial weights θw and scores θs, subnetwork
size k%, learning rate η

2: for e ∈ [E] do
3: B ← Split D in B batches
4: for batch b ∈ [B] do
5: EP Forward (θw, θs, k, b)
6: θs = θs − η∇ℓ(θs; b)
7: end for
8: end for
9: return θs

10: Function EP forward(θw, θs, k, b)
11: m← sort(θs)
12: t← int((1− k) ∗ len(m))
13: θp = θw ⊙m, where m[: t] = 0; m[t :] = 1
14: return θp(b)
15: End Function

The algorithm selects top k% edges (i.e., finds a subnetwork with sparsity of k%)

with highest scores, so Iv reduces to Iv =
∑

u∈V ℓ−1 WuvZuh(suv) where h(.) returns 1

if the edge exists in top-k% highest score edges and 0 otherwise. Because of existence

of h(.), which is not differentiable, it is impossible to compute the gradient of loss

with respect to suv. Recall that, the Edge-popup algorithm uses straight-through

gradient estimator [24] to compute gradients. In this approach, h(.) will be treated

as the identity in the backward pass meaning that the upstream gradient (i.e., ∂L
∂Iv

)

goes straight-through h(.). Now using chain rule, we can derive ∂L
∂Iv

∂Iv
∂suv

= ∂L
∂Iv

WuvZu

where L is the loss to minimize. Then we can SGD with step size η to update

scores as suv ←− suv − η ∂L
∂Iv

ZuWuv.

5.2.2 Details of federated rank learning (FRL)

Algorithm (Algorithm 4) details FRL algorithm. FRL clients collaborate (with-

out sharing their data) to find a subnetwork within a randomly initialized, untrained

supernetwork, with scores θs and weights θw. In each round, FRL first finds a unan-

imous (global) ranking of the supernetwork edges and then uses the subnetwork of

the top ranked edges as the global model.

66

Algorithm 4 Federated Ranking Learning (FRL)

1: Input: number of rounds T , number of local epochs E, number of users per
round n, seed seed, learning rate η, subnetwork size k%

2: Server: Initialization
3: θs, θw ← Initialize random scores and weights using seed
4: R1

g ← ArgSort(θs) {Sort the initial scores and obtain initial rankings}
5: for t ∈ [1, T] do
6: U ← set of n randomly selected clients out of N total clients
7: for u in U do
8: Clients: Calculating the ranks
9: θs, θw ← Initialize scores and weights using seed
10: θs[Rt

g]← sort(θs) {sort the scores based on the global ranking}
11: S ← Edge-PopUp(E,Dtr

u , θ
w, θs, k, η) {Client u uses Algorithm3 to train a

supermask on its local training data}
12: Rt

u ← ArgSort(S) {Ranking of the client}
13: end for
14: Server: Majority Vote

15: Rt+1
g ← Vote(Rt

{u∈U}) {Majority vote aggregation}
16: end for
17: Function Vote(R{u∈U}):
18: V ← Sum(ArgSort(R{u∈U})), A← Sum(V)
19: return ArgSort(A)
20: End Function

The objective of FRL is to find a global ranking Rg and convert it to a global

binary mask, m, such that resulting subnetwork, θw ⊙m, minimizes the average loss

of all clients. FRL optimization can be formalized as follows:

min
Rg

F (θw, Rg) = min
Rg

N∑
i=1

λiLi(θ
w ⊙m) (5.2)

s.t. m[Rg < k] = 0 and m[Rg ≥ k] = 1

where N is the total number of FRL clients, Li is the loss function for the ith client, λi

is the importance, e.g., weight, of the ith client; we use λi =
1
N
, i.e., all clients have the

same weight. m is the final binary mask, where edges with top k ranks (layer-wise)

get ’1’ while others get ’0’. We use m to compute final global model by superimposing

m on θ, i.e., the we use the subnetwork θ⊙m as the final global model. In [111], we

67

show that probability of encountering a disconnected subnetwork is very negligibly

small, and also demonstrate what happens if the subnetwork becomes disconnected

for a small sparsity k. In Figure 5.3, we demonstrate a single FRL round using

a supernetwork with six edges ei∈[0,5] and three clients Cj∈[1,3] who aim to find a

subnetwork of size k=50% of the original supernetwork. In Appendix B of [111], we

show how FRL minimizes its objective and is independent of the downstream task.

Figure 5.3: A single FRL round with three clients and supernetwork of 6 edges.

5.2.2.1 Server: Initialization (only for round t = 1)

In the first round, the FRL server chooses a random seed Seed to generate initial

random weights θw and scores θs for the global supernetwork θ; note that, θw, θs, and

Seed remain constant during the entire FRL training. Next, the FRL server shares

68

Seed with FRL clients, who can then locally reconstruct the initial weights θw and

scores θs using Seed. Figure 5.3- 1 depicts this step.

Recall that, the goal of FRL training is to find the most important edges in θw

without changing the weights. Unless specified otherwise, both server and clients use

the Signed Kaiming Constant algorithm [126] to generate random weights and the

Kaiming Uniform algorithm [72] to generate random scores. However, in [111], we also

explore the impacts of different weight initialization algorithms on the performance

of FRL. We use the same seed to initialize weights and scores.

At the beginning, the FRL server finds the global rankings of the initial random

scores (Algorithm 4 line 4), i.e., R1
g = ArgSort(θs). We define rankings of a vector

as the indices of elements of vector when the vector is sorted from low to high, which

is computed using ArgSort function.

5.2.2.2 Clients: Calculating the ranks (for each round t)

In the tth round, FRL server randomly selects n clients among total N clients, and

shares the global rankings Rt
g with them. Each of the selected n clients locally recon-

structs the weights θw’s and scores θs’s using seed (Algorithm 4 line 9). Then, each

FRL client reorders the random scores based on the global rankings, Rt
g (Algorithm 4

line 10); we depict this in Figure 5.3- 2a .

Next, each of the n clients uses reordered θs and finds a subnetwork within θw

using Algorithm 3; to find a subnetwork, they use their local data and E local epochs

(Algorithm 4 line 11). Note that, each iteration of Algorithm 3 updates the scores S

starting from θs. Then client u computes their local rankings Rt
u using the final up-

dated scores (S) and Argsort(.), and sends Rt
u to the server. Figure 5.3- 2a shows

how each of the selected n clients reorders the random scores using global rankings.

For instance, the initial global rankings for this round are Rt
g = [2, 3, 0, 5, 1, 4], mean-

69

ing that edge e4 should get the highest score (s4 = 1.2), and edge e2 should get the

lowest score (s2 = 0.2).

Figure 5.3- 2b shows, for each client, the scores and rankings they obtained af-

ter finding their local subnetwork. For example, rankings of client C1 are Rt
1 =

[4, 0, 2, 3, 5, 1], i.e., e4 is the least important and e1 is the most important edge for C1.

Considering desired subnetwork size to be 50%, C1 uses edges {3,5,1} in their final

subnetwork.

5.2.2.3 Server: Majority vote (for each round t)

The server receives all the local rankings of the selected n clients, i.e., Rt
{u∈U}.

Then, it performs a majority vote over all the local rankings using Vote(.) function.

Note that, for client u, the index i represents the importance of the edge Rt
u[i] for Cu.

For instance, in Figure 5.3- 2b , rankings of C1 are R
t
1 = [4, 0, 2, 3, 5, 1], hence the edge

e4 at index=0 is the least important edge for C1, while the edge e1 at index=5 is the

most important edge. Consequently, Vote(.) function assigns reputation=0 to edge

e4, reputation=1 to e0, reputation=2 to e2, and so on. In other words, for rankings

Rt
u of Cu and edge ei, Vote(.) computes the reputation of ei as its index in Rt

u.

Finally, Vote(.) computes the total reputation of ei as the sum of reputations from

each of the local rankings. In Figure 5.3- 2b , reputations of e0 are 1 in Rt
1, 1 in Rt

2,

and 0 in Rt
3, hence, the total reputation of e0 is 2. We depict this in Figure 5.3- 3 ;

here, the final total reputations for edges e{i∈[0,5]} are A = [2, 12, 3, 11, 8, 9]. Finally,

the server computes global rankings Rt+1
g to use for round t + 1 by sorting the final

total reputations of all edges, i.e., Rt+1
g = Argsort(A).

Note that, all FRL operations that involve sorting, reordering, and voting are

performed in a layer-wise manner. For instance, the server computes global rankings

Rt
g in round t for each layer separately, and consequently, the clients selected in round

t reorder their local randomly generated scores θs for each layer separately.

70

5.2.3 Robustness of FRL to poisoning

FRL and FL are distributed learning algorithms with mutually untrusting clients.

Hence, a poisoning adversary may own or compromise some of FRL (FL) clients,

called malicious clients, and mount a targeted or untargeted poisoning attack. As

discussed in Section 1, we mainly focus on the more severe untargeted attacks and

show that FRL is significantly more robust by design to such poisoning attacks. How-

ever, for completeness we also evaluate robustness of FRL against targeted attacks

in [111].

5.2.3.1 Intuition behind robustness of FRL

Existing FL algorithms, including robust algorithms, are shown to be vulnerable

to various poisoning attacks [134]. One of the key reasons behind the susceptibility of

existing algorithms is that their model updates can have a large continuous space of

values. For instance, to manipulate vanilla FedAvg, malicious clients send very large

updates [30], and to manipulate Multi-krum and Trimmed-mean, [64, 132] propose

to perturb a benign update in a specific malicious direction. On the other hand, in

FRL, clients must send a permutation of indices ∈ [1, nℓ] for each layer. Hence, FRL

significantly reduces the space of the possible malicious updates that an adversary

can craft. Majority voting in FRL further reduces the chances of successful attack.

Intuitively, this makes FRL design robust to poisoning attacks. Below, we make this

intuition more concrete.

5.2.3.2 The worst-case untargeted poisoning attack on FRL

Here, the poisoning adversary aims to reduce the accuracy of the final global FRL

subnetwork on most test inputs. To achieve this, the adversary should replace the

high ranked edges with low ranked edges in the final subnetwork. For the worst-case

analysis of FRL, we assume a very strong adversary (i.e., threat model): 1) each

of the malicious clients has some data from benign distribution; 2) malicious clients

71

know the entire FRL algorithm and its parameters; 3) malicious clients can collude.

Under this threat model we design a worst case attack on FRL (Algorithm 5), which

executes as follows: First, malicious clients compute rankings on their benign data

and use Vote(.) algorithm to compute an aggregate rankings. Finally, each of the

malicious clients uses the reverse of the aggregate rankings to share with the FRL

server in given round. The adversary should invert the rankings layer-wise as the

FRL server will aggregate the local rankings per layer too, and it is not possible to

mount a model-wise attack.

Algorithm 5 FRL Poisoning

1: Input: number of malicious clients M , number of malicious local epochs E ′, seed
seed, global ranking Rt

g, learning rate η, subnetwork size k%
2: Function Maliciousupdate(M, seed, Rt

g, E
′, η, k):

3: for mu ∈ [M] do
4: Malicious Client Executes:
5: θs, θw ← Initialize random scores and weights using seed
6: θs[Rt

g]← sort(θs)
7: S ← Edge-PopUp(E ′, Dtr

u , θ
w, θs, k, η)

8: Rt
mu ← ArgSort(S) {Ranking of the malicious client}

9: end for
10: Aggregation:

11: Rt
m ← Vote(Rt

{mu∈[M]}) {Majority vote aggregation}
12: return Reverse(Rt

m) {reverse the ranking}
13: End Function

Now we justify why the attack in Algorithm 5 is the worst case attack on FRL for

the strong threat model. Note that, FRL aggregation, i.e., Vote(.), computes the

reputations using clients’ rankings and sums the reputations of each network edge.

Therefore, the strongest poisoning attack would want to reduce the reputation of good

edges. This can be achieved following the aforementioned procedure of Algorithm 5

to reverse the rankings computed using benign data.

72

5.2.3.3 Theoretical analysis of robustness of FRL algorithm

In this section, we prove an upper bound on the failure probability of robustness of

FRL, i.e., the probability that a good edge will be removed from the final subnetwork

when malicious clients mount the worst case attack.

Following the work of [25], we make two assumptions in order to facilitate a

concrete robustness analysis of FRL: a) each malicious client has access only to its

own data, and b) we consider a simpler Vote(.) function, where the FRL server

puts an edge ei in the final subnetwork if more than half of the clients have ei (a

good edge) in their local subnetworks. In other words, the rankings that each client

sends to the server is just a bit mask showing that each edge should or should not be

in the final subnetwork. The server makes a majority vote on the bit masks, and if

an edge has more than half votes, it will be in the global subnetwork. Our Vote(.)

mechanism has more strict robustness criterion, as it uses more nuanced reputations

of edges instead of bit masks. Hence, the upper bound on failure probability in this

section also applies to the FRL vote(.) function.

The probability that our voting system fails is the probability that more than

half of the votes do not include ei in their subnetworks. The upper bound on the

probability of failure would be 1/2
√

np(1−p)
(n(p+α(1−2p)−1/2))2

, where n is the number of clients

being processed, p is the probability that a benign client puts ei in their top ranks,

and α is the fraction of malicious clients. Please check [111] for the detailed proof.

Figure 5.4 shows the upper bound on the failure of Vote(.) for different values of

α and p. As can be seen, the higher the probability p, the higher the robustness of

FRL.

73

0.6 0.7 0.8 0.9 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

V
ot
e
F
ai
lu
re

P
ro
b
U
pp
er
b
ou
nd

α = 10

α = 20

α = 30

α = 40

Figure 5.4: Upper bound on the failure probability of Vote(.) function in FRL. α is
the percentages of malicious clients and p is the probability that a benign client puts
a good edge in its top k ranks.

5.2.4 Robustness evaluation of FRL

5.2.4.1 Experimental setup

Datasets and their distribution: We use MNIST, CIFAR10, and FEMNIST

datasets. Most real-world FL settings have heterogeneous client data, hence following

previous works [127, 75], we distribute MNIST and CIFAR10 datasets among 1,000

clients in non-iid fashion using Dirichlet distribution with parameter β = 1. Note

that, increasing β results in more iid datasets. FEMNIST is naturally distributed

non-iid among 3,400 clients. We further split the datasets of each client into training

(80%) and test (20%).

We run all the experiments for 2000 global rounds of FRL and FL, while selecting

25 clients in each round. At the end of the training, we calculate the test accuracy

74

Table 5.5: State-of-the-art model architectures that we use for FRL experiments.

Architecture Layer Name Number of parameters

LeNet [158]
(MNIST and
FEMNIST)

Conv(32) 288
Conv(64) 18432
FC(128) 1605632

FC(10) or FC(62) 1280 or 7936

Conv8 [126]
(CIFAR10)

Conv(64), Conv(64) 38592
Conv(128), Conv(128) 221184
Conv(256), Conv(256) 884736
Conv(512), Conv(512) 3538944

FC(256), FC(256), FC(10) 592384

of all the clients on the final global model, and we report the mean and standard

deviation of all clients’ test accuracies in our experiments. For MNIST and FEM-

NIST we use LeNet architecture and for CIFAR10 we use Conv8 architecture shown

in Table 5.5. For complete hyperparameter settings, please refer to Appendix C.1

of [111]. We independently tune the hyperparameters for FRL and other baselines

(Section 5.2.4.1).

Baseline FL algorithms: We compare the FRL with FedAvg (Section 2.1) Multi-

Krum (Section 2.2.3), Trimmed-mean (Section 2.2.3) and the following two additional

FL baselines:

SignSGD [25] is a quantization method used in distributed learning to compress each

dimension of gradient updates into 1 bit instead of 32 or 64 bits. To achieve this, in

SignSGD the clients only send the sign of their gradient updates to the server, and

the server runs a majority vote on them. SignSGD is designed for distributed learning

where all the clients participate in each round, so all the clients are aware of the most

updated weight parameters of the global model. However, SignSGD only reduces

upload communication (clients→server). But, does not reduce download communica-

tion (server→clients), i.e., to achieve good performance of the global model, the server

sends all the weight parameters (each of 32 bits) to the newly selected clients in each

round. Hence, SignSGD is as inefficient as FedAvg in download communication.

75

TopK [15, 12] is a sparsification method used in distributed learning that transmits

only a few dimensions of each model update to the server. In TopK, the clients

first sort the absolute values of their local model updates, and send the Top K%

largest model update dimensions to the server for aggregation. TopK suffers from

the same problem as SignSGD: for performance reasons, the server should send the

entire updated model weights to the new selected clients.

Table 5.6: Comparing the robustness of various FL algorithms: FRL and Sparse-FRL
(SFRL) (in bold) outperform the state-of-the-art robust AGRs and SignSGD against
our strong untargeted poisoning attacks from Section 4.2.

Dataset AGR No malicious 10% malicious 20% malicious

MNIST + LeNet
1000 clients

FedAvg 98.8 (3.2) 10.0 (10.0) 10.0 (10.0)
Trimmed-mean 98.8 (3.2) 95.1 (7.7) 87.6 (9.5)
Multi-krum 98.8 (3.2) 98.6 (3.3) 97.9 (4.1)
SignSGD 97.2 (4.6) 96.6 (5.0) 96.2 (5.6)
FRL 98.8 (3.1) 98.8 (3.1) 98.7 (3.3)

SFRL Top 50% 98.2 (3.8) 97.04 (4.4) 95.1 (7.8)

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 10.0 (10.1) 10.0 (10.1)
Trimmed-mean 84.9 (11.0) 56.3 (16.0) 20.5 (13.2)
Multi-krum 84.7 (11.3) 58.8 (15.8) 25.6 (14.4)
SignSGD 79.1 (12.8) 39.7 (15.9) 10.0 (10.1)
FRL 85.3 (11.3) 79.0 (12.4) 69.5 (14.8)

SFRL Top 50% 77.6 (13.0) 41.7 (15.4) 39.7 (15.2)

FEMNIST + LeNet
3400 clients

FedAvg 85.8 (10.2) 6.3 (5.8) 6.3 (5.8)
Trimmed-mean 85.2 (11.0) 72.7 (15.7) 56.2 (20.3)
Multi-krum 85.2 (10.9) 80.9 (12.2) 23.7 (12.8)
SignSGD 79.3 (12.4) 76.7 (13.2) 55.1 (14.9)
FRL 84.2 (10.7) 83.0 (10.9) 65.8 (17.8)

SFRL Top 50% 75.2 (12.7) 70.5 (14.4) 60.39 (14.8)

5.2.4.2 Robustness of FRL against untargeted poisoning

Here, we compare FRL with Multi-krum (Mkrum) and Trimmed-mean. Table 5.6

gives the performances of robust AGRs, SignSGD, and FRL with different percentages

of malicious clients using our strong model poisoning attacks (Section 4.2), and the

attacks in [25] and Algorithm 5, respectively. Here, we make a rather impractical

assumption in favor of the previous robust AGRs: we assume that the server knows

the exact % of malicious clients in each FL round. Note that, FRL does not require

this knowledge.

76

FRL achieves higher robustness than state-of-the-art robust AGRs: We

note from Table 5.6 that, FRL is more robust to the presence of malicious clients who

mount untargeted poisoning attacks, compared to Multi-Krum and Trimmed-mean,

when percentages of malicious clients are 10% and 20%. For instance, on CIFAR10,

10% malicious clients can decrease the accuracy of FL models to 56.3% and 58.8% for

Trimmed-mean and Multi-Krum respectively; 20% malicious clients can decrease the

accuracy of the FL models to 20.5% and 25.6% for Trimmed-mean and Multi-Krum

respectively. On the other hand, FRL performance decreases to 79.0% and 69.5% for

10% and 20% attacking ratio, respectively.

We make similar observations for MNIST and FEMNIST datasets: for FEM-

NIST, 10% (20%) malicious clients reduce accuracy of the global model from 85.8%

to 72.7% (56.2%) for Trimmed-Mean, and to 80.9% (23.7%) for Multi-krum, while

FRL accuracy decreases to 83.0% (65.8%).

FRL is more accurate than SignSGD: First, we note that, in the absence of

malicious clients, FRL is significantly more accurate than SignSGD. For instance,

on CIFAR10 distributed in non-iid fashion among 1000 clients, FRL achieves 85.3%

while SignSGD achieves 79.1% , or on FEMNIST, FRL achieves 84.2% while SignSGD

achieves 79.3%. This is because, FRL clients send more nuanced information via

rankings of their subnetworks compared to SignSGD, where clients just send the

signs of their model updates.

FRL is more robust than SignSGD: Next, we note from Table 5.6 that, FRL is

more robust against untargeted poisoning attacks compared to SignSGD when per-

centages of malicious clients are 10% and 20%. For instance, on CIFAR10, 10% (20%)

malicious clients can decrease the accuracy of SignSGD model to 39.8% (10.0%). On

the other hand, FRL performance decreases to 79.0% and 69.5% for 10% and 20%

attacking ratio respectively. We make similar observations for MNIST and FEMNIST

datasets: for FEMNIST, 10% (20%) malicious clients reduce accuracy of the global

77

model from 85.8% to 76.7% (55.1%) for SignSGD, while FRL accuracy decreases to

83.0% (65.8%).

Robustness of Sparse-FRL: We evaluate robustness of SFRL Top 50% against

10% and 20% malicious clients. As we can see from Table 5.6, by sending only top

half of the local rankings, the accuracy goes from 85.3% (FRL) to 77.6% (SFRL).

SFRL also can provide robustness to some extend, but adversary has more influence

on the global ranking since half of the rankings are missing. For instance, on CI-

FAR10, 10% (20%) malicious clients can decrease the accuracy of global ranking to

41.7% (39.7%) from 77.6%. Also for FEMNIST, 10% (20%) malicious clients can

decrease the accuracy of global ranking to 70.5% (60.39%) from 75.2%. We can see

when malicious clients’ percentages are higher, SFRL can perform better compared

to existing robust AGR.

FRL versus FedAvg and TopK: We omit the results of non-robust aggregations,

FedAvg and TopK, because even a single malicious client [30] can jeopardize their

performances.

5.2.4.3 Robustness of FRL against targeted poisoning

So far, we evaluated the robustness of FRL against untargeted attacks. In this

section, we evaluate the robustness against targeted poisoning, and specifically against

backdoor poisoning attacks. We consider state-of-the-art backdoor attacks of three

types: semantic [18], artificial [164], and edge-case[155] backdoor attacks.

Evaluation setup: Below we detail evaluation setup we use for evaluating robust-

ness of FRL against targeted poisoning.

Training hyperparameters: We compare the performances of the FRL and Fe-

dAvg against the above backdoor attacks. We evaluate the accuracy of the (poisoned)

global model on the main (inputs without trigger) and backdoor (inputs with trigger)

tasks. Following [155, 18], for all the experiments, we start from a pre-trained model

78

with 80.0% test accuracy and train it for 1,000 more FL rounds when malicious clients

are present. We use N = 1000 clients, distribute CIFAR10 as in Section 5.2.4.1, and

randomly select n = 25 clients in each round. We report the final test accuracy

and the average of backdoor test accuracies over the 1000 FL rounds when percent-

ages of malicious clients is in {1, 2, 5, 10}. We assume that each malicious client

has some benign data (per the distribution scheme from Section 5.2.4.1) and all the

backdoored data. We use the same hyperparameters discussed in Section 5.2.4.1 for

training CIFAR10 on Conv8 model.

Backdoor attack hyperparameters: Here we provide hyperparameter details.

(1) Model Replacement in FL backdoor Attacks: FL backdoor poisoning attacks use

a strategy called model replacement where the malicious client first finds a malicious

update that contains the backdoor, then it scales the model parameters to cancel the

contributions from the other honest clients. For example, if there are m malicious

clients selected in FL round t, each malicious client u calculates its backdoored update

θtu, and re-scaled it to λθtu where λ = m
n

where n is the number of selected clients

in each FL round. Model replacement strategy requires that the global model is

close to convergence, so the malicious clients can replace the global model with their

backdoored model, which performs well on the main task. Following this strategy, the

backdoor accuracy would be very high in FedAvg, even if one of the malicious clients

is chosen in one round. However, in FRL, re-scaling is not possible as the clients are

sending their local rankings where each ranking are a permutation of the indices of

the edges in each layer, i.e., of [0, nℓ− 1]∀ℓ ∈ [L] where L is the number of layers and

nℓ is the number of parameters in ℓth layer. To have a fair comparison with FedAvg,

we did not use a model replacement strategy for FedAvg too.

(2) Semantic backdoors: We choose images with vertically striped walls in the back-

ground (Figure 5.5 (a)) as the backdoors. Of these 12 images with this trigger in the

CIFAR10 dataset, we use 9 of them for training the backdoors while keeping the other

79

three for testing the backdoor accuracy. The malicious clients want the global model

to predict these images as the bird (class label=2). We measure the backdoor accu-

racy on 1000 randomly rotated and cropped versions of the three backdoor images

held out of the adversary’s training.

(3) Artificial backdoors: We add a particular pixel pattern to the top left corner of

the first nine (not bird) images of the CIFAR10 dataset (Figure 5.5 (b)) and change

their labels to bird (label=2). To evaluate these attacks, we pick 256 random (not

bird) images from CIFAR10 and add this pattern to them with the label of class bird.

(4) Edge-Case backdoors: We collect 980 images from public web by searching for

Southwest airplanes (similar to what [155] did) and resize the images to 32 × 32

(Figure 5.5 (c)). We set their target labels as truck (class label=9). We use 784 of

these images for training and keep 196 of them for the evaluation of the backdoor.

0 2 4 6 8 10
Percentage of attackers

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

FedAvg (Backdoor)
FRL (Backdoor)

FedAvg (Main Task)
FRL (Main Task)

(a) Semantic backdoor results

0 2 4 6 8 10
Percentage of attackers

0

20

40

60

80

Te
st
 A
cc
ur
ac
y

FedAvg (Backdoor)
FRL (Backdoor)

FedAvg (Main Task)
FRL (Main Task)

(b) Edge-Case backdoor results

Figure 5.5: FL backdoor poisoning attacks on CIFAR10 distributed over 1000 clients
with Dirichlet (β = 1.0) for presence pf adversary in 1000 FL rounds.

Evaluation results:

Semantic backdoor attacks: Figure 5.5 (a) shows the performance of FedAvg and

FRL on the main task and the backdoor task when different percentages of malicious

clients want to put a semantic backdoor in the global model. This figure shows that

FRL is more robust against semantic backdoor attacks for different percentages of

80

malicious clients. For example, with 2% of malicious clients, training FedAvg results

in 84.4% final test accuracy with 82.7% average backdoor accuracy, while training

FRL results in 84.1% and 49.2% accuracy on the main task and backdoor task,

respectively. The existence of a more significant number of malicious clients (e.g.,

10%) results in higher backdoor accuracy for both FedAvg and FRL as the malicious

clients have more influence on the global model to introduce their backdoor; with

existence of 10% of malicious clients, training FedAvg and FRL achieves 95.7% and

91.2% average backdoor accuracy respectively.

Artificial backdoor attacks: These attacks are ineffective when the adversary

cannot use model replacement strategy (i.e., cannot re-scale their parameters). In

FRL, malicious clients cannot scale their updates, as they submit a local ranking

(from a discrete space of updates). To be fair, we also did not use re-scaling in our

experiments for FedAvg. We did not report the results for this attack, as the backdoor

accuracy would be 0% for both FRL and FedAvg with no parameter re-scaling. It

means that the global model always predict the right label (not the adversary target

label ”bird”) for the test backdoor images.

Edge-Case backdoor attacks: Figure 5.5 (b) shows that FRL is more robust

against Edge-case backdoor attacks for different percentages of malicious clients. For

example, with 2% of malicious clients, training FedAvg results in 83.7% final test

accuracy with 77.3% average backdoor accuracy, while training FRL results in 84.0%

and 64.6% accuracy on the main task and backdoor task, respectively. Similar to

semantic backdoors, a larger number of malicious clients (e.g., 10%) results in higher

backdoor accuracy for both FedAvg and FRL; with 10% of malicious clients, training

FedAvg and FRL achieves 94.0% and 90.3% average backdoor accuracy respectively.

81

CHAPTER 6

A CRITICAL EVALUATION POISONING ATTACKS ON
PRODUCTION FEDERATED LEARNING

In Chapter 4, we demonstrated that the our state-of-the-art model poisoning

attacks can significantly reduce performances of the global models trained using FL

based on state-of-the-art robust aggregation rules (AGRs). In other words, we showed

that the theoretical robustness guarantees of the major robust AGRs overestimate

their robustness against poisoning attacks.

The gap between the literature and practice: In order to test the theoreti-

cal robustness of AGRs, in Chapter 4 we assumed a strong poisoning adversary who

introduces and controls up to 25% malicious clients, because most of the existing ro-

bust AGRs claim that they can defend against up to 25% malicious clients. Majority

of the existing literature on poisoning attacks and defenses for FL makes similarly

unrealistic assumptions that do not hold in real-world FL deployments, e.g., assump-

tions about the percentages of malicious clients, total number of FL clients, and the

types of FL systems [82]. Typically, the assumptions are about the convexity of

optimization problem, percentages of malicious clients, total number of FL clients,

and type of the FL setting. For instance, state-of-the-art attacks [64, 22, 132] (de-

fenses [30, 168, 165, 45]) assume adversaries who can compromise up to 25% (50%)

of FL clients. For an app like Gboard with ∼ 1B installations [82], 25% malicious

clients would mean an attacker controls 250 million Android devices ! We argue that,

although interesting from theoretical perspectives, the assumptions in recent FL ro-

bustness works do not represent common real-world adversarial scenarios that account

for the difficulty and cost of at-scale compromises.

82

Hence, in this chapter, we perform a critical analysis of the literature on FL ro-

bustness against (untargeted) poisoning under practical considerations. Our ultimate

goal is to understand the significance of poisoning attacks and the need for sophisti-

cated robust FL algorithms in production FL.

More specifically, following the systematization of threat models of poisoning at-

tacks on FL introduced in Chapter 3, we discuss the practicality of all possible threat

models obtained by combining the dimensions corresponding to the objective of untar-

geted poisoning. Note that, as clarified in Section 3.1.1.1.1, this thesis focuses on un-

targeted poisoning on FL. As we will discuss, out of all possible combinations, only two

threat models, i.e., nobox offline data poisoning and whitebox online model poisoning,

are of practical value to production FL. We believe that prior works [22, 30, 64, 132]

have neglected the crucial constraints of production FL systems on the parameters

relevant to FL robustness. To the best of our knowledge, for the first time, we consider

the production FL environments [82, 32] and provide practical ranges for various pa-

rameters of poisoning threat models. As a result, our evaluations lead to conclusions

that contradict the common beliefs in the literature, e.g., we show that production FL

even with the non-robust Average AGR is significantly more robust than previously

thought.

Next, we introduce improved poisoning attacks under the two aforementioned

threat models. We build on the classic label flipping data poisoning attack [161, 162,

118] designed for centralized ML and present the first attacks that systematically

consider the data poisoning threat model for FL. We also propose novel model poi-

soning attacks based on the idea of stochastic gradient ascent and show that they

outperform the state-of-the-art.

Finally, we extensively evaluate all existing poisoning attacks as well as our own

improved attacks across three benchmark datasets, for various FL parameters, and

83

Table 6.1: Practical ranges of FL parameters based on the literature and discussions
on FL production systems [6, 82, 32] and the ranges used in untargeted FL poisoning
and robust AGRs literature [64, 22, 132, 30, 108]. MPA means model poisoning
attack and DPA means data poisoning attack. Red (green) cells denote impractical
(practical) ranges.

Parameters/Settings What we argue to be practical
Used in previous
untargeted works

FL type + Attack type
Cross-silo + DPAs

Cross-device + {MPAs, DPAs} Cross-silo + MPAs

Total number of FL
clients, N

Order of [103, 1010] for cross-device
[2, 100] for cross-silo

[50, 100]

Number of clients
chosen per round, n

Small fraction of N for cross-device
All for cross-silo

All

% of compromised
clients, M

M ≤0.1% for DPAs
M ≤0.01% for MPAs

[20, 50]%

Average size of benign
clients’ data, |D|avg

[50, 1000] for cross-device
Not applicable to cross-silo

Not studied for cross-device
[50, 1000] for cross-silo

Maximum size of
local poisoning data

Up to 100× |D|avg for DPAs
Not applicable to MPAs

∼ |D|avg

for different types of FL deployments. We make several significant deductions about

the state of FL poisoning literature for production FL.

6.1 Practical Considerations for Poisoning Threat Models

In this section, we consider practical FL deployments and discuss their features

relevant to understanding the robustness of such practical FL deployments.

6.1.1 Salient Features of Production Federated Learning

Production FL can be either cross-device or cross-silo [82]. In cross-device FL,

the number of clients (N) is large (from few thousands to billions) and only a small

fraction of them is chosen in each FL training round, i.e., n ≪ N . In cross-device

FL, clients’ devices are highly resource constrained, and therefore, they can process

only a limited amounts of data in an FL round. Also, as the devices have highly

unreliable network connections, it is expected that a small fraction of the selected

devices may drop out in any given FL round. Note that, this equally impacts both

benign and malicious clients and does not affect the robustness; this is similar to how

84

Table 6.2: The eight possible threat models for untargeted poisoning attacks on
FL. T3-T8 are valid, but only T4 and T5 represent practical FL deployments (Sec-
tion 6.1.4).

Capability Knowledge Attack mode
∈ {MP, DP} ∈ {Nb, Wb} ∈ {Off, On}

T1 Model poison Nobox Offline
T2 Model poison Nobox Online
T3 Model poison Whitebox Offline
T4 Model poison Whitebox Online
T5 Data poison Nobox Offline
T6 Data poison Nobox Online
T7 Data poison Whitebox Offline
T8 Data poison Whitebox Online

the choice of n has no impact on the robustness (Section 6.3.4.3). In cross-silo FL, N

is moderate (up to 100) and all clients are selected in each round, i.e., n = N . Clients

are large corporations, e.g., banks, and have devices with ample resources. Hence,

they can process very large amounts of data and client drop-outs do not happen.

In both FL types, the on-device model used for inference and the on-device model

being trained are different. Hence, an adversary cannot gain any insight into the

training-model by querying the inference-model, i.e., nobox access (Table 3.1), and

must break into the device, i.e., get whitebox access (Table 3.1).

Finally, we assume that production systems are adequately protected against stan-

dard attack vectors and vulnerabilities such as Sybil attacks. For instance, if the

adversary manages to operate millions of fake accounts [63], we argue that the ser-

vice provider should prioritize improving their security attestation protocols instead

of deploying FL. Section 6.1.3 also explains that the cost of operating a large scale,

persistent botnet in modern operating systems, e.g., Android, is non-trivial. Please

refer to [82] for more details on production FL.

6.1.2 Understanding the practicality of threat models

For our goal of untargeted poisoning with the partial knowledge of the benign

data, we can combine the rest of the dimensions in Table 3.1 and obtain eight possible

85

threat models (Table 6.2). We argue that only T4 (nobox offline data poison) and

T5 (whitebox online model poison) are of practical value, and below, justify why

other models are less relevant in practice: (1) With model poisoning capability, the

adversary has whitebox access by default, hence, T1 and T2 in Table 6.2 are not valid.

(2) In cross-device FL, only a few selected clients get the most recent global model

in each round. Hence, to gain whitebox access to the model, the adversary needs to

control (i.e., break into) a large number of devices (so that in most FL rounds, the

FL server picks at least one of them), which is impractical in practice as we explain

in Section 6.1.3. With whitebox access, the adversary can mount the stronger online

model poisoning attacks (MPAs) instead of data poisoning attacks (DPAs). Therefore,

T3, T7, and T8 are not reasonable threat models, as they combine whitebox access

with either offline attacks or DPAs. (3) Under T6 (nobox online data poison), the

adversary mounts an online attack, i.e., they adaptively poison the local data of

malicious clients. But, as the adversary has no knowledge of the (current) global

model due to nobox access, they cannot generate new poisoning data adaptively.

Hence, the combination of nobox and online is not practical.

6.1.3 Practical Ranges of FL Parameters

We argue that the literature on untargeted poisoning [22, 64, 132, 30, 108] rarely

evaluates their proposed attacks/defenses for the production FL settings, primarily

due to their motivation to perform worse-case analyses. But, we show that such

analyses lead to conclusions that do not apply to production FL.

Table 6.1 demonstrates the stark differences between the parameter ranges used in

the untargeted poisoning literature and their practical ranges, which we have obtained

from recent surveys [82, 32] and discussion among FL experts [6]. This is due to the

more challenging nature of untargeted poisoning in FL. We attribute this to the

86

difficulty of establishing successful untargeted attacks for practical settings, as we

will also show in our evaluations.

Contrary to what production FL settings encounter, previous works commonly

evaluate robustness using very high percentages of malicious clients and/or using

model poisoning attacks on cross-silo FL (Table 6.1). However, we use small per-

centages of malicious clients M ≤1, for cross-device FL, use large numbers of clients

N ∈[1, 000, 34, 000] and use n ∈ [25, 50]≪ N in each round; we use N=n=50.

In particular, consider the percentages of malicious clients; state-of-the-art at-

tacks [64, 22, 132] (defenses [30, 168, 165, 45]) assume adversaries who can compromise

up to 25% (50%) of FL clients. The cost of creating and operating a compromised

client botnet at scale (which includes breaking into devices) is non-trivial. To create

the botnet, the adversary would need to either buy many physical devices (∼$25 each)

and root them (for state-of-the-art model poisoning attacks [64, 22, 132]), pay for ac-

cess to large but undetected botnets with remote administrative access, or develop

an entirely new botnet via compromising a popular app/sdk to exploit unpatched

security holes and gain persistence. To operate the botnet, the adversary must avoid

detection by antimalware services [8] as well as dynamic anti-abuse services (such as

Android’s SafetyNet [9]). With a botnet in place, the adversary may further need to

pay for a skilled engineering team to keep malicious FL code in sync with the tar-

get FL-enabled app and to reverse-engineer frequently-shifting ML workloads. Such

an engineering team could instead change apps’ behaviors to mimic the effect of a

compromised FL-trained model, they might use their privileged access to steal lo-

gin credentials for account hijacking, or they might participate in ad/click fraud or

bank fraud or ransomware for financial gain. More plausible scenarios for an adver-

sary reaching double-digit client percentages—such as an app insider—likely enable

attacker-controlled FL servers, thereby removing them from the literature’s standard

threat model.

87

For data poisoning attacks, we assume that malicious clients can have a limited

amount of poisoned data Dp. Because, in cross-device FL, the devices with low

processing powers (e.g., smart phones and watches) can process limited Dp in the

short duration of FL rounds. However, in cross-silo FL, silos can inspect Dp and

remove Dp with sizes much larger than the average size of clients’ data |D|avg. Hence,

we argue that |Dp| should be up to 100 × |D|avg. We discuss rest of the parameters

from Table 6.1 in the corresponding sections.

6.1.4 Threat Models in Practice

Here we discuss the two threat models of practical interest.

6.1.4.1 Nobox Offline Data Poisoning (T4)

In this setting, the adversary does not know the architecture, parameters, or

outputs of the global model. The adversary knows the server’s AGR, but may or may

not know the global model architecture; we evaluate both cases. We assume that

the adversary knows the benign data of the malicious clients and mounts offline data

poisoning attacks (DPAs).

This adversary does not require any access to the internals (e.g., FL binaries,

memory) of compromised devices, and therefore, can compromise large percentages

of production FL clients, e.g., on order of up to 0.1% [82, 6]. However, the poisoning

impact of the corresponding poisoned updates is very limited. This is partly because

arbitrarily poisoned updates (e.g., of model poisoning attacks (MPAs) [64, 22, 132])

need not map to the valid data domain. For instance, consider the standard max

function: f(x, y)=max(x, y). Gradient of this function with respect to either x or y

is always 0 or 1 [53]. Hence, a DPA cannot have a poisoned update with an arbitrary

value for gradients of the parameters. But an MPA can, because it can directly assign

any arbitrary value to the parameters’ gradients.

88

6.1.4.2 Whitebox Online Model Poisoning (T5)

The adversary knows the parameters and predictions of the global model whenever

the server selects at least one compromised client. We assume that the adversary

knows the server’s aggregation rule and the benign data on the compromised devices.

The adversary mounts online MPAs.

Unlike data poisoning adversary, this adversary breaks into the compromised de-

vices, which is extremely costly as discussed in Section 6.1.3. Hence, in practice, a

model poisoning adversary can compromise very small percentages of FL clients, e.g.,

on order of up to 0.01% [82, 6]. However, due to their ability to directly manipulate

the model updates, in theory, a model poisoning adversary can craft highly poisonous

updates. We can justify this claim from the example of a zero-value parameter dis-

cussed in Section 6.1.4.1.

6.2 Exploring The Space of FL Poisoning Attacks

Existing FL Poisoning Attacks: Section 2.2.1 details the existing data and model

poisoning attacks. In our evaluations, we also consider our model poisoning attacks

from Chapter 4; we call them dynamic optimization (DYN-OPT) attacks.

6.2.1 Improved FL Poisoning Attacks

We use the same general optimization problem as in Section 4.2.1 of Chapter 4 to

design improved data and model poisoning attacks. The optimization is reproduced

below for reference:

argmax
∇′∈Rd

∥∇b −∇p∥ (6.1)

...∇b =favg(∇i∈{[n′]}), ∇p = fagr(∇′
{i∈[m]},∇{i∈[n′]})

where, m is the number of malicious clients selected in the given round, fagr is the

target AGR, favg is the Average AGR, ∇{i∈[n′]} are the benign updates available to

89

the adversary (e.g., updates computed using the benign data of malicious clients), ∇b

is a reference benign aggregate, and ∇′
{i∈[m]} are m replicas of the poisoned update,

∇′, of our attack. ∇p is the final poisoned aggregate.

Although the optimization problem is the same as before, two key differences are:

(1) We are the first to use (6.1) to construct systematic data poisoning attacks on

FL. (2) Our model poisoning attacks not only tailor the optimization in (6.1) to the

given AGR (as in Chapter 4), but also to the given dataset and global model, by

using stochastic gradient ascent algorithm (Section 6.2.1.2); this boosts the efficacy

of our attack.

6.2.1.1 Improved Data Poisoning Attacks (DPAs)

We formulate a general DPA optimization problem using (6.1) as follows:

argmax
Dp⊂D

∥∇b −∇p∥ (6.2)

...∇b and ∇p as in (6.1) and ∇′ = A(Dp, θ
g)− θg

where D is the entire input space and Dp is the poisoning data used to compute the

poisoned update ∇′ using a training algorithm A, e.g., mini-batch SGD, and global

model θg. The rest of the notations are the same as in (6.1). To solve (6.2), we find

Dp such that when θg is fine-tuned using Dp, the resulting model θ′ will have high

cross-entropy loss on some benign data Db (e.g., that of malicious clients), i.e., high

L(Db; θ
′), and the corresponding update ∇′ = θ′−θg will circumvent the target AGR.

Our intuition is that, when the global model is updated using such ∇′, it will have

high loss on benign data [28, 78, 112].

Sun et al. [147] propose DPAs on federated multi-task learning where each client

learns a different task. Hence, their attacks are orthogonal to our work. On the

other hand, as [64] demonstrates, backgradient optimization based DPAs [112] are

90

20 200 2000 20000 200000
Poison data size |Dp|

2

4

6

8

10

12

14

16

Lo
ss

,
(

′ ;D
b)

(a) FEMNIST + Loss

SLF
DLF

20 200 2000 20000 200000
Poison data size |Dp|

0

10

20

30

40

50

60

70

Up
da

te
 n

or
m

,
′

(b) FEMNIST + Norm

SLF
DLF

20 200 2000 20000 200000
Poison data size |Dp|

0.21

0.22

0.23

0.24

0.25

0.26

0.27

Tr
m

ea
n

ob
je

ct
iv

e

(c) FEMNIST + Trmean

SLF
DLF

5 15 25 35 45
Poison data size |Dp|

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

M
kr

um
 o

bj
ec

tiv
e

|D|avg

(d) FEMNIST + Mkrum

SLF
DLF

Figure 6.1: Effect of varying the sizes of poisoned data, Dp, on the objectives of DPAs
(Section 6.2.1.1) on various AGRs. We compute Dp by flipping the labels of benign
data.

computationally very expensive (∼10 days to compute poison for a subset of MNIST

task) yet ineffective.

Instead, because the central server has no visibility into the clients’ data or their

sizes, we propose to use an appropriate amount of label flipped data as Dp for each of

the malicious clients. Our intuition behind this approach is the same as before: the

larger the amount of label flipped data used to compute θ′, the larger the L(Dp; θ
′)

and ∥∇′∥, and therefore, the higher the deviation in (6.2). We validate this intuition

using FEMNIST dataset in Figure 6.1 for various AGRs. For instance, Figures 6.1 (a)

and (b) show that increasing |Dp| monotonically increases update’s loss and norm,

respectively, and hence, can effectively poison the Average AGR [30, 108].

In our work, we propose two label flipping (LF) strategies: static LF (SLF)

and dynamic LF (DLF). In SLF, for a sample (x, y), the adversary flips labels in a

91

static fashion as in Section 2.2.1. On the other hand, in DLF, the adversary computes

a surrogate model θ̂, an estimate of θg, e.g., using the available benign data, and flips

y to the least probable label with respect to θ̂, i.e., to argmin θ̂(x). We observe

that the impacts of the two LF strategies are dataset dependent. Therefore, for each

dataset, we experiment with both of the strategies and, when appropriate, present

the best results. We now specify our DPA for Average, Norm-bounding, Multi-krum,

and Trimmed-mean AGRs; these are described in Section 2.2.3.

Average: To satisfy the attack objective in (6.2) for Average AGR, we produce

updates with large loss and norm [30, 108] using very large amounts of label flipped

data (Figures 6.1-(a,b)).

To obtain large |Dp|, we combine the benign data of all malicious clients and

flip their labels using either SLF or DLF strategy (simply SLF/DLF). To increase

|Dp| further, we add Gaussian noise to existing feature vectors of |Dp| to obtain new

feature vectors and flip their labels using SLF or DLF.

Norm-bounding: To attack Norm-bounding AGR, we use large |Dp| to generate

poisoned updates that incur high losses on benign data (as we show in Figure 6.1-

(b)). As our evaluations will show, even if their norms are bounded, such poisoned

updates remain far from benign updates and have high poisoning impacts. This leads

to effective attacks, but only at high percentages of malicious clients (e.g., M=10%).

Multi-krum: Following [132], our attack aims to maximize the number of poisoned

updates in the selection set (S) of Multi-krum AGR (Section 2.2.3). As the size of S is

fixed, maximizing the number of poisoned updates in S implicitly means minimizing

the number of benign updates. This objective is formalized as:

argmax
Dp⊂D′

p

m′ = |{∇ ∈ ∇′
{i∈[m]}|∇ ∈ S}| (6.3)

where D′
p is all the available labels flipped data and m′ is the final number of poisoned

updates in S of Multi-krum.

92

Benign updates

Poisoned aggregates

Updates scaled
using

Benign aggregate

Highest deviating poisoned aggregate
and

corresponding scaled update

Figure 6.2: Schematic of our PGA attack: PGA first computes a poisoned update ∇′

using stochastic gradient ascent (SGA). Then, fproject finds the scaling factor γ that
maximizes the deviation between benign aggregate ∇b and poisoned aggregate ∇p

γ.
Robust aggregations easily discard the scaled poisoned updates, γ∇′, with very high
γ (e.g., γ{4,5}), while those with very small γ (e.g., γ{1,2}) have no impact.

We solve (6.3) based on an observation: In Figure 6.1-(d) we vary |Dp| and plot

the fraction of corresponding poisoned updates that Multi-krum selects. Let |D|avg

be the average dataset size of benign clients, e.g., |D|avg is 23.7 for FEMNIST. Note

from Figure 6.1-(d) that, even for |Dp| slightly higher than |D|avg, Multi-krum easily

discards most of the poisoned updates. Only when |Dp| is small (∼10), Multi-krum

selects most of the poisoned updates. Hence, we sample Dp ⊂ D′
p, where we vary

|Dp| ∈ [0.5 · |D|avg, 3 · |D|avg], and check the poisoning impact of Dp on Multi-krum;

to reduce variance, we repeat this 10 times for each |Dp|. We report the results for

Dp with the maximum poisoning impact.

Trimmed-mean: For Trimmed-mean AGR, we use the objective in (6.2), but it

is cumbersome to solve it directly. Hence, similar to our attacks on Average and

Norm-bounding AGRs, we use large |Dp| for poisoned data on each of the malicious

clients. Our approach is based on the observation in Figure 6.1-(c): The higher the

|Dp| (obtained using DLF/SLF strategies), the higher the Trimmed-mean objective

value, i.e., ∥∇p −∇b∥.

93

6.2.1.2 Improved Model Poisoning Attacks (MPAs)

We use (6.1) as the general optimization problem for our MPAs. To solve this

optimization, we craft a poisoned model θ′ with high L(Db; θ
′) while ensuring that

the corresponding poisoned update, ∇′, circumvents the target AGR.

Model poisoning adversary can directly manipulate the malicious clients’ updates

(Section 6.1.4.2). Hence, first, our attack uses the stochastic gradient ascent (SGA)

algorithm (instead of SGD) and fine-tunes θg to increase (instead of decreasing) the

loss on some benign data, Db, to obtain a malicious θ′. But, in order to ensure

that the corresponding poisoned update, i.e., ∇′ = θ′ − θg, circumvents the target

AGR, we project the update on a ball of radius τ around origin, i.e., scale the update

to have a norm ∥∇′∥ ≤ τ , where τ is the average of norms of the available benign

updates. Hence, we call our attack projected gradient ascent (PGA). To perform

stochastic gradient ascent, we increase the loss on batch b of data by using the opposite

of a benign gradient direction, i.e., −∇θL(θ; b).

Algorithm 6 gives the overview of our MPA. The adversary first computes τ (line

2), an average of the norms of some benign updates available to her (∇{i∈[n′]}). Then,

the adversary fine-tunes θg using Dp and SGA to compute a poisoned update ∇′; our

attack computes ∇′ for any AGR in the same manner. Finally, the adversary uses

fproject function to appropriately project ∇′ in order to circumvent the robustness

criteria of the target AGR, fagr.

Algorithm 7 describes fproject: It computes ∇b = favg(∇{i∈[n′]}). Then, it finds a

scaling factor γ for ∇′ that maximizes the distance between the benign aggregate ∇b

and the poisoned aggregate ∇p = fagr(γ∇′
{i∈[m]},∇{i∈[n′]}). Note that, there can be

many ways to optimize γ [132], but we empirically observe that simply searching for

γ in a pre-specified range (e.g., [1,Γ] with Γ ∈ R+) yields strong attacks (line 6).

Figure 6.2 depicts the idea of fproject algorithm.

94

Algorithm 6 Our PGA model poisoning attack algorithm

1: Input: ∇{i∈[n′]}, θ
g, fagr, Dp

2: τ = 1
n′
∑

i∈[n′] ∥∇i∥ {Compute norm threshold}
{τ is given for norm-bounding AGR}

3: θ′ ← ASGA(θ
g, Dp) {Update using stochastic gradient ascent}

4: ∇′ = θ′ − θg {Compute poisoned update}
5: ∇′ = fproject(fagr,∇′, τ,∇{i∈[n′]}) {Scale ∇′ appropriately}
6: Output ∇′

Algorithm 7 The projection function (fproject) of our PGA from Section 6.2.1.2.

1: Input: fagr, ∇′, τ , ∇{i∈[n′]}
2: d∗ = 0 {Initialize maximum deviation}
3: γ∗ = 1 {Optimal scaling factor that maximizes deviation in (6.1)}
4: ∇′ = ∇′×τ

∥∇′∥ {Scale ∇
′ to have norm τ}

5: ∇b = favg(∇{i∈[n′]}) {Compute reference benign update}
6: for γ ∈ [1,Γ] do
7: ∇′′ = γ · ∇′

8: d = ∥fagr(∇′′
{i∈[m]},∇{i∈[n′]})−∇b∥

9: γ∗ = γ if d > d∗ {Update optimal γ}
10: γ = γ + δ {Update γ}
11: end for
12: Output γ∗ · ∇′

Due to the modular nature of our attacks, one can attack any given AGR by

plugging its algorithm in Algorithm 7. This is unlike Sun et al. [148], who propose a

similar targeted attack which only works against norm-bounding AGR.

Furthermore, to reduce computation, below we tailor fproject to some of the state-

of-the-art AGRs from Section 2.2.3; note that, the adversary obtains a poisoned

update, ∇′, using Algorithm 6 before tailoring fproject to the target AGR.

Average: Average does not impose any robustness constraints, therefore, we sim-

plify fproject by scaling ∇′ by an arbitrarily large constant, e.g., 1020. If the server

selects a compromised client, such poisoned update suffices to completely poison θg.

Norm-bounding: Following the Kirchoff’s law, we assume that the attacker knows

the norm-bounding threshold, τ , and therefore, fproject scales ∇′ by τ
∥∇′∥ , so that the

norm of the final ∇′ will be τ .

95

Multi-krum: Similar to our DPA (Section 6.2.1.1), the objective of our MPA on

Multi-krum is to maximize the number of poisoned updates in the selection set S.

We aim to find a scaling factor γ for ∇′ such that maximum number of ∇′′ = γ∇′

are selected in S. This is formalized below:

argmax
γ∗∈R

m = |{∇ ∈ ∇′′
{i∈[m]}|∇ ∈ S}| (6.4)

To solve the optimization in (6.4), our fproject searches for the maximum γ in a

pre-specified range [1,Γ] such that Multi-krum selects all the scaled poisoned updates.

Specifically, in Algorithm 7, instead of computing the deviation (line-8), we compute

the number of ∇′′ selected in S and update γ∗ if S has all of ∇′′s.

Trimmed-mean: Here, we directly plug Trimmed-mean algorithm in Algorithm 7

(line-8). Our attack is similar to that of [132], but instead of using one of several

perturbation vectors, ω’s, we use stochastic gradient ascent to tailor ω to the entire

FL setting (e.g., θg, data, optimizer, etc.) to improve the attack impact.

6.3 Analysis of FL Robustness in Practice

In this section, we evaluate state-of-the-art data (DPAs) and model poisoning

attacks (MPAs) against non-robust and robust FL algorithms (Section 2.2.3), un-

der practical threat models from Section 6.1.4. We start by analyzing cross-device

FL (Sections 6.3.2 to 6.3.4), as it is barely studied in previous works and is more

susceptible to poisoning. Then, we will analyze cross-silo FL in Section 6.3.5.

6.3.1 Experimental setup

Real-world FL datasets [3, 121] are proprietary and cannot be publicly accessed.

Hence, we follow the literature on untargeted poisoning in FL [64, 132, 22, 151] and

focus on image and categorical datasets. But, we ensure that our setup embodies

96

the production FL [82], e.g., by using large number of clients with extremely non-iid

datasets.

6.3.1.1 Datasets and Model Architectures

FEMNIST [36, 51] is a character recognition classification task with 3,400 clients,

62 classes (52 for upper and lower case letters and 10 for digits), and 671,585 grayscale

images. Each client has data of her own handwritten digits or letters. Considering the

huge number of clients in real-world cross-device FL (up to 1010), we further divide

each of the clients’ data in p ∈ {2, 5, 10} non-iid parts using Dirichlet distribution [110]

with α = 1. Increasing the Dirichlet distribution parameter, α, generates more iid

datasets. Unless specified otherwise, we set p = 10, i.e., the total number of clients

is 34,000. We use LeNet [96] architecture.

CIFAR10 [88] is a 10-class classification task with 60,000 RGB images (50,000 for

training and 10,000 for testing), each of size 32 × 32. Unless specified otherwise, we

consider 1,000 total FL clients and divide the 50,000 training data using Dirichlet

distribution [110] with α = 1. We use VGG9 architecture with batch normaliza-

tion [139].

Purchase [4] is a classification task with 100 classes and 197,324 binary feature

vectors each of length 600. We use 187,324 of total data for training and divide it

among 5,000 clients using Dirichlet distribution with α = 1. We use validation and

test data of sizes 5,000 each. We use a fully connected network with layer sizes {600,

1024, 100}.

6.3.1.2 Details of Federated learning and attack parameters

For FEMNIST, we use 500 rounds, batch size, β = 10, E = 5 local training

epochs, and in the eth round use SGD optimizer with a learning rate η = 0.1× 0.995e

for local training; we select n = 50 clients per round and achieve baseline accuracy

Aθ=82.4% with N=34,000 clients. For CIFAR10, we use 1,000 rounds, β = 8, E = 2,

97

0.01 0.1 1 10
Compromised client %

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

FEMNIST + No defense
No attack
DPA-DLF
DPA-SLF
DPA-LF
MPA

0.01 0.1 1 10
Compromised client %

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

CIFAR10 + No defense

0.01 0.1 1 10
Compromised client %

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

Purchase + No defense

Figure 6.3: Attack impacts (Iθ) of state-of-the-art data (DPA-DLF/SLF) and model
(MPA) poisoning attacks on cross-device FL with average AGR. Iθ’s are signifi-
cantly lower for practical percentages of compromised clients (≤ 0.1%) than previously
thought.

and in the eth round use SGD with momentum of 0.9 and η = 0.01 × 0.9995e; we

use n = 25 and achieve Aθ=86.6% with N=1,000. For Purchase, we use 500 rounds,

β = 10, E = 5, and in the eth round use SGD with η = 0.1 × 0.999e; we use n = 25

and achieve Aθ=81.2% with N=5,000.

We generate large poisoned data Dp required for our DPAs (Section 6.2.1.1) by

combining the dataset of compromised clients and adding Gaussian noise to their

features. We round the resulting feature for categorical Purchase dataset.

6.3.1.3 Attack impact metric

Aθ denotes the maximum accuracy that the global model achieves over all FL

training rounds, without any attack. A∗
θ for an attack denotes the maximum accuracy

of the model under the given attack. We define attack impact, Iθ, as the reduction

in the accuracy of the global model due to the attack, hence for a given attack, Iθ =

Aθ − A∗
θ.

6.3.2 Evaluating Non-robust FL (Cross-device)

We study Average AGR due to its practical significance and widespread use.

Previous works [30, 64, 132, 22, 108, 168] have argued that even a single compromised

98

0 1k 2k 3k 4k 5k
Number of FL rounds

20

40

60

80

Gl
ob

al
 m

od
el

 a
cc

ur
ac

y
(%

)

CIFAR10

Normb + STAT-OPT
MKrum + DYN-OPT
Trmean + PGA

0 1k 2k 3k 4k 5k
Number of FL rounds

0

20

40

60

80

FEMNIST

Normb + DYN-OPT
MKrum + DYN-OPT
Trmean + PGA

Figure 6.4: Even with a very large number of FL rounds (5,000), the state-of-the-art
model poisoning attacks withM=0.1% cannot break the robust AGRs (Section 6.3.3).

client can prevent the convergence of FL with Average AGR. However, our results

contradict those of previous works: we show that this established belief about Average

AGR is incorrect for production cross-device FL.

Figure 6.3 shows the attack impacts (Iθ) of various DPAs and MPAs. Note that,

for the Average AGR, all MPAs [132, 64, 22], including ours, are the same and craft

arbitrarily large updates in a malicious direction. Hence, we show a single line for

MPAs in Figure 6.3.

We see that for cross-device FL, when percentages of compromised clients (M)

are in practical ranges (Table 6.1), Iθ’s of all the attacks are very low, i.e., the final

θg converges with high accuracy. For FEMNIST, Iθ of MPAs at M=0.01% is ∼2%

and Iθ of DPAs at 0.1% is ∼5%. In other words, compared to the no attack accuracy

(82.3%), the attacks reduce the accuracy by just 2% and 5%. Similarly, we observe

very low Iθ’s for the Purchase and CIFAR10 datasets.

Note that, here we use very large local poisoned data (Dp) for our DPAs, as DPAs

on Average AGR become stronger with higher |Dp| (Section 6.2.1.1); |Dp|’s are 20,000,

50,000, and 20,000 for FEMNIST, CIFAR10, and Purchase, respectively. However,

99

as we will show in Section 6.3.4.1, under practical |Dp|, Iθ’s of DPAs are negligible

even with M=10%.

The inherent robustness of cross-device FL is due to its client sampling procedure.

In an FL round, the server selects a very small fraction of all FL clients. Hence, in

many FL rounds no compromised clients are chosen when M (< 1%) is in practical

ranges.

(Takeaway 6.3.2) Contrary to the common belief, production cross-device FL

with (the naive) Average AGR converges with high accuracy even in the presence

of untargeted poisoning attacks.

6.3.3 Evaluating Robust FL (Cross-device)

In this section, contrary to previous works, we study the robustness of robust

AGRs for cross-device FL when percentages of compromised clients (M) are in prac-

tical ranges. Figure 6.8 shows the poisoning impact (Iθ) of DPAs and MPAs for Norm-

bounding (Normb), Multi-krum (Mkrum), and Trimmed-mean (Trmean) AGRs. Be-

low, we discuss three key takeaways:

6.3.3.1 Cross-device FL with robust AGRs is highly robust in practice

Iθ of attacks on robust AGRs are negligible in practice, i.e., when M ≤ 0.1% for

DPAs and M ≤ 0.01% for MPAs. For instance, Iθ ≤ 1% for all of state-of-the-art

attacks on all the three datasets, i.e., the attacks reduce the accuracy of θg by less

that 1 percent.

We also run FL with a robust AGR for a very large number (5,000) of rounds

to investigate if the strongest of MPAs against the AGR with M = 0.1% can break

the AGR after long rounds of continuous and slow poisoning. Figure 6.4 shows the

results: Mkrum and Trmean remain completely unaffected (in fact accuracy of the

global model increases), while accuracy due to Normb reduces by <5%.

100

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50
At

ta
ck

 im
pa

ct
 (%

)
FEMNIST + Norm-bound
No attack
DPA-SLF
DPA-DLF
DPA-LF
LIE
STAT-OPT
DYN-OPT
PGA

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

At
ta

ck
 im

pa
ct

 (%
)

FEMNIST + Multi-krum

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

At
ta

ck
 im

pa
ct

 (%
)

FEMNIST + Trimmed-mean

Figure 6.5: FEMNIST with CNN architecture

0.01 0.1 1 10
Compromised client %

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

CIFAR10 + Norm-bound
No attack
DPA-SLF
DPA-DLF
DPA-LF
LIE
STAT-OPT
DYN-OPT
PGA

0.01 0.1 1 10
Compromised client %

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

CIFAR10 + Multi-krum

0.01 0.1 1 10
Compromised client %

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

CIFAR10 + Trimmed-mean

Figure 6.6: CIFAR10 with VGG9 architecture

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

60

70

80

At
ta

ck
 im

pa
ct

 (%
)

Purchase + Norm-bound
No attack
DPA-SLF
DPA-DLF
DPA-LF
LIE
STAT-OPT
DYN-OPT
PGA

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

60

70

80

At
ta

ck
 im

pa
ct

 (%
)

Purchase + Multi-krum

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

60

70

80

At
ta

ck
 im

pa
ct

 (%
)

Purchase + Trimmed-mean

Figure 6.7: Purchase with Fully connected architecture

Figure 6.8: Attack impacts of various poisoning attacks (Section 6.2) on cross-device
FL with robust AGRs (Section 2.2.3). These AGRs are highly robust for practical
percentages of compromised clients ; for in-depth analysis, please check Section 6.3.3.

101

In summary, state-of-the-art poisoning attacks [132, 22, 64] demonstrate that the

robust AGRs are significantly less robust than their theoretical guarantees. On the

other hand, our findings show that these AGRs are more than sufficient to protect,

more practical, production cross-device FL against untargeted poisoning. This is due

to the peculiar client sampling of cross-device FL, as discussed in Section 6.3.2.

(Takeaway 6.3.3.1) Cross-device FL with robust AGRs is highly robust to state-

of-the-art poisoning attacks under production FL environments (M <0.1%, n ≪

N).

6.3.3.2 Investigating simple and efficient robustness checks is necessary

Most of the state-of-the-art robust AGRs with strong theoretical guarantees [30,

108, 168, 165] have complex robustness checks on their inputs, which incur high com-

putation and storage overheads. For instance, to process n updates of length d, the

computational complexity of Mkrum is O(dn2) and that of Trmean is O(dnlogn).

Therefore, in production FL systems where n can be up to 5, 000 [82, 32], the com-

putation cost prohibits the use of such robust AGRs.

On the other hand, Norm-bounding only checks for the norm of its inputs and has

computation complexity of O(d), same as Average. Figure 6.8 shows that a simple

and efficient AGR, Norm-bounding, protects cross-device FL against state-of-the-art

poisoning attacks similarly to the theoretically robust (and expensive) AGRs, under

practical M . For instance, for all the datasets with M ≤ 1%, Iθ < 1% for all of the

AGRs (Figure 6.8). Our evaluation highlights that simple robust AGRs, e.g., Norm-

bounding, can effectively protect cross-device FL in practice, and calls for further

investigation and invention of such low-cost robust AGRs.

(Takeaway 6.3.3.2) Even the simple, low-cost Norm-bounding AGR is enough to

protect production FL against untargeted poisoning, questioning the need for the

more sophisticated (and costlier) AGRs.

102

6.3.3.3 Thorough empirical assessment of robustness is inevitable

Theoretically robust AGRs claim robustness to poisoning attacks at high M ’s,

e.g., in theory, Mkrum [30] and Trmean [168] are robust for M ≤ 25%. But, we

observe that, even at the theoretically claimed values of M , these robust AGRs do

not exhibit high robustness; in fact, simple AGRs, e.g., Norm-bounding, are equally

robust. Note in Figure 6.8 that, for FEMNIST at M=10%, Iθ’s on Trmean are higher

than on Norm-bounding. For CIFAR10 at M=10%, Iθ’s for Norm-bounding and

Trmean are almost similar.

Sections 6.3.3.2 and 6.3.3.3 show that, some of the sophisticated, theoretically

robust AGRs do not outperform simpler robust AGRs at any ranges of M . More

importantly they demonstrate the shortcomings of the methodology used to assess

the robustness of AGRs in previous works [30, 108, 168, 165] (because these works

use very preliminary attacks) and highlight that a thorough empirical assessment is

necessary to understand the robustness of AGRs in production FL systems.

(Takeaway 6.3.3.3) Understanding the robustness of AGRs in production FL

requires a thorough empirical assessment of AGRs, on top of their theoretical ro-

bustness analysis.

6.3.4 Effect of FL Parameters on Poisoning (Cross-device)

6.3.4.1 Effect of the Size of Local Poisoning Datasets (|Dp|) on DPAs.

The success of our state-of-the-art data poisoning attacks depends on |Dp| of

compromised clients (Section 6.2.1.1). In Sections 6.3.2 and 6.3.3, we use large |Dp|

(e.g., 50,000 for CIFAR10) to find the highest impacts of DPAs. But, as argued in

Section 6.1.3, in practice |Dp| ≤ 100×|D|avg; |D|avg is the average size of local datasets

of benign clients and it is around 20 (50) for FEMNIST (CIFAR10). In Figure 6.9, we

report Iθ of the best of DPA-SLF or DPA-DLF for |Dp| ∈ {1, 10, 102, 103, 104} · |D|avg;

we use impractically high |Dp|’s of up to 104 · |D|avg only for experimental analyses.

103

0.01 0.1 1 10

0

10

20

30

40

50

60

70

At
ta

ck
 im

pa
ct

 %

CIFAR10 + Average
No attack
n=50
n=500
n=5000
n=50000
DPA-LF

0.01 0.1 1 10

0

10

20

30

40

50

60

70
CIFAR10 + Norm-bound

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

60

70
CIFAR10 + Trimmed-mean

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

60

70

At
ta

ck
 im

pa
ct

 %

FEMNIST + Average
No attack
n=20
n=200
n=2000
n=20000
n=200000
DPA-LF

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

60

70
FEMNIST + Norm-bound

0.01 0.1 1 10
Compromised client %

0

10

20

30

40

50

60

70
FEMNIST + Trimmed-mean

Figure 6.9: Effect of varying sizes of local poisoned dataset Dp on impacts Iθ of the
best of DPAs. When |Dp| and M are in practical ranges, Iθ’s are negligible for robust
AGRs and are dataset dependent for non-robust Average AGR.

104

20 50 100 200
0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

FEMNIST + Average

DPA-DLF
MPA
No attack

20 50 100 200
0

20

40

60

80

100
FEMNIST + Norm-bound

DPA-DLF
STAT-OPT
DYN-OPT
PGA
No attack

10.0 12.5 16.7 25.0 50.0
Average local data size

0

20

40

60

80

100
At

ta
ck

 im
pa

ct
 (%

)
CIFAR10 + Average

DPA-SLF
MPA
No attack

10.0 12.5 16.7 25.0 50.0
Average local data size

0

20

40

60

80

100
CIFAR10 + Norm-bound

DPA-SLF
STAT-OPT
DYN-OPT
PGA
No attack

Figure 6.10: With 1% compromised clients, increasing |D|avg has no clear pattern of
effects of on attack impacts, but it increases the global model accuracy

Figure 6.9 shows that Iθ’s of DPAs slightly increase with |Dp|. For FEMNIST and

CIFAR10 with any AGR, including Average, Iθ’s are negligible even for unrealistically

high |Dp| of 1000× |D|avg for M ≤ 1%. We omit Mkrum here, as |Dp| of the effective

DPAs on Mkrum is always in practical ranges and close to |D|avg (Section 6.2.1.1).

To summarize, for all robust AGRs, DPAs have negligible impacts on FL when

|Dp| and M are in practical ranges, while for non-robust AGRs, the reductions in Iθ

are non-trivial and dataset dependent. This also means that using a reasonable upper

bound on the dataset sizes of FL clients can make FL highly robust to DPAs.

(Takeaway 6.3.4.1) Enforcing a limit on the size of the local dataset of each

client can act as a highly effective (yet simple) defense against untargeted DPAs in

production FL.

105

6.3.4.2 Effect of the Average Dataset Size of Benign FL Clients (|D|avg)

Figure 6.10 shows Iθ when we vary |D|avg. To emulate varying |D|avg, we vary the

total number of FL clients, N , for given dataset, e.g., for CIFAR10, |D|avg is 50 (10)

for N=1,000 (N=5,000). As discussed in Section 6.1.3, we use |Dp|=100× |D|avg for

DPAs.

We observe no clear effect of varying |D|avg on Iθ’s. For instance, at M=1%, Iθ’s

of our PGA and DPA-SLF on CIFAR10 + Normb reduce with increase in |D|avg,

while Iθ of any attacks on FEMNIST with robust AGRs do not change with varying

|D|avg. We explain each of these observations below:

At M=1%, Iθ’s of STAT-OPT on CIFAR10 + Normb reduce with increase in

|D|avg. This is because, increasing |D|avg improves the quality of updates of benign

clients, but does not improve the attacks. Hence, when the benign impact of benign

updates overpowers the poisoning impact of poisoned updates, Iθ’s reduce.

On the other hand, Iθ’s of any attacks on FEMNIST with robust AGRs do not

change with varying |D|avg. This is because, FEMNIST is an easy task, and therefore,

the presence of compromised clients does not affect the global models.

Interestingly, Iθ of MPAs on CIFAR10 with Average AGR increases with |D|avg.

This is because, due to the difficulty of CIFAR10 task, MPAs on CIFAR10 with

Average AGR are very effective and when the server selects even a single compromised

client, it completely corrupts the global model.

More importantly, we observe that even with moderately high |D|avg, cross-device

FL completely mitigates state-of-the-art DPAs and MPAs despite M being impracti-

cally high, with an exception of MPAs on Average AGR. For instance, for CIFAR10

with |D|avg=50 and FEMNIST with |D|avg=200, all robust AGRs almost completely

mitigate all of DPAs and MPAs, while Average AGR mitigates all DPAs. However,

as MPAs are very effective against Average, their Iθ remains high. As clients in FL

continuously generate data locally [34, 104], it is common to have large |D|avg in

106

10 30 50 70
0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

FEMNIST + Average

DPA-DLF
MPA
No attack

10 30 50 70
0

20

40

60

80

100
FEMNIST + Norm-bound

DPA-DLF
STAT-OPT
DYN-OPT
PGA
No attack

10 30 50 70
0

20

40

60

80

100
FEMNIST + Multi-krum

10 30 50 70
0

20

40

60

80

100
FEMNIST + Trimmed-mean

10 20 25 30 40
FL clients per round

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

CIFAR10 + Average

DPA-SLF
MPA
No attack

10 20 25 30 40
FL clients per round

0

20

40

60

80

100
CIFAR10 + Norm-bound

DPA-SLF
STAT-OPT
DYN-OPT
PGA
No attack

10 20 25 30 40
FL clients per round

0

20

40

60

80

100
CIFAR10 + Multi-krum

10 20 25 30 40
FL clients per round

0

20

40

60

80

100
CIFAR10 + Trimmed-mean

Figure 6.11: As discussed in Section 6.3.4.3, the number of clients, n, chosen in each
FL round has no noticeable effect on the attack impacts, with the exception of model
poisoning on Average AGR. We use M = 1% of compromised clients.

practice. Interestingly, our evaluation also implies that simply lower bounding the

dataset sizes of FL clients improves FL robustness.

(Takeaway 6.3.4.2) When local dataset sizes of benign clients are in practical

regimes (Table 6.1), cross-device FL with robust AGRs is highly robust to untar-

geted poisoning.

6.3.4.3 Number of Clients Selected Per Round.

Figure 6.11 shows the effect of varying the number of clients (n) selected by the

server in each round (for M=1%). Similar to [64], we do not observe any noticeable

effect of n on the impact of attacks, since the expected percentage of compromised

clients (M) does not change with n. But, we observe the opposite behavior for

MPAs on Average AGR. This is because, as soon as the server selects even a single

compromised client, MPA prevents any further learning of the global model. An

107

increase in n increases the chances of selecting compromised clients, hence amplifying

the attack.

(Takeaway 6.3.4.3) The number of clients selected in each round of production

cross-device FL has no noticeable effect on the impacts of untargeted poisoning

attacks, with the exception of MPAs on Average AGR.

6.3.4.4 Effect of Unknown Global Model Architecture on DPAs

DPA-DLF attack (Section 6.2.1.1) uses the knowledge of global model’s architec-

ture to train a surrogate model. However, in practice, the nobox offline data poisoning

adversary (Section 6.1.4.1) may not know the architecture. Hence, we evaluate impact

of DPA-DLF under the unknown architecture setting.

0 0.01 0.1 1 10
Compromised clients %

0

2

4

6

8

10

12

14

16

At
ta

ck
 im

pa
ct

 (%
)

The unknown model architecture case
No attack
Lenet Avg
Lenet Normb
Lenet Trmean
Conv Avg
Conv Normb
Conv Trmean

Figure 6.12: Impacts of the DPA-DLF
(Section 6.2.1.1) attack, which uses the
knowledge of model architecture, reduce if
the architecture is unknown.

We emulate the unknown architec-

ture setting for FEMNIST dataset. We

assume that the adversary uses a substi-

tute convolutional neural network given

in Table 6.3 as they do not know the true

architecture, which is LeNet in our ex-

periments. Figure 6.12 compares the im-

pacts of DPA-DLF when the adversary

uses the true and the substitute architec-

tures. Note that, impacts of DPA-DLF

reduce when the adversary uses the sub-

stitute architecture.

(Takeaway 6.3.4.4) The DPAs that rely on a surrogate model (e.g., our DLF) are

less effective if the architectures of the surrogate and global models do not match.

108

Table 6.3: The architecture of the surrogate model that we use to emulate the un-
known architecture setting (Section 6.3.4.4).

Layer name Layer size
Convolution + Relu 5× 5× 32

Max pool 2× 2
Convolution + Relu 5× 5× 64

Max pool 2× 2
Fully connected + Relu 1024

Softmax 62

6.3.5 Evaluating Robustness of Cross-silo FL

In cross-silo FL, each of N clients, i.e., silos (e.g., corporations like banks, hos-

pitals, insurance providers, government organizations, etc.), collects data from many

users (e.g., bank customers or hospital patients) and collaboratively train the FL

model; we denote the total number of users by N ′.

Recall from Section 6.1.4.2 that the model poisoning adversary completely breaks

into the devices of compromised clients and, to be effective, persists in their systems

for long duration because model poisoning attacks are online attacks (Section 6.1.4.2).

For cross-silo FL, this means that the adversary should break into large corporations,

e.g., a bank, who are bound by contract and have professionally maintained soft-

ware stacks. Plausible cross-silo poisoning scenarios involve strong incentives (e.g.,

financial) and require multiple parties to be willing to risk the breach of contract

by colluding or for one party to hack thereby risking criminal liability. This makes

breaking into these silos practically unlikely, hence we argue that model poisoning

threats in cross-silo FL are impractical.

Note that this is unlike the large scale data-breaches [7, 1, 2] which are short-lived

and are only capable of stealing information, but not changing the infrastructure.

Hence, we only study the data poisoning threat for cross-silo FL. For worse-case

analyses, we assume that the silos train their models on all the data contributed by

their users. If the silos inspect the users’ data and remove the mislabeled data, one

109

0 0.01 0.1 1 10
Compromised clients %

0

20

40

60

80

100

At
ta

ck
 im

pa
ct

 (%
)

FEMNIST + Cross-silo FL
No attack
Avg
Normb
Mkrum
Trmean

0 0.01 0.1 1 10
Compromised clients %

0

20

40

60

80

100
CIFAR10 + Cross-silo FL

Figure 6.13: All data poisoning attacks have negligible impacts on cross-silo FL, when
compromised clients are concentrated in a few silos or distributed uniformly across
silos (Section 6.3.5).

should consider clean-label data poisoning attacks [129, 69]; we leave this study to

future work. Note that, data inspection is not possible in cross-device FL as data of

clients (who are also the users) is completely local, hence clean-label poisoning is not

relevant in cross-device FL.

We assume that each silo collects data from equal number (i.e., N ′/N) of users.

For DPAs, we assume M% of the N ′ users are compromised and each of them shares

poisoned data Dp (computed as described in Section 6.2.1.1) with their parent silo; as

discussed in Section 6.1.3, we assume |Dp| = 100×|D|avg for each user. We distribute

the compromised users either uniformly across the silos or concentrate them in a few

silos. For instance, consider 50 silos and 50 compromised users and that, each silo can

have a maximum of 50 users. Then in the uniform case, a single compromised user

shares her Dp with each silo, while in the concentrated case, all the 50 compromised

users share their Dp with a single silo.

Figure 6.13 shows the impacts of best of DPAs for the concentrated case. We

see that cross-silo FL is highly robust to state-of-the-art DPAs. Because, in the

concentrated case, very large numbers of benign silos mitigate the poisoning impact of

110

the very few (M%) compromised silos. We observe the same results for the uniform

distribution case, because very large numbers of benign users in each silo mitigate the

poisoning impacts of the very few (M%) compromised users.

(Takeaway 6.3.5) In production cross-silo FL, model poisoning attacks are not

practical, and state-of-the-art data poisoning attacks have no impact even with

Average AGR.

6.4 Takeaways

Numerous recent works have proposed sophisticated aggregation rules for FL with

strong theoretical robustness guarantees [30, 108, 168, 13, 165, 123, 54, 61]. However,

our work shows that, when it comes to production FL deployments, even simple,

low-cost defenses can effectively protect FL against poisoning. We also believe that

our systematization of practical poisoning threat models can steer the community

towards practically significant research problems in FL robustness. Complete details

of above contributions are in [134]. Furthermore, using systematization academics

and practitioners can build various threat models of poisoning attacks in different

FL settings of their interest. Furthermore, they can analyze how useful these threat

models are in practical FL deployments, which we hope will lead to more practically

relevant contributions to FL robustness literature.

111

CHAPTER 7

ROBUSTNESS EVALUATION OF PERSONALIZED
FEDERATED LEARNING

In this thesis so far, we focused on evaluating robustness of the conventional

federated learning (FL) algorithms, e.g., FedAvg and FedSGD, with and without

robust aggregation rules (AGRs). However, in the past couple of years it has become

crystal clear that the extremely heterogeneity of FL settings has adverse impacts on

the utility of resulting FL models [75, 74, 82, 156] makes it important to personalize

the global FL model to the distribution of each of the participating users to improve

the utility of FL. Consequently, literature has introduced a very large number of

personalized FL (PFL) algorithms [99, 149, 169, 102, 56, 52, 91, 124, 109, 140, 170],

that aim to tune the global model to a client’s data, e.g., using techniques as simple as

fine-tuning [169] to complex algorithms, e.g., that use Monreau envelops [149]. Given

the importance of personalization in FL and proliferation of PFL algorithms, in this

chapter, we take a closer look at how personalization affects robustness of FL.

First we briefly motivate the need for personalization and why should we care

about the robustness of PFL algorithms against poisoning. Then we introduce state-

of-the-art PFL algorithms that we evaluate in this chapter. Next, using state-of-the-

art untargeted and backdoor attacks, we evaluate robustness of the PFL algorithms

and present key observations and conclusions.

7.1 Need for personalization in FL

Real-world FL settings are most of the times extremely heterogeneous [82], because

the participating clients have local datasets with (mildly to significantly) different

112

distributions. To understand this, we present an excellent example from the work of

Yu et al. [169]. Consider two common FL tasks: next-word prediction using Reddit

data and image classification using CIFAR10 data. There are 80,000 and 100 total

clients for Reddit and CIFAR10, respectively; we omit further experimental setup

details as it is not required to demonstrate the heterogeneity in FL.

(a) Next-word prediction on Reddit (b) Image classification on CIFAR10

Figure 7.1: Conventional FL algorithms, e.g., FedAvg, compute a single global model
for all clients. As we can see in the two plots here, such single model cannot provide
good performance for all the clients. In fact, for many clients (as in the case of Reddit)
the accuracy of the model trained only on the local data is more than the accuracy of
the global model on their local test data. This implies participating in FL does not
benefit these clients.

To produce Figure 7.1, for each task, we first train a single global model using

FL and all clients’ data. Then for each client we train a local model on their local

training data. Then for each client, the plots show the difference in the accuracy

of the global FL model (Accbasic) and the accuracy of local model (Acclocal) on the

client’s local test data, i.e., it plots (Accbasic − Acclocal). To interpret the plots, note

that whenever (Accbasic−Acclocal) <= 0, the accuracy of local model is more than or

equal to that of the global model for the client, hence the client does not benefit by

participating in FL.

We observe from the plots that as the conventional FL algorithms compute a

single global model for all the clients, many of the clients (as in case of next-word

113

prediction using Reddit) do not benefit from FL. In fact the more heterogeneous the

FL environment, the more difficult it is for the single global model to cater to the

heterogeneous needs of all entire population. This shortcoming of conventional FL

algorithms motivates the need for personalized FL, where the goal is to compute one

model per client such that every client always benefits from participating in FL.

7.1.1 State-of-the-art PFL algorithms that we evaluate

As mentioned above, personalized FL has received significant attention from the

research community that has introduced numerous PFL algorithms. However, a re-

cent work byWu et al. [160] comprehensively evaluated representative PFL algorithms

that are can be implemented in real-world cross-silo or cross-device FL settings. They

conclude that not all PFL algorithms consider practical constraints and in fact only

a few can be used in practice. We discuss more on this next.

First note that, depending on the task of interest, [160] considers multiple metrics

to measure the performance of PFL; but we consider three metrics that are relevant

to our work: average per-client accuracy, % of clients hurt after using PFL, and a

fairness metric (variance of accuracy across clients).

Key observations from Motley benchmark study: For cross-device FL, [160]

observes that the simplest PFL algorithm, i.e., FedAvg + fine-tuning (FedAvg-FT),

works the best most datasets and all the three metrics (Table 4 in [160]). While in

the case of cross-silo FL, they observe that when considering the average per-client

accuracy and % of clients hurt metrics, FedAvg-FT almost always performs the best,

while Ditto performs close to FedAvg-FT. For fairness metric, Ditto almost always

outperforms other PFL algorithms.

Hence, based on the observations of [160], we evaluate two PFL algorithms in this

work: FedAvg-FT and Ditto. We describe them in detail below.

114

7.1.1.1 FedAvg + Fine-tuning (FedAvg-FT)

FedAvg-FT first trains a global model on the data of all clients participating in

FL training. Then this global model is distributed to all the participating FL clients.

Each of the FL clients then performs local fine-tuning of the global model using their

local dataset to personalize the model to perform well on their local data distribution.

The clients can fine-tune any subset of the model parameters; common techniques

include fine-tuning the entire model or just the last few layers of the model.

7.1.1.2 Ditto

Multi-task learning (MTL) approaches aim to compute personalized models for a

set of tasks by learning the task relations (either explicitly or implicitly), and Ditto

is also a MTL approach, where different tasks correspond to different FL clients.1

The objective of traditional FL which fits a single global model, w, for all clients

is to solve:

min
w

G(F1(w), . . . FK(w)) , (Global Obj)

where Fk(w) is the local objective for device k, and G(·) is a function that aggregates

the local objectives {Fk(w)}k∈[K] from each device. For example, in FedAvg [104],

G(·) is typically set to be a weighted average of local losses, i.e.,
∑K

k=1 pkFk(w),

where pk is a pre-defined non-negative weight such that
∑

k pk = 1. However,

in general, each device may generate data xk via a distinct distribution Dk, i.e.,

Fk(w) := Exk∼Dk
[fk(w;xk)]. To better account for this heterogeneity, it is common

to consider techniques that learn personalized, device-specific models, {vk}k∈[K] across

the network.

1We use some of the language and notations from the original work [99] as it is to explain Ditto

115

To this end, Ditto considers two ‘tasks’: the global objective (Global Obj), and

the local objective Fk(vk), which aims to learn a model using only the data of device

k. To relate these tasks, we incorporate a regularization term that encourages the

personalized models to be close to the optimal global model. The resulting bi-level

optimization problem for each device k ∈ [K] is given by:

min
vk

hk(vk;w
∗) := Fk(vk) +

λ

2
∥vk − w∗∥2

s.t. w∗ ∈ argmin
w

G(F1(w), . . . FK(w))) .

(Ditto)

Algorithm 8 Ditto for Personalized FL

1: Input: K, T , s, λ, η, w0, {v0k}k∈[K]

2: for t = 0, · · · , T − 1 do
3: Server randomly selects a subset of devices St, and sends wt to them
4: for device k ∈ St in parallel do
5: Solve the local sub-problem of G(·) inexactly starting from wt to obtain wt

k:

6: wt
k ← update global(wt,∇Fk(w

t))

7: /* Solve hk(vk;w
t) */

8: Update vk for s local iterations: vk = vk − η(∇Fk(vk) + λ(vk − wt))

9: Send ∆t
k := wt

k − wt back
10: end for
11: Server aggregates {∆t

k}:
12: end for
13: Return: {vk}k∈[K] (personalized), wT (global)

Ditto solves the Ditto objective jointly by solving for the global model w∗ and per-

sonalized models {vk}k∈[K] in an alternating fashion, as summarized in Algorithm 8.

Ditto optimization proceeds in two phases: (i) updates to the global model, w∗, are

computed across the network, and then (ii) the personalized models vk are fit on

each local device. The process of optimizing w∗ is exactly the same as optimizing

for any objective G(·) in federated settings: If we use iterative solvers, then at each

communication round, each selected device can solve the local subproblem of G(·)

116

approximately (Line 5). For personalization, device k solves the global-regularized

local objective minvk hk(vk;w
t) inexactly at each round (Line 6).

7.2 A robustness evaluation personalized FL

7.2.1 Why should we care about robustness of PFL?

We believe that, due to numerous attractive properties of personalization in FL,

all the future applications of FL will adopt personalization in some fashion. Second,

although majority of PFL works focus on providing FL with improved performance for

all clients, multiple recent PFL works [169, 99] have gone beyond just FL performance

and claimed that the personalization in FL can provide intrinsic and improved robust-

ness against poisoning attacks on FL. However, as we will show these works do not

perform a comprehensive analyses of their proposed PFL algorithm, e.g., Ditto [99]

uses simplest of untargeted and backdoor attacks to evaluate their robustness. And,

as we discussed in Chapter 4, such robustness claims based on sub-optimal attacks

may lead to vulnerable FL applications.

Hence, we perform a thorough robustness analysis of two state-of-the-art and

practical PFL algorithms (FedAvg-FT and Ditto) for two reasons: 1) to understand

and quantify the threat of FL poisoning to PFL, as personalization is increasingly

becoming important to FL, and 2) to verify the robustness claims of some of the

recent PFL works.

7.2.2 Methodology

To evaluate the robustness of the two PFL algorithms, we consider both backdoor

and untargeted poisoning attacks. In this work, we do not design new poisoning

attacks against the PFL algorithms and instead evaluate them against existing state-

of-the-art attacks. The reason for this is as follows: Both the PFL algorithms we

consider perform local fine-tuning over the global model (FedAvg-FT does it once at

117

the end of FL training, while Ditto does it iteratively at each FL round). Hence, both

these PFL algorithms (and many others [124, 52, 140] that use local fine-tuning) have

to rely on the robust aggregation rules (AGRs) they use at the server for the overall

robustness of their PFL algorithm. For example, as the baseline Ditto algorithm uses

simple averaging at the server, to make it robust against poisoning, Ditto proposes

to use various robust AGRs, e.g., Median, Multi-krum and Norm-bounding, during

server’s aggregation step. Therefore, to appropriately assess the robustness of (robust)

PFL algorithms, we use the state-of-the-art poisoning attacks that are tailored to

specific robust AGRs that these PFL algorithms use. The specific backdoor and

untargeted attacks we use are detailed below:

7.2.2.1 The backdoor attack we use

Here, we first justify the choice of our backdoor attack and then provide its details.

Literature has proposed a number of backdoor attacks [18, 164, 155, 172] against FL.

However, as Sun et al. [148] show the early attacks [18, 164] that rely on a technique

called boosting (here the adversary scales their model update poisoned with backdoor

by a large constant) are ineffective against simplest of robust AGRs, i.e., Norm-

bounding. To address this issue, Wang et al. [155] propose a novel backdoor attack,

called edge-case attack, that targets the clients who data distribution lies on the tail

of the overall FL data distribution; we use this attack for evaluation in this work.

Once the adversary introduces a backdoor into the FL model, its impact generally

peaks after a few rounds but then starts to diminish; this is especially true for cross-

device FL where backdoors are more relevant in practice. This is because in cross-

device FL, it is highly unlikely that the server will select an adversary-controlled

device multiple times during the lifespan of FL training, unless the adversary controls

a large number of devices which as we argued in Chapter 6 makes the attack very

costly and prohibitive. To address this issue Zhang et al. [172] propose a technique to

118

make a backdoor attack more durable. We omit evaluating Neurotoxin, because we

evaluate how effective the PFL algorithms are at removing the backdoors from the

most corrupt global model, i.e., the model for which backdoor accuracy is the highest

during FL training.

Figure 7.2: Samples from the tail of the distribution of CIFAR10 (a) and FEMNIST
(b) datasets. (a) Images of Southwest airline planes which are not in the original
CIFAR10 data although it has multiple plane images (b) Images of digit ’7’ from
ARDIS dataset [93] written in a different style than ’7’ in the original FEMNIST
data.

Details of edge-case backdoor attack: There are three steps of this attack.

• Collect tail data: First the adversary acquires some edge-case data, i.e., the

data from the tail of the distribution of overall FL data. For instance, in case of

FEMNIST digits data, [155] uses handwritten digits written in Swedish style.

Such different styled data is not in train or test data of the original FEMNIST

hence they are good candidates for tail data. For CIFAR10 which has images

of arbitrary planes with label “plane”, one can use plane images of a specific

airline, e.g., Southwest, as the tail data, because such Southwest airline images

are not in either train or test split of original CIFAR10. Examples of such tail

data are shown in Figure 7.2.

• Generate poisoning data from tail data: Next adversary creates poisoning

data,Dp, using these tail data; specifically, they assign the incorrect target label,

yt, to these images to generate pairs of (x, yt). For instance, for FEMNIST, we

119

assign label yt = 1 to all the images of digit 7 from ARDIS data to generate

Dp. Then we populate Dp on the malicious clients’ devices that the adversary

controls.

• Compute malicious, backdoored model updates using Dp: There are

multiple way to obtain malicious update by training on Dp. As we focus on

model poisoning attacks in this work, we consider the projected gradient decent

(PGD) attack from [155]. Under this attack, malicious clients apply PGD on

the losses for D′ = D ∪ Dp, where D is the benign FEMNIST data owned by

the malicious client. That is they periodically project the model on the ball

centered around the global model of the previous iteration. A heuristic choice

for the radius of this ball is the maximum norm difference allowed by the server’s

robust AGR, e.g., norm threshold in case of the Norm-bounding defense.

7.2.2.2 Untargeted attack we use

We use our own state-of-the-art untargeted poisoning attacks (Chapter 4) tailored

to specific robust AGRs that we use with the PFL algorithms (Norm-bounding, Multi-

krum and Trimmed-mean) to evaluate their robustness.

7.2.3 Experimental setup

Below is the experimental setup we use:

7.2.3.1 Datasets and model architectures

We use FEMNIST dataset for evaluations and Section 4.3 provides the details of

the dataset; we use the LeNet [96] architecture. However, in this section, we use the

dataset splitting strategy proposed in [160] which are different for cross-device and

cross-silo FL. We explain these the splitting strategies below.

Cross-device: We divide the 3,400 clients in FEMNIST data in three groups: train-

ing, validation and test clients. We use training clients (with all of their data) to train

120

the FL model, e.g., using FedAvg algorithm. For validation and test client, we split

their data in two parts: personalization and test. We use the personalization data for

personalization, e.g., using fine-tuning, and validate the performance of personalized

model on the test data. For hyperparameters tuning, we use validation clients and

finally report the accuracy using test clients.

Cross-silo: We use 300 out of 3,400 FEMNIST clients for cross-silo experiments.

We split each client’s data into three splits: train, validation and test. We use train

data of all clients to train the FL model. When personalizing the model as well, we

use the train data. We use validation data to perform tuning of hyperparameters of

FL and personalization algorithms. Finally we report accuracy on clients’ test data.

7.2.3.2 Attack settings

Backdoor attack: For FEMNIST, we use ARDIS [93] as the tail data and use the

same data split as in [155] for the attack. Specifically, for cross-device setting, we

use 660 images of digit 7 for training and 100 images for testing. Out of 660, we use

p% of images for generate poisoning data Dp for backdoor and add this to the data

of a single client who is the malicious client. We distribute the rest among 5 benign

FEMNIST clients. We add the 100 test images to one of test clients, and use 50 of

them for personalization and test on the rest of 50 images. Note that there is only

a single client with poisoning data; we use fixed-frequency attack setting where the

single attacking client participates every tf rounds, starting from round 1,000.

While for cross-silo setting, we use p% of the entire 760 images of digit 7 for

generating Dp and add it to the data of a single client, who is the only malicious

client in population. We add the rest of the (100 − p)% data with correct labels

to 1 or 2 of the benign clients. Note that in cross-silo setting both the benign and

malicious clients participate in each round.

121

Untargeted attack: We use p% of the 3,400 (in case of cross-device) or 300 (in

case of cross-silo) clients as the malicious clients, we vary p ∈ {1, 5, 10, 15, 20}. Note

that these clients are all among the training client population of cross-device and

cross-silo FL.

7.2.3.3 FL training hyperparameters

For each setting, we first obtain the best possible accuracy in the benign setting

and then use the same parameters for evaluating the robustness of corresponding PFL

algorithm. For cross-device FL, we randomly select 30 out of 3,400 FEMNIST clients

and train for 1,500 rounds where server optimizer is SGD with learning rate 1. For

local training, each client uses 5 local epochs, batch size of 32, and SGD optimizer

with momentum of 0.9, weight decay of 1e−4 and learning rate of 0.05× 0.999t where

t is the round number. For cross-silo FL, we use all 300 clients in each round and

train for 300 rounds where server optimizer is SGD with learning rate 1. For local

training, each client uses uses 2 local epochs, batch size of 32, and SGD optimizer

with momentum of 0.9, weight decay of 1e−4 and learning rate of 0.05× 0.995t where

t is the round number. For Ditto, we search the parameter γ ∈ {0.1, 0.2, 0.5, 1, 2} as

suggested in [99].

For Norm-bounding, we use norm threshold of 2 for cross-device and 3 for cross-

silo FL. For both Trimmed-mean and Multi-krum defenses, we assume that the server

knows exact number of attackers participating in each FL round.

7.2.3.4 Measurement metrics

We use standard measurement metrics in our evaluations. For the edge-case back-

door attacks, we compute backdoor accuracy Abd that measures the percentage of

edge-case test data from the source class are classified into the target class, i.e., in

our case, the percentage of ARDIS 7’s classified as 1. We also measure main task

accuracy, i.e., the accuracy on the benign test data, i.e., in our case, data from all

122

FEMNIST classes and data from all classes, except class 7, of ARDIS. For untargeted

attacks, we measure the main task accuracy, i.e., percentage of correctly classified

FEMNIST test data.

7.2.4 Experimental results

In this section, we provide the experimental results. First we demonstrate the

PFL in fact improves the average per-client accuracy, then we demonstrate how PFL

performs against backdoor and untargeted poisoning attacks.

7.2.4.1 Personalized FL improves average per-client accuracy

First, in Table 7.1, we show that the personalized FL algorithms improve the av-

erage per-client accuracy for our specific cross-device and cross-silo settings of FEM-

NIST.

For cross-device FL, accuracy of local training and simple FedAvg are 59.68%

and 85.69%, respectively, while local fine-tuning (FedAvg-FT) achieves 90.01% ac-

curacy. Note also that FedAvg-FT improves the overall fairness across test clients:

the standard deviation of client accuracies is 8.27% for FedAvg while it is 5.68% for

FedAvg-FT. However, we also note that FedAvg-FT can hurt some of the FL clients :

For 6.14% (43/700) test clients the FedAvg global model performs better than in-

dividual fine-tuned local models. This is because we use the same hyperparameters

for all the FL clients, which may not be suitable for some of the clients. Note that

FedAvg-FT performance for these clients can be improved by personalizing the fine-

tuning hyperparameters, e.g., making local lr = 0 will achieve the accuracy same as

that of the global model.

For cross-silo FL as well, we make similar observations. More specifically,

FedAvg-FT (Ditto) improves over local-training and FedAvg by 29.05% (28.03%) and

3.24% (2.22%), respectively. Furthermore, both FedAvg-FT and Ditto significantly

reduce the standard deviation over client accuracies, i.e., improve fairness.

123

Table 7.1: Personalization helps improve the overall performance of FL.

FL type Algorithm Metric EMNIST

Cross-device

Local training Per-client acc 59.68 ± 17.21

FedAvg + Fine-tuning
(FedAvg-FT)

Per-client acc before FT 85.69 ± 8.27
Per-client acc after FT 90.01 ± 5.68

% clients hurt 6.14

Cross-silo

Local training Per client acc 60.23 ± 18.01

FedAvg + Fine-tuning
(FedAvg-FT)

Per-client acc before FT 86.04 ± 10.99
Per-client acc after FT 89.28 ± 9.54

% clients hurt 6
Ditto Per client acc 88.26 ± 10.7

25 50 75 100
% of edge data with adversary

0

20

40

60

80

100

Ba
ck

do
or

 a
cc

ur
ac

y
(A

bd
)

Cross-device FedAvg-FT

Abd before FT
Abd after FT
Amt before FT w/o attack
Amt after FT w/o attack
Amt after FT with attack

25 50 75 100
% of edge data with adversary

Cross-silo FedAvg-FT

25 50 75 100
% of edge data with adversary

Cross-silo Ditto

0

20

40

60

80

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(A
m

t)

Figure 7.3: Impact of varying the % of total edge data (660 samples in our case) that
the adversary holds; benign clients hold rest of the data. Edge-case backdoor attacks
are very effective against FedAvg, but personalized FL algorithms are very effective in
mitigating their threat to FL. For cross-device FL here, adversary participates every
10th round starting from round 1,000. We use FedAvg + Norm-bounding here.

7.2.4.2 Impact of personalization on edge-case backdoor attacks

We now discuss the impact of personalization on the success of edge-case backdoor

attacks in FL. Recall that we have total of 660 data for training from class 7 of ARDIS.

Figure 7.3 shows the results when we vary % of 660 training data that the adversary

uses to train their malicious update; the benign clients use the rest of the data.

Even with Norm-bounding defense, we note that edge-case backdoor attacks are

highly effective against FedAvg. For instance, With 50% edge data, i.e., 330 edge

124

samples, the attack achieves 88% accuracy against cross-device FedAvg and 91% ac-

curacy against cross-silo FedAvg; this is without any effect on the main task accuracy.

1/20 1/15 1/10 1/5
Frequency of attack

0

20

40

60

80

100

Ba
ck

do
or

 a
cc

ur
ac

y
(A

bd
)

CD FedAvg-FT

Abd before FT
Abd after FT
Amt before FT w/o attack
Amt after FT w/o attack
Amt after FT with attack

M
ai

n
ta

sk
 a

cc
ur

ac
y

(A
m

t)

Figure 7.4: Impact of attack frequency.

However, personalization almost

completely mitigates the backdoor

attack: In all cases we note that the

backdoor accuracy reduces to close to

0%, except in cross-device FedAvg-FT

where it reduces to between 15-20%.

Furthermore, we do not observe any sig-

nificant impact on the main task accu-

racy. We observe the maximum reduc-

tion in FedAvg-FT accuracy for the case of cross-device FL: when adversary has

100% of edge-data, the accuracy of FedAvg-FT reduces from 89.28% to 87.1%. The

reason behind this is that both FedAvg-FT and Ditto use some form of fine-tuning,

and fine-tuning is well-known to remove backdoors from machine learning models.

Next, Figure 7.4 shows the results when we vary the frequency of adversary’s

participation in cross-device FL; note that in cross-silo FL, adversary participate in

every round by default. Here, the adversary uses 50% of edge data for malicious

update training and the rest is with benign clients. We make similar observations as

before that although edge backdoor attacks are very effective against traditional FL,

personalization effectively mitigates them.

7.2.4.3 Impact of personalization on untargeted attacks

In this section, we now turn to evaluate the impact of personalization on untar-

geted poisoning in FL. We use three defenses, i.e., robust AGRs, for this evaluation:

Norm-bounding [148], Trimmed-mean [168] and Multi-krum [30]. We combine these

three AGRs with each of the three settings we consider, i.e., cross-device FedAvg-

125

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Av
er

ag
e

pe
r-c

lie
nt

 a
cc

ur
ac

y

Norm-bound

Before FT
After FT

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Trimmed-mean

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Multi-krum

Figure 7.5: Cross-device FL + local fine-tuning

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Av
er

ag
e

pe
r-c

lie
nt

 a
cc

ur
ac

y

Norm-bound
Local training
Before FT
After FT

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Trimmed-mean

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Multi-krum

Figure 7.6: Cross-silo FL + local fine-tuning

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Av
er

ag
e

pe
r-c

lie
nt

 a
cc

ur
ac

y

Norm-bound
Local training
Before FT
After FT

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Trimmed-mean

1 5 10 15 20
% of malicious clients

10

20

30

40

50

60

70

80

90

Multi-krum

Figure 7.7: Cross-silo FL + Ditto

Figure 7.8: Impact of our state-of-the-art untargeted poisoning attacks (Chapter 4)
on PFL algorithms. We make the following observations. First, under production
FL settings (e.g., with practical percentages of malicious clients), PFL algorithms
remain highly robust. However, personalization algorithms fail to salvage FL against
stronger adversary, e.g., with higher percentages of malicious clients.

126

FT, cross-silo FedAvg-FT and cross-silo Ditto. Figure 7.8 shows results for all the 9

combinations described above. We make two key observations as follows.

(1) Under real-world, production FL environments, personalized FL re-

mains highly robust to untargeted poisoning. Recall from Chapter 6 that

under real-world settings, an adversary can afford to control a very small percentage,

typically < 1%, of FL population as malicious clients. We use our state-of-the-art

AGR tailored untargeted poisoning attacks from Chapter 4 against Trimmed-mean

and Multi-krum and from Section 6.2.1.2 against Norm-bounding. We note from Fig-

ure 7.8 that for all 9 settings, these attacks reduce the average per-client accuracy of

the personalized FL algorithms by less than 3%.

(2) Under stronger (theoretically relevant) threat models, personalized FL

is vulnerable to poisoning but is much more robust than tradition FL. As

discussed in Chapter 4, majority of prior FL poisoning defenses aim to defend against

poisoning by very strong adversaries, e.g., who control up to 25% of FL population

as malicious clients. Many of personalized FL algorithms also make similar claims,

e.g., Ditto [99] claims that it can defend even when there are 40% malicious clients in

FL population! To test these claims, we evaluate the aforementioned 9 combinations

under stronger threat models, i.e., with higher % of malicious clients and strong

poisoning attacks.

First, we note in Figure 7.8 that all three robust AGRs are highly vulnerable to

poisoning by the strong adversary in traditional FL setting. We observe that, with

10% malicious clients, the minimum reduction in accuracy due to our attacks is 10%

and it is for cross-device FL with FedAvg + Multi-krum. For cross-silo FL, we observe

significantly more reductions of at least 50%. As discussed in Section 4.4.2, this is

because all malicious clients poison the global model in every round of cross-silo FL.

Next, we note that, in all the 9 cases for all the percentages of malicious clients,

personalization significantly improves the per-client accuracy and reduces the impact

127

of our attacks. For instance, with 20% malicious clients, in case of cross-device

FL, local fine-tuning improves per-client accuracy for Norm-bounding from 34.2% to

59.2%, for Trimmed-mean from 39.1% to 69.2% and for Multi-krum from 69.2% to

79.3%. We make similar observations for other percentages of malicious clients.

Finally, even in the case of cross-silo FL settings, where our attacks have a very

large impact on traditional FL, personalization improves the average per-client ac-

curacy. For example, with 20% malicious clients, FedAvg-FT improves the accuracy

Norm-bounding from 15.4% to 59.0%, for Trimmed-mean from 19.0% to 59.2% and

for Multi-krum from 25.7% to 60.0%. While, with 20% malicious clients, Ditto per-

forms slightly better and improves the accuracy Norm-bounding from 15.4% to 63.4%,

for Trimmed-mean from 19.0% to 62.9% and for Multi-krum from 25.7% to 63.0%.

Note that the green horizontal line in Figures 7.6 and 7.7 represents the average

per-client accuracy of local-only training, which is 60.23%. Hence, as expected, our

observations above suggest that, under very strong poisoning attacks, personalized

FL algorithms can perform at least as good as local-only training where clients do not

collaborate.

7.3 Takeaways

The major implications of our study in this chapter are as follows: The carefully

tuned personalized FL (PFL) always improves the average per-client accuracy over

traditional FL. In terms of robustness, PFL is very effective at mitigating backdoor

attacks that impact a small portion of the global ML model and remains highly robust

to untargeted poisoning under practical, production FL environments. Under strong

untargeted poisoning threat models, PFL fails to completely salvage traditional FL,

but can significantly improve the average per-client accuracy over traditional FL

algorithms.

128

BIBLIOGRAPHY

[1] Billion passwords stolen: Change all of yours, now! https:

//www.nbcnews.com/tech/security/billion-passwords-stolen-change-

all-yours-now-n174321, 2014. [Online; accessed 18-July-2021].

[2] Hackers expose 8.4 billion passwords post them online in possibly largest dump

of passwords ever. https://www.thegatewaypundit.com/2021/06/hackers-

expose-8-4-billion-passwords-post-online-possibly-largest-dump-

passwords-ever/, 2014. [Online; accessed 18-July-2021].

[3] Federated learning: Collaborative machine learning without centralized

training data. https://ai.googleblog.com/2017/04/federated-learning-

collaborative.html, 2017. [Online; accessed 06-April-2021].

[4] Acquire Valued Shoppers Challenge at Kaggle. https://www.kaggle.com/

c/acquire-valued-shoppers-challenge/data, 2019. [Online; accessed 19-

June-2020].

[5] Utilization of fate in risk management of credit in small and micro en-

terprises. https://www.fedai.org/cases/utilization-of-fate-in-risk-

management-of-credit-in-small-and-micro-enterprises/, 2019. [Online;

accessed 27-Mar-2021].

[6] Google workshop on federated learning and analytics. https:

//docs.google.com/document/d/1dWzVeFLrPinonQMauxIo0oI-

Vbvqup5cZzgdPXvu97Y/edit#heading=h.7dsxad3c3nf7, 2020. [Online;

accessed 06-April-2021].

129

[7] 26 million stolen passwords found online — see if you’re affected. https:

//www.tomsguide.com/news/mystery-malware-info-stealer, 2021. [Online;

accessed 18-July-2021].

[8] Google play protect. https://developers.google.com/android/play-

protect, 2021. [Online; accessed 22-July-2021].

[9] Safetynet attestation api. https://developer.android.com/training/

safetynet/attestation, 2021. [Online; accessed 18-July-2021].

[10] Abadi, Mart́ın, Chu, Andy, Goodfellow, Ian, McMahan, H Brendan, Mironov,

Ilya, Talwar, Kunal, and Zhang, Li. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-

nications Security (2016), ACM.

[11] Agarwal, Naman, Kairouz, Peter, and Liu, Ziyu. The skellam mechanism for

differentially private federated learning. Advances in Neural Information Pro-

cessing Systems 34 (2021), 5052–5064.

[12] Aji, Alham, and Heafield, Kenneth. Sparse communication for distributed gra-

dient descent. In EMNLP 2017: Conference on Empirical Methods in Natural

Language Processing (2017), Association for Computational Linguistics (ACL),

pp. 440–445.

[13] Alistarh, Dan, Allen-Zhu, Zeyuan, and Li, Jerry. Byzantine stochastic gradi-

ent descent. In Advances in Neural Information Processing Systems (2018),

pp. 4613–4623.

[14] Alistarh, Dan, Grubic, Demjan, Li, Jerry, Tomioka, Ryota, and Vojnovic, Milan.

Qsgd: Communication-efficient sgd via gradient quantization and encoding. In

Advances in Neural Information Processing Systems (2017), pp. 1709–1720.

130

[15] Alistarh, Dan, Hoefler, Torsten, Johansson, Mikael, Konstantinov, Nikola,

Khirirat, Sarit, and Renggli, Cédric. The convergence of sparsified gradi-

ent methods. In Advances in Neural Information Processing Systems (2018),

pp. 5973–5983.

[16] Amid, Ehsan, Ganesh, Arun, Mathews, Rajiv, Ramaswamy, Swaroop, Song,

Shuang, Steinke, Thomas, Suriyakumar, Vinith M, Thakkar, Om, and

Thakurta, Abhradeep. Public data-assisted mirror descent for private model

training. In International Conference on Machine Learning (2022), PMLR,

pp. 517–535.

[17] Augenstein, Sean, McMahan, H Brendan, Ramage, Daniel, Ramaswamy, Swa-

roop, Kairouz, Peter, Chen, Mingqing, Mathews, Rajiv, et al. Generative

models for effective ml on private, decentralized datasets. arXiv preprint

arXiv:1911.06679 (2019).

[18] Bagdasaryan, Eugene, Veit, Andreas, Hua, Yiqing, Estrin, Deborah, and

Shmatikov, Vitaly. How to backdoor federated learning. In International Con-

ference on Artificial Intelligence and Statistics (2020), PMLR, pp. 2938–2948.

[19] Balle, Borja, Cherubin, Giovanni, and Hayes, Jamie. Reconstructing training

data with informed adversaries. In 2022 IEEE Symposium on Security and

Privacy (SP) (2022), IEEE, pp. 1138–1156.

[20] Balle, Borja, Kairouz, Peter, McMahan, Brendan, Thakkar, Om, and

Guha Thakurta, Abhradeep. Privacy amplification via random check-ins. Ad-

vances in Neural Information Processing Systems 33 (2020), 4623–4634.

[21] Barreno, Marco, Nelson, Blaine, and Joseph, Anthony D. The security of ma-

chine learning. Machine Learning (2010).

131

[22] Baruch, Moran, Gilad, Baruch, and Goldberg, Yoav. A little is enough: Cir-

cumventing defenses for distributed learning. Advances in Neural Information

Processing Systems (2019).

[23] Bassily, Raef, Thakkar, Om, and Guha Thakurta, Abhradeep. Model-agnostic

private learning. Advances in Neural Information Processing Systems 31 (2018).

[24] Bengio, Yoshua, Léonard, Nicholas, and Courville, Aaron. Estimating or propa-

gating gradients through stochastic neurons for conditional computation. arXiv

preprint arXiv:1308.3432 (2013).

[25] Bernstein, Jeremy, Zhao, Jiawei, Azizzadenesheli, Kamyar, and Anandkumar,

Anima. signsgd with majority vote is communication efficient and fault tolerant.

In International Conference on Learning Representations (2018).

[26] Berthelot, David, Carlini, Nicholas, Goodfellow, Ian, Papernot, Nicolas, Oliver,

Avital, and Raffel, Colin A. Mixmatch: A holistic approach to semi-supervised

learning. In Advances in Neural Information Processing Systems (2019),

pp. 5050–5060.

[27] Bhagoji, Arjun Nitin, Chakraborty, Supriyo, Mittal, Prateek, and Calo,

Seraphin. Analyzing federated learning through an adversarial lens. In In-

ternational Conference on Machine Learning (2019), PMLR, pp. 634–643.

[28] Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks against support vector

machines. In Proceedings of 29th International Conference on Machine Learning

(2012).

[29] Biggio, Battista, and Roli, Fabio. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognition (2018).

132

[30] Blanchard, Peva, Guerraoui, Rachid, Stainer, Julien, et al. Machine learning

with adversaries: Byzantine tolerant gradient descent. In Advances in Neural

Information Processing Systems (2017), pp. 119–129.

[31] Boenisch, Franziska, Dziedzic, Adam, Schuster, Roei, Shamsabadi, Ali Shahin,

Shumailov, Ilia, and Papernot, Nicolas. Is federated learning a practical pet

yet? arXiv preprint arXiv:2301.04017 (2023).

[32] Bonawitz, Keith, Eichner, Hubert, Grieskamp, Wolfgang, Huba, Dzmitry, In-

german, Alex, Ivanov, Vladimir, Kiddon, Chloé, Konecný, Jakub, Mazzocchi,

Stefano, McMahan, Brendan, Overveldt, Timon Van, Petrou, David, Ramage,

Daniel, and Roselander, Jason. Towards federated learning at scale: System

design. In Proceedings of Machine Learning and Systems 2019, MLSys 2019,

Stanford, CA, USA, March 31 - April 2, 2019 (2019), mlsys.org.

[33] Bonawitz, Keith, Ivanov, Vladimir, Kreuter, Ben, Marcedone, Antonio, McMa-

han, H Brendan, Patel, Sarvar, Ramage, Daniel, Segal, Aaron, and Seth, Karn.

Practical secure aggregation for privacy-preserving machine learning. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-

tions Security (2017), ACM.

[34] Brendan, McMahan H, Ramage, Daniel, Talwar, Kunal, and Zhang, Li. Learn-

ing differentially private recurrent language models. International Conference

on Learning and Representation (2018).

[35] Briggs, Christopher, Fan, Zhong, and Andras, Peter. Federated learning with

hierarchical clustering of local updates to improve training on non-iid data.

In 2020 International Joint Conference on Neural Networks (IJCNN) (2020),

IEEE, pp. 1–9.

133

[36] Caldas, Sebastian, Wu, Peter, Li, Tian, Konečnỳ, Jakub, McMahan, H Bren-

dan, Smith, Virginia, and Talwalkar, Ameet. Leaf: A benchmark for federated

settings. arXiv preprint arXiv:1812.01097 (2018).

[37] Cao, Xiaoyu, Jia, Jinyuan, and Gong, Neil Zhenqiang. Provably secure feder-

ated learning against malicious clients. In Proceedings of the AAAI Conference

on Artificial Intelligence (2021), vol. 35, pp. 6885–6893.

[38] Cao, Xiaoyu, Jia, Jinyuan, Zhang, Zaixi, and Gong, Neil Zhenqiang. Fedrecover:

Recovering from poisoning attacks in federated learning using historical infor-

mation. In 2023 IEEE Symposium on Security and Privacy (SP) (2022), IEEE

Computer Society, pp. 326–343.

[39] Carlini, Nicholas, Hayes, Jamie, Nasr, Milad, Jagielski, Matthew, Sehwag,

Vikash, Tramèr, Florian, Balle, Borja, Ippolito, Daphne, and Wallace, Eric. Ex-

tracting training data from diffusion models. arXiv preprint arXiv:2301.13188

(2023).

[40] Carlini, Nicholas, Liu, Chang, Erlingsson, Úlfar, Kos, Jernej, and Song, Dawn.

The secret sharer: Evaluating and testing unintended memorization in neural

networks. In 28th USENIX Security Symposium (USENIX Security 19) (Santa

Clara, CA, Aug. 2019), USENIX Association, pp. 267–284.

[41] Carlini, Nicholas, Tramer, Florian, Wallace, Eric, Jagielski, Matthew, Herbert-

Voss, Ariel, Lee, Katherine, Roberts, Adam, Brown, Tom, Song, Dawn, Erlings-

son, Ulfar, et al. Extracting training data from large language models. arXiv

preprint arXiv:2012.07805 (2020).

[42] Chang, Hongyan, Shejwalkar, Virat, Shokri, Reza, and Houmansadr, Amir.

Cronus: Robust and heterogeneous collaborative learning with black-box knowl-

edge transfer. arXiv preprint arXiv:1912.11279 (2019).

134

[43] Charikar, Moses, Steinhardt, Jacob, and Valiant, Gregory. Learning from un-

trusted data. In Proceedings of the 49th Annual ACM SIGACT Symposium on

Theory of Computing (2017), ACM, pp. 47–60.

[44] Chaudhuri, Kamalika, Monteleoni, Claire, and Sarwate, Anand D. Differentially

private empirical risk minimization. Journal of Machine Learning Research

(2011).

[45] Chen, Lingjiao, Wang, Hongyi, Charles, Zachary, and Papailiopoulos, Dimitris.

Draco: Byzantine-resilient distributed training via redundant gradients. In

International Conference on Machine Learning (2018), PMLR, pp. 903–912.

[46] Chen, Ting, Kornblith, Simon, Norouzi, Mohammad, and Hinton, Geoffrey. A

simple framework for contrastive learning of visual representations. In Interna-

tional conference on machine learning (2020), PMLR, pp. 1597–1607.

[47] Chen, Wei-Ning, Kairouz, Peter, and Ozgur, Ayfer. Breaking the

communication-privacy-accuracy trilemma. Advances in Neural Information

Processing Systems 33 (2020), 3312–3324.

[48] Chen, Xinyun, Liu, Chang, Li, Bo, Lu, Kimberly, and Song, Dawn. Targeted

backdoor attacks on deep learning systems using data poisoning. arXiv preprint

arXiv:1712.05526 (2017).

[49] Cho, Yae Jee, Wang, Jianyu, Chiruvolu, Tarun, and Joshi, Gauri. Personalized

federated learning for heterogeneous clients with clustered knowledge transfer.

arXiv preprint arXiv:2109.08119 (2021).

[50] Choquette-Choo, Christopher A, Tramer, Florian, Carlini, Nicholas, and Pa-

pernot, Nicolas. Label-only membership inference attacks. In International

conference on machine learning (2021), PMLR, pp. 1964–1974.

135

[51] Cohen, Gregory, Afshar, Saeed, Tapson, Jonathan, and Van Schaik, Andre.

Emnist: Extending mnist to handwritten letters. In 2017 International Joint

Conference on Neural Networks (IJCNN) (2017), IEEE, pp. 2921–2926.

[52] Collins, Liam, Hassani, Hamed, Mokhtari, Aryan, and Shakkottai, Sanjay. Ex-

ploiting shared representations for personalized federated learning. In Interna-

tional Conference on Machine Learning (2021), PMLR, pp. 2089–2099.

[53] CS231n: Convolutional Neural Networks for Visual Recognition. https://

cs231n.github.io/optimization-2/#grad, 2021.

[54] Data, Deepesh, and Diggavi, Suhas. Byzantine-resilient sgd in high dimensions

on heterogeneous data. arXiv preprint arXiv:2005.07866 (2020).

[55] Data, Deepesh, Song, Linqi, and Diggavi, Suhas. Data encoding for byzantine-

resilient distributed optimization. IEEE Transactions on Information Theory

(2020).

[56] Deng, Yuyang, Kamani, Mohammad Mahdi, and Mahdavi, Mehrdad. Adaptive

personalized federated learning. arXiv preprint arXiv:2003.13461 (2020).

[57] Diakonikolas, Ilias, Kamath, Gautam, Kane, Daniel, Li, Jerry, Steinhardt, Ja-

cob, and Stewart, Alistair. Sever: A robust meta-algorithm for stochastic opti-

mization. In International Conference on Machine Learning (2019), pp. 1596–

1606.

[58] Diakonikolas, Ilias, Kamath, Gautam, Kane, Daniel M, Li, Jerry, Moitra,

Ankur, and Stewart, Alistair. Robust estimators in high dimensions without

the computational intractability. In 2016 IEEE 57th Annual Symposium on

Foundations of Computer Science (FOCS) (2016), IEEE, pp. 655–664.

136

[59] Diakonikolas, Ilias, Kamath, Gautam, Kane, Daniel M., Li, Jerry, Moitra,

Ankur, and Stewart, Alistair. Being robust (in high dimensions) can be practi-

cal. In Proceedings of the 34th International Conference on Machine Learning-

Volume 70 (2017).

[60] Dwork, Cynthia, Roth, Aaron, et al. The algorithmic foundations of differential

privacy. Foundations and Trends® in Theoretical Computer Science (2014).

[61] El-Mhamdi, El-Mahdi, Guerraoui, Rachid, Guirguis, Arsany, and Rouault,

Sebastien. Sgd: Decentralized byzantine resilience. arXiv preprint

arXiv:1905.03853 (2019).

[62] Erlingsson, Úlfar, Feldman, Vitaly, Mironov, Ilya, Raghunathan, Ananth, Song,

Shuang, Talwar, Kunal, and Thakurta, Abhradeep. Encode, shuffle, analyze

privacy revisited: Formalizations and empirical evaluation. arXiv preprint

arXiv:2001.03618 (2020).

[63] Facebook has shut down 5.4 billion fake accounts this year. https://

www.cnn.com/2019/11/13/tech/facebook-fake-accounts/index.html, 2019.

[64] Fang, Minghong, Cao, Xiaoyu, Jia, Jinyuan, and Gong, Neil Zhenqiang. Lo-

cal model poisoning attacks to byzantine-robust federated learning. In 29th

USENIX Security Symposium (USENIX Security 20) (Boston, MA, aug 2020),

USENIX Association.

[65] Fu, Shuhao, Xie, Chulin, Li, Bo, and Chen, Qifeng. Attack-resistant feder-

ated learning with residual-based reweighting. arXiv preprint arXiv:1912.11464

(2019).

[66] Fung, Clement, Yoon, Chris JM, and Beschastnikh, Ivan. The limitations of fed-

erated learning in sybil settings. In 23rd International Symposium on Research

in Attacks, Intrusions and Defenses ({RAID} 2020) (2020), pp. 301–316.

137

[67] Ghosh, Avishek, Chung, Jichan, Yin, Dong, and Ramchandran, Kannan. An

efficient framework for clustered federated learning. Advances in Neural Infor-

mation Processing Systems 33 (2020), 19586–19597.

[68] Ghosh, Avishek, Hong, Justin, Yin, Dong, and Ramchandran, Kannan. Ro-

bust federated learning in a heterogeneous environment. arXiv preprint

arXiv:1906.06629 (2019).

[69] Goldblum, Micah, Tsipras, Dimitris, Xie, Chulin, et al. Dataset Security

for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses.

arXiv:2012.10544 (2020).

[70] Gupta, Nirupam, and Vaidya, Nitin H. Randomized reactive redun-

dancy for byzantine fault-tolerance in parallelized learning. arXiv preprint

arXiv:1912.09528 (2019).

[71] Hayes, Jamie, Melis, Luca, Danezis, George, and De Cristofaro, Emiliano. Lo-

gan: Membership inference attacks against generative models. Proceedings on

Privacy Enhancing Technologies, 1 (2019), 133–152.

[72] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep

into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the IEEE international conference on computer vision (2015),

pp. 1026–1034.

[73] He, Lie, Karimireddy, Sai Praneeth, and Jaggi, Martin. Byzantine-robust learn-

ing on heterogeneous datasets via resampling. arXiv preprint arXiv:2006.09365

(2020).

[74] Hsieh, Kevin, Phanishayee, Amar, Mutlu, Onur, and Gibbons, Phillip. The

non-iid data quagmire of decentralized machine learning. In International Con-

ference on Machine Learning (2020), PMLR, pp. 4387–4398.

138

[75] Hsu, Tzu-Ming Harry, Qi, Hang, and Brown, Matthew. Measuring the effects of

non-identical data distribution for federated visual classification. arXiv preprint

arXiv:1909.06335 (2019).

[76] Huang, Ling, Joseph, Anthony D, Nelson, Blaine, Rubinstein, Benjamin IP,

and Tygar, J Doug. Adversarial machine learning. In AISec (2011).

[77] Iyengar, Roger, Near, Joseph P, Song, Dawn, Thakkar, Om, Thakurta,

Abhradeep, and Wang, Lun. Towards practical differentially private convex

optimization. In 2019 IEEE Symposium on Security and Privacy (SP) (2019),

IEEE, pp. 299–316.

[78] Jagielski, Matthew, Oprea, Aline, Biggio, Battista, Liu, Chang, Nita-Rotaru,

Cristina, and Li, Bo. Manipulating machine learning: Poisoning attacks and

countermeasures against regression learning. 39th IEEE Symposium on Security

and Privacy (2018).

[79] Jain, Prateek, Kothari, Pravesh, and Thakurta, Abhradeep. Differentially pri-

vate online learning. In Conference on Learning Theory (2012), JMLR Work-

shop and Conference Proceedings, pp. 24–1.

[80] Kairouz, Peter, Liu, Ziyu, and Steinke, Thomas. The distributed discrete gaus-

sian mechanism for federated learning with secure aggregation. In International

Conference on Machine Learning (2021), PMLR, pp. 5201–5212.

[81] Kairouz, Peter, McMahan, Brendan, Song, Shuang, Thakkar, Om, Thakurta,

Abhradeep, and Xu, Zheng. Practical and private (deep) learning without

sampling or shuffling. In International Conference on Machine Learning (2021),

PMLR, pp. 5213–5225.

139

[82] Kairouz, Peter, McMahan, H Brendan, Avent, Brendan, Bellet, Aurélien, Ben-

nis, Mehdi, Bhagoji, Arjun Nitin, Bonawitz, Keith, Charles, Zachary, Cormode,

Graham, Cummings, Rachel, et al. Advances and open problems in federated

learning. arXiv preprint arXiv:1912.04977 (2019).

[83] Karimireddy, Sai Praneeth, Jaggi, Martin, Kale, Satyen, Mohri, Mehryar,

Reddi, Sashank J, Stich, Sebastian U, and Suresh, Ananda Theertha. Mime:

Mimicking centralized stochastic algorithms in federated learning. arXiv

preprint arXiv:2008.03606 (2020).

[84] Karimireddy, Sai Praneeth, Kale, Satyen, Mohri, Mehryar, Reddi, Sashank,

Stich, Sebastian, and Suresh, Ananda Theertha. Scaffold: Stochastic con-

trolled averaging for federated learning. In International Conference on Ma-

chine Learning (2020), PMLR, pp. 5132–5143.

[85] Ker, Justin, Wang, Lipo, Rao, Jai, and Lim, Tchoyoson. Deep learning appli-

cations in medical image analysis. Ieee Access 6 (2017), 9375–9389.

[86] Konečnỳ, Jakub, McMahan, H Brendan, Yu, Felix X, Richtárik, Peter, Suresh,

Ananda Theertha, and Bacon, Dave. Federated learning: Strategies for im-

proving communication efficiency. NIPS Private Multi-Party Machine Learning

Workshop (2016).

[87] Konstantinidis, Konstantinos, and Ramamoorthy, Aditya. Byzshield: An effi-

cient and robust system for distributed training. Proceedings of Machine Learn-

ing and Systems 3 (2021).

[88] Krizhevsky, Alex. Learning multiple layers of features from tiny images. Tech.

rep., University of Toronto, 2009.

140

[89] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems (2012).

[90] Kukkala, Vipin Kumar, Tunnell, Jordan, Pasricha, Sudeep, and Bradley,

Thomas. Advanced driver-assistance systems: A path toward autonomous ve-

hicles. IEEE Consumer Electronics Magazine 7, 5 (2018), 18–25.

[91] Kulkarni, Viraj, Kulkarni, Milind, and Pant, Aniruddha. Survey of personal-

ization techniques for federated learning. In 2020 Fourth World Conference on

Smart Trends in Systems, Security and Sustainability (WorldS4) (2020), IEEE,

pp. 794–797.

[92] Kurakin, Alexey, Chien, Steve, Song, Shuang, Geambasu, Roxana, Terzis, An-

dreas, and Thakurta, Abhradeep. Toward training at imagenet scale with dif-

ferential privacy. arXiv preprint arXiv:2201.12328 (2022).

[93] Kusetogullari, Huseyin, Yavariabdi, Amir, Cheddad, Abbas, Grahn, H̊akan,

and Hall, Johan. Ardis: a swedish historical handwritten digit dataset. Neural

Computing and Applications 32, 21 (2020), 16505–16518.

[94] Lai, Fan, Dai, Yinwei, Singapuram, Sanjay, Liu, Jiachen, Zhu, Xiangfeng, Mad-

hyastha, Harsha, and Chowdhury, Mosharaf. Fedscale: Benchmarking model

and system performance of federated learning at scale. In International Con-

ference on Machine Learning (2022), PMLR, pp. 11814–11827.

[95] Lai, Kevin, Rao, Anup, and Vempala, Santosh. Agnostic estimation of mean

and covariance. In 2016 IEEE 57th Annual Symposium on Foundations of

Computer Science (FOCS) (2016).

141

[96] LeCun, Yann, Bottou, Léon, Bengio, Yoshua, Haffner, Patrick, et al. Gradient-

based learning applied to document recognition. Proceedings of the IEEE 86,

11 (1998), 2278–2324.

[97] Li, Jerry Zheng. Principled approaches to robust machine learning and beyond.

PhD thesis, Massachusetts Institute of Technology, 2018.

[98] Li, Liping, Xu, Wei, Chen, Tianyi, Giannakis, Georgios B, and Ling, Qing. Rsa:

Byzantine-robust stochastic aggregation methods for distributed learning from

heterogeneous datasets. In Proceedings of the AAAI Conference on Artificial

Intelligence (2019), vol. 33, pp. 1544–1551.

[99] Li, Tian, Hu, Shengyuan, Beirami, Ahmad, and Smith, Virginia. Ditto: Fair

and robust federated learning through personalization. In International Con-

ference on Machine Learning (2021), PMLR, pp. 6357–6368.

[100] Li, Tian, Sanjabi, Maziar, Beirami, Ahmad, and Smith, Virginia. Fair resource

allocation in federated learning. In International Conference on Learning Rep-

resentations (2019).

[101] Lin, Tao, Kong, Lingjing, Stich, Sebastian U, and Jaggi, Martin. Ensemble

distillation for robust model fusion in federated learning. Advances in Neural

Information Processing Systems 33 (2020), 2351–2363.

[102] Mansour, Yishay, Mohri, Mehryar, Ro, Jae, and Suresh, Ananda Theertha.

Three approaches for personalization with applications to federated learning.

arXiv preprint arXiv:2002.10619 (2020).

[103] McMahan, H Brendan, Andrew, Galen, Erlingsson, Ulfar, Chien, Steve,

Mironov, Ilya, Papernot, Nicolas, and Kairouz, Peter. A general approach

to adding differential privacy to iterative training procedures. arXiv preprint

arXiv:1812.06210 (2018).

142

[104] McMahan, H Brendan, Moore, Eider, Ramage, Daniel, Hampson, Seth, and

Arcas, Blaise Aguera y. Communication-efficient learning of deep networks

from decentralized data. Proceedings of the 20th AISTATS (2017).

[105] Mehta, Harsh, Krichene, Walid, Thakurta, Abhradeep, Kurakin, Alexey, and

Cutkosky, Ashok. Differentially private image classification from features. arXiv

preprint arXiv:2211.13403 (2022).

[106] Mehta, Harsh, Thakurta, Abhradeep, Kurakin, Alexey, and Cutkosky, Ashok.

Large scale transfer learning for differentially private image classification. arXiv

preprint arXiv:2205.02973 (2022).

[107] Melis, Luca, Song, Congzheng, De Cristofaro, Emiliano, and Shmatikov, Vitaly.

Exploiting unintended feature leakage in collaborative learning. In 2019 IEEE

Symposium on Security and Privacy (SP) (2019), IEEE, pp. 691–706.

[108] Mhamdi, El Mahdi El, Guerraoui, Rachid, and Rouault, Sébastien. The hidden

vulnerability of distributed learning in byzantium. In International Conference

on Machine Learning (2018), pp. 3518–3527.

[109] Mills, Jed, Hu, Jia, and Min, Geyong. Multi-task federated learning for person-

alised deep neural networks in edge computing. IEEE Transactions on Parallel

and Distributed Systems 33, 3 (2021), 630–641.

[110] Minka, Thomas. Estimating a dirichlet distribution, 2000.

[111] Mozaffari, Hamid, Shejwalkar, Virat, and Houmansadr, Amir. Every vote

counts: Ranking-based training of federated learning to resist poisoning at-

tacks. To appear in USENIX Security Symposium (2023).

143

[112] Muñoz-González, Luis, Biggio, Battista, Demontis, Ambra, Paudice, Andrea,

Wongrassamee, Vasin, Lupu, Emil C, and Roli, Fabio. Towards poisoning of

deep learning algorithms with back-gradient optimization. In Proceedings of

the 10th ACM Workshop on Artificial Intelligence and Security (2017), ACM,

pp. 27–38.

[113] Muñoz-González, Luis, Co, Kenneth T, and Lupu, Emil C. Byzantine-robust

federated machine learning through adaptive model averaging. arXiv preprint

arXiv:1909.05125 (2019).

[114] Muñoz-González, Luis, Pfitzner, Bjarne, Russo, Matteo, Carnerero-Cano,

Javier, and Lupu, Emil C. Poisoning attacks with generative adversarial nets.

arXiv preprint arXiv:1906.07773 (2019).

[115] Murphy, Kevin. Machine learning: A probabilistic perspective. The MIT Press

(2012).

[116] Nasr, Milad, Shokri, Reza, and Houmansadr, Amir. Machine learning with

membership privacy using adversarial tuning. Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security (2018).

[117] Nasr, Milad, Shokri, Reza, and Houmansadr, Amir. Comprehensive privacy

analysis of deep learning: Stand-alone and federated learning under passive

and active white-box inference attacks. Security and Privacy (SP), 2019 IEEE

Symposium on (2019).

[118] Newell, Andrew, Potharaju, Rahul, Xiang, Luojie, and Nita-Rotaru, Cristina.

On the practicality of integrity attacks on document-level sentiment analysis. In

Proceedings of the 2014 Workshop on Artificial Intelligent and Security Work-

shop (2014), pp. 83–93.

144

[119] Nguyen, Dinh C, Ding, Ming, Pathirana, Pubudu N, Seneviratne, Aruna, Li,

Jun, and Poor, H Vincent. Federated learning for internet of things: A com-

prehensive survey. IEEE Communications Surveys & Tutorials 23, 3 (2021),

1622–1658.

[120] Papernot, Nicolas, Thakurta, Abhradeep, Song, Shuang, Chien, Steve, and

Erlingsson, Úlfar. Tempered sigmoid activations for deep learning with differ-

ential privacy. In Proceedings of the AAAI Conference on Artificial Intelligence

(2021), vol. 35, pp. 9312–9321.

[121] Paulik, Matthias, Seigel, Matt, Mason, Henry, Telaar, Dominic, Kluivers, Joris,

van Dalen, Rogier, Lau, Chi Wai, Carlson, Luke, et al. Federated evaluation

and tuning for on-device personalization: System design & applications. arXiv

preprint arXiv:2102.08503 (2021).

[122] Peng, Xingchao, Huang, Zijun, Zhu, Yizhe, and Saenko, Kate. Federated ad-

versarial domain adaptation. In International Conference on Learning Repre-

sentations (2020).

[123] Pillutla, Krishna, Kakade, Sham M, and Harchaoui, Zaid. Robust aggregation

for federated learning. arXiv preprint arXiv:1912.13445 (2019).

[124] Pillutla, Krishna, Malik, Kshitiz, Mohamed, Abdel-Rahman, Rabbat, Mike,

Sanjabi, Maziar, and Xiao, Lin. Federated learning with partial model person-

alization. In International Conference on Machine Learning (2022), PMLR,

pp. 17716–17758.

[125] Rajput, Shashank, Wang, Hongyi, Charles, Zachary, and Papailiopoulos, Dim-

itris. Detox: A redundancy-based framework for faster and more robust gra-

dient aggregation. Advances in Neural Information Processing Systems (2019),

10320–10330.

145

[126] Ramanujan, Vivek, Wortsman, Mitchell, Kembhavi, Aniruddha, Farhadi, Ali,

and Rastegari, Mohammad. What’s hidden in a randomly weighted neural

network? In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (2020).

[127] Reddi, Sashank J, Charles, Zachary, Zaheer, Manzil, Garrett, Zachary, Rush,

Keith, Konečnỳ, Jakub, Kumar, Sanjiv, and McMahan, Hugh Brendan. Adap-

tive federated optimization. In International Conference on Learning Represen-

tations (2020).

[128] Rieke, Nicola, Hancox, Jonny, Li, Wenqi, Milletari, Fausto, Roth, Holger R,

Albarqouni, Shadi, Bakas, Spyridon, Galtier, Mathieu N, Landman, Bennett A,

Maier-Hein, Klaus, et al. The future of digital health with federated learning.

NPJ digital medicine 3, 1 (2020), 119.

[129] Shafahi, Ali, Huang, W Ronny, Najibi, Mahyar, Suciu, Octavian, Studer,

Christoph, Dumitras, Tudor, and Goldstein, Tom. Poison frogs! targeted clean-

label poisoning attacks on neural networks. In Advances in Neural Information

Processing Systems (2018), pp. 6103–6113.

[130] Shejwalkar, Virat, Ganesh, Arun, Mathews, Rajiv, Thakkar, Om, and

Thakurta, Abhradeep. Recycling scraps: Improving private learning by lever-

aging intermediate checkpoints. arXiv preprint arXiv:2210.01864 (2022).

[131] Shejwalkar, Virat, and Houmansadr, Amir. Reconciling utility and membership

privacy via knowledge distillation. arXiv preprint arXiv:1906.06589 (2019).

[132] Shejwalkar, Virat, and Houmansadr, Amir. Manipulating the byzantine: Op-

timizing model poisoning attacks and defenses for federated learning. In The

Network and Distributed System Security Symposium (NDSS) (2021).

146

[133] Shejwalkar, Virat, and Houmansadr, Amir. Membership privacy for machine

learning models through knowledge transfer. In Proceedings of the AAAI Con-

ference on Artificial Intelligence (AAAI) (2021).

[134] Shejwalkar, Virat, Houmansadr, Amir, Kairouz, Peter, and Ramage, Daniel.

Back to the drawing board: A critical evaluation of poisoning attacks on feder-

ated learning. arXiv preprint arXiv:2108.10241 (2021).

[135] Shejwalkar, Virat, Inan, Huseyin A, Houmansadr, Amir, and Sim, Robert.

Membership inference attacks against NLP classification models. In NeurIPS

2021 Workshop Privacy in Machine Learning (2021).

[136] Shen, Shiqi, Tople, Shruti, and Saxena, Prateek. Auror: Defending against

poisoning attacks in collaborative deep learning systems. In Proceedings of the

32nd Annual Conference on Computer Security Applications (2016), pp. 508–

519.

[137] Shokri, Reza, and Shmatikov, Vitaly. Privacy-preserving deep learning. In

Proceedings of the 22nd ACM SIGSAC conference on computer and communi-

cations security (2015), ACM.

[138] Shokri, Reza, Stronati, Marco, Song, Congzheng, and Shmatikov, Vitaly. Mem-

bership inference attacks against machine learning models. In Security and

Privacy (SP), 2017 IEEE Symposium on (2017).

[139] Simonyan, Karen, and Zisserman, Andrew. Very deep convolutional networks

for large-scale image recognition. International Conference on Learning Repre-

sentations (2015).

147

[140] Singhal, Karan, Sidahmed, Hakim, Garrett, Zachary, Wu, Shanshan, Rush,

John, and Prakash, Sushant. Federated reconstruction: Partially local federated

learning. Advances in Neural Information Processing Systems 34 (2021), 11220–

11232.

[141] Smith, Adam, Thakurta, Abhradeep, and Upadhyay, Jalaj. Is interaction nec-

essary for distributed private learning? In 2017 IEEE Symposium on Security

and Privacy (SP) (2017), IEEE, pp. 58–77.

[142] Song, Congzheng, and Raghunathan, Ananth. Information leakage in embed-

ding models. In Proceedings of the 2020 ACM SIGSAC conference on computer

and communications security (2020), pp. 377–390.

[143] Song, Congzheng, Ristenpart, Thomas, and Shmatikov, Vitaly. Machine learn-

ing models that remember too much. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security (2017).

[144] Song, Congzheng, and Shmatikov, Vitaly. Auditing data provenance in text-

generation models. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (2019), pp. 196–206.

[145] Song, Congzheng, and Shmatikov, Vitaly. Overlearning reveals sensitive at-

tributes. In International Conference on Learning Representations (2019).

[146] Song, Liwei, and Mittal, Prateek. Systematic evaluation of privacy risks of

machine learning models. In 30th {USENIX} Security Symposium ({USENIX}

Security 21) (2021).

[147] Sun, Gan, Cong, Yang, Dong, Jiahua, Wang, Qiang, Lyu, Lingjuan, and Liu,

Ji. Data poisoning attacks on federated machine learning. IEEE Internet of

Things Journal 9, 13 (2021), 11365–11375.

148

[148] Sun, Ziteng, Kairouz, Peter, Suresh, Ananda Theertha, and McMahan, H Bren-

dan. Can you really backdoor federated learning? NeurIPS Workshop on

Federated Learning (2019).

[149] T Dinh, Canh, Tran, Nguyen, and Nguyen, Josh. Personalized federated learn-

ing with moreau envelopes. Advances in Neural Information Processing Systems

33 (2020), 21394–21405.

[150] Tang, Xinyu, Mahloujifar, Saeed, Song, Liwei, Shejwalkar, Virat, Nasr, Mi-

lad, Houmansadr, Amir, and Mittal, Prateek. Mitigating membership infer-

ence attacks by self-distillation through a novel ensemble architecture. In 31th

{USENIX} Security Symposium ({USENIX} Security 22) (2022).

[151] Tolpegin, Vale, Truex, Stacey, Gursoy, Mehmet Emre, and Liu, Ling. Data

poisoning attacks against federated learning systems. In European Symposium

on Research in Computer Security (2020), Springer, pp. 480–501.

[152] Tramèr, Florian, Shokri, Reza, San Joaquin, Ayrton, Le, Hoang, Jagielski,

Matthew, Hong, Sanghyun, and Carlini, Nicholas. Truth serum: Poisoning

machine learning models to reveal their secrets. In Proceedings of the 2022

ACM SIGSAC Conference on Computer and Communications Security (2022),

pp. 2779–2792.

[153] Tran, Brandon, Li, Jerry, and Madry, Aleksander. Spectral signatures in back-

door attacks. In Advances in Neural Information Processing Systems (2018),

pp. 8000–8010.

[154] Wang, Bolun, Yao, Yuanshun, Shan, Shawn, Li, Huiying, Viswanath, Bimal,

Zheng, Haitao, and Zhao, Ben Y. Neural cleanse: Identifying and mitigating

backdoor attacks in neural networks. In 2019 IEEE Symposium on Security

and Privacy (SP) (2019), IEEE, pp. 707–723.

149

[155] Wang, Hongyi, Sreenivasan, Kartik, Rajput, Shashank, Vishwakarma, Harit,

Agarwal, Saurabh, Sohn, Jy-yong, Lee, Kangwook, and Papailiopoulos, Dim-

itris. Attack of the tails: Yes, you really can backdoor federated learning. In

Advances in Neural Information Processing Systems (2020).

[156] Wang, Jianyu, Liu, Qinghua, Liang, Hao, Joshi, Gauri, and Poor, H Vincent.

Tackling the objective inconsistency problem in heterogeneous federated opti-

mization. Advances in neural information processing systems 33 (2020), 7611–

7623.

[157] Wen, Wei, Xu, Cong, Yan, Feng, Wu, Chunpeng, Wang, Yandan, Chen, Yiran,

and Li, Hai. Terngrad: Ternary gradients to reduce communication in dis-

tributed deep learning. In Advances in neural information processing systems

(2017), pp. 1509–1519.

[158] Wortsman, Mitchell, Ramanujan, Vivek, Liu, Rosanne, Kembhavi, Aniruddha,

Rastegari, Mohammad, Yosinski, Jason, and Farhadi, Ali. Supermasks in su-

perposition. In NeurIPS (2020).

[159] Wu, Chen, Yang, Xian, Zhu, Sencun, and Mitra, Prasenjit. Mitigating backdoor

attacks in federated learning. arXiv preprint arXiv:2011.01767 (2020).

[160] Wu, Shanshan, Li, Tian, Charles, Zachary, Xiao, Yu, Liu, Ziyu, Xu, Zheng, and

Smith, Virginia. Motley: Benchmarking heterogeneity and personalization in

federated learning, 2022.

[161] Xiao, Han, Xiao, Huang, and Eckert, Claudia. Adversarial label flips attack on

support vector machines. In Proceedings of the 20th European Conference on

Artificial Intelligence (2012), pp. 870–875.

150

[162] Xiao, Huang, Biggio, Battista, Nelson, Blaine, Xiao, Han, Eckert, Claudia, and

Roli, Fabio. Support vector machines under adversarial label contamination.

Neurocomputing 160 (2015), 53–62.

[163] Xie, Chulin, Chen, Minghao, Chen, Pin-Yu, and Li, Bo. Crfl: Certifiably robust

federated learning against backdoor attacks. In International Conference on

Machine Learning (2021), PMLR.

[164] Xie, Chulin, Huang, Keli, Chen, Pin-Yu, and Li, Bo. Dba: Distributed backdoor

attacks against federated learning. In International Conference on Learning

Representations (2019).

[165] Xie, Cong, Koyejo, Oluwasanmi, and Gupta, Indranil. Generalized byzantine-

tolerant sgd. arXiv preprint arXiv:1802.10116 (2018).

[166] Xu, Jie, Glicksberg, Benjamin S, Su, Chang, Walker, Peter, Bian, Jiang, and

Wang, Fei. Federated learning for healthcare informatics. Journal of Healthcare

Informatics Research 5 (2021), 1–19.

[167] Yang, Chaofei, Wu, Qing, Li, Hai, and Chen, Yiran. Generative poisoning at-

tack method against neural networks. arXiv preprint arXiv:1703.01340 (2017).

[168] Yin, Dong, Chen, Yudong, Ramchandran, Kannan, and Bartlett, Peter.

Byzantine-robust distributed learning: Towards optimal statistical rates. In

Proceedings of the 35th International Conference on Machine Learning (2018).

[169] Yu, Tao, Bagdasaryan, Eugene, and Shmatikov, Vitaly. Salvaging federated

learning by local adaptation. arXiv preprint arXiv:2002.04758 (2020).

[170] Zhang, Jie, Guo, Song, Ma, Xiaosong, Wang, Haozhao, Xu, Wenchao, and Wu,

Feijie. Parameterized knowledge transfer for personalized federated learning.

Advances in Neural Information Processing Systems 34 (2021), 10092–10104.

151

[171] Zhang, Jie, Li, Bo, Chen, Chen, Lyu, Lingjuan, Wu, Shuang, Ding, Shouhong,

and Wu, Chao. Delving into the adversarial robustness of federated learning.

AAAI (2023).

[172] Zhang, Zhengming, Panda, Ashwinee, Song, Linyue, Yang, Yaoqing, Mahoney,

Michael, Mittal, Prateek, Kannan, Ramchandran, and Gonzalez, Joseph. Neu-

rotoxin: Durable backdoors in federated learning. In International Conference

on Machine Learning (2022), PMLR, pp. 26429–26446.

[173] Zhou, Hattie, Lan, Janice, Liu, Rosanne, and Yosinski, Jason. Deconstructing

lottery tickets: Zeros, signs, and the supermask. In NeurIPS (2019).

[174] Zhu, Zhuangdi, Hong, Junyuan, and Zhou, Jiayu. Data-free knowledge dis-

tillation for heterogeneous federated learning. In International Conference on

Machine Learning (2021), PMLR, pp. 12878–12889.

152

	Quantifying and Enhancing the Security of Federated Learning
	Recommended Citation

	tmp.1697738391.pdf.uDnux

