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ABSTRACT

NONPARAMETRIC DERIVATIVE ESTIMATION USING
PENALIZED SPLINES: THEORY AND APPLICATION

SEPTEMBER 2023

BRIGHT ANTWI BOASIAKO

B.Sc., KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor John W. Staudenmayer

This dissertation is in the field of Nonparametric Derivative Estimation using

Penalized Splines. It is conducted in two parts. In the first part, we study the L2

convergence rates of estimating derivatives of mean regression functions using penal-

ized splines. In 1982, Stone provided the optimal rates of convergence for estimating

derivatives of mean regression functions using nonparametric methods. Using these

rates, Zhou et. al. in their 2000 paper showed that the MSE of derivative estimators

based on regression splines approach zero at the optimal rate of convergence. Also, in

2019, Xiao showed that, under some general conditions, penalized spline estimators

of mean regression functions achieve optimal L2 rates of convergence. We extend this

result to derivative estimators. In particular, we show that under similar conditions,

penalized spline estimators of derivatives of mean regression functions achieve optimal

L2 rates of convergence.
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In the second part of the thesis, we estimate the amount of association between

physical activity and all-cause mortality in US adults using penalized splines. We

introduce a novel nonparametric isotemporal substitution model to investigate the

dose-response relationship between daily time allocations across physical activity and

sedentary behaviors, and all-cause mortality. Our method reveals that the associ-

ation between such daily time allocations and mortality depends on one’s level of

physical activity. We apply our method to data from the 2003-2006 wave of the

US National Health and Nutrition Examination Survey (NHANES) with mortality

follow-up through December 31st, 2019, a nationally representative survey. Among

US adults with less than 6 hours of daily activity, replacing 1 hour of physical activ-

ity with sedentary behaviors is associated with up to 68% increase in mortality risks

after adjusting for sleep time and baseline demographic and health covariates. In

addition, for those with sedentary time above 50% of non-sleep time, replacing 1% of

moderate-to-vigorous activity (MVPA) time with sedentary time is associated with

up to 18% increase in mortality risks. Therefore, to better understand mortality risk

associations, US adults may consider their full daily activity time allocations before

replacing one activity type with another.
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CHAPTER 1

INTRODUCTION

This dissertation aims to contribute to the field of Nonparametric Derivative Es-

timation, specifically focusing on Penalized Splines. The research is split into two

parts; the first focuses on the theoretical properties of penalized spline derivative es-

timators while the second part uses a novel penalized spline-based survival analysis to

study the association between physical activity and all-cause mortality in a nationally

representative survey among US adults.

1.1 Optimal L2 convergence rates of penalized spline deriva-

tive estimators.

In a standard regression problem with independent and identically distributed

(IID) data, represented as {xi, yi}ni=1, we use derivatives to estimate the associations

between dependent and independent variables. To put it in context, consider the

standard linear model represented by the equation yi = β0+β1xi+ϵi (ϵi’s are IID with

mean 0 and variance σ2). Here, β1, which is the first derivative of the mean regression

function E(yi|xi) = β0 + β1xi, serves as a measure of the association between y (the

dependent variable) and x (the independent variable).

Moving beyond linear models, nonparametric methods allow us to handle mean

regression functions in a more flexible way. Instead of adhering to the linearity as-

sumption in the standard linear model, these methods model the mean regression

function as E(yi|xi) = f(xi), where f is an unknown function. This effectively relaxes

1



the linearity constraint, offering robust modeling of complex relationships with mini-

mal assumptions on f such as smoothness. However, this does not mean we abandon

the use of derivatives. Quite the contrary, we still use them to estimate associations in

these models. The primary difference lies in the fact that, unlike the constant deriva-

tive in a linear model (β1), the derivatives in these nonparametric models can change

depending on the value of the independent variable x. For instance, we can repre-

sent the first derivative as f ′(x), signifying that the derivative of the mean regression

function is a function of x.

In the context of nonparametric models, there are two primary method categories

employed to estimate derivatives of mean regression functions. The first category

involves a two-step process: initially, the mean regression function is estimated. Then,

the obtained estimator is differentiated to estimate the derivatives ([49, 60, 30]). The

second category of methods takes a more direct approach. Rather than first estimating

the mean regression function, these methods aim to estimate the derivatives directly

and thus avoid the need for the initial step of estimating the mean regression function

([13, 11]). In the first part of this thesis, we focus on spline-based nonparametric

methods for derivative estimation, more specifically, we focus on penalized spline

derivative estimators. These methods fall under the first category of nonparametric

derivative estimators.

A spline function is made up of piece-wise polynomials that are joined together at

various locations (referred to as knots) with some continuity conditions at the knot

locations. With the flexibility that polynomials provide and the continuity conditions

at the knots, splines provide a rich class of smooth functions that are robust to model

misspecification to model non-linear mean regression functions in a wide range of

applications.

The number of polynomial pieces and the placement of knots in a spline function

form the basis for different spline-based data smoothing methods. In Regression

2



Splines, a predetermined number of knots is selected (often through cross-validation)

and the least squares method is used to determine the coefficients of the spline function

that best fits the given data. On the other hand, Smoothing Splines avoid the knot

placement issue by placing a knot at every unique value of x. Penalization is then

used to balance the bias-variance trade-off. Lastly, Penalized Splines straddle the

line between Regression Splines and Smoothing Splines by using a large but non-

exhaustive number of knots and employing penalization to balance the bias-variance

trade-off.

1.1.1 Asymptotic properties of spline-based derivative estimators

There are a number of asymptotic results in the literature for spline-based esti-

mators of mean regression functions and their derivatives. For instance, [60] in 2000

showed that the mean squared error (MSE) of a regression spline derivative estimator

approaches zero at the optimal rate of convergence. Here, optimality is based on

the work by Stone in 1982 which provides global optimal rates of convergence for

nonparametric derivative estimators of mean regression functions. Also, [48] studied

the asymptotics of smoothing spline derivative estimators and found that the optimal

smoothing parameter depends on the derivative being estimated.

In this first work of the thesis, we contribute to the asymptotic understanding of

penalized spline derivative estimators by studying their L2 convergence rates. Build-

ing on the work of [58, 8], we show that the penalized spline derivative estimator of

the rth derivative of the mean regression function, E(yi|xi) = f(xi), achieves the opti-

mal L2 rate of convergence [45]. We remark that the L2 asymptotics of the penalized

spline derivative estimator are similar to those of regression splines when the number

of knots increases slowly with the sample size, n, and are similar to smoothing spline

results when the number of knots increases faster with n. This remark is consistent

3



with asymptotic results of penalized spline estimators of the mean regression function

itself [8].

Even though we show that the penalized spline derivative estimator converges

at the optimal L2 rate, this result does not cover the performance of the derivative

estimator in finite samples. We performed an extensive simulation study to under-

stand how the estimator performs in finite samples. By comparing the estimator

with an estimator that uses knowledge of the true derivative to choose its smoothing

parameter (referred to as the “oracle” estimator), we observe that there may be quite

substantial differences between the MSE of the penalized spline derivative estimator

and the oracle estimator, especially for higher derivatives.

1.2 Nonparametric estimation of the association between ob-

jectively measured physical activity and mortality.

The significance of physical activity in promoting longevity and health is widely

recognized. Physical activity is often categorized into three main types based on the

intensity level. These are sedentary behaviors, light physical activity, and moderate-

to-vigorous physical activity (MVPA). Numerous epidemiological studies have estab-

lished a clear association between physical activity and reduced risk of chronic illnesses

such as stroke, diabetes, and heart disease ([27, 50]). Furthermore, it has been es-

tablished that regular exercise can influence overall mortality risks [22]. However,

a crucial problem remains: the exact dose-response relationship between physical

activity and mortality remains unknown ([34]).

Understanding this dose-response relationship is further complicated by two fun-

damental challenges. Firstly, the finite nature of time – with only 24 hours in a day

– means that the total time a person spends engaging in various types of physical

activity sums up to a constant. This constraint leads to perfect multicollinearity,

posing a challenge to traditional statistical techniques. Data exhibiting such charac-

4



teristics are referred to as “compositions” in the literature ([2]). To address this issue,

isotemporal substitution methods ([28, 52]) are typically used. In such approaches,

one variable from the compositional covariates is omitted from the regression. As

a result, increasing any of the remaining compositional covariates by 1 unit, while

keeping the other variables constant, implies a decrement of 1 unit in the excluded

variable.

The other challenge to understanding the dose-response relationship between phys-

ical activity and mortality is data quality. Relying on self-reported measures of

physical activity intensity levels is problematic, as individuals have been found to

overestimate the time they spend engaging in physical activity ([41, 46, 22]).

A more objective and reliable estimation of one’s physical activity can be achieved

through the use of accelerometer measurements, when available. Accelerometers offer

a precise way of capturing physical activity intensity levels. For instance, a study by

Troiano et al. ([46]), using accelerometry data, revealed a stark discrepancy between

self-reported and objectively measured physical activity. They found that less than

10% of US adults engage in the recommended 30 minutes per day of MVPA for

most days of the week (at least five days). This figure stands in contrast to self-

reported data, where more than 30% claimed to meet these recommendations. Such

discrepancies underscore the importance of reliable and objective physical activity

measurements in studying the relationship between physical activity and mortality.

In 2016, Fishman et al. ([22]) used objectively measured physical activity data

from the 2003-2006 wave of the US National Health and Nutrition Examination Sur-

vey (NHANES) with mortality follow-up through December 31st, 2011 [32]. One of

the goals of that research was to study the isotemporal substitution effects of physical

activity time allocations on all-cause mortality among US adults. The authors used

a Cox model [9] where they represented the effect of physical activity time in the

log-hazard function as a linear function. While the study by [22] and others like it,
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deepen our understanding of the association between replacing one physical activity

time with another and mortality, there are two main drawbacks to their approach

that we want to highlight and address in this work.

The first drawback pertains to the assumption of uniformity in the estimated

associations. Specifically, the existing models assume that the impact of adjustments

in physical activity time allocations remains constant, irrespective of an individual’s

current activity allocations. For instance, the linear model predicts identical effects

when a person increases their daily sedentary time from 1 hour to 2 hours, as compared

to increasing it from 7 hours to 8 hours. In practical applications, however, it may

not be reasonable to assume such a uniform effect. The second drawback lies in

the underestimation of substitution effects. Specifically, the linear model is liable to

predict smaller effects from substituting one type of physical activity for another on

mortality, which may not accurately represent the real associations.

In the second part of this dissertation, we present a novel nonparametric approach

for quantifying the relationships between physical activity and mortality. This method

can be applied to any regression involving a time-to-event response with compositional

covariates. In a Cox model, our approach estimates the effects of such compositional

covariates in the log-hazard function using a multivariate penalized tensor product

spline. The incorporation of this flexible functional form allows our model to detect

varying effects across different regions of the hazard function. Furthermore, the sub-

stitution effects within our model are determined by the partial derivatives of the

fitted tensor product spline surface, providing a more nuanced understanding of the

relationships within the data.

We apply our method to the NHANES data used in Fishman et al. ([22]) but

with mortality follow-up through December 31st, 2019 [31]. To facilitate comparison,

we conduct a parallel analysis that, similar to [22], represents the physical activity

covariates as linear terms in the log-hazard function. Our analysis results show that,
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among U.S. adults, the impact of substituting one type of physical activity for another

on mortality can differ greatly depending on the individual’s current level of physical

activity. Such an insight is easily missed by the linear model. In all the analyses

conducted in this work, adjustments were made for baseline demographic and health-

related covariates. These included age, education level, body mass index (BMI),

smoking status, presence or absence of diseases such as diabetes, heart disease, stroke,

and cancer, as well as whether an individual has a mobility limitation.

The rest of the dissertation is structured as follows: In Chapter 2, we present

the asymptotic study and results of the L2 convergence rates of the Penalized Spline

derivative estimator. In this chapter, we definite the estimator more clearly and state

the assumptions we make for our main result. The result appears in Theorem 1. Next,

we provide a formal proof of the theorem with needed technical lemmas appearing

in the appendix. We end the chapter with an extensive simulation study to assess

the L2 convergence rates of the estimator for the first two derivatives and how the

estimator performs in finite samples. Chapter 3 contains our nonparametric method

to estimate the substitution effects of compositional variables in a Cox model and the

associated partial derivatives used to measure such substitution effects. The chapter

also contains the analyses that apply our nonparametric method to the NHANES

data. We conclude the dissertation with a discussion of our results and the directions

for future research in Chapter 4.
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CHAPTER 2

OPTIMAL L2 CONVERGENCE OF PENALIZED SPLINE
DERIVATIVE ESTIMATORS

2.1 Introduction

We consider the situation where data {xi, yi}ni=1, sampled from the model:

yi = f(xi) + εi, ∀i = 1, 2, . . . , n (2.1)

with f ∈ Cp(K), the space of functions with p continuous derivatives over K = [0, 1],

the xi’s, for xi ∈ K, are either random or deterministic, and εi’s are independent and

identically distributed random error terms with E[εi] = 0 and V ar[εi] = σ2. There are

many cases when it is of interest to estimate some derivative of the mean regression

function f , with minimal assumptions on the functional form of f . For example, in

human growth studies, the first derivative of the function relating height and age

indicates the speed of growth ([29, 35]). Additionally, [7] apply derivative estimation

in the development of a visual mechanism for studying curve structures, and [33]

compare regression curves using those structures. In economics, derivatives are used

to calculate the marginal propensity to consume, which measures the effect of changes

in disposable income on personal consumption ([21]). In addition, average derivatives

of mean regression functions are used to empirically validate the so-called “law of

demand” ([25]). It is sufficient for a random matrix composed of average derivatives to

be positive definite for the law of demand to hold ([24]). In nonparametric regression

itself, estimates of derivatives of the true function, f , are used in plug-in bandwidth
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selection techniques such as in local polynomial regression ([36]) and to construct

confidence bands for nonparametric estimators ([18]).

Previous work has taken three major approaches to estimating derivatives of

functions nonparametrically: local polynomial regression, empirical derivatives, and

spline-based methods. In local polynomial regression, a derivative of f(x) can be

estimated using a coefficient of the fitted local polynomial at x ([19], page 22). Em-

pirical methods generally transform the data and smooth difference-based estimates

of derivatives. Earlier works include [30], which used Kernel-based approaches to

estimate the derivatives of the mean regression function while utilizing difference

quotients to identify the best kernel bandwidth via cross-validation. More recently,

[14] used symmetric difference quotients to estimate derivatives of mean regression

functions and showed that their approach improved the asymptotic order of the vari-

ance. Spline-based methods use the fact that splines are piecewise polynomials. As

a result, differentiating the basis function with respect to the covariate gives a basis

function for the derivative, and an estimate of that function then can be obtained

using a subset of the estimated coefficients ([12], page 115, [16, 17]).

While it is straightforward to compute nonparametric derivative estimates, the

challenge is that those estimates also require some sort of regularization to balance

estimation bias and overfitting, and methods to choose that regularization are usually

designed for estimating the function itself, not derivatives ([38, 16]). Several authors

have designed methodologies to address that problem (e.g. [6, 43]), but it has also

been suggested that methods that choose the amount of smoothing for the derivatives

as if the function were of interest often work well in practice ([38], page 154, [10]). We

call such methods naive. In this work, we add evidence to that debate by exploring

the asymptotic behavior of naive nonparametric derivative estimators, focusing on

penalized splines.
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The past few decades have seen some progress in related areas. In local polynomial

regression, results from [37] can be used to show that when a bandwidth is chosen

to minimize the integrated mean squared error (IMSE) of a pth degree polynomial

estimate of f , and that bandwidth is used to estimate f (r) (p ≥ r, i.e. a naive

estimator), then the derivative estimate’s IMSE converges at an optimal rate if r

is even. Otherwise, the naive bandwidth over- or under-smooths. In particular, a

naive estimator of the first derivative using cubic local polynomials under-smooths.

A derivation of this is given in the appendix.

Also, [14] showed that the asymptotic order of the bias of empirical estimators does

not depend on the order of the derivative being estimated, and they employ a method

by [13] to deal with correlations that result from creating the empirical dataset for

the derivative. [11] generalized those results by considering linear combinations of

observations to better fit both interior and boundary points. They also demonstrated

that their method achieves optimal rates of convergence ([45]).

The asymptotic properties of two types of spline-based derivative estimators have

been considered too. [48] studied smoothing splines and found that the optimal

smoothing parameter depends on the order of the derivative being estimated. In con-

trast, [60] considered the asymptotics of regression spline-based derivative estimators

where the number of knots increases with the sample size. They showed that the

MSE goes to zero at the optimal rate ([45]), and the required rate of increase in the

number of knots does not depend on the order of the derivative.

Somewhat surprisingly though, comparable results about penalized spline estima-

tors of derivatives do not seem to exist. Building on work on the asymptotics of

penalized spline estimators of functions ([58]), we derive the apparently new result

that naive methods to estimate derivatives with penalized splines achieve optimal

global L2 rates of convergence ([45]).
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The rest of the chapter is structured as follows: in Section 2.2, we give some

background on splines, penalized splines, and the naive derivative estimator. In

Section 2.3, we present our main result and remark that depending on the rate at

which the number of knots increases with the sample size, n, the L2 convergence of the

naive estimator is similar to that of regression splines or smoothing splines. We also

provide the proof of theorem 1 in this section. In Section 2.4, we present a simulation

study of the L2 rate of convergence of the naive estimator, and we conclude with a

discussion in Section 2.5. Proofs of the technical lemmas for the theorem are given

in the appendix. We also provide a note on the asymptotic rates of convergence on

local polynomial derivative estimators in the appendix.

2.2 Penalized Splines & the Naive Derivative Estimator

2.2.1 Splines

Splines provide a flexible mechanism to estimate derivatives of the mean regression

function f , and in the case of estimating the function itself, they have been shown to

do so at the best possible rates of convergence ([58, 57, 45]). A spline is a piece-wise

polynomial with continuity conditions at the points where the pieces join together

(called knots).

More specifically, for q ≥ 2, we let

S(q, t) =
{
s ∈ Cq−2(K) : s is a q-order polynomial on each [ti, ti+1]

}

be a space of q−order splines over K = [0, 1] with knot locations t = (t0, t1, . . . , tK+1)

where t0 = 0, tK+1 = 1 and ti < tj ∀i<j. For q = 1, S(q, t) consists of step functions

with jumps at the knots.

This space has a number of equivalent bases and one notable for having stable

numerical properties is the B-Spline basis ([12, 38, 40]).
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de Boor ([12]) defines the qth order B-spline basis function Bj,q(x) over the knot

locations t through a recurrence relation. [17] show that when the distance between

the knots is constant, Bj,q(x) reduces to

Bj,q(x) =
(−1)q∆q(x− tj)

q−1
+

(q − 1)!hq−1

where ∆ is the backward difference operator (∆tj = tj − tj−1), and h is the common

distance between the knots. Observe that Bj,q(x), in this case, is a rescaled q-order

difference of truncated polynomials. To get a complete set of B-Spline basis, we need

2q extra knots with q knots on each side of [0, 1]. This is referred to as the expanded

basis ([17]).

Without losing generality, we will assume a B-Spline basis for S(q, t) for the rest of

this work. We refer the reader to [12, 40, 16] for an introduction to B-Splines, and [17]

for how the B-Spline basis compares to the Truncated Polynomial Functions (TPF)

on metrics including fit quality, numerical stability, and multidimensional smoothing.

2.2.2 Penalized Splines & the Naive Estimator

Penalized splines are often viewed as a compromise between regression and smooth-

ing splines because they combine penalization and low-rank bases to achieve compu-

tational efficiency. They vary slightly based on the basis functions used and the object

of penalization. For example, P-Splines ([16]) use B-Spline basis functions and penal-

ize differences of the coefficients to a specific order. In this section, we will focus on

P-Splines. Our later results hold for the general penalized spline estimator defined

by [58].

A P-Spline estimator of f in (2.1) based on an iid sample of size n finds a spline

function g(x) = B(x)α, that minimizes:

Q(α, λn) =
1

n

n∑
i=1

(yi −B(xi)α)2 + λnα
TPmα (2.2)
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where, α = (α1, α2, . . . , αK+q) is a vector of coefficients, and

B(xi) = [B1,q(xi), B2,q(xi), . . . , BK+q,q(xi)] ∈ RK+q is a vector of basis functions at xi,

for i = 1, 2, . . . , n. The penalty matrix Pm = DT
mDm ∈ R(K+q)×(K+q) where Dmα

is a vector of mth order differences of α. Finally, λn ≥ 0 is the smoothing parameter

and needs to be chosen. Three prevalent methods for choosing λn are Generalized

Cross Validation (GCV), Maximum Likelihood (ML), and Restricted (or residual)

Maximum Likelihood (REML); we refer the reader to [53] chapter 4 and [38] chapters

4 and 5 for details.

Minimizing (2.2) with respect to α gives α̂ =
(

BTB
n

+ λnPm

)−1
BT y
n

which results

in f̂(x) = B(x)α̂. Here, B = [B(x1), B(x2), . . . , B(xn)]
T ∈ Rn×K+q. From f̂ , we can

derive the naive estimator of the rth derivative of f as follows:

f̂ (r)(x) =
d(r)

dx
B(x)α̂

=
d(r)

dx

(
K+q∑
j=1

α̂jBj,q(x)

)

=

K+q−r∑
j=1

α̂
(r)
j Bj,q−r(x) (2.3)

where α̂
(r)
j = (q − r)

(
α̂
(r−1)
j+1 −α̂

(r−1)
j

)
tj−tj−q+r

, with α̂
(0)
j = α̂j for 1 ≤ j ≤ K + q − r, and

r = 1, 2, . . . , q − 2. ([12, 60]).

[58] showed that under some conditions on the distribution of the knots and λn, f̂

achieves the optimal L2 rate of convergence ([45]) to the true f but they do not discuss

derivative estimators. We extend this result to show that under same conditions that

do not depend of the order of the derivative, the naive derivative estimator f̂ (r) of

f (r) achieves optimal L2 rates of convergence.

13



2.3 Main Results

In this section, we provide our main result in Theorem 1 and remark on how

this result relates to regression and smoothing splines. Note that the findings in this

section apply to the general penalized spline estimator as defined by [58]. This general

estimator is based on the realization that the various types of penalized splines differ

mainly by their penalty matrices. However, the eigenvalues of the penalty matrices

decay at similar rates, making their unified asymptotic study tractable. We refer the

interested reader to a derivation of the decay rates of various penalty matrices in

[58].

2.3.1 Notation

We start by defining the following notations relating to norms and limits. For a

real matrix A, ||A||∞ = max
i

∑
j

|aij| is the largest row absolute sum. ||A||2 is the

operator norm of A induced by the vector norm ||.||2. ||A||F =
√

tr(ATA) is the

Frobenius norm. For a real vector, ||a|| = max
i

|ai|. For a real-valued function g(x)

defined on K ⊂ R, ||g|| = sup
x∈K

|g(x)| and ||g||L2 =
(∫

x∈K
(g(x))2 dx

)1/2

is the L2-norm

of g. For two real sequences {an}n≥1 and {bn}n≥1, an ∼ bn means lim
n→∞

an
bn

= 1.

2.3.2 Assumptions

Next, we state assumptions on the knot placement and penalty matrix. We note

that these assumptions are the same as those made in [58] for the asymptotic analysis

of estimates of functions rather than derivatives.

1. K = o(n).

2. max
1≤i≤K

|hi+1 − hi| = o(K−1), where hi = ti − ti−1.
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3. h

min
1≤i≤K

hi
≤ M , where h = max

1≤i≤K
hi and M > 0 is some predetermined constant.

4. For a deterministic design,

sup
x∈[0,1]

|Qn(x)−Q(x)| = o(K−1)

where Qn(x) is the empirical CDF of x and Q(x) is a distribution with contin-

uously differentiable positive density q(x).

5. The penalty matrix Pm is a banded symmetric positive semi-definite square

matrix with a finite bandwidth and ||Pm||2 = O(h1−2m). This assumption is

similar to Assumption 3 of [58] where it is stated in terms of the eigenvalues of

Pm. This assumption is verifiable for P-Splines, O-Splines, and T-Splines. See

Propositions 4.1 and 4.2 of [58]. Also, we assume βTPmβ = O(1) where β is

the coefficient vector for approximating f in 2.1 with the best approximating

spline function sf in S(q, t) (see Lemma 4).

6. λn = o(1).

Assumptions (2) and (3) are necessary conditions on the placements of the knots

and also imply that h ∼ K−1. This ensures that M−1 < Kh < M and is necessary

for numerical computations ([57]).

Theorem 1. Let the mean regression function in (2.1) be such that f ∈ Cp(K). Under

Assumptions (1) - (6) above, and for m ≤ min(p, q):

E
(
||f̂ (r) − f (r)||2L2

)
= O

(
Ke

n

)
+O

(
K−2(q−r)

)
+ o(K−2(p−r))

+O{min(λ2
nK

2m+2r, λnK
2r)}

where Ke = min
{
K2r+1, K2rλ

−1/2m
n

}
and r = 1, 2, . . . , q − 2.
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2.3.3 Remarks

Remark 1. The asymptotics of penalized splines are either similar to those of regres-

sion splines or smoothing splines depending on how fast the number of knots increases

as the sample size increases ([8, 58]). This creates two scenarios: the small number of

knots scenario with asymptotics similar to regression splines and the large number of

knots scenario with asymptotics similar to smoothing splines. We explore the rates

of convergence of the naive estimator under each of these scenarios in Remarks 1a

and 1b below.

Remark 1a (Small number of knots scenario): Suppose the mean regression func-

tion is q-times continuously differentiable, where q is the order of the spline used to

estimate f . Thus, f ∈ Cq(K). Also suppose λnK
2m = O(1), then

E
(
||f̂ (r) − f (r)||2L2

)
= O

(
Ke

n

)
+O

(
K−2(q−r)

)
+ o(K−2(p−r))

+O{min(λ2
nK

2m+2r, λnK
2r)}

= O

(
K2r+1

n

)
+O

(
K−2(q−r)

)
+O(λ2

nK
2m+2r).

Choosing K such that K ∼ n
1

2q+1 and λn = O(n−(q+m)/(2q+1)), the estimator f̂ (r)

of f (r) converges at the optimal L2 rate of n− (q−r)
2q+1 . In the above, we have used

the fact that p = q and that min {λ2
nK

2m+2r, λnK
2r} = λ2

nK
2m+2r, Ke = K2r+1 for

λnK
2m = O(1). We note that the λn’s rate of decrease does not depend on (r), the

order of the derivative.

Remark 1b (Large number of knots scenario): Suppose f ∈ Cm(K), and there exists

a sufficiently large constant, C, independent of K such that for K ≥ C1/2mλ
−1/2m
n =

C1/2mn
1

2m+1 , with m ≤ q, we have
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E
(
||f̂ (r) − f (r)||2L2

)
= O

(
Ke

n

)
+O

(
K−2(q−r)

)
+ o(K−2(p−r))

+O{min(λ2
nK

2m+2r, λnK
2r)}

= O

(
K2rλ

−1/2m
n

n

)
+O

(
K−2(q−r)

)
+ o

(
K−2(m−r)

)
+O(λnK

2r).

Choosing λn such that λn ∼ n−2m/(2m+1), the estimator f̂ (r) of f (r) converges at the

optimal L2 rate of n− (m−r)
2m+1 . Again, we note that the λn’s rate of decrease does not

depend on (r).

Remark 2. While the naive estimator of the derivative achieves an optimal rate

of convergence, that does not mean that the naive approach is optimal in a finite

sample. We compare the performance of the naive estimator to an “oracle estimator”

that minimizes mean integrated squared error in Section 4.1.4.

Remark 3. The theorem is derived under conditions on the growth in the number of

knots, the spacings between them, and the smoothing parameter (λn). Specific rates

of growth for K and for λn in Remarks 1a and 1b led to optimal rates of convergence.

That said, it is not clear whether standard ways of choosing smoothing parameters

would lead to optimal rates of converged. This too is explored in Section 4.

2.3.4 Proof of Theorem

The proof proceeds in two steps. We first derive the L2 rate of convergence for the

bias of the naive estimator and then we derive that of the variance. The approach

of the proof closely follows the proof for the L2 rate of convergence of the mean

regression function itself found in [58] with a bit more clarity. We start by defining

some terms to simplify the notation.
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Let Gn,q = BTB/n and Hn = Gn,q + λnPm. To ease exposition, we follow [60] and

write f̂ (r)(x) as

f̂ (r)(x) = Bq−r(x)D
(r)(Gn,q + λnPm)−1BTy/n

where Bq−r(x) ∈ RK+q−r is a vector of B-Spline basis functions of order q − r and

D(r) is defined as D(r) = MT
r ×MT

r−1 × · · · ×MT
1 with

Ml = (q − 1)



−1
t1−t1−q+l

0 0 . . . 0

1
t1−t1−q+l

−1
t2−t2−q+l

0 . . . 0

0 1
t2−t2−q+l

−1
t3−t3−q+l

. . . 0

...
...

...
...

...

0 0 0 . . . 1
tK+q−l−tK



for 1 ≤ l ≤ r ≤ q − 2.

Let B
(r)
q (x) = Bq−r(x)D

(r), implying

f̂ (r)(x) = B(r)
q (x) (Gn,q + λnPm)−1BTy/n

We use the identity (A+B)−1 = A−1 − A−1B(A+B)−1 to expand the inverse term

in the estimator. This later allows us to split the bias term into the part due to

approximating f (r)(x) with a spline (approximation bias) and the other part due to

penalization (shrinkage bias).

(Gn,q + λnPm)−1 = G−1
n,q −G−1

n,q(λnPm)H−1
n

= G−1
n,q −H−1

n (λnPm)G−1
n,q
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where the last equality is by symmetry.

Substituting into f̂ (r)(x), we have:

=⇒ f̂ (r)(x) = B(r)
q (x)

(
G−1

n,q −H−1
n (λnPm)G−1

n,q

)
BTy/n

= B(r)
q (x)G−1

n,qB
Ty/n−B(r)

q (x)H−1
n (λnPm)G−1

n,qB
Ty/n

We now focus on the bias of the naive estimator, E
[
f̂ (r)(x)

]
− f (r)(x).

From Lemma 1, ∃sf ∈ S(q, t), the space of spline functions of order q defined on

knots t such that ||f (r)−s
(r)
f || = O(hq−r)+o(hp−r). The bias of f̂ (r)(x) can be written

as:

E
[
f̂ (r)(x)

]
− f (r)(x) =

[
E
(
f̂ (r)(x)

)
− s

(r)
f (x)

]
+
[
s
(r)
f (x)− f (r)(x)

]
(2.4)

Equation (2.4) above allows us to separately evaluate the approximation bias and

shrinkage bias for estimating f (r)(x). Notice that Lemma 1 provides information on

the rate of convergence on the second term in (2.4), we will next focus expressing the

first term in a form that isolates the effect of penalization on the bias. Substituting

the previously derived expression for f̂ (r)(x) into the first term, we have

Ef̂ (r)(x)− s
(r)
f (x) = B(r)

q (x)G−1
n,qB

Tf/n− s
(r)
f (x)

−B(r)
q (x)H−1

n (λnPm)G−1
n,qB

Tf/n

= B(r)
q (x)γ − s

(r)
f (x)−B(r)

q (x)H−1
n (λnPm)γ

where γ = G−1
n,qB

Tf/n and f = E [y].

But s
(r)
f (x) = B

(r)
q (x)G−1

n,qB
Tsf/n, where sf = {sf (x1), sf (x2), . . . , sf (xn)}
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=⇒ Ef̂ (r)(x)− s
(r)
f (x) = B(r)

q (x)γ −B(r)
q (x)H−1

n (λnPm)γ

−B(r)
q (x)G−1

n,qB
Tsf/n

= B(r)
q (x)G−1

n,qB
Tf/n−B(r)

q (x)G−1
n,qB

Tsf/n

−B(r)
q (x)H−1

n (λnPm)γ

= B(r)
q (x)G−1

n,qB
T (f − sf )/n−B(r)

q (x)H−1
n (λnPm)γ

= B(r)
q (x)G−1

n,qα−B(r)
q (x)H−1

n (λnPm)γ (2.5)

where α = BT (f − sf )/n

Let Q(x) be a distribution of x on [0, 1] with positive continuous density q(x).

Then substituting (2.5) into (2.4) and using the triangle inequality, we can evaluate

the squared bias of f̂ (r)(x) as:

1

3

∫ 1

0

(
E
[
f̂ (r)(x)

]
− f (r)(x)

)2
q(x)dx ≤

∫ 1

0

(
s
(r)
f (x)− f (r)(x)

)2
q(x)dx

+αTG−1
n,qG

(r)
q G−1

n,qα (2.6)

+γT (λnPm)H−1
n G(r)

q H−1
n (λnPm)γ

where G
(r)
q =

∫ 1

0
B

(r)T
q (x)B

(r)
q (x)q(x)dx. The first and second terms in (2.6) represent

the part of the bias due to using spline functions to estimate f (r)(x), and the last

term represents the part of the bias due to penalization.

Observe that, by Lemma 1,

∫ 1

0

(
s
(r)
f (x)− f (r)(x)

)2
q(x)dx ≤ qmax

∫ 1

0

(
s
(r)
f (x)− f (r)(x)

)2
dx

= O
(
h2(q−r)

)
+ o

(
h2(p−r)

)
where, qmax = max

0≤x≤1
q(x) < ∞.

For the second term in (2.6), we use the result ||G(r)
q ||∞ = O(h−2r), from Lemma

2. We also use ||G−1
n,q||∞ = O(h−1) from Lemma 3 and Lemma 6.10 of [1] that

||α||max = o(hp+1).
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Let G
(r) 1

2
q be a square and symmetric matrix such that G

(r)
q = G

(r) 1
2

q G
(r) 1

2
q .

We write

αTG−1
n,qG

(r)
q G−1

n,qα =
(
G

(r) 1
2

q G−1
n,qα

)T (
G

(r) 1
2

q G−1
n,qα

)
= ||G(r) 1

2
q G−1

n,qα||22

= ||G(r) 1
2

q G−1
n,q||22||α||22

Using the fact that for a real matrix A, ||A||22 = ρ(ATA) ≤ ||ATA||∞, here, ρ(ATA)

is the largest eigen value of ATA, we write:

||G(r) 1
2

q G−1
n,q||22 ≤ ||G−1

n,qG
(r) 1

2
q G

(r) 1
2

q G−1
n,q||∞

= ||G−1
n,qG

(r)
q G−1

n,q||∞

≤ ||G−1
n,q||∞||G(r)

q ||∞||G−1
n,q||∞

= O(h−1)O(h−2r)O(h−1)

Also, from ||α||max = o(hp+1), we have:

αTG−1
n,qG

(r)
q G−1

n,qα = O(h−1)O(h−2r)O(h−1)o(h2(p+1))

= o(h2p−2r)

Next, we focus on the part of the bias due to penalization as given by the third

term in (2.6). First, note that from [12] and Lemma 5.2 of [60], D(r) in B
(r)
q (x) =

Bq−r(x)D
(r), is such that

||D(r)||∞ = O(h−r)

This can be easily seen by inspecting the elements of D(r).

∴ B(r)T
q (x)B(r)

q (x) = D(r)TBT
q−r(x)Bq−r(x)D

(r) = O(h−2r)BT
q−r(x)Bq−r(x)
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Thus, we can write

G(r)
q =

∫ 1

0

B(r)T
q (x)B(r)

q (x)q(x)dx

= O(h−2r)

∫ 1

0

BT
q−r(x)Bq−r(x)q(x)dx

= O(h−2r)Gq−r

where Gq−r =
∫ 1

0
BT

q−r(x)Bq−r(x)q(x)dx.

Also, by the WLLN, Gn,q−r = Gq−r + o(1).

Therefore:

γT (λnPm)H−1
n G(r)

q H−1
n (λnPm)γ = O(h−2r)γT (λnPm)H−1

n

× Gq−rH
−1
n (λnPm)γ

= O(h−2r)γT (λnPm)H−1
n

× Gn,q−rH
−1
n (λnPm)γ

where Gn,q−r = BT
q−rBq−r/n, the version of Gn,q based on B-splines of order q − r.

Note that the decay of the eigenvalues of Gn,q does not depend on q (see Lemma

3). Therefore, we will use Gn,q instead of Gn,q−r in the derivations that follow for

asymptotic order. This simplifies the calculations since H−1
n depends on Gn,q.

From

H−1
n = [Gn,q + (λnPm)]−1

=
[
G

1
2
n,q

(
G

1
2
n,q + λnG

− 1
2

n,qPm

)]−1

=
(
G

1
2
n,q + λnG

− 1
2

n,qPm

)−1

G
− 1

2
n,q

we can write
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(λnPm)H−1
n Gn,qH

−1
n (λnPm) = (λnPm)

(
G

1
2
n,q + λnG

− 1
2

n,qPm

)−1

G
− 1

2
n,qGn,q

×
(
G

1
2
n,q + λnG

− 1
2

n,qPm

)−1

G
− 1

2
n,q (λnPm)

Let P̃ = G
− 1

2
n,q (λnPm)G

− 1
2

n,q =⇒ P̃G
1
2
n,q = G

− 1
2

n,q (λnPm)

Substituting into (2.7), we have

(λnPm)H−1
n Gn,qH

−1
n (λnPm) = (λnPm)

(
G

1
2
n,q + P̃G

1
2
n,q

)−1

G
1
2
n,q

×
(
G

1
2
n,q + P̃G

1
2
n,q

)−1

P̃G
1
2
n,q

= (λnPm)G
− 1

2
n,q

(
I + P̃

)−1

G
1
2
n,qG

− 1
2

n,q

×
(
I + P̃

)−1

P̃G
1
2
n,q

= G
1
2
n,qP̃ (I + P̃ )−2P̃G

1
2
n,q

where in the second equality, we have used the fact that G
1
2
n,q + P̃G

1
2
n,q = (I + P̃ )G

1
2
n,q

and that (λnPm)G
− 1

2
n,q = G

1
2
n,qP̃ in the last equality.

Using the above, we can then write:

γT (λnPm)H−1
n Gn,qH

−1
n (λnPm)γ = γTG

1
2
n,qP̃

(
I + P̃

)−2

P̃G
1
2
n,qγ

It follows from the symmetry of P̃ that ||P̃ ||2P̃−P̃
(
I + P̃

)−2

P̃ and P̃−P̃ (I+P̃ )−2P̃

are positive semidefinite.

First, for ||P̃ ||2P̃ − P̃
(
I + P̃

)−2

P̃ positive semidefinite, we have

γT (λnPm)H−1
n G(r)

q H−1
n (λnPm)γ = O(h−2r)||P̃ ||2γTG

1
2
n,qP̃G

1
2
n,qγ

= O(h−2r)||P̃ ||2γT (λnPm)γ

= O(h−2r)||G− 1
2

n,q (λnPm)G
− 1

2
n,q ||2γT (λnPm)γ

= O(h−2r)||G−1
n,q||2||(λnPm)||2γT (λnPm)γ
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where we have used G
1
2
n,qP̃G

1
2
n,q = (λnPm) in the second equality and substituted P̃

in the third.

By Assumption 5, ||Pm||2 = O(h1−2m) and from Lemma 4, γTPmγ = O(1).

Therefore:

γT (λnPm)H−1
n G(r)

q H−1
n (λnPm)γ = O(h−2r)O(h−1)O(λnh

1−2m)O(λn)

= O(λ2
nh

−2m−2r).

Also, P̃ − P̃ (I + P̃ )−2P̃ positive semidefinite, we have

γT (λnPm)H−1
n G(r)

q H−1
n (λnPm)γ = O(h−2r)γTG

1
2
n,qP̃ (I + P̃ )−2P̃G

1
2
n,qγ

= O(h−2r)γTG
1
2
n,qP̃G

1
2
n,qγ

= O(h−2r)γT (λnPm)γ

= O(λnh
−2r)

∴ γT (λnPm)H−1
n G

(r)
q H−1

n (λnPm)γ = O {min (λ2
nh

−2m−2r, λnh
−2r)}

This concludes the proof for bias in (2.6).

Next, we look at the variance part:

V ar(f̂ (r)(x)) = V ar
(
B(r)

q (x)H−1
n BTy/n

)
= B(r)

q (x)H−1
n BTV ar(y/n)BH−1

n B(r)T
q (x)

=
σ2

n
tr
{
B(r)

q (x)H−1
n (BTB/n)H−1

n B(r)T
q (x)

}
=

σ2

n
tr
{
B(r)

q (x)H−1
n Gn,qH

−1
n B(r)T

q (x)
}

=
σ2

n
tr
{
H−1

n Gn,qH
−1
n B(r)T

q (x)B(r)
q (x)

}

Note that we have used the rotation property of the trace in the last equality.
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Therefore,

∫ 1

0

V ar(f̂ (r)(x))q(x)dx =
σ2

n
tr
{
H−1

n Gn,qH
−1
n G(r)

q

}
= O(h−2r)

σ2

n
tr
{
H−1

n Gn,qH
−1
n Gn,q

}

where in the last equality, we have used the fact that G
(r)
q = O(h−2r)Gq−r and that

the decay rates of Gn,q do not depend on q.

From

H−1
n = (Gn,q + (λnPm))−1

=
[
Gn,q

(
I +G−1

n,q(λnPm)
)]−1

=
[
I +G−1

n,q(λnPm)
]−1

G−1
n,q

=⇒ H−1
n Gn,q =

[
I +G−1

n,q(λnPm)
]−1

.

Note that G−1
n,q(λnPm) = G

− 1
2

n,qG
− 1

2
n,q (λnPm) and by the rotation property of the trace,

tr
[
G−1

n,q(λnPm)
]

= tr
[
G

− 1
2

n,qG
− 1

2
n,q (λnPm)

]
= tr

[
G

− 1
2

n,q (λnPm)G
− 1

2
n,q

]
= tr

[
P̃
]
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∴
∫ 1

0

V ar(f̂ (r)(x))q(x)dx = O(h−2r)
σ2

n
tr
[
(I + P̃ )−2

]
= O(h−2r)

σ2

n

∣∣∣∣∣∣(I + P̃ )−2
∣∣∣∣∣∣2
F

= O(h−2r)
σ2

n
O

{
1

max(h, λ
1/2m
n )

}

= O(h−2r)
σ2

n
O
{
min(h−1, λ−1/2m

n )
}

= O(K2r)
σ2

n
O
{
min(K,λ−1/2m

n )
}

= O

(
Ke

n

)

Where in the above, we have used
∣∣∣∣∣∣(I + P̃ )−2

∣∣∣∣∣∣2
F
= O

{
1

max(h,λ1/2m)

}
from Lemma

5.2 of [58], K ∼ h−1, and Ke = min
{
K2r+1, K2rλ

−1/2m
n

}
This completes the proof of the theorem.

2.4 Simulations

2.4.1 Overview

In this section, we present a simulation to assess the naive estimator’s rate of

convergence and its finite-sample performance. The simulation is divided into three

parts. The first part examines the L2 rates of convergence of the naive estimator

when GCV and REML are used to choose the smoothing parameter. The second

part of this section focuses on the finite sample performance of the naive estimator.

We compared it to an “oracle” method that uses knowledge of the true function (or

derivatives) to choose the optimal smoothing parameter. That “oracle” method is

not a practical estimator, but it provides an upper bound benchmark for P-spline

performance. Finally, the third part of this section compares the naive method to

other derivative estimation methods in the literature.

Except where noted, we use the same mean regression function f as [14]. We

simulated data {xi, yi}ni=1 from the model:
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Yi = f(xi) + εi, ∀ 1 ≤ i ≤ n

where xi’s are a grid over K = [0, 1], εi’s are iid with εi ∼ N(0, σ2 = 0.12) and

f(x) = 32e−8(1−2x)2 (1− 2x) (2.7)

Figure 2.1 shows the mean regression function in (2.7) and its first two derivatives.

We use a range of sample sizes as shown in the results.

Figure 2.1: Mean regression function with its first two derivatives.

As discussed in [58], [8], and our Remark (1), the asymptotics of the penal-

ized spline estimator are similar to those of Regression Splines (small K scenario)

or Smoothing Splines (large K scenario), depending on the rate at which the number

of knots, K, increases with the sample size, n. In our simulation, we considered these

two scenarios: when K increases slowly with n, and when K increases at a faster rate

with n. For the slow K scenario we use K ∼ n
1

2p+1 , and K in the fast scenario is

chosen such that K ≥ C1/pλ
−1/2p
n for some large constant, C.
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We investigated the L2 rate of convergence for the first two derivatives of the mean

regression function in (2.7) using a P-Spline with 2nd (m = 2) order penalty ([16]).

Note that with m = 2, the equivalent kernel methodology ([42], Lemma 9.13 of [59])

implies that the assumed differentiability of f is p = 2m = 4.

[45] provided optimal rates of convergence for non-parametric regression estima-

tors. The optimal rate of convergence for a non-parametric estimator of the rth

derivative of g : Rd → R where g ∈ Cp is given by n− p−r
2p+d , in our simulations, we have

the optimal L2 rate of convergence for estimating the rth derivative of f as:

n− p−r
2p+d = n− 4−r

2×4+1 = n− 1
9
(4−r)

2.4.1.1 L2 Convergence of the Naive Estimator

Figure 2.2 illustrates the L2 rate of the naive estimator when the smoothing pa-

rameter λn is chosen by the GCV approach. The naive estimator achieves the optimal

L2 rates of convergence for the mean regression function and its first two derivatives

when GCV is used to choose the smoothing parameter, but it is slightly slower for

REML. This deviation from the optimal rate using REML appears to worsen for

higher derivatives. Also, we observed that the fast K scenario was overall slightly

slower than the slow K scenario for REML. These results agree with known results

in the literature for smoothing splines when estimating the mean regression func-

tion. For instance, [10] showed that GCV achieves the optimal rate of convergence

when used to choose the smoothing parameter in smoothing splines. However, [47]

found that Maximum Likelihood (ML) based methods may be slower than GCV for

sufficiently smooth functions.
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Figure 2.2: L2 convergence rates for f and its first two derivatives under two scenarios
for increasing K with n. The top three figures show results for the slowly increasing
K scenario while the bottom three show results for the fast increasing K scenario.
The smoothing parameter λn is chosen by the GCV method.

Table 2.1 below summarizes the rates of convergence of the naive estimator for

estimating derivatives of the mean regression function in (2.7) under the various

scenarios of the number of knots K as n increases.

λn Method Target Optimal L2 Rate Slow K Fast K
f −0.44 −0.45(−0.45,−0.44) −0.45(−0.45,−0.44)

GCV f ′ −0.33 −0.34(−0.34,−0.34) −0.34(−0.34,−0.33)
f ′′ −0.22 −0.22(−0.22,−0.22) −0.21(−0.21,−0.21)
f −0.44 −0.44(−0.44,−0.43) −0.43(−0.44,−0.43)

REML f ′ −0.33 −0.32(−0.32,−0.31) −0.31(−0.32,−0.31)
f ′′ −0.22 −0.19(−0.19,−0.18) −0.18(−0.18,−0.17)

Table 2.1: Summary of L2 rates of convergence for estimating the mean regression
function in (2.7) and its first two derivatives.
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2.4.2 Finite sample performance of naive estimator.

In this section we compare the naive estimator to an “oracle” method that uses

knowledge of the true form of the target (mean regression function or its derivatives)

to choose the optimal amount of smoothing, which we did with a grid search. While

this “oracle” is not an estimator, it shows the minimum loss when estimating the

function in question with a penalized spline. GCV was used to choose the appropriate

smoothing parameter for the various spline-based estimators in what follows.

In Figure 2.3 below, we show that the naive estimator corresponds to the median

MSE in the Monte Carlo experiment. To summarize, we see that the naive estimator

appears to accurately estimate both the true mean regression function (f) and its

first derivative (f ′). However, we observe some lack of fit around the boundaries of

the second derivative, (f ′′).

Figure 2.3: Median Monte-Carlo fits of the mean regression function in (2.7) with its
first two derivatives using the naive and oracle estimators.

Next, Figure 2.4 compares the naive and oracle methods for the mean regression

function in (2.7) and its first two derivatives across the two increasing K scenar-

ios. Overall, in comparison to the oracle method, the naive estimator’s finite sample
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performance degrades with increasing derivatives, with an average error difference

(logarithmic scale) of about 0.5% for the mean regression function, 17% for its first

derivative, and 29% for its second derivative. While the naive penalized spline deriva-

tive estimator is shown to converge at the optimal L2 rate of convergence (Theorem

1), it may also have higher mean squared error in finite samples, especially for higher

derivatives. This is largely driven by a higher variance of the naive estimator, com-

pared with the oracle method. We note that the results summarized in Figure 2.4 are

similar for the two increasing K scenarios.
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Figure 2.4: L2 convergence rates for f and its first two derivatives with two scenar-
ios for increasing K with n and how they compare with their corresponding oracle
estimators. Figures in the top row show results for slowly increasing K scenario
while figures in the bottom row show results for the fast increasing K scenario. The
smoothing parameter λn is chosen by the GCV method.

2.4.3 Comparison with other methods

In this section, we compare the finite sample MSE of the naive estimator to other

derivative estimation methods in the literature. We considered the adaptive penalty

penalized spline estimator by [43]. We also used the linear combination method of

[11], but it consistently had higher MSE values and results are not shown.
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We evaluated the methods using three mean regression functions from the litera-

ture ([14, 11]). As proxies for low, medium, and high noise scenarios, we considered

noise levels that were 10 percent, 30 percent, and 60 percent of the range of each

function. This was to understand how the methods compare at different levels of

noise. The following are the three functions considered:

f1(x) = sin2(2πx) + log(4/3 + x) for x ∈ [−1, 1],

f2(x) = 32e−8(1−2x)2(1− 2x) for x ∈ [0, 1],

and the doppler function

f3(x) =
√

x(1− x) sin

(
2.1π

x+ 0.05

)
for x ∈ [0.25, 1].

Figure 2.5 below shows the results for estimating the first (panel a) and second

(panel b) derivatives of the three mean regression functions across the three noise

levels. These results indicate that the adaptive penalty (S) methods and the naive

(N) method often perform similarly, depending on the form of the function, the noise

level, and the order of the derivative. We also note that the adaptive penalty method

sometimes performs better than the oracle method (O). This is possible since the

oracle method only finds the best P-splines estimate based on a single smoothing

penalty.
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(a) (b)

Figure 2.5: Comparing derivative estimation methods in reference to the oracle esti-
mator across different functions and noise levels. Panel (a) shows results for estimat-
ing first derivatives of the mean regression functions f1, f2 and f3 while Panel (b)
shows results for estimating second derivatives. The first row is for f1, second row is
for f2 and the last row is for f3.

2.5 Discussion

We have shown that the naive penalized spline estimator of the rth derivative of

the mean regression function achieves the optimal L2 rate of convergence ([45]) under

standard assumptions on knot placement and the penalty matrix. This builds on

the work by [58] which derived the L2 rate of convergence for estimating the mean

regression function. As stated in Remark 1 and noted by others ([8, 58]), the rate

at which the number of knots, K, increases with n gives rise to two scenarios: the
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fast K scenario, which is similar to smoothing spline asymptotics, and the slow K

scenario, which is similar to regression spline asymptotics.

Using simulations, we investigated how two prevalent methods for choosing the

smoothing parameter (GCV and REML) affect the L2 convergence of the naive es-

timator. We found that, for both slow and fast K scenarios, the naive estimator

achieves the optimal L2 rate of convergence when GCV is used. For REML, the

estimator did not quite achieve the optimal rate.

To access the finite sample performance of the naive estimator, we compared the

MSEs of the estimator with an “oracle” method that uses information about the

true function to be estimated to choose the P-spline’s smoothing parameter. We

found that, in finite samples, the naive estimator may have noticeably larger mean

squared errors, especially for higher derivatives, but the estimates can still be quite

visually similar. We found that the adaptive penalty penalized spline estimator by

[43] performed similarly to the naive estimator.
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CHAPTER 3

NONPARAMETRIC APPROACH TO ESTIMATING THE
ASSOCIATION BETWEEN OBJECTIVELY MEASURED

PHYSICAL ACTIVITY AND MORTALITY

3.1 Introduction

Physical activity is widely recognized as an important contributor to overall health

and longevity. Several studies have shown that regular physical activity can lower the

risk of chronic diseases such as heart disease, stroke, and diabetes, as well as reduce

the risk of all-cause mortality ([27, 50, 5]), but the precise dose-response relationship

between physical activity and sedentary behaviors remains largely unknown ([34]).

Understanding the dose-response relationship is complicated by the fact that phys-

ical activity is also part of an inherently compositional (e.g. [2]) structure. For in-

stance, the total time spent in various levels of physical activity, sedentary behavior,

and sleep on any given day is 24 hours, and that results in perfect multicollinearity

among those covariates. Adapting ideas from nutritional epidemiology (e.g. [52]), [28]

developed a method called isotemporal substitution regression. In that method, one

of the components in the 24-hour composition is dropped from the regression, and the

remaining coefficients estimate the expected effect of increasing that covariate by one

unit while decreasing the one dropped from the model by one unit, i.e. a substitution

effect.

Using data from the NHANES 2003-2006 survey and the corresponding mortality

follow-up through December 31st, 2011, [22] used an isotemporal substitution Cox

proportional hazard model ([9]) to estimate the effect of substituting one level of

physical activity for another while adjusting for baseline covariates. To objectively
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measure physical activity in the NHANES survey, participants were provided with

physical activity monitoring devices and were instructed to wear them throughout the

day, excluding periods of sleep or when engaging in activities where the monitor would

get wet. The NHANES 2003-2006 survey data captured the time spent engaging

in physical activity, further classified into light and moderate-to-vigorous activity

(MVPA), as well as sedentary behavior on a given day. Any remaining hours were

considered sleep or non-wear time.

In this chapter, we extend the analysis in [22] in two ways: our primary contri-

bution is to develop a novel nonparametric version of the isotemporal substitution

model. More generally, this is a novel nonparametric model that is appropriate when

the covariates are compositions. In addition to proportional hazards, our model only

assumes a smooth nonparametric form for the dependence of the hazard function on

the composition of physical activity.

Compared with the linear Cox model, our model is more robust to misspecifica-

tion and can capture different substitution effects at different levels of activity. For

instance, our model can capture different mortality associations of going from three

to four hours of sedentary time versus going from nine to ten hours. We also extend

the analysis in [22] by using mortality follow-up through December 31st, 2019 ([31])

which gives us almost an extra decade of mortality follow-up data which may result

in increased statistical power and improved parameter estimates.

To facilitate our analysis, we represented the three-dimensional physical activity

data in a trilinear coordinate system that was transformed into a Cartesian coordinate

system to enable visualization of the three-dimensional surface in two dimensions.

We then fitted a smooth tensor product spline to the sedentary and sleep & non-

wear time variables, with activity time serving as the baseline in the isotemporal

substitution regression. With this approach, the effects of substituting one activity

level for another are given by partial derivatives of the fitted surface and by applying
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the chain rule we derived the effects on the original scale of the data. In addition,

baseline covariates such as age, gender, and the presence of chronic diseases were

adjusted for in the Cox model as linear terms.

3.2 Methods

3.2.1 Statistical Model

Our methods address time-to-event data where at least some of the covariates

describe the distribution of a three-dimensional composition for each observation. The

data are independent across observations and consist of {ti, δi, wi, zi, xi1, xi2, xi3}ni=1

where ti is the observed event time or follow-up time for censored individuals, δi is a

binary indicator where δi = 1 means the participant experienced the event and, wi is a

survey weight, zi is a p−dimensional covariate vector (full rank over the observations),

and xi1, xi2, xi3 are compositional covariates. In our motivating example, xi1 + xi2 +

xi3 = 24 for all i, and xij ∈ [0, 24] for all i and j. We note that our model readily

generalizes to m-dimensional compositions, but estimation becomes more difficult

since it involves fitting an (m− 1) dimensional nonparametric function.

We use the following hazard function for the Cox model: h(t;xi1, xi2, xi3, zi) =

h0(t) exp
{
f(xi1, xi2, xi3) + z⊤

i α
}
, where h0(t) is the unknown baseline hazard func-

tion, and f(., ., .) is an unknown smooth function defined for values of xi1, xi2, xi3 that

satisfy the two constraints on xij above. Without loss of generality, we use the fact

that the xijs sum to a constant number for each i and let f be a function of only the

first two arguments. That is, f(xi1, xi2, xi3) = g(xi1, xi2) for some smooth function g,

and the hazard function model is:

h(t;xi1, xi2, xi3, zi) = h0(t) exp
{
g(xi1, xi2) + z⊤

i α
}
. (3.1)
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In order to facilitate model fitting, we represent the compositional covariates with

a trilinear coordinate system which we describe in the next section. We also note

that linear compositional Cox models such as the ones used in [22] are special cases

of our model.

3.2.2 Trilinear Coordinate System

A trilinear coordinate system ([2]) represents a given point P = (x1, x2, x3) as the

intersection of lines perpendicular to the relative sides of each coordinate in an equi-

lateral triangle. An example is given below in Figure 3.1. In order to estimate g, the

effects of the compositional covariates of the log hazard ratio in our Cox model, we

embed the trilinear coordinate system into a two-dimensional Cartesian coordinate

system. With this approach, g(x1, x2) = m {x∗
1(x1, x2), x

∗
2(x1, x2)} using the trans-

formed coordinates {x∗
1(x1, x2), x

∗
2(x1, x2)}. Using trigonometry, it can be shown that

for a given trilinear point P = (x1, x2, x3), the corresponding Cartesian coordinates

are x∗
1(x1, x2) = x1+2x2√

3
and x∗

2(x1, x2) = x1. This is illustrated in Figure 3.1 where

the trilinear point (12, 8, 4) is transformed into the Cartesian point
(

12+2(8)√
3

, 12
)
.
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(0,0,24) (0
,2

4,
0)

(24,0,0)

x1 = 0

x 2
= 0 x

3 =
0

12 + (2)(8)
3

12

12

8 4

(12, 8, 4)

x2
*

x1
*

Figure 3.1: Example of a three-dimensional point P = (12, 8, 4) in a trilinear co-
ordinate system embedded in a two-dimensional Cartesian coordinate system with
“x-axis” X∗

1 and “y-axis” X∗
2 .

From the mapping above, our original Cox model in equation (3.2.1) becomes the

equivalent working model below:
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h(t;x∗
1, x

∗
2, zi) = h0(t) exp

{
g(x1, x2) + z⊤

i α
}

(3.2)

= h0(t) exp
[
m {(x∗

1(x1, x2), x
∗
2(x1, x2)}+ z⊤

i α
]
. (3.3)

Directional derivatives of g(x1, x2) have interesting interpretations related to the

effects associated with substitutions among the compositional covariates. We discuss

this interpretation more precisely in the next subsection. From now on we use x∗
1 and

x∗
2 and suppress their dependence on (x1, x2) to simplify notation.

3.2.3 Partial Derivatives as Substitution Effects

In the usual linear Cox model, a coefficient is interpreted as the partial derivative

of the log-hazard function with respect to its associated covariate when all other

covariates are held constant. As a result, partial deriatives of g(x1, x2) are also partial

derivatives of the log-hazard function,

∂

∂xk

log {h(t;x1, x2, x3, z)} =
∂

∂xk

g(x1, x2).

Furthermore, since the compositional covariates sum to twenty-four for each obser-

vation, an increase in one component must be offset by decreasing in the sum of

the others by the same amount, and directional derivatives can be used to estimate

substitution effects. Table 3.1 summarizes the directional derivatives that estimate

substitutions among the three components of the composition. We note that opposite

directions are given by the negative values of the directional derivatives.

Table 3.1: Isotemporal Substitution Effects given by Partial Derivatives

Increase Decrease Constant Partial Derivative (g) Partial Derivative (m)

x1 x2 x3
∂g
∂x1

− ∂g
∂x2

− 1√
3
∂m
∂x∗

1
+ ∂m

∂x∗
2

x3 x1 x2 − ∂g
∂x1

− 1√
3
∂m
∂x∗

1
− ∂m

∂x∗
2

x2 x3 x1
∂g
∂x2

2√
3
∂m
∂x∗

1

41



Since our estimated model in equation (3.3) is based on m(x∗
1, x

∗
2) instead of

g(x1, x2), we use the multivariate chain rule to obtain the partial derivatives of

g(x1, x2) :

∂g

∂xk

=
∂m

∂x∗
1

∂x∗
1

∂xk

+
∂m

∂x∗
2

∂x∗
2

∂xk

(3.4)

for k = 1, 2. The last column of Table 3.1 gives the substitution effects in terms

of m {x∗
1(x1, x2), x

∗
2(x1, x2)}. The next section describes how we model and estimate

m(x∗
1, x

∗
2) and its partial derivatives.

3.2.4 Bivariate smoothing using P-Splines

In statistical modeling, several methods are available to represent a bivariate func-

tion m(., .). Common approaches include kernel smoothing ([49]), as well as spline-

based techniques, such as thin-plate splines and tensor product splines which are

based on univariate B-splines ([54, 12]). Within the domain of Cox models, [23]

demonstrated the application of a tensor product spline composed of two univariate

cubic B-splines to model continuous-by-continuous interaction effects. In this work,

we have chosen to utilize this particular approach to estimate the effects of physical

activity time on mortality in a nationally representative survey.

In spline-based methods, two primary factors generally influence the quality of

the fitted surface. The first is the number and location of the knots—the points

where the individual polynomial pieces that make up the spline are joined together.

The second factor is how much, if any, additional penalization should be imposed

on the smoothness of the fitted function, and what kind of penalty to adopt. In

our application, we adopt the approach by [16, 17] (known as penalized B-splines or

P-Splines) which have desirable computational advantages. Also, the derivative of a

B-splines is a linear combination of lower order B-splines (see Section 3.2.6), which

is useful in our application. P-splines use a reasonably large number of knots placed

at equally-spaced intervals over the range of each univariate variable in the smooth.
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In addition, the method penalizes differences in the coefficients of the spline function

to ensure goodness-of-fit. We represent m(x∗
1, x

∗
2) as a bivariate B-spline in the Cox

model in equation (3.3).

Let k1 = 1, 2, . . . , K1 and k2 = 1, 2, . . . , K2 be equally-spaced knots locations over

x∗
1 and x∗

2 respectively. Also, let Xq1
1k1

(x∗
i1) be a B-spline basis function of order q1

at location k1 defined at x∗
i1 along the x∗

1 axis and let Xq2
2k2

(x∗
i2) be defined similarly

along the x∗
2 axis. Then, for a given point (x∗

i1, x
∗
i2) the bivariate tensor product spline

representation of m(x∗
i1, x

∗
i2) is given by:

m(x∗
i1, x

∗
i2) =

K1∑
k1=1

K2∑
k2=1

Xq1
1k1

(x∗
i1)X

q2
2k2

(x∗
i2)θk1k2 (3.5)

where θk1k2 is a real unknown coefficient.

Collecting the B-spline basis functions into vectors for each i, we can rewrite

equation (3.5) in matrix notation as

m(x∗
1, x

∗
2) = (Xq1

1 ⊙Xq2
2 )θ (3.6)

whereXq1
1 =

(
xq1
11,x

q1
12, . . . ,x

q1
1K1

)
, with dimension n×K1 and xq1

1j (for j = 1, 2, . . . , K1)

is a vector of the B-spline basis functions evaluated for all observations (i = 1, 2, . . . , n)

at the knot location j. For instance, xq1
1j =

(
Xq1

1j (x
∗
11), X

q1
1j (x

∗
12), . . . , X

q1
1j (x

∗
1n)
)⊤

. Xq2
2

is defined similarly, θ is a K1K2 dimensional vector of real unknown coefficients, and

the operator ⊙ is used as the row-Kronecker product operator (e.g. [54] Appendix

B). The row-Kronecker product of two real matrices An×m and Bn×p is the n ×mp

matrix C with each row i formed by multiplying each element of row i of A by the

ith row of B. Further, we collect the vectors zi in equation (3.3) as rows of a matrix

Zn×p resulting in the following form of equation (3.3) in matrix notation.

h(t;Xq1
1 ,Xq2

2 ,Z) = h0(t) exp {(Xq1
1 ⊙Xq2

2 )θ +Zα} (3.7)
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As shown in equation (3.7), the exponentiated terms are linear in θ and α, and

to mitigate against overfitting, we impose a penalty on θ, the coefficient vector of the

tensor product spline basis, during estimation. There are many kinds of penalties to

impose on a spline-based method such as a tensor product spline. We choose one that

penalizes each univariate smooth marginally based on differences of the corresponding

coefficients ([16, 54]). Construction of such difference-based P-spline penalties is

straightforward. Suppose ∆ is the first-order backward difference operator such that

∆γk = γk − γk−1 and let θk be the coefficients vector of the kth univariate B-spline

basis matrix of order q, Xq
k, and define Dmθk as a vector of mth order differences of

the coefficient vector θk. Here, the rows of the matrix Dm are simply the mth order

differencing operations. Then, the mth order smoothness penalty on the univariate

B-spline basis Xq
k is given by the quadratic form λθ⊤

k D
⊤
mDmθk. Here, λ ≥ 0 is the

smoothing parameter that determines the level of penalization. A thorough discussion

on how such difference-based univariate penalties are constructed can be found in [16].

For our application, we form a penalty matrix for the full tensor product spline

coefficients vector θ in equation (3.7) by simply combining the univariate penalty

matrices defined above ([54]). To simplify exposition, we denote D⊤
mDm as Pm. Let

λ1 ≥ 0 and λ2 ≥ 0 be two smoothing parameters along the two univariate axes, we

use the smoothing penalty matrix, Pλ = λ1 (Pm ⊗ IK1) + λ2 (IK2 ⊗ Pm). Here, IKj

(j = 1, 2) is the identity matrix of dimension Kj and ⊗ is the Kronecker product.

Once a representation is chosen for the smooth function m(x∗
1, x

∗
2) in our Cox model

in equation (3.3), and a smoothness penalty is determined, estimating our Cox model

proceeds by utilizing well-established procedures for fitting a Cox model. We discuss

this next with a few practical nuances for complex multi-stage survey data like that

provided by NHANES.
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3.2.5 Estimating the Cox Model

In order to further simplify the notation for fitting our Cox model, we denote X =

[(Xq1
1 ⊙Xq2

2 ) : Z] and define β =

θ

α

, a new coefficient vector that stacks θ and α

together appropriately. With this new notation, the hazard function in equation (3.7)

is equivalently h(t;X) = h0(t) exp
(
Xβ

)
with an updated block-diagonal penalty

matrix Sλ =

Pλ

Op

. Here, Op is a p× p zero matrix.

We estimate the parameters in equation (3.7) by optimizing the penalized partial

log-likelihood function of the Cox model. For complex survey designs like those

in large-scale studies such as NHANES, [4] provided a weighted estimator for the

parameters in the Cox model. The weighted partial log-likelihood of our model is

given by:

l(β|X,w) =
n∑

i=1

δiwi

{
x⊤
i β − log

n∑
j=1

wjYj(ti) exp(x
⊤
i β)

}
(3.8)

where w is a vector of survey weights, δi is the event or censoring indicator which is 1

if participant i died or zero otherwise, and xi is the i
th row of X. Yj(ti) = 1 if tj ≥ ti

and zero otherwise. Yj(ti) is used to determine the risk set at the event time for

the ith individual. The solution to the penalized partial log-likelihood optimization

in equation (3.9) below gives the estimated coefficients needed to fit a surface of

mortality risk over physical activity time. Given smoothing parameters λ1 and λ2,

the optimal coefficient vector β̂ is given by:

β̂ = argmax
β

l(β|X,w)− 1

2
β⊤Sλβ. (3.9)

Estimating the smoothing parameters λ1 and λ2 is usually the most challenging

part of the estimation process in this class of semiparametric models ([54]). However,

there are some well-studied and efficient methods available to estimate the smoothing
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parameters. Examples include a nested iteration method that attempts to optimize

both the smoothing parameters and the coefficient vector β directly ([56]). Another

approach is a generalization of the Fellner-Schall method ([20, 39]) by [55] to ac-

commodate tensor product smooths where the penalty components are not easily

separated. The highly capable R package mgcv ([54]) is equipped to handle such

optimization routines through its gam and bam (typically used for large datasets)

procedures. Unfortunately though, at the time of writing, the default routines in

mgcv for survival analysis using Cox models do not support weighted estimation of

the model parameters, which is required for our application in Section 3.

To address this challenge, we use a method from [51] to reformulate our Cox model

as a Poisson generalized linear model. That allows us to use routines in mgcv to

estimate a penalized model and incorporate observation weights. The reformulation

is done by creating a new response variable rij for each non-censoring event time ti

where rij = 1 for all observations, j, with event time ti and rij = 0 otherwise. Using

this new response variable, [51] showed that the Poisson model rij ∼ Poisson(µij),

where log(µij) = ηi + xj(ti)β yields the same estimates and inference for β as in the

original Cox model. Here, ηi’s are intercept terms for the distinct event times and

xj(ti) is the row of the covariate matrix X for observation j for the data created for

event time ti. This approach may not be computationally efficient for large datasets

with more distinct event times as the creation of such artificial Poisson data may

result in much larger datasets ([54]). For our application with 3, 035 records though,

this resulted in 456, 337 records. The model was easily fit using the bam procedure

in the mgcv package.

3.2.6 Partial derivatives of m̂(x∗
1, x

∗
2)

Next, we describe the computation of the substitution effects in Table 3.1. For

univariate B-spline smoothing with equal distance between the knots, [16] gave deriva-
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tives of a q−order B-spline function using q−1 order B-spline functions and differences

of the estimated coefficients. This derivation was based on a formula earlier developed

by [12]. These derivative formulas can be adapted to find partial derivatives for our

tensor product representation of m(x∗
1, x

∗
2). Let D1 be a (K1 − 1) ×K1 differencing

matrix and D2 be a (K2 − 1) × K2 differencing matrix. Also let IK1 and IK2 be

identity matrices of dimensions K1 and K2 respectively.

From equation (3.6), we can write the estimated function m̂(x∗
1, x

∗
2) = (Xq1

1 ⊙Xq2
2 ) θ̂.

We give the partial derivatives of m̂ as below:

∂m̂(x∗
1, x

∗
2)

∂x∗
1

=
1

h1

(
Xq1−1

1 ⊙Xq2
2

)
(D1 ⊗ IK2) θ̂ (3.10)

and

∂m̂(x∗
1, x

∗
2)

∂x∗
2

=
1

h2

(
Xq1

1 ⊙Xq2−1
2

)
(IK1 ⊗D2) θ̂ (3.11)

where h1 is the constant difference between the knots on the x∗
1-axis and h2 is similarly

defined on the x∗
2-axis. Xq1−1

1 is a matrix of q1 − 1 order B-spline basis functions

defined over K1−1 total knots and Xq2−1
2 is similarly defined over K2−1 total knots.

We note that the partial derivatives in equations (3.10) and (3.11) are linear

combinations of the estimated coefficient vector θ̂. Therefore, it is straightforward to

obtain standard errors of the estimated substitution effects using the standard errors

of θ̂. Standard errors of θ̂ follow from the sandwich weighted variance estimator

in [4] given as I−1UTWUI−1. Here, I is the observed information matrix, U is the

unweighted score residual matrix andW is a diagonal matrix with the squared weights

as elements.

3.3 Analysis of NHANES Data

The US National Health and Nutrition Examination Survey (NHANES) is a series

of cross-sectional surveys of the US population which use a multi-stage sampling de-
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sign to ensure that the data are representative of the non-incarcerated US population.

NHANES measures many health-related factors, and the 2003-2006 waves assessed

physical activity / sedentary behavior using Actigraph AM-7164 accelerometers. Par-

ticipants were instructed to wear the device around their waist for seven days, only

removing it when sleeping or bathing. Data from those devices can be used to esti-

mate aspects of participants’ physical activity / sedentary behaviors. Combined with

baseline characteristics and links to the National Death Index to record deaths up to

December 31st, 2011 ([32]), [22] used those data and linear Cox models to investigate

the association between physical activity / sedentary behaviors and mortality hazard

in people who were 50-79 years old at the time of the NHANES assessment. The

paper found that replacing sedentary time with either light activity or moderate to

vigorous physical activity was associated with lower mortality hazards.

One drawback of [22]’s approach is that it makes the parametric assumption that

the physical activity / sedentary time substitution associations do not depend on the

initial levels of those behaviors. For instance, they assume that the association with

increasing sedentary time from 11 to 12 hours and decreasing activity from 2 to 1 is

the same as increasing sedentary time from 1 to 2 hours and decreasing activity from

12 to 11 hours. Our nonparametric approach does not make that assumption. (See

the top panels of Figures 3.2 and 3.6.)

As described in [22] we removed participants who did not wear the device long

enough and whose data were invalid. Descriptive statistics are in Table 3.2. Our final

sample consisted of 3, 035 participants, including 21 who were censored at the time

of accidental death. We also updated the dataset to include deaths up to December

31st, 2019. A summary of the leading causes of death is in Table 3.3.

48



Table 3.2: Summary statistics of analysis data
(NHANES 2003-2006)

n (sample size) 3,035
Demographic Measures:
Age (yrs) 61.9(8.4)
Female (%) 53%
White (%) 79%
Black (%) 10%
Hispanic (%) 7%

Education Level:
Less than High School 18%
More than High School 55%

Health Conditions
BMI (kg/m2) 29.0(6.2)
Current Smoker(%) 18.5%
CHD(%) 7.2%
CHF(%) 4.8%
Stroke(%) 4.5%
Cancer(%) 15.4%
Mobility Problem(%) 26.8%
Diabetes(%) 14.4%

Daily Physical Activity Measures:
Sendentary Time (hrs) 8.6(2.2)
Light Time (hrs) 5.4(1.7)
MVPA Time (hrs) 0.26(0.3)

CHD is Coronary Heart Disease, CHF is Congestive
Heart Failure, BMI is Body Mass Index. Mobility Prob-
lem is defined as having difficulty walking for a quarter
mile. Values are survey-weighted.
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Table 3.3: Causes of death in the 2019 Mortality Follow-
up data

Heart Disease 276
Malignant Neoplasms 266
Chronic Lower Respiratory Diseases 68
Cerebrovascular Diseases 52
Alzheimer’s Disease 45
Diabetes 40
Nephritis 26
Influenza and Pneumonia 19
All other causes 235

We fit two models to these data. The first considered substitutions among sleep &

non-wear time, sedentary time, and activity, and the second considers substitutions

among sedentary time, light activity, and moderate to vigorous activity with sleep

& non-wear time held constant. The methods by which time in those categories are

estimated are described in [22].

The first Cox model used the following hazard function:

h(t|xi1, xi2, xi3, zi) = h0(t) exp
{
g(xi1, xi2) + z⊤

i α
}

for i = 1, 2, . . . , 3035, (3.12)

where: xi1 is the average number of hours participant i was either asleep or not

wearing the device per day, xi2 is the average number of hours participant i spent in

sedentary behaviors per day, xi3 is the average number of hours participant i spent

physically active per day. The linear covariates, zi, are the same ones used in [22]

and include age, sex, race/ethnicity, education level, BMI, smoking, and the presence

of chronic diseases and mobility limitations. We modeled the smooth surface with a

fourth-degree bivariate tensor product P-splines with K1 = K2 = 20. The weighted

coefficients in the Cox model were estimated using equations (3.8) and (3.9) through

the equivalent Poisson model ([51]) using the bam procedure in the mgcv package in

R. To provide a comparison, we also fit a linear version of the model:
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h(t|xi1, xi2, xi3, zi) = h0(t) exp
(
xi1ν1 + xi2ν2 + z⊤

i α
)
for i = 1, 2, . . . , 3035. (3.13)

where ν1 and ν2 are unknown coefficients and the other terms are as defined in equa-

tion (3.12).

The estimated g(x1, x2) and the estimated linear surface are in Figure 3.2 (top

and bottom panels respectively). The lack of parallel contour lines in the top panel

illustrates the benefit of the nonparametric model. That model allows a rapid increase

in the association with mortality hazard when activity levels are low, but smaller

increases for higher levels of activity. The linear model assumes the log hazard ratio

is a plane in any two of x1, x2, and x3. We also note that the range of the log-hazard

ratios is smaller in the linear model compared to the spline approach. We posit that

this is because the linear approach in effect over-smooths the log-hazard ratio rather

than letting the data determine the shape of the function.

Directional derivatives (Section 3.2.6) for both models are in Figures 3.3-3.5. The

arrows in the pictures indicate the direction of the substitution that associates with an

increased log-hazard ratio. The length is proportional to the size of the association

and black indicates a pointwise p-value less than 0.05. The top panel of Figure

3.3 illustrates that increasing sedentary time and decreasing activity associates with

increased mortality hazard, but the effect is only seen when activity is approximately

less than 6 hours per day. The bottom panel of Figure 3.3 shows that the standard

linear model both misses this subtlety since it only estimates one constant derivative

and it also estimates a much smaller effect.

The maximum partial derivative of the nonparametric model is 0.52, which is

equivalent to a hazard ratio of 1.68. This corresponds to approximately 68% increase

in mortality risk when an hour of activity is replaced with an hour of sedentary

behavior while holding sleep & non-wear time and baseline covariates constant. The

linear model, on the other hand, uniformly estimates the partial derivative as 0.2
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which corresponds to a hazard ratio of 1.22, thus, only a 22% increase in mortality

risk.

Figure 3.4 shows the associations with increasing sleep & non-wear time and de-

creasing activity. Again, the top panel shows that the associations are strongest for

low levels of activity, but in this case, the associations begin at about 8 hours of

activity per day. Similar to the effects in Figure 3.3, the maximum partial derivative

is 0.49. This means that substituting an hour of sleep & non-wear time for activity is

associated with up to approximately 63% increase in mortality risks after adjusting

for sedentary time and baseline covariates. The drawbacks of the linear model are

similar to those described above and in this case, it only estimates the increase in

mortality risks at 21%.

Finally, Figure 3.5 (top panel) shows the associations with increasing sedentary

time and decreasing sleep & non-wear time while holding activity fixed. The linear

model (bottom panel of Figure 3.5) shows no significant effect here, and the nonpara-

metric approach only shows positive effects when sedentary time is above approxi-

mately 12 hours and activity is around 6 hours. The maximum partial derivative, in

this case, is 0.16. This means, being sedentary instead of sleeping (& non-wear) for

one hour is associated with mortality risks of up to approximately 17% after adjusting

for activity time and baseline covariates.
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Figure 3.2: Top panel: Estimated log-hazard tensor product surface of the effects of
sedentary, sleep & non-wear and activity time on all-cause mortality. Bottom panel:
Estimated log-hazard surface using the linear model.
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Figure 3.3: Top panel: Estimated effects of exchanging sedentary behavior and activ-
ity while holding sleep & non-wear and baseline covariates constant. The maximum
partial derivative is 0.52. Bottom panel: Same substitution effects estimated by the
linear model. The partial derivative is 0.20.
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Figure 3.4: Top panel: Estimated effects of exchanging sleep & non-wear and activity
while holding sedentary behavior and baseline covariates constant. The maximum
partial derivative is 0.49. Bottom panel: The same substitution effects as estimated
by the linear model. The partial derivative is 0.19.
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Figure 3.5: Top panel: Estimated effects of exchanging sedentary behavior and sleep
& non-wear while holding activity and baseline covariates constant. The maximum
partial derivative is 0.16. Bottom panel: The same substitution effects as estimated
by the linear model. The partial derivative is 0.01.
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In a second analysis, we subdivided total wear time into sedentary, light and

moderate-to-vigorous physical activity (MVPA), and then considered the percentage

of each as the composition; sleep & non-wear time was included as a linear term. Let

xi1 be sedentary hours, xi2 be light hours, xi3 be MVPA hours, and xi4 be sleep &

non-wear hours for person i. Further, let ri1 = xi1

xi1+xi2+xi3
be the proportion of wear

time spent engaging in sedentary behaviors, and ri2 = xi2

xi1+xi2+xi3
be the proportion

of wear time spent engaging in light activity. With that notation, our model for the

hazard is

h(t|xi1, xi2, xi3, xi4, zi) = h0(t) exp
(
g(ri1, ri2) + xi4γ + z⊤

i α
)
for i = 1, 2, . . . , 3035.

(3.14)

By consolidating the linear terms in the model in equation (3.14), the model is

essentially the same as in equation (3.12), and we can estimate and make inferences

with previously described methods. As done in the previous analysis, we also fit a

linear model for comparison.

Our analysis reveals that a higher mortality risk is associated with decreasing time

spent on MVPA, similar to [22]. This is illustrated in Figure 3.6 (top panel), which

showcases the estimated surface of the log hazard ratio of the associations between

proportions of device-wear time spent in sedentary, light activity, and MVPA, and

mortality. The contours in the figure increase from −0.8 to 0.8 as the duration

decreases along the MVPA axis, specifically moving towards the line denoted by

MV PA = 0 from the point (0, 0, 1). Again, the non-parallel nature of these contours

implies that the associations can vary, even when located along the same axis. This

is an advantage of our spline model as it allows for a nuanced interpretation of data,

as compared to a standard model which linearly represents proportions of wear time

allocations. In the linear model, as demonstrated in the bottom panel of Figure 3.6,

associations remain constant along the same axis.
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Figure 3.6: Top panel: Estimated log-hazard tensor product surface of the association
between the proportion of hours of wear time spent in sedentary, light activity and
MVPA on all-cause mortality. Bottom panel: Estimated log-hazard surface using the
linear model.
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We present the directional derivatives in Figures 3.7-3.9. These represent the

substitution effects of the proportional time allocations across sedentary, light activity,

and MVPA on mortality. Similar to our earlier analysis, the arrows in the figures

depict the magnitude of the partial derivatives, while the directions signify the order

of substitutions associated with an increase in mortality risks. Also, as before, black

arrows indicate a pointwise p-value less than 0.05.

Figure 3.7 (top panel) shows that substituting light activity time for MVPA is

associated with high mortality risks. However, these associations are significant only

when the time spent on MVPA is below 12.5% of total device-wear time. The max-

imum partial derivative observed is 10.46, suggesting that substituting 1% of light

activity time for 1% of MVPA time could be associated with an approximately 11%

increase in mortality risks, assuming the same level of sedentary time, sleep (& non-

wear) time, and baseline covariates among US adults. Equivalently, for a US adult

with about 10 hours of sleep (& non-wear) time, substituting 10 minutes of MVPA

for 10 minutes of light activity—while keeping sedentary time constant—is roughly

associated with a decrease in mortality risks by up to 12%, after factoring in baseline

covariates. The directional derivatives of exchanging light activity time and MVPA

using the standard linear model are presented in the bottom panel of Figure 3.7. As

with previous results, the linear model estimates a lower partial derivative of 8.08,

irrespective of the level of light activity time or MVPA.

Similarly, the top panel of Figure 3.8 illustrates that substituting sedentary time

for MVPA, while maintaining the same level of light activity time, is associated with

higher mortality risks. Statistically significant associations are observed when MVPA

time is below 10% of total wear time, and sedentary time is above 50%. The maximum

partial derivative here is 11.12, which implies that increasing sedentary time by 1%

while decreasing MVPA by 1%, given the same level of light activity, sleep (& non-

wear) time, and baseline covariates, is associated with up to 18% increase in mortality
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risks among US adults. The standard linear model produces a partial derivative of

10.44 and is presented in the bottom panel of Figure 3.8.

Finally, we show in Figure 3.9 (top panel) that exchanging sedentary behaviors

for light activity, while holding MVPA time constant, is also associated with higher

mortality risks after adjusting for sleep (& non-wear) time and baseline covariates.

These associations are significant when sedentary behaviors make up over 20% of wear

time. Moreover, the maximum partial derivative for this substitution is 9.45. This

means that substituting 1% of sedentary time for light activity is associated with up

to 10% increase in mortality risks. The linear model, in this case, is presented in the

bottom panel of Figure 3.9 below. It only measures a partial derivative of 2.36 which

potentially significantly underestimates the association.
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Figure 3.7: Top panel: Estimated effects of exchanging proportions of light activity
and MVPA while holding sedentary time, sleep & non-wear time and baseline co-
variates constant. The maximum partial derivative is 10.46. Bottom panel: Same
substitution effects estimated by the linear model. The partial derivative is 8.08.
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Figure 3.8: Top panel: Estimated effects of exchanging proportions of sedentary time
and MVPA while holding light activity, sleep & non-wear time and baseline covariates
constant. The maximum partial derivative is 11.12. Bottom panel: Same substitution
effects estimated by the linear model. The partial derivative is 10.44.
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Figure 3.9: Top panel: Estimated effects of exchanging proportions of sedentary time
and light activity time while holding MVPA, sleep & non-wear time and baseline
covariates constant. The maximum partial derivative is 9.45. Bottom panel: Same
substitution effects as estimated by the linear model. The partial derivative is 2.36.
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3.4 Discussion

This work developed a novel nonparametric method to estimate the effects of

a compositional covariate on a time-to-event outcome. We applied our method to

data from the 2003-2006 wave of the National Health and Nutrition Examination

Survey (NHANES) with mortality follow-up through December 31st, 2019. These

methods estimated the associations between substitutions among aspects of physical

activity and sedentary behavior and mortality risk. Our methods improved over

previous analysis by showing that the association with a substitution can depend on

the starting level.

Our results showed that substituting sedentary time (or sleep & non-wear time) for

physical activity results in increased mortality risks among US adults. This finding

is consistent with previous research that has shown that sedentary behavior is a

risk factor for all-cause mortality [22, 44, 26]. In particular, our method estimated

that, among US adults, replacing one hour of sedentary time for physical activity is

associated with up to approximately 68% increase in mortality hazards after adjusting

for baseline covariates. However, this effect is notable for those engaging in less than

four hours of activity per day. Also, substituting 1% of sedentary time for light

activity or moderate-to-vigorous activity (MVPA) is associated with approximately

10% and 18% increase in mortality risks respectively.

In interpreting the findings of the analysis on physical activity and mortality, it is

important to consider the limitations regarding causality and potential unmeasured

confounding. While this work may show an association between physical activity

and mortality risks, establishing a causal relationship requires rigorous experimental

design. Observational studies like this one are susceptible to unmeasured confound-

ing, meaning there may be unknown factors influencing both physical activity levels

and mortality risks. To strengthen the study’s conclusions, future research should

explore advanced statistical methods and sensitivity analyses to address potential

64



confounders. Caution should be exercised when inferring causality, and understand-

ing the impact of unmeasured variables is crucial in making informed decisions for

public health interventions.

Our approach has an inherent computational limitation due to the so-called curse

of dimensionality; a composition with m levels would require one to fit an m − 1

dimensional nonparametric model. If each dimension used K = 20 knots, approxi-

mately 20(m−1) would need to be estimated. That was feasible for m = 3 and a sample

size of over 3000, but we would not have been able to fit a fully nonparametric model

with m = 4. Future work will explore the use of additive models that ignore the

highest level of interactions.
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CHAPTER 4

CONCLUSION

4.1 Summary

Nonparametric derivative estimation methods are robust to model misspecification

as they are able to capture different effects along the same axis of a covariate in

a regression model. We have shown in the first part of this dissertation that the

penalized spline estimator of derivatives of mean regression functions achieves the

optimal L2 rates of convergence under some usual conditions on the placements of

the knots in the spline and the penalty matrix.

Also, in the second part, we have introduced a novel nonparametric method based

on a multivariate penalized tensor product spline to model time-to-event data when

compositional covariates (i.e. covariates that add up to a constant) are present. We

use partial derivatives of the estimated tensor product surface to measure the effects

of substituting one compositional covariate for another on the event of interest (for

example mortality).

Further, we apply our method to data from the US National Health and Nutrition

Examination Survey (NHANES), a representative national survey, to estimate the

effects of exchanging sedentary behaviors and physical activity on all-cause mortality.

Our analysis shows that while replacing physical activity with sedentary behaviors

is generally associated with increased mortality risks, the extent of the association

depends vastly on one’s current level of physical activity, among US adults.
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4.2 Limitations and Future Work

Beyond L2 asymptotics, one possible direction for the work on the penalized spline

derivative estimator is to understand if a different level of penalization would yield

a better finite sample performance of the derivative estimator. This is particularly

interesting since the estimator is optimized for estimating the mean regression func-

tion itself, not its derivatives. One approach is the adaptive penalty methodology by

Simpkin in 2013. However, we observed in our simulation study that, this approach

may have higher MSE for some functional forms. Even though this is only simulation

evidence, it suggests the question may still be open to future research.

In our nonparametric method for modeling time-to-event data with compositional

covariates, one limitation is the computational problems that arise for compositions

exceeding three variables. As stated in the discussion section of Chapter 3, one

approach is to ignore higher-level interactions and use additive models of lower-

dimensional smooth functions. We hope to explore this and other directions, including

a Bayesian model in the future.
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APPENDIX A

PROOF OF TECHNICAL LEMMAS FOR THEOREM 1
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A.0.1 Technical Lemmas

Lemma 1. Let f ∈ Cp, then there exists sf ∈ S(q, t) such that

||f (r) − s
(r)
f || = O(hq−r) + o(hp−r)

for all r = 0, 1, . . . , q − 2 and p ≤ q.

Here, b(x) = −f (q)(x)hq
i

q!
Bq

(
x−ti
hi

)
for ti ≤ x < ti+1 where Bq(.) is the qth Bernoulli

polynomial defined as B0(x) = 1, and Bk(x) =

∫ x

0

kBk−1(x)dx+Bk

and Bk is chosen such that
∫ 1

0
Bk(x)dx = 0.

Bk is known as the kth Bernoulli number ([3]). This Lemma also appears in [3] and

[58] adopts the general result in [3] to prove the case where p < q.

Proof of Lemma 1

We provide a proof for the case where p = q and refer to Remark 3.1 of [58] for

the case where p < q. [58] showed that when p < q, ||f (r) − s
(r)
f || = o(hp−r).

For p = q, first note that under Assumption 3, [3] showed that

inf
s(x)∈S(q,t)

||f (r)(x)− s(r)(x) + b∗(r)(x)||L∞ = o(hq−r)

This means, there exists an sf (x) ∈ S(q, t) such that

||f (r)(x)− s
(r)
f (x) + b∗(r)(x)|| = o(hq−r)

where b∗(x) = −f (q)(ti)h
q
i

q!
Bq

(
x−ti
hi

)
, for ti ≤ x < ti+1 and b∗(r) is the rth derivative of

b∗. Note that f (q)(x) in b(x) is replaced with f (q)(ti) in b∗(x).
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With p = q, we have that f ∈ Cq[0, 1]. Therefore, from Taylor’s theorem, f (q)(x) =

f (q)(ti) + o(1).

=⇒ b(x) = b∗(x) + o(hq)

The derivative of the Bernoulli polynomial of order k is given by B′
k(x) = Bk−1(x)

([3]), it therefore follows that

b(r)(x) = b∗(r)(x) + o(hq−r)

for r = 0, 1, 2, . . . , q − 2. But ||b∗|| = O(hq) by definition, giving ||b(r)|| = O(hq−r).

Combining this with the case where p < q, we have that ||f (r)−s
(r)
f || = O(hq−r)+

o(hp−r) for all p ≤ q.

Lemma 2. Given G
(r)
q =

∫ 1

0
B(r)(x)B

(r)
q (x)q(x)dx,

||G(r)
q ||∞ = O(h−2r)

Proof of Lemma 2

Note that B
(r)
q (x) = Bq−r(x)D

(r)

∴ G(r)
q =

∫ 1

0

Bq−r(x)D
(r)DT (r)BT

q−r(x)q(x)dx

= O(h−2r)

∫ 1

0

Bq−r(x)B
T
q−r(x)q(x)dx

= O(h−2r)× qmax

= O(h−2r)

Where qmax = max
x∈[0,1]

q(x) < ∞. Also, note that B-spline bases are bounded by 1

∀x ∈ [0, 1].

70



Lemma 3. Let Gn,q = BTB/n where B = [B(x1), B(x2), . . . , B(xn)]
T ∈ Rn×K is a

matrix of basis functions with each B(x) ∈ RK being a vector of basis functions of

order q at x.

Then

||G−1
n,q||∞ = O(h−1)

Proof of Lemma 3

This Lemma is adapted from Lemma 6.3 of [57] and the key idea is to show that

the elements of G−1
n,q decay exponentially and of order h−1. We provide the proof here

for convenience.

Let λmax and λmin be the maximum and minimum eigenvalues of Gn,q respectively.

Since Gn,q is a band matrix, Theorem 2.2 of [15] is used. First, we need to satisfy the

conditions of the theorem.

Note that

||λ−1
maxGn,q||2 = λ−1

max||Gn,q||2

= λ−1
max max∑K

i=1 z
2
i =1

||Gn,qz||2

≤ 1

Where the max term in the second equality gives some eigenvalue that is at most

λ−1
max.

Also,

||λmaxG
−1
n,q||2 =

λmax

λmin

∣∣∣∣λminG
−1
n,q

∣∣∣∣
2

≤ λmax

λmin
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Lemma 6.2 of [57] provides bounds on the eigenvalues of Gn,q. In particular, for

large n, there exist constants c1 and c2 such that

c1h/2 ≤ λmin ≤ λmax ≤ 2c2h

Therefore by Theorem 2.2 of [15], there exists constants c > 0 and γ ∈ (0, 1) which

depend only on c1, c2 and q such that:

|λmaxgij| ≤ cγ|i−j| (A.1)

where gij is the (i, j)th element of G−1
n,q.

From equation (A.1),

|gij| ≤ cλ−1
maxγ

|i−j| ≤ 2(c/c1)h
−1γ|i−j|

which means that G−1
n,q = O(h−1). This completes the proof of Lemma 3.

Lemma 4. Suppose γ = G−1
n,qB

Tf/n and Pm is the penalty matrix for the penalized

spline estimator in (2.3),

then

γTPmγ = O(1)

Proof of Lemma 4

Again, this Lemma is adapted from Lemma 8.4 of [58] which puts a bound on the

penalty matrix of the penalized spline estimator. The proof follows closely from the

proof in [58] with a bit more clarity.
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Observe that we can write

γ = G−1
n,qB

Tf/n = G−1
n,qB

T (f − sf )/n+G−1
n,qB

Tsf/n

= G−1
n,qB

T (f − sf )/n+ β

= G−1
n,qα+ β

where β = G−1
n,qB

Tsf/n and α = BT (f − sf )/n.

Since Pm is positive semi-definite, we can use the Cauchy-Schwarz inequality

defined for an inner product ⟨x, y⟩Pm = xTPmy and write:

(
γPmγ

) 1
2 ≤

(
αTG−1

n,qPmG−1
n,qα

) 1
2 +

(
βTPmβ

) 1
2 (A.2)

By Assumption, βTPmβ = O(1), therefore showing that the first term in A.2 is O(1)

completes the proof.

In the following, we use the following matrix relations. Let A ∈ Rm×n, then

1√
n
||A||∞ ≤ ||A||2 ≤

√
m||A||∞ (A.3)

Also, let P
1
2
m be a square symmetric matrix such that Pm = P

1
2
mP

1
2
m.

Observe that
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αTG−1
n,qPmG−1

n,qα =
(
P

1
2
mG

−1
n,qα

)T (
P

1
2
mG

−1
n,qα

)
(A.4)

= ||P
1
2
mG

−1
n,qα||22 (A.5)

≤ ||α||22||P
1
2
mG

−1
n,q||22 (A.6)

≤ ||α||22||P
1
2
m||22||G−1

n,q||22 (A.7)

≤ ||α||22||P
1
2
m||22K||G−1

n,q||2∞ (A.8)

= o(h2p+2)O(h1−2m)O(h−1)O(h−2) (A.9)

= o(h2p−2m) (A.10)

= O(1) (A.11)

for p ≥ m. The first and second inequalities are by Cauchy Schwartz inequality, and

we have used the matrix identity in (A.3) in the third inequality. Also, We have used

the result by [1] for ||α||22 and the assumption that ||Pm||2 = O(h1−2m). Finally, we

have used Lemma 3 in the third inequality for ||G−1
n,q||∞ as well.

74



APPENDIX B

RATES OF CONVERGENCE FOR LOCAL POLYNOMIAL
DERIVATIVE ESTIMATORS

When estimating the rth derivative of the mean regression function with a local

polynomial of degree p, several authors ([19, 37]) recommend using odd p− r. In this

section, we lay out an argument that the naive bandwidth under- or over- smooths

when p and p−r have different parities and that only even derivatives can be optimally

estimated by the naive estimator. Table B.1 below shows the four (4) potential parity

combinations for p and p − r. We show next that the naive estimator achieves the

optimal rate of convergence when used to estimate p−r only for cases I and IV (where

p and p−r have same parity, equivalently, when r is even). Let m̂r(x) be a pth-degree

p− r
odd even

p
odd I II
even III IV

Table B.1: Parity combinations of p and p− r when estimating the rth derivative of
a mean regression function with pth degree local polynomial regression.

local polynomial estimate of the rth (r ≤ p) derivative of the mean regression function,

m(x) at a point x such that m(p+1)(·) is continuous in a neighborhood of x. Let also

h be the bandwidth of m̂r(x) such that h = o(n) and nh → ∞, then we know from

[37] that

IMSE (m̂r(x)) = o
(
h2(p+1−r)

)
+O

(
1

nh2r+1

)

75



for odd p− r and

IMSE (m̂r(x)) = o
(
h2(p+2−r)

)
+O

(
1

nh2r+1

)

for even p− r.

Note that the naive estimator uses the optimal bandwidth when estimating m(·)

itself, thus, when r = 0. In the above, IMSE is the integrated mean squared error.

First, we will derive the rates of convergence for the optimal bandwidth for the naive

estimator (r = 0) for both the odd p and even p cases. We will then compare how

these naive rates of convergence compare with the optimal bandwidths for estimating

p− v for both parity scenarios.

For odd p (thus, r = 0 and p− r is odd),

IMSE (m̂0(x)) = o
(
h2(p+1)

)
+O

(
1

nh

)

To get the rate of convergence of the optimal bandwidth, we derive the h that

minimizes the IMSE (ignoring constants).

From:

2(p+ 1)h2p+1 − n−1h−2 = 0

2(p+ 1)h2p+1 =
1

nh2

h2p+3 =
n−1

2(p+ 1)

∴ ho
naive = O

(
n− 1

2p+3

)
. Here, we use ho

naive for the optimal bandwidth for the

naive estimator when p is odd.
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For even p (thus, r = 0 and p− r is even),

IMSE (m̂0(x)) = o
(
h2(p+2)

)
+O

(
1

nh

)

From:

2(p+ 2)h2p+3 − n−1h−2 = 0

2(p+ 2)h2p+3 =
1

nh2

h2p+5 =
n−1

2(p+ 2)

∴ he
naive = O

(
n− 1

2p+5

)
. he

naive is the optimal bandwidth for the naive estimator

when p is even.

We now analyse the achieved rates of convergence for estimating the rth derivative

of the mean regression function, m and how those rates compare with the naive

estimator. We consider the four (4) cases in Table B.1 above.

Case I : p odd and p− r odd (thus, r is even).

IMSE (m̂r(x)) = o
(
h2(p+1−r)

)
+O

(
1

nh2r+1

)
From

2(p+ 1− r)h2p−2r+1 − (2r + 1)n−1h−2r−2 = 0

2(p+ 1− r)h2p−2r+1 =
2r + 1

nh2r+2

h2p+3 =
2r + 1

2(p+ 1− r)n

∴ hopt = O
(
n− 1

2p+3

)
, this is the same rate achieved by ho

naive. Therefore, the naive

bandwidth achieves the same rate as the optimal bandwidth for estimating p − r in

this case.
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Case II : p odd and p− r even (thus, r is odd).

IMSE (m̂r(x)) = o
(
h2(p+2−r)

)
+O

(
1

nh2r+1

)
By similar approach as in Case I, we get hopt = O

(
n− 1

2p+5

)
, this rate is different from

that achieved by the naive estimator ho
naive for odd p. The consequence of using the

naive bandwidth in this case is that, it shrinks faster than the optimal rate which

may result in over-smoothing.

Case III : p even and p− r odd (thus, r is odd).

IMSE (m̂r(x)) = o
(
h2(p+1−r)

)
+O

(
1

nh2r+1

)

Again, similar to Cases I and II above, hopt = O
(
n− 1

2p+3

)
, this rate is different

from that achieved by the naive estimator he
naive for even p which is O

(
n− 1

2p+5

)
.

Unlike in case II, the consequence of using the naive bandwidth in this case is that,

it shrinks at a slower rate than the optimal rate which may result in over-smoothing.

Case IV : p even and p− r even (thus, r is even).

IMSE (m̂r(x)) = o
(
h2(p+2−r)

)
+O

(
1

nh2r+1

)

From

2(p+ 2− r)h2p−2r+3 − (2r + 1)n−1h−2r−2 = 0

2(p+ 2− r)h2p−2r+3 =
2r + 1

nh2r+2

h2p+5 =
2r + 1

2(p+ 2− r)n

∴ hopt = O
(
n− 1

2p+5

)
, this is the same rate achieved by he

naive for even p. Therefore,

the naive bandwidth achieves the same rate as the optimal bandwidth for estimating
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p− r in this case. Thus, the naive estimator can only optimally estimate even-order

derivatives for Local Polynomial Regression.
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