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ABSTRACT

POSITIVE FACTORIZATIONS VIA
PLANAR MAPPING CLASSES AND BRAIDS

SEPTEMBER 2023

RICHARD E. BUCKMAN

B.Sc. Mathematics, UNIVERSITY OF MASSACHUSETTS AMHERST

B.Sc. Physics, UNIVERSITY OF MASSACHUSETTS AMHERST

B.Sc. Computer Science, UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc. Physics, UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc. Mathematics, UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor R. İnanç Baykur

In this thesis we seek to better understand the planar mapping class group in

order to find factorizations of boundary multitwists, primarily to generate and study

symplectic Lefschetz pencils by lifting these factorizations. Traditionally this method

is applied to a disk or sphere with marked points, utilizing factorizations in the stan-

dard and spherical braid groups, whereas in our work we allow for multiple boundary

components. Dehn twists along these boundaries give rise to exceptional sections of

Lefschetz fibrations over the 2–sphere, equivalently, to Lefschetz pencils with base

points.

These methods are able to derive an array of known examples of Lefshetz fibrations

while giving their maximal exceptional sections. In particular, a family of examples
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we obtain, which recapture unpublished examples by Baykur, Hamada and Korkmaz,

allows us to demonstrate that two well-known inequalities on the number of non-

separating and separating vanishing cycles are in fact sharp for every genus g ≥ 2.
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CHAPTER 1

INTRODUCTION

In this thesis, we study the planar mapping class group to better understand it and

develop methods to find planar factorizations of boundary multitwists. We primarily

apply them to study symplectic Lefschetz fibrations and pencils by lifting them to

higher genus surfaces using Birman-Hilden theory. Each factorization determines a

Lefschetz fibration, and each boundary corresponds to a section where the power of

the Dehn twist along gives the self-intersection of this surface in the ambient oriented

4–manifold. In particular, when the boundary multitwist has a single power, these

are exceptional sections corresponding to the base points of a Lefschetz pencil.

Donaldson showed that every symplectic 4-manifold admits a Lefschetz pencil

with symplectic fibers which can be blown up to get a Lefschetz fibration [Don99].

Conversely, Gompf showed that the total space of a nontrivial Lefschetz fibration

admits a symplectic structure [GS99]. Therefore, finding Lefschetz fibrations and/or

supporting Lefschetz pencils through positive factorizations give a combinatorial way

to discover new examples of symplectic 4-manifolds.

Given a genus g surface S without boundary, and a product of ` positive Dehn

twists in the mapping class group Mod(S) that give a factorization of the identity, we

can construct a Lefschetz fibration over a sphere with ` singular points. If instead, S

has boundary, then given a positive factorization of the boundary multitwist with one

positive boundary twist for each boundary component, we can fill in the boundaries

to get a Lefschetz fibration with a (−1)–section where each boundary component was.

These can be blown down to get a Lefschetz pencil.

1



We can apply a slightly generalized version of Birman-Hilden theory to lift fac-

torizations of the planar mapping class group with marked points to factorizations of

our higher genus mapping class groups with boundaries to obtain Lefschetz fibrations

with a symmetry, which is induced by a certain involution (a hyperelliptic involution,

when the boundaries are capped off) on the fibers. We develop diagrammatic meth-

ods to build such examples, in order to get new (positive) factorizations in the planar

mapping class group to generate interesting Lefschetz fibrations and pencils.

Organization:

Here in Chapter 1, we give a brief introduction and outline.

In Chapter 2 we give an overview of some background material, including sym-

plectic 4–manifolds, Lefschetz fibrations and pencils, and mapping class groups of

surfaces.

In Chapter 3 we describe our diagrams for factorizations of planar mapping classes.

First, we show that in the context of planar mapping class factorizations, we can use

an invariant that effectively allows us to describe planar mapping classes as elements

of the standard braid group with integral weights, leading to a variation of braid

diagrams. Then we discuss some elementary techniques and key examples used in the

later chapters to derive more advanced examples.

In Chapter 4, by lifting factorizations of planar mapping classes, we derive an

interesting family of Lefschetz pencils. After blowing up the base points, these yield

genus–g Lefschetz fibrations fg : XBK → S2 which generalize the genus g = 2 Lefschetz

fibration of Baykur and Korkmaz [BK17].

Chapter 5 details how to calculate some of the homological invariants of the am-

bient 4–manifold such as its signature and the first homology, in preparation for our

results in the last chapter.

Finally, in Chapter 6, we discuss —with proofs— a pair of inequalities on the

number of non-separating and separating vanishing cycles of a Lefschetz fibration

2



over the 2–sphere, and then show using the examples fg : XBK → S2 that these

inequalities are in fact sharp. This constitutes the main result of our thesis.
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CHAPTER 2

BACKGROUND

2.1 Symplectic 4-manifolds

A topological n-manifold M is a topological space locally homeomorphic to Rn,

required to be second-countable and Hausdorff. A smooth manifold (M,A) pairs M

with an additional smooth structure given by a maximal smooth atlas A providing

local diffeomorphisms to Rn.

The interplay between topological properties and smooth properties is surprisingly

rich and complex, especially so for 4-manifolds. For example, two smooth manifolds

form an exotic pair when they are homeomorphic but not diffeomorphic, and a man-

ifold M which forms an exotic pair with a sphere Sn or a euclidean space Rn is

often referred to as an exotic Sn or an exotic Rn. Stallings showed that there are

no exotic pairs involving Rn for n 6= 4 [Sta62], but following the work of Freedman

and Donaldson, many examples were discovered examples for n = 4. In fact Taubes

discovered not only infinitely many, but an uncountable continuum. Understanding

this and other related phenomena leads us to the study of 4-manifolds in particular,

and the many related subclasses of manifolds surrounding them, including symplectic

manifolds, along with Lefschetz fibrations and pencils.

On an n-dimensional vector space V over R, a bilinear map Ω : V × V → R is

skew-symmetric when Ω(u, v) = −Ω(v, u) for all u, v ∈ V . A skew-symmetric bilinear

map Ω is nondegenerate if whenever Ω(u, v) = 0 for all v ∈ V , then u = 0. Then we

call Ω a symplectic structure on V and the pair (V,Ω) is a symplectic vector space.

4



Ωk(M) denotes the set of real differential k-forms on M , with exterior derivative

d : Ωk(M)→ Ωk+1(M). Given ω ∈ Ωk(M), we say ω is closed when dω = 0.

At each p ∈ M , a 2-form ω ∈ Ω2(M) defines ωp : TpM × TpM → R, a skew-

symmetric bilinear map on the tangent space at p, and ωp varies smoothly over p.

We say that ω is symplectic when it is closed and non-degenerate, implying that

(TpM,ωp) defines a symplectic vector space for each p ∈ M . Then the pair (M,ω)

defines a symplectic manifold which must be even dimensional. In fact, a classical

theorem of Darboux tells us that every symplectic manifold has local coordinate charts

(x1, . . . , xn, y1, . . . , yn) where ω is given by Σn
i=1dxi ∧ dyi.

2.2 Lefschetz fibrations and pencils

Lefschetz fibrations generalize fiber bundles, further generalizing product spaces,

establishing higher dimensional spaces as combinations of lower dimensional spaces.

In this thesis we are primarily interested in Lefschetz fibrations in 4 dimensions over

a 2-sphere, omitting both higher dimensions and other possible base spaces.

As in [GS99], we define a 4 dimensional Lefschetz fibration as a singular map

f : X → Σ from a 4-manifold X to the 2-manifold Σ with finite critical point set P ,

requiring each critical point to have a neighborhood with local complex coordinates

(compatible with the orientation on X) where f is given by f(z1, z2) = z2
1 + z2

2 . We

assume that f is injective on its critical set. The fiber Fp ⊂ X above any point

p ∈ Σ denotes the preimage of p under f . Let qi := f(pi) denote the critical values

and choose any regular value q0 ∈ Σ to define the regular fiber F := Fq0
∼= Σg,

where g defines the genus of our Lefschetz fibration. For any regular value p ∈ Σ we

have Fp ∼= F , but any singular value p = qi, Fp has a singular fiber with associated

vanishing cycle ci ⊂ Σg, an essential simple closed curve that gets pinched to a

point making Fp a surface with a single double-point (node) singularity. The local

monodromy around qi is known to be a Dehn twist tci in the mapping class group
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Mod(Σg). In fact, by [Kas80], a handlebody decomposition for the manifold X can

be obtained by starting with the trivial fiber bundle Σg×D2 and attaching 2-handles

along the vanishing cycles with −1 framing with respect to the fiber. The union

of this with another copy of Σg × D2 then gives X. (Or equivalently, by one more

2–handle attachment to the former piece, followed by 2g 3– and a single 4– handle

attachment.)

When the base surface is a 2-sphere, we can think of it as two disks glued together,

one disk containing all the critical values, together with a regular value q0. Pick

pairwise non-intersecting (except at q0) simple closed paths γi based at q0, enclosing

qi (in this disk), running counterclockwise. The local monodromy over γi would

be the Dehn twist tci , where now all these local monodromies can be expressed in

the mapping class group of the same reference regular fiber F = Fq0 . Then the

monodromy over a simple closed path homotopic to the concatenation of the paths

γ1, . . . , γ` factorizes into the product tc` · · · tc2tc1 . Since the fibration over the other

disk is trivial, this is a factorization of identity in the mapping class group of F ∼= Σg.

Thus genus–g Lefschetz fibrations over a sphere correspond to positive factoriza-

tions of the identity in the mapping class group of a genus g surface Σg, precisely the

reason we are interested in finding such factorizations.

A Lefschetz fibration is hyperelliptic when each of its vanishing cycles is invari-

ant under a fixed hyperelliptic involution of the regular fiber. We also introduce a

subtle distinction by saying a Lefschetz fibration is symmetric when the monodromy

factorization has a factor tatb along a pair of symmetric curves a and b mapped to

each other under the hyperelliptic involution; this element represents a mapping class

commuting with the hyperelliptic involution.

A Lefschetz pencil on a 4-manifold X is defined by a finite nonempty base point

set B ⊂ X and a singular function f : X \ B → S2 with finite non-empty critical

set P ⊂ X, requiring local complex coordinates around each base point b ∈ B such
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that f is given by the projectivization C2 − {0} → CP1 ∼= S2, in local coordinates

(z1, z2)→ z1/z2, and requiring each critical point p ∈ P to be of nodal type.

Given a Lefschetz pencil, blowing up each of the base points consecutively results

in a Lefschetz fibration over S2 with a −1 section from each exceptional sphere. Given

a Lefschetz fibration over S2 with a set of −1 sections, we can blow-down each of the

sections to get a Lefschetz pencil with corresponding base points.

2.3 Mapping class groups of surfaces

Surfaces. We consider a surface (denoted by S, generically) to be compact, con-

nected, and oriented, possibly with boundary ∂S. In particular, Σb
g,n specifies a

compact oriented genus g surface with b boundary components (often shortened to

boundaries) and n marked points in the interior.

A surface is planar when it has genus zero and nonempty boundary, i.e. when it

can be embedded in R2. Thus, a sphere (denoted by Sn, with n marked points or S,

when unmarked) is not planar but a disk (Dn with marked points or D unmarked) is.

A sphere with b + 1 disjoint open disks removed (Sb+1
n ) becomes planar, equivalent

to a disk with b disjoint open disks removed (Db
n). In particular, for planar surfaces,

we use the terms sphere and disk interchangeably, and they still apply when there

are additional boundary components. We tend to use the term sphere when we

would imagine the surface sitting in R3 where the boundaries are indistinguishable,

while we tend to use the term disk when we would imagine the surface in R2 where

one boundary is (superficially) distinguished as the “exterior” boundary. In the latter

case, we use δ0 to refer to the exterior boundary, with interior boundaries {δ1, . . . , δb}.

This will be the default for most of this thesis, since it is more convenient to draw

diagrams and manipulate them using disks. Most important, we define an invariant

which fits with a diagram as drawn on a disk and depends on having the exterior

boundary to give a well defined inside and outside to closed curves. Still, when we
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are lifting them to higher genus surfaces, it is more convenient to relate the different

surfaces using spheres.

Higher genus surfaces are drawn as we would see them if embedded in R3, but

planar surfaces will only be drawn this way to relate them to higher genus surfaces.

Most of the time they will be drawn as embedded in R2. In this case, since we

are usually thinking of the surface as a disk Db
n, we omit the exterior boundary for

aesthetics and ease of drawing, essentially using the edge of the diagram in its place.

Other times we think of the same surface as a sphere Sb+1
n , which looks identical,

except that all the boundaries are drawn identically, with the edge of the diagram only

artificial, so that the sphere extends around behind the paper, essentially gluing an

unmarked disk to it. This is more symmetric and treats all boundaries as equivalent,

but one needs to recall that we can also isotope curves around the sphere. Note that

this introduces a potential ambiguity since a diagram of Db
n with implicit exterior

boundary is indistinguishable from the diagram of Sb−1
n , but we will clearly indicate

the difference.

We represent marked points using blue dots, and boundaries using grey dots. For

uniformity, we will typically arrange the points in a horizontal row, with marked

points on the left and boundaries to the right, unless there is a reason to use other

arrangements. Higher genus surfaces considered in this thesis will not have marked

points.

On a given surface S, we consider a curve to be a simple closed curve embedded in

S, avoiding marked points or boundaries, up to isotopies also avoiding marked points

(and fixing boundaries pointwise). Similarly, we consider an arc to be a simple proper

arc embedded in S, with distinct endpoints each given by either a marked point or

a boundary point, otherwise avoiding marked points and boundaries, up to isotopies

fixing the marked points and boundaries. We assume that all intersections between

arcs and/or curves are transverse, with at most double-points.
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A closed curve c ⊂ S is a separating curve if S \ c has two disjoint components.

Every closed curve on a planar surface is separating.

On a disk, we say that a given boundary or marked point is inside a curve c when

it is not on the same component of S \ c that contains the exterior boundary δ0. On

a sphere, there is no well-defined “inside” without choosing an exterior boundary.

Given a boundary δi, we say the component of S \ c which contains δi is outside

c relative to δi, and the other component is inside c relative to δi, extending the

terminology to the marked points or boundaries contained in each component.

On a planar diagram, marked points or boundaries are drawn inside a curve c

precisely when they are inside c relative to the exterior boundary δ0. On a spherical

diagram, this is not necessarily true since isotoping c around the sphere will turn c

inside out, exchanging what is drawn inside or outside.

Mapping class groups. We now discuss mapping class groups. Given a pair (S,∆)

with surface S and ∆ ⊂ S, define Homeo+(S,∆) as the group of orientation preserving

homeomorphisms on S that preserve ∆ pointwise and the marked point set setwise,

endowed with the compact-open topology [FM12]. We then define the mapping class

group Mod(S) = π0(Homeo+(S, ∂S)) and the related relative mapping class group on

a pair (S,∆) as Mod(S,∆) = π0(Homeo+(S, ∂S ∪∆)).

Every mapping class group is generated by a combination of Dehn twists and arc

half-twists, here considered to be positive when right-handed (as opposed to [FM12]).

A simple closed curve c ⊂ S avoiding marked points or boundaries corresponds to a

Dehn twist tc, while an arc half-twist τα corresponds to a simple proper arc α ⊂ S

with endpoints given by distinct marked points but similarly avoiding marked points

or boundaries otherwise. We refer to a Dehn twist tc as a boundary Dehn twist if c is

parallel to a boundary δi, referring to it as tδi even though c is not actually δi.

The boundary multitwist is the product of all boundary Dehn twists, i.e. tδbtδb−1
· · · tδ0

when there are b+ 1 boundaries with any number of marked points.
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In diagrams, we notate a Dehn twist tc or an arc half-twist τα with c or α, using

magenta for positive twists and green for inverse twists, optionally using an adjacent

number to indicate that the twist is raised to a power. The mapping class group is

most directly understood by considering the actions of mapping classes on a combi-

nation of simple closed curves and simple proper arcs with endpoints between either

marked points or boundaries.

Ac

Dα

tc t−1
c

τα τ−1
α

τ 2
α τ−2

α
2 2

Figure 2.1. Top: The action of a Dehn twist tc is restricted to a neighborhood Ac of
c, an annulus drawn as D1. Middle: The action of an arc half-twist τα is restricted to
a neighborhood Dα of α, drawn as a disk D2 with two marked points. Bottom: The
action of an arc half-twist squared τ 2

α is equivalent to the action of the Dehn twist
around a curve parallel to the boundary of the disk neighborhood.

The action of a Dehn twist tc or its inverse can be understood locally in a neigh-

borhood Ac of c, an annulus (∼= D1). Any simple closed curve or simple proper arc can

be isotoped to intersect Ac at a (possibly empty) set of disjoint arcs, each between the

distinct boundaries of Ac and intersecting c once, as seen in the top row in the second

column of Figure 2.1. Then tc replaces each of these arcs with a right-veering arc

around the annulus as seen in the fourth column, and the inverse t−1
c replaces each

with a left-veering arc around the annulus seen in the sixth column, while leaving

portions outside Ac untouched in either case.
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The action of an arc half-twist τα can be understood locally in a disk neighborhood

Dα of α with the two marked points, the end points of α (∼= D2). Any simple closed

curve or simple proper arc (which is not isotopic to α) away from its endpoints can be

isotoped to intersect Dα at a (possibly empty) set of disjoint arcs, each between the

top of Dα to the bottom, intersecting α once. This is not drawn in Figure 2.1, but

is the only possible arc connecting the top and bottom of Dα in the second column

without intersecting either arc segment. In all cases, the action of τα or its inverse on

Dα can be seen in the fourth and sixth columns, as the only possible arc connecting

the top or bottom, or as one of the two resulting arcs shown, exchanging the marked

points. A proper arc that is isotopic to α stays the same, although it is going in the

opposite direction if oriented since the marked points are exchanged.

2.4 Birman-Hilden theory

Here we introduce Birman-Hilden theory, but only as needed to establish the

necessary terminology and conventions we use. A more detailed introduction can be

found in [MW21] and [FM12].

Basic setup. Suppose Σg sits in R3 as in Figure 2.2 so that it is symmetric with

respect to the π rotation around the dotted horizontal axis. Let ι : Σg → Σg be

the hyperelliptic involution, which is induced from the π rotation. Then taking the

quotient by ι forms the Birman-Hilden double branched cover p : Σg → Σg/ι = S2g+2,

which maps fixed points of ι to marked points of S2g+2. (Here we find it convenient to

denote the base with the branched points.) We fix g+ 1 branch cuts as in Figure 2.2.

Let S ⊂ S2g+2 be the closed surface, possibly with marked points, resulting from

the removal of a nonempty finite union of disjoint open disks from S2g+2, where each

disk is either unmarked or singly marked. Let S̃ = p−1(S) ⊂ Σg be the closed surface

lifting S with respect to p, so that restricting p to S̃ is also a double cover, branched

unless there are no marked points remaining in S. We allow ι and p to also refer
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ι ι

p
y p

y
p1 p2 p3 p4 p5 p6

pδ0

qδ0

pδ1

qδ1

δ̃2

δ0

δ1

δ2

δ0 δ1 δ2

δ0 δ1 δ2

δ0
δ1 δ2

S3
5

D2
5

Figure 2.2. Left: Σ2 with the hyperelliptic involution ι giving the Birman-Hilden
double cover of S6. Right: A branched boundary and 2 unbranched boundaries on S3

5

give Σ5
2 with involution ι giving a double cover of S3

5, or equivalently, D2
5.

to the restricted maps ι : S̃ → S̃ and p : S̃ → S. The horizontal plane through the

dotted line cuts S̃ into the upper half and lower half subsurfaces pS, qS ⊂ S̃, which are

referred to as the upper and lower sheets. Both pS and qS are homeomorphic to the

complement of the branch cuts in S.

Lifting curves and arcs. We say a curve c ⊂ S has even parity (or is an even

parity curve) if it transversely intersects the branch cuts an even number of times,

generically, and that c has odd parity (or is an odd parity curve) otherwise. By

extension, we say a Dehn twist tc ∈ Mod(S) has the same parity as c (or is an even

or odd parity Dehn twist).
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We say that a closed curve c ⊂ S̃ is symmetric if ι fixes c setwise, and that a pair

of disjoint closed curves c1, c2 ⊂ S̃ is a symmetric pair if ι swaps c1 and c2. Again,

we extend both terms to Dehn twists in Mod(S̃).

We note that p : S̃ → S projects (1) each nonseparating symmetric closed curve

a ⊂ S̃ to an arc α between marked points, (2) each separating symmetric closed curve

c ⊂ S̃ to a closed curve c with odd parity, and (3) each ci in a symmetric pair {c1, c2}

of closed curves to a closed curve c = p(c1) = p(c2) with even parity. Conversely, any

arc α ⊂ S between marked points lifts to a nonseparating symmetric closed curve

a ⊂ S̃. Similarly, any closed curve c ⊂ S lifts to either a separating symmetric closed

curve c or a symmetric pair {ĉ, č} of closed curves depending on odd or even parity.

We also note that any closed curve c ⊂ S is separating, and if c has even parity

then the two components of S \c lift to disjoint components of S̃ \(ĉ∪ č). This implies

that any symmetric pair {ĉ, č} of closed curves in S̃ is separating, although neither

curve is individually separating.

We use the naming conventions used here whenever possible to make it clearer

how curves and arcs relate to each other. When possible, a hat (α̂ or ĉ) will be

associated with the upper sheet and a check (α̌ or č) will be associated with the lower

sheet, but these often are not in a single sheet. A Greek letter will indicate an arc,

so that α̌ and α̂ would be two arcs with union a, and a Roman letter will indicate a

closed curve.

Each boundary δ ⊂ S is a closed curve, so it has even or odd parity. In the odd

case, we say δ is a branched boundary, and the lift δ̃ ⊂ S̃ is a symmetric boundary.

In the even case, we say δ is an unbranched boundary, and the lifts pδ, qδ ⊂ S̃ are

a symmetric pair of boundaries. Without loss of generality we can assume that a

branched boundary intersects a branch cut once and an unbranched boundary is

disjoint from any branch cuts.
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Let S have b + 1 boundary components, {δ0, . . . , δb}, bI of them branched and bII

of them unbranched. Each branched boundary δi lifts to the symmetric boundary

δ̃i, and each unbranched boundary δi lifts to a symmetric pair of boundaries pδi and

qδi in the upper and lower sheets, so S̃ has bI + 2bII total boundary components. For

n := 2g + 2 − bI marked points in S, with g ∈ N, we have S ∼= Sb+1
n
∼= Db

n and

S̃ ∼= ΣbI+2bII
g .

Symmetric and liftable mapping class groups. We then define the symmetric

mapping class group SMod(S̃) ⊂ Mod(S̃) as the group of elements φ ∈ Mod(S̃) having

fiber preserving representative maps f : S̃ → S̃, i.e. ι◦f = f ◦ι, or equivalently p◦f =

p, and we define the liftable mapping class group LMod(S) as the group of elements

φ ∈ Mod(S) having representative maps f : S → S which lift to representative maps

f̃ : S̃ → S̃ of Mod(S), i.e. f ◦ p = p ◦ f̃ .

Then p induces a map Φ : SMod(S̃) → LMod(S). Letting Deck ⊂ SMod(S̃)

be the subgroup of deck transformations fixing boundaries pointwise, we have an

isomorphism SMod(S̃)/Deck ∼= LMod(S). In our setup Φ is an isomorphism, and

hence

SMod(S̃) ∼= LMod(S),

since the nonempty boundaries of S and S̃ prevent ι from being a representative map,

so that Deck is trivial.

Lifting Dehn twists and half-twists. Now, we list certain simple types of

symmetric and liftable mapping classes that we will use in lifting factorizations in

planar mapping class groups to ones in higher genera mapping class groups.

Elementary symmetric mapping classes:

1. Given a non-separating symmetric closed curve a ⊂ S̃, we have ta ∈ SMod(S̃)

and Φ(ta) = τα where α = p(a) ⊂ S is an arc between two marked points.
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2. Given a separating symmetric closed curve c ⊂ S̃, we have tc ∈ SMod(S̃) and

Φ(tc) = t2c where c = p(c) ⊂ S is an odd parity closed curve.

3. Given a symmetric pair of closed curves c1, c2 ⊂ S̃, we have tc1tc2 ∈ SMod(S̃)

and Φ(tc1tc2) = tc where c = p(c1) = p(c2) ⊂ S is an even parity closed curve.

Since Φ is an isomorphism the converse is true as follows.

Elementary liftable mapping classes:

1. Given an arc α ⊂ S between marked points, we have τα ∈ LMod(S) and

Φ−1(τα) = ta where a = p−1(α) ⊂ S̃ is a non-separating symmetric closed

curve.

2. Given an odd parity closed curve c ⊂ S, we have t2c ∈ LMod(S) and Φ−1(t2c) = tc

where c = p−1(c) ⊂ S̃ is a separating symmetric closed curve.

3. Given an even parity closed curve c ⊂ S, we have tc ∈ LMod(S) and Φ−1(tc) =

tĉtč where ĉ, č ⊂ S̃ are a symmetric pair of closed curves such that p−1(c) = ĉ∪ č.

In particular, if δ ⊂ S is a branched boundary then t2δ lifts to tδ̃ where δ̃ ⊂ S̃ is the

corresponding symmetric boundary, while if δ ⊂ S is an unbranched boundary then

tδ lifts to t
pδtqδ where pδ, qδ ⊂ S̃ are the corresponding symmetric pair of boundaries.
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CHAPTER 3

PLANAR FACTORIZATIONS

3.1 Diagrams of Factorizations

Factorizations. Let S be a planar surface with mapping class group Mod(S). A

positive twist refers to either an arc half-twist τα or a single Dehn twist tc, a negative

twist refers to the inverse of a positive twist, and a twist refers to either. A word

ω = φ` · · ·φ2φ1 is an ordered set of factors φi where each is a twist (or at times

a square of Dehn twists when we focus on liftable factorizations) and the product

mapping class of a word is the mapping class given by the product of the factors

in order. A factorization of the identity is then a word with product mapping class

equal to the identity, a factorization of φ is a word with product mapping class equal

to φ, and a relation ω1 = ω2 is a pair of words with the same product mapping class.

Diagrams. The diagrams of factorizations we stumbled upon in this thesis seek to

retain the powerfully intuitive sequential nature of braids while simplifying some of

the inherent complexity in manipulating them.

Here we give an overview of the diagrams and the notations we use to manipulate

them, although we hope that they have been refined enough that some familiarity

with mapping class groups will make them almost immediate.

Compare the left half of Figure 3.2 to the left half of Figure 3.3 as it is represented

using our diagrams. The factors in the diagram are given as rows of a column, with

the top factor corresponding to the rightmost factor algebraically. The exception is

that boundary twists can be freely expressed in the same row as there is no ambiguity

in the order.
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We start with the toy example in Figure 3.1 using D3, a disk with three marked

points, so that the mapping class group Mod(D3) is equivalent to B3, the 3–strand

braid group.

p1 p2 p3

=

2 c2

α

β

Figure 3.1. The reduced half lantern relation in Mod(D3) derived by starting with
the reduced lantern relation in Mod(D3), underneath the corresponding derivation
using the braid group B3.

The first two columns with the equal sign between them indicate a relation, the

reduced lantern relation, in this case. Otherwise, the arrows indicate the derivation

from left to right, implying a relation between steps with justification given by the

symbols. Braces indicating groupings are placed with arrows to indicate substitution

is being made. The first step indicates that we are splitting the Dehn twist in the

middle row into the two identical arc half-twists. Another simple substitution is

shown in the fourth and final step where two identical Dehn twists are combined

into a squared Dehn twist as a single factor. Substitutions other than splitting or

combining, or cancelling pairs, will be made with more justification in the text.

Arrows without braces indicate Hurwitz moves. The arrow crossing over indicates

the factor which acts on the other. If this factor moves down, the action is inverted,

while it is applied directly if the factor moves up. For example, the second step here

17



moves the arc from the third position down to the fourth, moving the bottom Dehn

twist up while acting inversely on it. The following step moves the Dehn twist up

from the third position to the second position, moving the arc half-twist in the second

position down to the third position, while acting positively on it.

The Hurwitz move notations combine into a braid which acts on the factors to

perform arbitrarily long reorganizations, but we also allow the braids to intersect

to indicate that the factors commute past each other, such as in the middle step of

Figure 4.7 or the third step of Figure 4.8.

In Figure 4.7 in the first step, the long dashed arrow moving down, up behind the

others, and down again is indicating a cyclic permutation that moves the bottom row

to the top, always possible when the product mapping class is central as the squared

boundary multitwist here is. In general this will require a global conjugation by the

permuted elements, or a justification that they commute with the product mapping

class.

Projection and reduced relations. Starting with Db
n, capping the interior bound-

aries {δ1, δ2, . . . , δb} with singly marked disks with corresponding pointsQ = {p1, . . . , pb}

induces a projection π : Mod(Db
n)→ Mod(Db+n, Q), recalling that the target set here

is the relative mapping class with respect to Q, the subgroup of Mod(Db+n) whose

elements fix the new marked points individually. The kernel K is generated by the in-

terior boundary Dehn twists tδ1 , tδ2 , . . . , tδb , since any curve parallel to δi now bounds

a singly marked disk.

For the entirety of this thesis, we use π to refer to this map, often referred to as

the projection.

Given any relation in Mod(Db
n), we can apply π to each side of the relation to

get a corresponding relation we refer to as the reduced relation in Mod(Db+n, Q), or

analogously, the reduced relation in Mod(Db+n).
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The above construction also applies to any subset of the boundaries with little

difference, avoiding the details for clarity.

Examples of this can be seen throughout the thesis, but most notably in the

diagrams introducing each of the relations in Section 3.4.

3.2 The Dehn twist invariant

The mapping class group Mod(Dn) is isomorphic to the Artin braid group Bn,

but the additional boundaries of Db
n make Mod(Db

n) more complex. Applying the

projection π reduces to a subgroup of Mod(Dn+b) ∼= Bn+b, but not injectively. De-

spite this, the following invariant allows us to lift factorizations within Mod(Dn+b) to

factorizations within Mod(Db
n).

We now define the invariant as a composition. We first apply the forgetful homo-

morphism

Forget : Mod(Db
n)→ Mod(Db),

which forgets the n marked points. Then for each boundary component δi, we use

the capping homomorphism

Capδ0,δi : Mod(Db)→ Mod(D1) ∼= Z,

induced by embedding Db into the annulus D1, capping boundaries other than δ0 and

δi with unmarked disks, where the final isomorphism maps the unique positive Dehn

twist to 1.

Definition 3.2.1. Given a disk Db
n with exterior boundary δ0, we define the map

D : Mod(Db
n)→ Zb as (D1, . . . , Db) with each component Di : Mod(Db

n)→ Z defined

by the composition

Di = Capδ0,δi ◦Forget : Mod(Db
n)→ Z.
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Obviously, D maps any arc half-twists to (0, 0, . . . , 0). Each component Di maps

a positive Dehn twist tc to 1 when c separates δi and the exterior boundary δ0, or

to 0 otherwise. Hence, Di maps any product of Dehn twists to the total number of

Dehn twists separating δi from δ0, counted with sign.

Remark 3.2.2. We note that in the special case without marked points, D is closely

related to mij and mi as defined in [PVHM10].

The whole reason we introduced this invariant is demonstrated in the next section.

3.3 Replacing marked points with boundaries

This method is best understood through a simple example, so we apply it to the

lantern relation in Example 3.4.1.

Example 3.3.1. Projecting and lifting the lantern relation

Projecting the lantern relation (3.4.2) in Mod(D3) seen in left diagram of Figure 3.3

results in the reduced lantern relation (3.4.3) in Mod(D3) shown in the adjacent

diagram on the right. In particular, the three interior boundary Dehn twists are

no longer in the diagram on the right since they are in the kernel of the capping

map π : Mod(D3) → Mod(D3). The diagram itself is simply the result of replacing

the boundaries with marked points, removing any Dehn twists solely around a single

marked point.

Now suppose we attempt to reverse this; namely, we pretend that we do not

know the lantern relation in Mod(D3) but do know the reduced lantern relation in

Mod(D3), and try to lift the reduced relation to Mod(D3) by replacing the three

marked points with boundaries. Each of the Dehn twists individually reverts back to

what it was, except for the three interior boundary twists which were in the kernel.

The factorizations on the right side matches the original product mapping class, but

the one on the left does not, so the two sides are no longer equal.
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However, the kernel is generated by the three interior boundary Dehn twists, so

there must be some combination of these which we can add back in order to balance

the two sides and restore the equality. This is where the invariant helps us, because

it tells us exactly what boundary twists we need to make the two sides equal.

Each marked point is enclosed in two Dehn twist curves on the right, but only

one on the left, so we need to add to the left a single boundary Dehn twist for each

interior boundary, which gives us exactly the relation we started from.

We now formalize this. We have defined the projection π and extended it to

relations and factorizations, and now we would like to be able to lift them with

respect to π. Since Db
n is embedded in Db+n, we can lift any closed curves. We can

also lift arcs, but only if neither endpoint is in Q. This means we can lift a Dehn

twist tc for any curve c, but we can only lift an arc half-twist τα when α does not

have endpoints in Q.

We can extend this to lift words as long as we can lift each twist individually,

although we lose uniqueness here since we can always multiply by any element of the

kernel to get another lift.

In order to lift a relation in Mod(Db+n, Q) to another relation in Mod(Dn
b ), we

need to be able to lift each of the words, but these two lifts also need to have the

same product mapping class, and we cannot be sure of this.

We define an unbalanced relation in Mod(Db
n) as a pair of words whose product

mapping classes are equal modulo a product among tδ1 , · · · , tδb , and then we define

an unbalanced lift in Mod(Db
n) of a given relation in Mod(Db+n, Q) as an unbalanced

relation only requiring that each word lifts from the given relation. We can find an

unbalanced lift since we can lift the words individually.

However, given an unbalanced lift, the discrepancy must be in the kernel of π,

which is generated by tδ1 , · · · , tδb . Hence, adjusting them to remove the discrepancy
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will not affect the projection, ensuring that the words are still lifts while restoring

the balance, giving us a “balanced” lift of the relation.

Knowing that a lift of the relation exists, we simply lift the two sides of the relation

individually, creating an unbalanced lift, and then balance it using the invariant D.

In a diagram, this means that when a marked point is not the endpoint of any arc

half-twists, we can replace it with a boundary, count the number of Dehn twists

containing it on either side of the relation, accounting for inverses, and add enough

interior boundary twists to balance them.

As a result we can always use Dn, equivalent to the braid group, accounting for

boundaries afterwards.

3.4 The lantern relation and associated relations

Here we list some fundamental relations in the planar mapping class groups, which

will be used in constructing the main examples of the thesis in Chapter 4. First, we

revisit the lantern relation since it is arguably the most important relation in the

planar case.

Example 3.4.1. Lantern Relation

The lantern relation is given by

tδ3tδ2tδ1tδ0 = tc3tc2tc1 , (3.4.2)

with curves in Figure 3.2 in D3 on the left, putting the relation in Mod(D3), or in S4

on the right, putting the relation in the equivalent Mod(S4).

Figure 3.3 shows the equivalent diagram in Mod(D3) on the left, or on the right,

the diagram of the reduced relation

tδ0 = tc3tc2tc1 , (3.4.3)
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in Mod(D3), capping three boundaries with singly marked disks.

δ0

δ1

δ2

δ3

c1 c2

c3

δ0

δ1

δ2

δ3

c1

c2

c3

Figure 3.2. The lantern relation curves on D3 (left) and on S4 (right).

p1 p2 p3

=

c1

c2

c3

δ1 δ2 δ3

=

c1

c2

c3

Figure 3.3. Left: The lantern relation in Mod(D3) with an exterior boundary and
three interior boundaries. Right: The reduced lantern relation in Mod(D3) with an
exterior boundary and three marked points, which results from capping the three
interior boundaries with once marked disks.

Example 3.4.4. Half Lantern Relation

We introduce the relation

t2δ1tδ0 = τβταt
2
c (3.4.5)

defined in Mod(D1
2) as shown on the left of Figure 3.5 with the corresponding reduced

relation

tδ0 = τβταt
2
c (3.4.6)

shown on the right of the same figure. We refer to the first as the half lantern relation,

since it lifts via the Birman-Hilden double cover to the lantern relation in Figure 3.2
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p1 p2

α

β

c

δ0

δ1

2

p1

p2

α

β

c

δ0 δ1
2

Figure 3.4. The half lantern relation curves and arcs in D1
2 (left) and on S2

2 (right).

as shown below in Figure 3.6. This relation has been helpful in many other derivations

similar to the way it is used in the third step of Figure 4.7, essentially to get rid of

inverse twists in exchange for arc half-twists, provided there is another Dehn twist

with the same configuration.

δ1 p1 p2

=

2
c2

α

β

p1 p2 p3

=

2
c2

α

β

Figure 3.5. Left: The half lantern relation in Mod(D1
2). Right: The reduced half

lantern relation in Mod(D3).
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δ0

δ1

δ0

δ1

pδ0

qδ0

pδ1

qδ1

2

c2
1

α1

α2

2

c2
1

α1

α2

c1

a1

a2

Figure 3.6. Lifting the half lantern relation curves in S2
2 to the lantern relation

curves in S4.
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Example 3.4.7. Daisy Relation

The daisy relation with n ≥ 3 interior boundaries is given by

tn−2
δn

tδn−1 · · · tδ0 = tcntcn−1 · · · tc1 (3.4.8)

in Mod(Dn) = Mod(Sn+1) where the curves and boundaries are shown in Figure 3.7

in two equivalent forms. On the left of the figure, the curves are in Dn as introduced

in [PVHM10]. On the right, the curves are in Sn+1 as introduced in [EMVHM11],

referred to as the daisy relation because of this shape. The daisy relation is a gener-

alization of the lantern relation as it contains the lantern relation as the special case

with n = 3.

We represent the daisy relation in the diagram in Dn on the left of Figure 3.8. If

we cap all the interior boundaries with once marked disks we obtain a reduced form

of the daisy relation

tδ0 = tcntcn−1 · · · tc1 (3.4.9)

in Mod(Dn) as in the right of Figure 3.8.

δ1

δ2
δ3 δn−2

δn−1

δn

n−2

c1

c2

c3
cn− 2cn− 1

cn δ0

δ1

δ2

δ3

δn−2

δn−1

δn

n−2

c1

c2

c3

cn− 2

cn− 1

cn

Figure 3.7. The daisy relation curves in Dn as in [PVHM10] (left) and in Sn+1 as in
[EMVHM11](right).

26



p1 p2 pn−1pn
=

c1

c2

cn−1

cn

δ1 δ2 δn−1 δn
n−2

=

c1

c2

cn−1

cn

Figure 3.8. Left: The usual daisy relation in Mod(Dn) with an exterior boundary
and n interior boundaries, which factorizes tn−2

δn
tδn−1 · · · tδ0 . Right: The reduced daisy

relation in Mod(Dn) with an exterior boundary and n marked points, which now
factorizes only tδ0 as the interior boundary twists reduced to the identity.
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CHAPTER 4

GENERALIZING THE BAYKUR-KORKMAZ POSITIVE
FACTORIZATION

In [BK17], Baykur and Korkmaz derive an explicit positive factorization that pro-

duces the smallest genus-2 Lefschetz fibration with 7 vanishing cycles, which has 4

nonseparating and 3 separating. Baykur and Hamada have found a lift of this posi-

tive factorization that locates three exceptional sections of the fibration [BH,Bay22].

Moreover, Baykur, Hamada and Korkmaz have generalized this to a genus g ≥ 2 hy-

perelliptic Lefschetz fibration with 5g− 3 vanishing cycles, 4g− 4 nonseparating and

g + 1 separating, together with g + 1 exceptional sections (private communication).

Using our methods, we obtain similar positive factorizations that produce a genus g

hyperelliptic Lefschetz fibration with g + 1 exceptional sections for each g ≥ 2, to

which we refer collectively as XBK.

In what follows we first present the resultant relations in the planar mapping

class groups without derivation and give their lifts in higher genera mapping class

groups, which are the positive factorizations for our Lefschetz fibrations XBK. The

constructions of those planar relations will be given afterwards.

4.1 The genus 2 case

We start with the genus 2 case. The relation

t2δ2t
2
δ1
t2δ0 = τα4τα3τα2t

2
eτα1t

2
dt

2
c (4.1.1)
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is defined in Mod(S3
3) with the curves and arcs in Figure 4.1. The derivation will be

given in Section 4.3 below.

Consider the Birman-Hilden double cover Σ3
2 → S3

3 as specified in Figure 4.2. We

can lift the relation, as all factors are liftable, to obtain the new relation

tδ2tδ1tδ0 = ta4ta3ta2teta1tdtc, (4.1.2)

in Mod(Σ3
2) as shown in Figure 4.2. This is a positive factorization of the boundary

multitwist, giving a genus 2 Lefschetz fibration XBK with 7 vanishing cycles, 4 non

separating and 3 separating, together with 3 exceptional sections.

δ1 δ2 δ0
2 2 2

=

δ1 δ2 δ0
2

2

2

c2

d2

α1

e2

α2

α3

α4

Figure 4.1. The factorization of t2δ2t
2
δ1
t2δ0 in Mod(S3

3).

4.2 Arbitrary genus g ≥ 2 case

Moving to the general genus g ≥ 2 case, we consider the planar relation

t2δgt
2
δg−1
· · · t2δ0 = τα4g−4τα4g−5 · · · ταgt

2
eταg−1t

2
dg−1

ταg−2t
2
dg−2
· · · τα1t

2
d1
t2c , (4.2.1)

in Mod(Sg+1
g+1) shown in Figure 4.3. The derivation will be given in Section 4.4 below.
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δ1 δ2 δ0
2 2 2

c

d

α1

e

α2

α3

α4

= δ1 δ2

δ0

2

2

2

c

d

a1

e

a2

a3

a4

Figure 4.2. Lifting the planar relation (4.1.1) in Figure 4.1 from Mod(S3
3) to obtain

a positive factorization of the boundary multitwist tδ2tδ1tδ0 in Mod(Σ3
2). The latter

defines the genus 2 Lefschetz fibration XBK with three explicit exceptional sections.
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p1 p2

δ1

2

δ2

2

δg−1

2
pg

δg

2
pg+1

δ0

2
=

p1 p2
δ1 δ2 δg−1pg δgpg+1

δ0
2

2

2

2

2

c2

d2
1

α1

d2
g−2

αg−2

d2
g−1

αg−1

e2

αg

αg+1

αg+2

αg+3

αg+4

αg+5

α4g−6

α4g−5

α4g−4

Figure 4.3. The factorization of t2δgt
2
δg−1
· · · t2δ0 in Mod(Sg+1

g+1).
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p1 p2

δ1

2

δ2

2

δg−1

2
pg

δg

2
pg+1

δ0

2

=

c2

d2
1

αg−2

d2
g−1

αg−1

e2

αg

αg+1

αg+2

αg+3

αg+4

α4g−5

α4g−4

2

2

2

2

δ1 δ2 δg−1 δg

δ0

=

c

d1

ag−2

dg−1

ag−1

e

ag

ag+1

ag+2

ag+3

ag+4

a4g−5

a4g−4

Figure 4.4. Lifting the planar relation (4.2.1) in Figure 4.3 from Mod(Sg+1
g+1) to obtain

the positive factorization of the boundary multitwist in Mod(Σg+1
g ). The latter defines

the genus g Lefschetz fibration XBK with g + 1 explicit exceptional sections.
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We can lift this with respect to the Birman-Hilden double cover Σg+1
g → Sg+1

g+1 to

obtain the relation

tδgtδg−1
· · · tδ0 = ta4g−4ta4g−5 · · · tagtetag−1tdg−1

tag−2tdg−2
· · · ta1td1tc, (4.2.2)

in Mod(Σg+1
g ) as demonstrated in Figure 4.4. This gives a genus g Lefschetz fibration

with 6g−5 vanishing cycles, 4g−4 non separating and g+1 separating, together with

g+1 exceptional sections. Moreover, this fibration is hyperelliptic as the monodromy

factorization is obtained via the Birman-Hilden theory without symmetric pairs of

Dehn twists.

4.3 Derivation: The base case with g = 2

We now construct the relation (4.2.1) by induction on g. As the base case we

first derive the relation with g = 2, which is singled out as the relation (4.1.1) and in

Figure 4.1.

Proof. Consider the daisy relation in Mod(D4) with an exterior boundary and 4 in-

terior boundaries, as displayed on the right of Figure 3.8 (with n = 4). We cap

the first three interior boundaries from left with once-marked disks, whereas we cap

the rightmost boundary with a twice-marked disk. This results in a factorization

of the exterior boundary twist tδ0 in Mod(D5) as show in the first diagram of Fig-

ure 4.5. Note that the squared negative Dehn twist comes from the rightmost interior

boundary twist of the original daisy relation.

The second and third diagrams in Figure 4.5 also show factorizations of tδ0 . Both of

them are obtained from the first diagram, by a cyclic permutation and by rearranging

the marked points, respectively, as illustrated in Figures 4.5 and 4.6.

Next we combine the second and third factorizations of tδ0 in Figure 4.5 to obtain

a factorization of t2δ0 as shown in the first diagram of Figure 4.7. With a cyclic
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2

2

2

Figure 4.5. Three factorizations of the exterior boundary twist tδ0 in Mod(D5).
The first is a reduced daisy relation. The second follows immediately with cyclic
permutation. The third is obtained from the first by rearranging the marked points
as shown in Figure 4.6. Recall that green curves with index 2 represent squared
negative Dehn twists.

2 2

=

Figure 4.6. Rearranging the first and third marked points by dragging them around
the second marked point.
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permutation and commutativity relations, we cluster some of the Dehn twists to

form squares as in the third diagram of Figure 4.7. Now in that diagram, there are

two pairs located at the bottom: each consists of a positive Dehn twist and a squared

negative Dehn twist. By utilizing appropriately configured half lantern relations, we

can substitute these pairs with pairs of half-twists, which results in the fourth diagram

of Figure 4.7. This gets rid of all the negative Dehn twists.

2

2

2 4

2

2

2

2

2

2

2

Figure 4.7. Factorizations of t2δ0 in Mod(D5). The first is the concatenation of the
third and second diagrams in Figure 4.5. Through cyclic permutation and commuta-
tivity relations, we reach the third diagram. The fourth diagram is then obtained by
substitution using the half lantern relation twice.

Notice that there are two unliftable Dehn twists of odd parity, which are located

in the second and third rows of the first diagram of Figure 4.8. The next step is to

modify the pair into a liftable squared Dehn twist. This is achieved by a series of

Hurwitz moves as indicated in Figure 4.8.

Finally, we lift the last factorization in Mod(D5) to Mod(D2
3) and then rearrange

the diagram to be presented in Mod(S3
3) as shown in Figure 4.9. First, replacing

the third and fourth marked points in D5 with boundaries, we embed D2
3 into D5.

The last factorization of t2δ0 in Mod(D5) (Figure 4.8) can be lifted to a factorization

in Mod(D2
3) (the left in Figure 4.9) as all the half-twists avoid the replaced marked
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2

2

2

2

2

2

2

2

2

2

2

Figure 4.8. Hurwitz moves among factorizations of t2δ0 in Mod(D5). The fifth dia-
gram now contains only liftable factors.

points. Notice that the extra boundary twists have been added to balance the Dehn

twist invariant (See Section 3.3). On the right of Figure 4.9 we move the factorization

to a spherical diagram putting the exterior boundary on the right (and isotoping the

exterior boundary twist around the sphere with it). This is the desired factorization

of t2δ2t
2
δ1
t2δ0 in Mod(S3

3).

2

2 2 =

2

2

2 2 2 2

2

2

2
=

Figure 4.9. The factorization of t2δ2t
2
δ1
t2δ0 in Mod(D2

3) = Mod(S3
3) seen on the disk D2

3

(left) and on the sphere S3
3 (right). From the last relation in Mod(D5) in Figure 4.8,

replacing two marked points with boundaries gives the relation on the left.
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4.4 Derivation: The inductive step for arbitrary g ≥ 2

To prove the general relation (4.2.1) in Mod(Sg+1
g+1) in Figure 4.3, we first observe

this is equivalent to the relation in Mod(Dg
g+1) described in Figure 4.10 after a cyclic

permutation, although the first is drawn on a sphere while the second is drawn on a

disk. Hence it suffices to prove the second relation, which will be more convenient for

the inductive step.

p1 p2
δ1 δ2 δg−1pg δg pg+1

2

2 2 2 2 =

p1 p2
δ1 δ2 δg−1pg

δg pg+1

2

2

2

2

c2

e2

Figure 4.10. The factorization of t2δgt
2
δg−1
· · · t2δ0 in Mod(Dg

g+1).

Proof. As we use the induction, we will derive the relation in Mod(Dg
g+1) in Figure 4.10

assuming the same relation holds when g is replaced by g − 1. Since we can recover

the information on the boundary twists at the end using the Dehn twist invariant, we

will work on the simpler Mod(D2g+1) with all the interior boundaries of Dg
g+1 being

replaced with marked points.
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First, we take the subsurface of D2g+1 bounded by the exterior boundary, the

curve enclosing the middle 2g − 3 marked points, and the curve around the second

marked point from right. This subsurface is homeomorphic to D2
3, hence we can

use the already established relation in Figure 4.10 with g = 2, which is displayed

in Figure 4.11. Note that the boundary twist that encloses the single marked point

reduced to 1 and hence does not appear in the diagram.

2g − 3

2

2 =

2g + 1

2

2

2

c′2

Figure 4.11. The relation in Mod(D2g+1) induced from the g = 2 relation.

The curve labeled c′ bounds a disk homeomorphic to D2g−2. This is where we

substitute the g−1 relation, after converting its interior boundaries to marked points.

The resulting relation is shown in Figure 4.12.

On the right diagram in Figure 4.12, we can commute the Dehn twist labeled e′

to the bottom and then cancel it with the same Dehn twist on the left diagram. The

result of this is the desired relation in Figure 4.10 except that the interior boundaries

are replaced by marked points. We recover the interior boundaries by usign the Dehn

twist invariant: We convert the third marked point, along with every even marked

point other than the second, to a boundary. To balance the Dehn twist invariant,

we need to add squared interior boundary twists on the left. This finally proves the

relation in Figure 4.10.
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2g − 3

2

2 =

2g + 1

2

2

2

2

2

e′2

Figure 4.12. The relation in Mod(D2g+1) obtained by combining the g = 2 and g−1
relations.
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CHAPTER 5

ALGEBRAIC TOPOLOGY OF SYMMETRIC
LEFSCHETZ FIBRATIONS

A Lefschetz fibration is hyperelliptic when each of the Dehn twists in the mon-

odromy factorization commutes with a fixed hyperelliptic involution. This is equiva-

lent to when all the monodromy curves (up to isotopy) are fixed by the same hyperel-

liptic involution; we call them symmetric in this case. This excludes vanishing cycles

which form symmetric pairs, despite the corresponding pair of Dehn twists together

forming a hyperelliptic mapping class, since the Dehn twists are not individually hy-

perelliptic. This leads us to define the slightly larger class of symmetric Lefschetz

fibrations. In keeping with the spirit of this thesis, we determine how to calculate the

signatures of symmetric Lefschetz fibrations (as a slight extension of Endo’s signature

formula) directly using the arcs and curves of the planar surface.

5.1 Signatures of symmetric Lefschetz fibrations

We recall Endo’s result [End00] giving a formula for the signature of hyperelliptic

Lefschetz fibrations as a sum of local contributions from each vanishing cycle depend-

ing only on their topological type and the genus of the fibration. We say a vanishing

cycle c has topological type I if it is symmetric (with respect to a fixed hyperelliptic

involution on the surface) and nonseparating. On a genus g surface, for each h with

1 ≤ h ≤ bg/2c, we say a vanishing cycle has topological type IIh if it is symmetric

and separates the surface into components having genus h and g − h.
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Lemma 5.1.1 (Endo’s signature formula for hyperelliptic Lefschetz fibrations). Given

a genus g hyperelliptic Lefschetz fibration on a 4-manifold X with monodromy factor-

ization

tc` · · · tc2tc1 = 1

in Mod(Σg), let nI be the number of vanishing cycles of type I, and for each h with

1 ≤ h ≤ bg/2c, let nh be the number of vanishing cycles of type IIh. Then each

vanishing cycle’s signature contribution is given by the corresponding formula:

σg(I) =
−(g + 1)

2g + 1

for type I curves, and

σg(IIh) =
4h(g − h)

2g + 1
− 1

for type IIh curves, so that given the genus g, the signature is given by

σ(X) = nIσg(I) + Σ
bg/2c
h=1 (nhσg(IIh)) .

Although all Lefschetz fibrations coming from a double cover of a planar surface

will be symmetric by definition, many of them are not hyperelliptic because of the

symmetric pairs of curves that are not individually hyperelliptic. In this case, we can

still calculate the signature without completely losing the above simplicity by using

substitutions to exchange problematic vanishing cycles with equivalent completely

hyperelliptic products, calculating the changes using the signature of relations in

[EN05].1

The result fits nicely with the original formula, suggesting an additional topolog-

ical type. Given a genus g surface, for each h with 1 ≤ h ≤ b(g − 1)/2c, we propose

1I would like to thank my advisor İnanç Baykur for suggesting this argument.
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calling a symmetric pair of vanishing cycles c1 and c2 of topological type IIIh when c1

and c2 separating the surface into components having genus h and g − h − 1, while

c1 and c2 are individually non-separating and non-symmetric.

Corollary 5.1.2 (Signatures of symmetric Lefschetz fibrations). Given a genus g

symmetric Lefschetz fibration on a 4-manifold X with monodromy factorization

tc` · · · tc2tc1 = 1

in Mod(Σg), let nI, nh, σg(I), and σg(IIh) be defined as in Lemma 5.1.1, and for each

h with 1 ≤ h ≤ b(g − 1)/2c, let mh be the number of vanishing cycles of type IIIh.

Then each type IIIh vanishing cycle pair’s additional signature contribution is given

by

σg(IIIh) =
2(h+ 1)(g − h)

2g + 1
− 2

so that given the genus g, the signature is given by

σ(X) = nIσg(I) + Σ
bg/2c
h=1 (nhσg(IIh)) + Σ

b(g−1)/2c
h=1 (mhσg(IIIh)) .

Proof. We just have to account for the third equation. With our setup, the symmetric

pairs correspond to Dehn twists lifted from even parity Dehn twists, each of which

separate the planar surface into components with 2h+2 and 2(g−h) marked points for

some h ≤ b(g−1)/2c. We can make a substitution to replace them with (2h+1)(2h+2)

arc half-twists, with the lifted substitution corresponding to a 2h + 1-chain relation,

replacing the separating pair with (2h+ 1)(2h+ 2) symmetric nonseparating curves.

This results in an exchange of signature contributions replacing I(c2h+1) = −2h(h +
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2) with (2h + 1)(2h + 2)σg(I), so the difference determines the contribution of the

symmetric pair:

σg(IIIh) = ∆σ = (2h+ 1)(2h+ 2)σg(I)− I(c2h+1)

= 2h(h+ 2)− (2h+ 1)(2h+ 2)(g + 1)

2g + 1

=
1

2g + 1

(
(2h2 + 4h)(2g + 1)− (4h2 + 6h+ 2)(g + 1)

)
=

1

2g + 1

(
4h2g + 2h2 + 8gh+ 4h− 4h2g − 4h2 − 6hg − 6h− 2g − 2

)
=

2hg − 2h2 − 2h− 2g − 2

2g + 1

=
2((h+ 1)(g − h) + (2g + 1))

2g + 1

=
2(h+ 1)(g − h)

2g + 1
− 2.

(5.1.3)

Corollary 5.1.4. Given a 4-manifold X having a symmetric Lefschetz fibration with

monodromy factorization lifted through a double cover from a planar factorization,

we can calculate the signature directly from the planar factorization using the same

formulas as Corollary 5.1.2 by letting nI be the number of arc half-twists, letting nh be

the number of squared odd parity Dehn twists, and letting mh be the number of even

parity Dehn twists.

Proof. This follows directly from Corollary 5.1.2 by taking into account how the

different types of twists are lifted, since arc half-twists lift to Dehn twists around

type I curves, squared odd parity Dehn twists lift to type II curves, and even parity

Dehn twists lift to pairs of type III curves.

43



5.2 First homology of Lefschetz fibrations

Given a 4-manifold X with a genus g Lefschetz fibration f : X → S2, we can

calculate the first homology by considering the induced handle decomposition corre-

sponding to the monodromy factorization

tc` · · · tc2tc1 = 1

in Mod(Σg). Assuming (X, f) has a section,

H1(X;Z) ∼= H1(Σg;Z) /N

where N is the subgroup of H1(Σg;Z) normally generated by the vanishing cycles

c1, . . . , c`. (A priori there may be one more relation if (X, f) does not have a section.

However, all the examples we consider in this thesis are easily seen to have sections.)

While we can make different choices of generators for H1(Σg;Z) to make our

calculations more efficient, we would typically start with the standard symplectic basis

seen in Figure 5.1 given by g pairs of oriented curves {a1, b1, . . . , ag, bg} representing

homology classes, so that ai · bj = δij and ai · aj = bi · bj = 0 for 1 ≤ i, j ≤ g where

δij = 1 when i = j and 0 otherwise. In this basis, the homology class of each vanishing

cycle ci with 1 ≤ i ≤ ` can then be expressed as

g∑
j=1

((ci · bj)aj − (ci · aj)bj ). (5.2.1)

Remark 5.2.2. As with the signature, it also possible to calculate the homology classes

of each vanishing cycle ci in S̃ directly in the planar surface S by considering how

intersections with αi or bi in S (see the bottom of Figure 5.1) will correspond to

intersections of ci with ai or bi in S̃, carefully keeping track of interactions with the

branch cuts and marked points to account for the differing contributions on the upper

and lower sheets.
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a1 ai ag

b1 bi bg

α1 αi αg
b1 bi bg

α1 αi αg
b1

bi bg

Figure 5.1. Curves in S̃ = Σg representing homology classes for the standard sym-

plectic basis of H1(S̃;Z) (top) are projected to curves or arcs in S = S2g+2 in a
spherical diagram (middle) or a planar diagram (bottom).

Figure 5.2. Right-handed intersections on the left, and left-handed intersections on
the right.

45



CHAPTER 6

SHARPNESS THEOREM

6.1 Known inequalities on the number of vanishing cycles

Given a genus g Lefschetz fibration f : X → S2 with ` vanishing cycles, let n and

s be the number of nonseparating and separating vanishing cycles of the fibration

(X, f). Let e be the Euler characteristic of X, bi be its i−th Betti number. Let b+

and b− be the dimensions of the positive and negative eigenspaces associated to the

intersection form of X, and let σ be the signature.

The following inequalities are well known to the experts; see e.g. [BK17] for the

latter. We include proofs for completeness.

Theorem 6.1.1. The following inequalities hold for any genus g Lefschetz fibration

(X, f) with the invariants listed above:

n ≥ 4g − 2b1(X) + b+(X)− 1, (6.1.2)

s ≤ b−(X)− 1. (6.1.3)

Proof. Cadavid [Cad98] showed that

σ ≤ n− s− 2(2g − b1). (6.1.4)

The handle decomposition induced by the Lefschetz fibration on X yields the

equality:
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e = e(Σg) e(S
2) + `

= (2− 2g)2 + `

= 4− 4g + n+ s.

(6.1.5)

We can also express the Euler characteristic of X in terms of its Betti numbers.

Since X is connected, b0 = 1, and since it is closed and orientable, we know from

Poincaré duality and the universal coefficients theorem that b4 = b0 and b3 = b1. By

definition, b2 = b+ + b− and σ = b+ − b−. Then we have

e = b0 − b1 + b2 − b3 + b4

= 1− b1 + b+ + b− − b1 + 1

= 2− 2b1 + b+ + b−.

(6.1.6)

From the above identities we get

e+ σ = (2− 2b1 + b+ + b−) + (b+ − b−)

= 2− 2b1 + 2b+.

(6.1.7)

Combining the inequalities (6.1.4) and (6.1.5) gives

e+ σ = (4− 4g + n+ s) + σ

≤ (4− 4g + n+ s) + n− s− 4g + 2b1

≤ 4− 8g + 2n+ 2b1.

(6.1.8)

Finally, combining (6.1.7) and (6.1.8) gives

2− 2b1 + 2b+ ≤ 4− 8g + 2n+ 2b1

⇐⇒ 8g − 4b1 + 2b+ − 2 ≤ 2n

⇐⇒ 4g − 2b1 + b+ − 1 ≤ n ,

(6.1.9)

which is the first inequality in the statement.
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The second inequality follows from the following observations: The collection of

s vanishing cycles yield s disjoint surfaces of self-intersection (−1). Moreover, the

homology class of the regular fiber F is in the orthogonal complement (with respect

to the intersection form) of the subspace of H2(X;Q) generated by these s surfaces.

Note that F is homologically essential: if g 6= 1, the first Chern class of any almost

complex structure compatible with the fibration evaluates nontrivially on F , and for

g = 1, our assumption that we have a nontrivial Lefschetz fibration implies that it

has a section. Thus, F should have a dual in the orthogonal complement, which

contributes one more dimension to the negative eigenspace of the intersection form,

in addition to the other s. Then it follows that

s ≤ b− − 1. (6.1.10)

6.2 Signature of the generalized Baykur-Korkmaz Lefschetz

fibrations

We calculate the signatures of the generalized Baykur-Korkmaz Lefschetz fibra-

tions here. Note that for this calculation, as well as the one in the next section, we

are looking at the Lefschetz fibrations (and not pencils).

Lemma 6.2.1. The signature of the total space of any genus–g Baykur-Korkmaz

Lefschetz fibration XBK is

σ(XBK) = −g − 1

.

Proof. By Corollary 5.1.4, our genus g Lefschetz fibration XBK has a monodromy

factorization lifted from a planar factorization with 4(g − 1) arc half-twists, yielding
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nI = 4(g−1). In this planar factorization there are g squared odd parity Dehn twists

around 3 marked points and one squared odd parity Dehn twist around 2g−1 marked

points, all yielding vanishing cycles bounding a genus one subsurface. Since these are

all the contributors to the positive factorization for XBK, we have n1 = g + 1 and

ni = 0 for 2 ≤ i ≤ bg/2c in the factorization. Thus, by Endo’s signature formula we

have got:

σ = nIσg(I) + n1σg(II1)

= 4(g − 1)σg(I) + (g + 1)σg(II1)

=
−4(g − 1)(g + 1)

2g + 1
+ (g + 1)

[
4 · 1(g − 1)

2g + 1
− 1

]
=
−4(g − 1)(g + 1) + 4(g − 1)(g + 1)

2g + 1
− (g + 1)

= −g − 1.

(6.2.2)

6.3 First homology of the generalized Baykur-Korkmaz Lef-

schetz fibrations

Here we calculate the first homology of the total space XBK for any genus g using

(5.2.1) in the previous chapter. We will then conclude that b1(XBK) = 2.

The Dehn twists in the planar factorizations are all squared with odd parities,

so they lift to separating curves with zero homology. For example, the homology

classes of the vanishing cycles of the genus–2 Lefschetz fibration XBK (as depicted

in Figure 6.1, after capping all boundaries) has three squared twists on the left, t2c ,

t2d, and t2e, lifting to tc, td, and te on the right. The four remaining arc half-twists in

this case lift to four Dehn twists around the curves A2, B2, C2, and E2. This pattern

continues, with each genus k ≥ 2 XBK consisting of Dehn twists around the same

curves as the genus k− 1 case, Dehn twists around four additional curves Ak, Bk, Ck,
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and Ek, and Dehn twists around separating curves which don’t contribute to the

homology calculation.

Lemma 6.3.1. For each g ≥ 2, the homology classes of the vanishing cycles Ak, Bk,

Ck and Ek of fg : XBK → S2 in H1(Σg;Z) are prescribed by the 4(g − 1) arcs in the

(g − 1) arc quartets for 2 ≤ k ≤ g as:

Ak = a1 + a2 + · · ·+ ak + bk − b1,

Bk = 2a1 + 2a2 + · · ·+ 2ak−1 − b1 + 2bk,

Ck = a1 + a2 + · · ·+ ak−1 − ak + bk,

Ek = 2ak − b1

(6.3.2)

where {ai, bi} is the symplectic basis for H1(Σg;Z) given by the curves in Figure 5.1

Proof. The genus 2 case is easily calculated from Figure 6.1 using (5.2.1). Using

induction, the genus g > 2 case follows from the genus g − 1 case, considering Fig-

ure 6.2. In our chosen homology basis, the vanishing cycles Ak, Bk, Ck, and Ek are

disjoint from ai and bi whenever k < i ≤ g, so their homology expressions given in

(6.3.2) is unchanged from the genus g − 1 case. The vanishing cycles Ag, Bg, Cg, and

Eg intersect ai and bi exactly as Ag−1, Bg−1, Cg−1, and Eg−1 do when 2 ≤ i < g,

while they intersect ag and bg exactly as ag−1 and bg−1 intersects Ag−1, Bg−1, Cg−1,

and Eg−1.
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b1

α1 α2

b2

c

d

α1

e

α2

α3

α4

a1 a2

b1 b2

2

2

2

c

d

a1

e

a2

a3

a4

E2

A2

B2

C2

Figure 6.1. Vanishing cycles of the genus–2 Lefschetz fibration XBK with (arbitrary)
orientations added to the vanishing cycles to calculate the algebraic intersections.
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b1

α1

b2

α2 αg−1

bg−1

αg

bg

a1 a2 ag=1 ag

b1 b2 bg−1 bg

α4g−6 a4g−6 A2

α4g−5 a4g−5 B2

α4g−4 a4g−4 C2

α1 a1 E2

αg+3 ag+3 Ag−1

αg+4 ag+4 Bg−1

αg+5 ag+5 Cg−1

αg−2 ag−2 Eg−1

αg ag Ag

αg+1 ag+1 Bg

αg+2 ag+2 Cg

αg−1 ag−1 Eg

Figure 6.2. Vanishing cycles of the general genus–g Lefschetz fibration XBK with
(arbitrary) orientations to calculate the algebraic intersections. Relabeling of the
non-separating vanishing cycles as Ak, Bk, Ck and Ek are as shown in the figure.
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Lemma 6.3.3. For all genus g, H1(XBK;Z) ∼= Z2 ⊕ Zg−2
2 , so b1(XBK) = 2.

Proof. Using the above lemma, we express the homology classes of Ak, Bk, Ck, and Ek

in terms of the symplectic generators a1, b1, . . . , ag, bg. Equating each to zero then de-

termines the relations induced in H1(Σg;Z), giving us the calculation of H1(XBK;Z).

Note that all these Lefschetz fibrations have sections (easy to see from our derivations)

so there is no other relation in H1(XBK;Z).

The first pair of each quartet is actually given by the second pair, since we have

Ak = Ck + Ek and Bk = 2Ck + Ek in H1(Σg;Z). For the remaining two, Ck = 0

implies that bk = ak − ak−1 − · · · − a1, and Ek = 0 implies that b1 = 2ak.

We are better off changing the basis here. 1 For 3 ≤ k ≤ g, take a′k := ak − ak−1

and continue to use a1, a2, and b1, . . . , bg in the new basis. Then for each 3 ≤ k ≤ g,

we have ak = a′k + ak−1, so that ak = a′k + a′k−1 + · · ·+ a′3 + a2.

The relations induced by Ck = 0 and E2 = 0 now express each bk in terms of

a1, a2, a
′
3, . . . , a

′
k in H1(XBK;Z). We can remove all the generators bk with k ≥ 2 and

the relations induced by Ck while rewriting the relations induced by Ek = 0, for k ≥ 2

as 2a′k = 0 (since for each 3 ≤ k ≤ g, 2ak = b1). Hence H1(XBK;Z) ∼= Z2 ⊕ Zg−2
2 .

6.4 The main theorem

We are ready to prove our main result.

Theorem 6.4.1. For each g ≥ 2, the generalized Baykur-Korkmaz genus–g Lefschetz

fibration fg : XBK → S2 has b1 = 2, b+ = 1, b− = g + 2, and n = 4(g − 1) nonsepa-

rating vanishing cycles and s = g + 1 separating vanishing cycles. It follows that the

inequalities (6.1.2) and (6.1.3) are (simultaneously) sharp.

Proof. The monodromy factorization for XBK shows that n = 4(g− 1) and s = g+ 1.

From Lemma 6.3.3, we have b1 = 2.

1I’m grateful to my advisor İnanç Baykur for suggesting this basis change.
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Since there are ` = n+ s = 5g − 3 vanishing cycles, we get

e = 4− 4g + `

= 4− 4g + (5g − 3)

= g + 1.

(6.4.2)

Using equation (6.1.6), we get

2− 2b1 + b+ + b− = g + 1

⇐⇒ b+ + b− = g + 3.

(6.4.3)

On the other hand, as we have σ = −g − 1 by Lemma 6.2.1, we also conclude that

b+ − b− = −g − 1. (6.4.4)

Combining the equalities (6.4.3) and (6.4.4), we conclude that b+ = 1 and b− = g+ 2

Hence, the inequalities (6.1.2) and (6.1.3) for these examples would read:

n ≥ 4g − 2b1 + b+
2 − 1 = 4g − 4

and

s ≤ b− − 1 = g + 1 ,

which are sharp for n = 4g − 4 and s = g + 1.

We should note that, unlike most inequalities involving the invariants of Lefschetz

fibrations in the literature, the proofs of the above basic inequalities (6.1.2) and (6.1.3)

do not use any arguments coming from gauge theory or symplectic geometry, but rely

only on elementary arguments from handlebody theory and algebraic topology, which
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makes it all the more surprising that these inequalities are in fact sharp. Even more,

the sharp examples come from the more restricted family of hyperelliptic Lefschetz

fibrations!
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