
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2023

Foundations of Node Representation Learning Foundations of Node Representation Learning

Sudhanshu Chanpuriya
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, and the Theory and

Algorithms Commons

Recommended Citation Recommended Citation
Chanpuriya, Sudhanshu, "Foundations of Node Representation Learning" (2023). Doctoral Dissertations.
2968.
https://doi.org/10.7275/35892940 https://scholarworks.umass.edu/dissertations_2/2968

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/35892940
https://scholarworks.umass.edu/dissertations_2/2968?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

FOUNDATIONS OF NODE
REPRESENTATION LEARNING

A Dissertation Presented

by

SUDHANSHU CHANPURIYA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2023

Robert and Donna Manning College of
Information and Computer Sciences

© Copyright by Sudhanshu Chanpuriya 2023

All Rights Reserved

FOUNDATIONS OF NODE
REPRESENTATION LEARNING

A Dissertation Presented

by

SUDHANSHU CHANPURIYA

Approved as to style and content by:

Cameron Musco, Chair

Andrew McGregor, Member

Andrew McCallum, Member

Charalampos Tsourakakis, Member

Ramesh K. Sitaraman, Associate Dean for
Educational Programs and Teaching
Robert and Donna Manning College of
Information and Computer Sciences

ACKNOWLEDGMENTS

I would like to thank the many people who helped me complete this thesis. I am

especially grateful to my advisor, Cameron Musco. He has been a constant source of

encouragement and helpful advice, and I am incredibly lucky to have had him as my

advisor. I would also like to thank Charalampos Tsourakakis, not only for being on

my committee, but also for his collaboration and guidance on much of my graduate

research. I also thank my other committee members, Andrew McGregor and Andrew

McCallum, for their time and feedback. During the past few years, I have been

fortunate to work with some great co-authors, including Konstantinos Sotiropoulos

and Ryan Rossi, to whom I am also grateful. Finally, I would like to thank Eileen

Hamel for her help with administrative issues throughout my graduate studies.

iv

ABSTRACT

FOUNDATIONS OF NODE
REPRESENTATION LEARNING

SEPTEMBER 2023

SUDHANSHU CHANPURIYA

B.Sc., DARTMOUTH COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Cameron Musco

Low-dimensional node representations, also called node embeddings, are a cor-

nerstone in the modeling and analysis of complex networks. In recent years, advances

in deep learning have spurred development of novel neural network-inspired meth-

ods for learning node representations which have largely surpassed classical ’spectral’

embeddings in performance. Yet little work asks the central questions of this thesis:

Why do these novel deep methods outperform their classical predecessors, and what

are their limitations?

We pursue several paths to answering these questions. To further our understand-

ing of deep embedding methods, we explore their relationship with spectral methods,

which are better understood, and show that some popular deep methods are equiva-

lent to spectral methods in a certain natural limit. We also introduce the problem of

inverting node embeddings in order to probe what information they contain. Further,

v

we propose a simple, non-deep method for node representation learning, and find it to

often be competitive with modern deep graph networks in downstream performance.

To better understand the limitations of node embeddings, we prove some upper

and lower bounds on their capabilities. Most notably, we prove that node embeddings

are capable of exact low-dimensional representation of networks with bounded max

degree or arboricity, and we further show that a simple algorithm can find such exact

embeddings for real-world networks. By contrast, we also prove inherent bounds on

random graph models, including those derived from node embeddings, to capture key

structural properties of networks without simply memorizing a given graph.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Summary of Contributions . 4

1.1.1 Understanding Modern Node Embedding Methods 4
1.1.2 Power and Limitations of Embeddings . 6
1.1.3 Power and Limitations of Random Graph Models 9
1.1.4 Simplifying Deep Graph Networks . 12

1.2 Bibliography Notes . 14

2. UNDERSTANDING MODERN NODE EMBEDDING
METHODS . 15

2.1 Deep Network Embeddings as Laplacian Embeddings with a
Nonlinearity . 15

2.1.1 Background . 18

2.1.1.1 Skip-Gram . 18
2.1.1.2 Implicit PMI Matrix . 18
2.1.1.3 Networks . 19
2.1.1.4 Other Approaches . 20

2.1.2 Methodology . 21

vii

2.1.2.1 Derivation of Limiting PMI Matrix 21
2.1.2.2 Approximation of Finite-T PMI Matrix via Limiting

PMI Matrix . 23
2.1.2.3 Binarized Laplacian Pseudoinverse 25

2.1.3 Experimental Setup . 26

2.1.3.1 Data Sets . 26
2.1.3.2 Procedure . 27
2.1.3.3 Binarized Laplacian Pseudoinverse 29

2.1.4 Results . 30

2.1.4.1 PMI Approximation Error . 30
2.1.4.2 Multi-Label Classification . 30

2.1.5 Conclusion . 32

2.2 From Embeddings Back to Graphs . 35

2.2.1 Related work . 38
2.2.2 Proposed methods . 40

2.2.2.1 Analytical Approach . 41
2.2.2.2 Optimization Approach . 43

2.2.3 Experimental results . 45

2.2.3.1 Experimental setup . 45
2.2.3.2 Analytical vs. Optimization Based Inversion 49
2.2.3.3 Evaluating Graph Recovery . 49

2.2.4 Conclusion . 56

3. POWER AND LIMITATIONS OF EMBEDDINGS 57

3.1 Exact Low-Rank Representations of Complex Networks 57

3.1.1 Background: Representations of Triangle-rich Networks 59
3.1.2 Theoretical Results . 60
3.1.3 Empirical Results . 65
3.1.4 Conclusion . 72

3.2 Nonnegative Symmetric Representations of Sparse Networks 74

3.2.1 Community-Based Graph Factorization Model 78
3.2.2 Related Work . 80

viii

3.2.3 Theoretical Results . 82
3.2.4 Experiments . 88

3.2.4.1 Dataset Descriptions . 88
3.2.4.2 Training Algorithm . 89
3.2.4.3 Results . 91

3.2.5 Conclusion . 93

4. POWER AND LIMITATIONS OF RANDOM GRAPH
MODELS . 94

4.1 Inherent Limitations of Edge Independent Models 94

4.1.1 Impossibility Results for Edge Independent Models 95
4.1.2 Empirical Findings . 97
4.1.3 Related Work . 98
4.1.4 Impossibility Results for Edge Independent Models 99

4.1.4.1 Triangles . 100
4.1.4.2 Squares and Other k-cycles . 101
4.1.4.3 Clustering Coefficient . 103

4.1.5 Baseline Edge Independent Models . 104
4.1.6 Experimental Results . 108

4.1.6.1 Methods . 108
4.1.6.2 Datasets and network statistics . 109
4.1.6.3 Results . 111

4.1.7 Conclusion . 116

4.2 On the Role of Edge Dependency in Random Graph Models 116

4.2.1 Hierarchy of Graph Generative Models . 118

4.2.1.1 Edge Independent Model . 119
4.2.1.2 Fully Dependent Model . 120
4.2.1.3 Node Independent Model . 121

4.2.2 Impossibility Results for Random Graph Models 122
4.2.3 Theoretical Preliminaries . 123
4.2.4 Triangle Count . 124
4.2.5 Squares and Other k-cycles . 128
4.2.6 Experimental Methodology and Baselines 130

ix

4.2.6.1 Graph Generative Models based on Dense Subgraph
Discovery . 131

4.2.7 Experimental Results . 133
4.2.8 Conclusion . 140

5. SIMPLIFYING DEEP GRAPH NETWORKS 141

5.1 Adaptive Simple Graph Convolution . 141

5.1.1 Background . 142
5.1.2 Methodology . 145
5.1.3 Motivating Example . 149
5.1.4 Theoretical Guarantees . 151
5.1.5 Related Work . 158
5.1.6 Empirical Performance . 160
5.1.7 Conclusion . 163

6. CONCLUSION . 165

BIBLIOGRAPHY . 168

x

LIST OF TABLES

Table Page

1.1 Preview of graph model hierarchy and triangle bound results for
Section 4.2. 11

2.1 Network statistics for experiments in Section 2.1. 27

2.2 Error of InfiniteWalk PMI approximation on networks in
Section 2.1. 30

2.3 Network statistics for experiments in Section 2.2. 46

2.4 Configuration of synthetic networks for experiments in
Section 2.2. 53

3.1 Preview of exact embedding results in Section 3.1. 59

3.2 Complete exact factorization dimension results for real-world
networks in Section 3.1. 69

3.3 Network statistics for experiments in Section 3.2. 89

4.1 Network statistics for experiments in Section 4.1. 110

4.2 Summary of graph model hierarchy and triangle bound results for
Section 4.2. 118

5.1 Network statistics for experiments in Section 5.1. 161

xi

LIST OF FIGURES

Figure Page

1.1 Classification performance of ASGC, compared to several deep
methods. 13

2.1 Sorted eigenvalues of normalized adjacency matrix for each network
in Section 2.1. 27

2.2 Classification performance of InfiniteWalk on the real-world networks
of Section 2.1. 33

2.3 Performance of InfiniteWalk relative to NetMF. 34

2.4 Performance of the binarized Laplacian pseudoinverse method. 34

2.5 Distribution of elements of the limiting PMI matrices of real-world
networks. 35

2.6 Preview of results in Section 2.2. Reconstruction error and change in
community conductances when recovering a network from
embeddings. 36

2.7 Reconstruction of an SBM graph from its NetMF embedding. 38

2.8 Reconstruction error for embedding matrix versus embedding rank
when recovering the real-world networks in Section 2.2 from
embeddings using both the analytical and optimization
approaches. 48

2.9 Reconstruction error for adjacency matrix, number of triangles, and
average path length versus embedding rank when recovering the
real-world networks in Section 2.2 from embeddings. 49

2.10 Reconstruction error for community conductances when recovering
network from embeddings for the real-world networks in
Section 2.2. 51

xii

2.11 Multi-label classification performance using embeddings from
reconstructed networks for the real-world networks in
Section 2.2. 51

2.12 Reconstruction error of embedding matrix and binarized adjacency
matrix when recovering synthetic SBM networks from
embeddings. 54

2.13 Reconstruction error for triangle count and average path length when
recovering network from embeddings for the synthetic SBM
networks in Section 2.2. 54

2.14 Reconstruction error for community conductances when recovering
network from embeddings for the synthetic SBM networks in
Section 2.2. 55

2.15 Multi-label classification performance using embeddings from
reconstructed networks for the synthetic SBM in Section 2.2. 55

3.1 Reconstructions of a toy graph with LPCA vs TSVD. 58

3.2 Sorted expected degrees for reconstructed networks in Section 3.1. 70

3.3 Sorted expected count of triangles involving each vertex for
reconstructed networks in Section 3.1. 70

3.4 True and recovered counts of triangles in subgraphs induced by nodes
whose degree is upper bounded for reconstructed networks in
Section 3.1. 72

3.5 Motivating synthetic graph for Section 3.2. 77

3.6 Reconstructions of motivating synthetic graph for Section 3.2 with
three different low-rank factorizations. 78

3.7 Factors resulting from decomposition of the motivating synthetic
graph for Section 3.2 with three different low-rank
factorizations. 78

3.8 Reconstruction error of several nonnegative matrix factorization
methods on the real-world networks of Section 3.2. 91

3.9 Performance of several nonnegative matrix factorization methods at
recovery of node communities and link prediction on the
real-world networks of Section 3.2. 92

xiii

4.1 Graph statistics fidelity vs overlap with edge independent models on
PolBlogs. 112

4.2 Graph statistics fidelity vs overlap with edge independent models on
Citeseer. 113

4.3 Graph statistics fidelity vs overlap with edge independent models on
Cora. 113

4.4 Graph statistics fidelity vs overlap with edge independent models on
Road-Minnesota. 114

4.5 Graph statistics fidelity vs overlap with edge independent models on
Web-Edu. 114

4.6 Graph statistics fidelity vs overlap with edge independent models on
PPI . 115

4.7 Graph statistics fidelity vs overlap with edge independent models on
Facebook. 115

4.8 Graph statistics fidelity vs overlap with edge dependent models on
CiteSeer. 135

4.9 Graph statistics fidelity vs overlap with edge dependent models on
Les Miserables. 135

4.10 Graph statistics fidelity vs overlap with edge dependent models on
Cora. 136

4.11 Graph statistics fidelity vs overlap with edge dependent models on
PolBlogs. 136

4.12 Graph statistics fidelity vs overlap with edge dependent models on
Web-Edu. 137

4.13 Graph statistics fidelity vs overlap with edge dependent models on
WikiElect. 137

4.14 Graph statistics fidelity vs overlap with edge dependent models on
Facebook-Ego. 138

4.15 Graph statistics fidelity vs overlap with edge dependent models on
RingOfCliques. 138

xiv

5.1 Visualization of synthetic dataset for Section 5.1. 150

5.2 Effect of SGC and ASGC on the synthetic dataset for
Section 5.1. 151

5.3 Test classification accuracy on the benchmark of datasets from
Table 5.1 for selected methods including ASGC. 162

5.4 Aggregated test accuracy for all methods in Section 5.1. 163

xv

CHAPTER 1

INTRODUCTION

Graphs naturally model a wide variety of complex systems including computer

networking, social networks, protein-protein interaction, and co-authorship [22, 165,

81, 206, 159, 107, 129, 120, 80]. Understanding and analyzing such networks lies

at the heart of computer science. Underlying almost all graph machine learning are

methods which learn useful representations of nodes and reveal interpretable structure

in the graph, such as communities of nodes. The learned node representations can

be used as input for many downstream tasks, such as network analysis, visualization,

clustering, classification, and link prediction. In this thesis, we analyze the capacity

and limitations of existing methods, both by empirical investigation of real-world

networks and by proving theoretical bounds.

More specifically, we focus on node ‘embedding’ techniques, which map the nodes

of a graph to low-dimensional Euclidean space in such way that the geometry of the

embedding reflects important structure in the graph. A node embedding method

takes as input a graph G with n nodes v1, . . . , vn and maps each node vi to a vector

xi ∈ Rk, where k is an embedding dimension typically with k ≪ n.

Low-dimensional node embeddings have a long and rich history. They have played

a major role in theoretical computer science, and specifically in the development of

approximation algorithms for NP-hard problems. Spectral clustering relies on node

embeddings based on a small number of extremal eigenvectors of a matrix represen-

tation of the graph (e.g., top eigenvectors of the adjacency matrix [124], or bottom

eigenvectors of the Laplacian [11]) to find good cuts, e.g., [133, 169, 154]. Metric

1

embeddings have been used in multi-commodity flow algorithms [102, 113]. These

methods embed a graph in a Euclidean space so that the distances between nodes in

the graph are close to the geometric distances between the embeddings. In particular,

by Bourgain’s theorem, every metric space with n elements (including every n node

graph metric) can be embedded in an O(log n) dimensional space with O(log n) dis-

tortion [24]. In their seminal work on the maximum cut problem [70], Goemans and

Williamson introduced a large family of semidefinite programming relaxations for NP-

hard problems that embed nodes in a Euclidean space, and round these embeddings

to obtain a near-optimal solution.

Many of the most classic random network models, including the stochastic block

model [84, 7] and random dot-product models [206] are based on low-dimensional

node embeddings. Each pair of nodes vi, vj is connected with probability depending

on the similarity between their embeddings (e.g., the dot product x⊤
i xj.). Many

machine learning methods learn a latent low-dimensional embedding by maximizing a

likelihood function that depends on a probabilistic model of this form [92, 127, 138, 73].

Relatedly, work in non-linear dimensionality reduction learns node embeddings that

capture general dataset structure. Classical methods such as Laplacian eigenmaps,

IsoMap, and locally linear embeddings [17, 184, 156] associate a graph G with a

generic high-dimensional dataset (e.g., by forming a k-nearest neighbors graph) and

apply variants of spectral embedding on G to find an informative embedding for the

original data points.

In recent years, the overall successes of deep learning [99] have inspired new meth-

ods for graph machine learning. Several neural network architectures that work with

graph data in an end-to-end fashion have been developed, including the graph convo-

lutional network (GCN) [94, 46] and many descendents [36, 199, 188]. In this thesis,

we mostly focus on ‘unsupervised’ node representations, which are derived solely from

a graph’s structure, without optimizing directly for a downstream objective, e.g., to

2

target some given node classes. There are several neural network-based methods that

fall in this category, including DeepWalk, node2Vec, LINE, PTE, SDNE, and many

more [144, 182, 181, 75, 28, 192, 29, 139, 193]. These modern methods have overall

surpassed classical methods in downstream performance and become the node em-

beddings of choice in practice. This raises the following questions, which are the core

questions of this thesis:

Why do these novel methods outperform their classical predecessors, and
what are their limitations?

Some prior work approaches a better understanding of these methods from various

directions. Notably, a line of work [109, 110, 147] which overlaps with the related

task of learning word representations in natural language processing (NLP) has found

an interesting connection: many of these methods learn embeddings that implicitly

form a low-dimensional factorization of a certain matrix corresponding to the graph

G. This interpretation is striking given that these methods are based on the typical

deep learning framework of stochastic gradient descent (SGD) on some probabilistic

objective function, which does not obviously equate to matrix factorization. The

implicit matrix contains the pointwise mutual information (PMI) of co-occurences

between nodes when taking random walks on the graph; roughly, its elements corre-

spond to positive and negative latent correlations between nodes. In NLP, explaining

the structure of the PMI matrix and word embeddings derived thereof, especially as

it relates to their effectiveness in word analogies (e.g., that “man is to king as woman

is to queen” may be reflected in the embeddings of these four words), has attracted

much attention [15, 68, 8, 9]. Other work at the intersection of machine learning and

privacy empirically investigates the information contained in deep node embeddings

to try to quantify how much can be inferred about, e.g., users in a social network, if

a malicious party is provided node embeddings from the network [54, 51].

3

Broadly, the preceding research works towards characterizing the nature and

power of deep node embeddings, but there is also some prior work on the limitations

of embeddings. [128] provides a certain negative result for graph neural networks

(GNNs), and hence embeddings derived thereof, by relating them to the 1-dimensional

Weisfeiler-Leman graph isomorphism heuristic (1-WL) [74]. Specifically, they prove

that ‘vanilla’ GNNs, which form each node’s representation by iteratively aggregating

those of its neighbors, are no more expressive than 1-WL in terms of distinguishing

between graphs. As more directly relates to node embeddings, [167] recently showed

that a natural graph model in which, roughly speaking, the probability of an edge

between two nodes increases with the dot product of their embeddings, cannot simul-

taneously exhibit sparsity and high triangle density, which are common characteris-

tics of real-world networks. This result can be seen as a strong instance in a line of

work showing that certain random graph models fail to capture empirically-observed

properties of networks [195, 146].

We contribute to many of these lines of work as we attempt to answer our core

questions. In doing so, we proceed along several paths, which are summarized in the

next section.

1.1 Summary of Contributions
We now present a summary of the main contributions of this thesis.

1.1.1 Understanding Modern Node Embedding Methods

In Chapter 2, we investigate the first core question concerning the greater effec-

tiveness of deep learning-based methods for node embedding compared to the older

spectral methods. We approach this question in Section 2.1 by refining our under-

standing of the relationship between spectral methods and the popular DeepWalk

method, which perhaps best exemplifies the more recent family of methods. At the

4

core of spectral methods is factorizing the graph’s adjacency matrix or Laplacian ma-

trix. Although DeepWalk’s algorithm for node embedding seems totally different – it

involves stochastic gradient descent (SGD) on a probabilistic objective involving co-

occurrences of nodes in random walks on the graph – we show that they are actually

closely related. We build on work from Qiu et al. [147], who provide a closed-form

expression for the DeepWalk objective function, which is based on factorizing the

pointwise mutual information (PMI) matrix discussed previously. In this objective,

the “window size” T within which nodes are considered to co-occur is a key hyper-

parameter. We study the objective in the T → ∞ limit, which allows us to simplify

the expression from [147]. We prove that this limiting objective corresponds to fac-

torizing a simple transformation of the pseudoinverse L+ of the graph Laplacian L.

Specifically, we show that the limiting PMI matrix has the form

M∞ = tr(D) ·D−1/2
(
L̃+ − I

)
D−1/2 + J,

where D is the degree matrix, L̃ is the normalized Laplacian (i.e., D−1/2LD−1/2), and

J is the all-ones matrix. This result tightly links DeepWalk to spectral embeddings:

it shows that in this limit, as DeepWalk factorizes M∞, it essentially computes the

top eigenvectors of a simple transformation of L̃, which is exactly the approach of

classical spectral embeddings. Beyond this limiting result, we show that by applying a

simple nonlinear entrywise transformation to M∞, we recover a good approximation

of the finite-T PMI matrix, yielding embeddings that are competitive with those

from DeepWalk and related methods on a downstream task. Surprisingly, we find

that even simple binary thresholding of L+ is often competitive, suggesting that the

core advancement of recent methods is a nonlinearity on top of the classical spectral

embedding approach. This finding has implications for the design and analysis of new

methods.

5

We also investigate the effectiveness of modern node embedding methods via a

another route: by exploring exactly what information is encoded by these methods,

and how this information correlates with performance in downstream learning tasks.

We tackle this investigation in Section 2.2 by introducing a novel problem: studying

whether embeddings can be inverted to (approximately) recover the graph used to

generate them. Again focusing on DeepWalk, we present algorithms for accurate

embedding inversion – i.e., from the low-dimensional embedding of a graph G, we

can find a graph G̃ with a very similar embedding. Interestingly, based on the result

from Section 2.1, we can prove that in a certain limiting sense, as the window size T

and dimensionality of embeddings are both increased, DeepWalk embeddings become

exactly invertible:

Theorem (Limiting Invertibility of Full-Rank PMI Embeddings). Let G be an undi-

rected, connected, non-bipartite graph with full-rank adjacency matrix A ∈ {0, 1}n×n

and number of edges |E(G)|. Let MT be the PMI matrix of G which is produced with

window size T . There exists an algorithm that takes only MT and |E(G)| as input

and recovers A exactly in the limit as T →∞.

In the more practical situation of finite T and low-dimensionality embeddings, we

perform numerous experiments on real-world networks, observing that significant in-

formation about G, such as specific edges and bulk properties like triangle density, is

often lost in G̃. However, community structure is often preserved or even enhanced.

These findings are a step towards a more rigorous understanding of exactly what

information embeddings encode about the input graph, and why this information is

useful for learning tasks.

1.1.2 Power and Limitations of Embeddings

We approach the second core question involving the limitations of low-dimensional

node embeddings in Chapter 3. To do so, we investigate whether embeddings are ca-

6

pable of representing structures of interest in graphs. This work is largely in response

to work from Seshadhri et al. [167] which suggests that such embeddings, regardless of

whether they are derived from classical spectral methods or modern neural network-

inspired methods, cannot capture local structure arising in complex networks. In

particular, they show that any network generated from a natural low-dimensional

model cannot be both sparse and have high triangle density (high clustering coeffi-

cient), two hallmark properties of many real-world networks. In Section 3.1, we show

that the results of [167] are intimately connected to the model they use rather than

the low-dimensional structure of complex networks: we prove that a minor relaxation

of their model can generate sparse graphs with high triangle density. Surprisingly,

we can show that this same model leads to exact low-dimensional factorizations of

many real-world networks, formalized as follows:

Theorem (Exact Embeddings for Bounded-Degree Graphs). Let A ∈ {0, 1}n×n be the

adjacency matrix of a graph G with maximum degree c. Then there exist embeddings

X,Y ∈ Rn×(2c+1) such that A =
[
XY ⊤ > 0

]
, where [z > 0], which is 1 if z is positive

and 0 otherwise, is applied entry-wise to XY T .

The salient difference between our graph model and that of [167] is that ours has

two factors X and Y , corresponding to two embedding vectors per node, rather than

one; this drastically increases the model’s expressiveness. Beyond our theoretical

results, we give a simple algorithm based on a logistic variant of principal component

analysis (PCA) that succeeds in finding such exact embeddings, and a large number of

experiments verify the ability of very low-dimensional embeddings to exactly represent

local structure in real-world networks.

In Section 3.2, we extend the results of Section 3.1 in two ways. First, we show

that, in addition to the exact representation guarantee for bounded degree graphs, a

similar result applies to graphs with bounded arboricity: for graphs with arboricity

α, there are exact embeddings with embedding dimensionality O(α2). This result

7

is more applicable to real-world networks, which are typically sparse (corresponding

to low arboricity), but often have high max degree. Second, we show that the exact

embedding result applies not only to the above factorization, but also to the following

one: A ≈
[
BB⊤ −CC⊤ > 0

]
, for nonnegative factors B,C. For undirected graphs,

which are the main focus of this work, this factorization is more interpretable in

that its symmetry reflects the undirectedness (i.e., the symmetry of the adjacency

matrix), and also since the nonnegativity allows the embeddings to be interpreted

as community assignments in a community detection framework: intuitively, each

entry of the nonnegative embedding vector of a node represents the intensity with

which the node participates in a community. On the empirical side, we evaluate the

performance of this factorization for downstream tasks like community detection and

link prediction.

Overall, this work adds to a growing body of literature on expressiveness guaran-

tees for representations of relational data. While we focus in this thesis on embeddings

in Euclidean space with standard dot products, we also note that there is a wealth

of prior work [153, 119, 150, 77, 90, 163, 37, 190, 161, 19, 196, 23] on guarantees

for other kinds of embeddings of graphs. This includes spherical embeddings, which

use a non-Euclidean, positively-curved space; hyperbolic embeddings, which use a

negatively-curved space and are well-suited to tree-like graphs; and box embeddings,

which represent each node with an axis-aligned box in Euclidean space such that two

boxes overlap iff the corresponding nodes are adjacent. For example, [23] show that

a variant of box embeddings can exactly represent any directed acyclic graph (DAG)

with boxes in a O (c · log(n))-dimensional space, where c is the max degree and n

is the number of nodes; note that the scaling is linear in the max degree, as in our

result. We note that [23] also specifies the bits of precision needed for their exact

representation result (i.e., the bit complexity). In our guarantees, we do not consider

8

precision, and effectively assume infinite precision; providing a guarantee with both

dimension and bit complexity is a key future direction.

1.1.3 Power and Limitations of Random Graph Models

The strength of our results concerning exact representation actually suggests a

possible weakness of low-dimensional node embeddings: such embeddings are gener-

ally intended to capture meaningful network structure (such as node communities),

but are they instead simply attempting to memorize the input graph? The tension be-

tween representation and memorization motivates Chapter 4, which approaches this

investigation of the second core question from the following, more abstract direction.

In Section 4.1, we study the inherent limitations of edge independent random graph

models, in which each edge is added to the graph independently with some probability:

Definition (Edge Independent Graph Model). For any symmetric matrix P ∈

[0, 1]n×n, let G(P) be the distribution over undirected unweighted graphs where G ∼

G(P) and its edge set E(G) contains edge (i, j) independently, with probability Pij.

That is, P(G) =
∏

(i,j)∈E(G) Pij ·
∏

(i,j)/∈E(G)(1− Pij).

Such models include both the classic Erdös-Rényi [56] and stochastic block mod-

els [84], as well as modern generative models such as NetGAN [20], variational graph

autoencoders [93], and CELL [151]. We prove that subject to a bounded overlap con-

dition, which ensures that the model does not simply memorize a single graph, edge

independent models are inherently limited in their ability to generate graphs with

high triangle and other subgraph densities. Notably, such high densities are known

to appear in real-world social networks and other graphs. In particular, we define

overlap as follows:

Definition (Expected Overlap). For symmetric P ∈ [0, 1]n×n, let

Ov(P) :=
EG1,G2∼G(P)|E(G1) ∩ E(G2)|

EG∼G(P)|E(G)|
.

9

That is, for any P ∈ [0, 1]n×n, Ov(P) ∈ [0, 1] is the ratio of the expected number of

edges shared by two graphs drawn independently from G(P) to the expected number

of edges in a graph drawn from G(P). Our main result is that for any edge inde-

pendent model with bounded overlap, G ∼ G(P) cannot have too many triangles in

expectation:

Theorem (Overlap Upper Bounds Triangles). For a graph G, let ∆(G) denote

the number of triangles in G. For symmetric P ∈ [0, 1]n×n, EG∼G(P) [∆(G)] =

O (n3 ·Ov(P)3).

We complement our negative results with a simple generative model that balances

overlap and accuracy, performing comparably to more complex models in reconstruct-

ing many graph statistics.

In Section 4.2, we extend this investigation on limitations of edge independent

random graph models to more general classes of graph models which allow for edge

dependency in the graph distributions. We define fully dependent random graph mod-

els, which allow for arbitrary dependencies (i.e., an arbitrary distribution over graphs),

and node independent random graph models, which serve as a medium between the

two prior classes of models. Specifically, the concept of the node independent model

is that each node has a distribution over embeddings, that all nodes’ embeddings

are sampled independently, and that the presence of an edge between two nodes is

determined by a pairwise function of their embeddings:

Definition (Node Independent Graph Model). A distribution A over symmetric

adjacency matrices A ∈ {0, 1}n×n, where, for some embedding space E , some mutually

independent random variables x1, . . . ,xn ∈ E , and some symmetric function e : E ×

E → [0, 1], the entries of A are Bernoulli random variables Aij = Bernoulli (e(xi,xj))

that are mutually independent conditioned on x1, . . . ,xn.

10

We prove analogous bounds for these latter two new classes of models as we prove

in Section 4.1 for edge independent models. Again, the main results concern upper

bounds on triangle count in terms of our notion of overlap, which generalizes naturally

to (not necessarily edge independent) graph distributions A. Letting Ov(A) denote

this generalized overlap, recall that for edge independent models, the expected num-

ber of triangles is bounded above by O(n3 ·Ov(A)3). We can show that this bound for

fully dependent models is relaxed to O(n3 ·Ov(A)1), and that the bound for node in-

dependent models sits in between at O(n3 ·Ov(A)1.5). A summary of the main results

in this section is given in Table 1.1. This section broadly works towards expanding

the applicability of our theoretical bounds to practical algorithms, some of which vio-

late edge dependency, as well as a more precise characterization of the capabilities of

these more powerful models. The results in this chapter overall, together with those

about exact embeddings, begin to shape an understanding of the capabilities of node

embedding methods in general, beyond just classical spectral methods.

Table 1.1. Preview of results for Section 4.2. The level of edge dependency in graph
generative models inherently limits the range of graph statistics, such as triangle
counts, that they can produce. Note that overlap Ov(A) ∈ [0, 1], so a higher power
on Ov(A) means a tighter bound on the number of triangles.

Model Upper Bound on ∆/n3 Examples
Edge Independent Ov(A)3 • Erdős–Rényi

• SBM
• NetGAN [20, 152]

Node Independent Ov(A)3/2 • Variational Graph Auto-Encoder
(VGAE) [94]

Fully Dependent Ov(A) • GraphVAE [170]
• GraphVAE-MM [208]
• Exponential Random Graph Models

(ERGMs) [62]

11

1.1.4 Simplifying Deep Graph Networks

While much of our work characterizes the greater strength of modern deep meth-

ods for learning node representations relative to classical spectral ones, in Chapter 5,

we also question the need for deep learning in certain settings. Note that in this

chapter only, the graphs we work with are also associated with node feature vectors,

that is, the graph data comprise not only an n × n adjacency matrix A, but also a

node feature matrix X ∈ Rn×d. The methods in this chapter use A in different ways

to process X into learned node representations X ′ ∈ Rn×d′ , which can be used for a

downstream task like node classification. We build on work of Wu et al. [197], who

propose a method called Simple Graph Convolution (SGC), which eschews deep learn-

ing. SGC’s approach is to produce X ′ by simply smoothing the features across the

edges of the graph. This is much faster and simpler than deep methods like graph con-

volutional networks (GCNs) [94], which are based on the usual deep learning pipeline

of backpropagation through an end-to-end model, but SGC is surprisingly found to

be competitive with GCNs on benchmark tasks. However, SGC’s feature smoothing

operation is known [135] to be sensible only when the graph exhibits the common but

not universal characteristic of homophily, wherein nodes mostly link to similar nodes.

We ask whether a simple, non-deep approach like SGC can also handle heterophilous

graph structure, wherein nodes mostly link to dissimilar nodes.

We propose a new method, Adaptive Simple Graph Convolution (ASGC), which

processes each feature separately in a manner that can be either smoothing or non-

smoothing, and thus can adapt to both homophilous and heterophilous structures.

Like SGC, ASGC is not a deep model, instead being based on linear least squares,

and hence is fast, scalable, and interpretable. Our approach is a sort of spectral

method for feature processing: roughly, for each node feature x ∈ Rn, ASGC con-

structs a Krylov subspace generated by A and x, that is, span
{
Ax,A2x, . . . ,AKx

}
for some hyperparameter K, and projects x onto this subspace to generate the fil-

12

Raw SGC ASGC MLP GCN GAT SAGE JKNet GCN
Cheby

Geom
GCN

APP
NP

GPR
GNN

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1.1. Node classification test accuracy with 12 methods as a proportion of the
best method’s accuracy; mean performance over 5 homophilous and 5 heterophilous
networks. The three non-deep methods are grouped on the left. ASGC is competitive
with the deep filtering method GPR-GNN and outperforms the other methods.

tered x′, which is directly passed to a linear classifier. Empirically, ASGC is often

competitive with recent deep models at node classification on a benchmark of real-

world datasets – see Figure 1.1 for test accuracy results on the node classification task,

aggregated across 5 homophilous and 5 heterophilous datasets. Note that this com-

petitive performance is despite that our method, like SGC, is not a feature learning

method – classification is linear following application of fixed linear algebraic filter-

ing. This means that, in contrast to the deep methods, which form node embeddings

with access to the training class labels, our method forms embeddings without these

labels, but is still comparably effective on the classification task even with this bar-

rier. Also in contrast to deep methods, the simplicity of our approach enables us to

to prove performance guarantees on natural synthetic data models. The SGC paper

questioned whether the complexity of graph neural networks is warranted for common

graph problems involving homophilous networks; our results similarly suggest that,

while deep learning often achieves the highest performance, heterophilous structure

alone does not necessitate these more involved methods. Together with SGC, these re-

sults call into question the near-ubiquity of deep learning in recently-proposed graph

machine learning methods.

13

1.2 Bibliography Notes
Most of the content presented in the thesis is based on work that is previously

published work, is to be published, or is currently under submission:

1. Section 2.1 has been published with the title “InfiniteWalk: Deep Network

Embeddings as Laplacian Embeddings with a Nonlinearity” at the Conference

on Knowledge Discovery in Databases (KDD), 2020 [30].

2. Section 2.2 has been published with the title “DeepWalking Backwards: From

Embeddings Back to Graphs” at the International Conference on Machine

Learning (ICML), 2021 [32].

3. Section 3.1 has been published with the title “Node Embeddings and Exact

Low-Rank Representations of Complex Networks” at the Conference on Neural

Information Processing Systems, 2020 [34].

4. Section 4.1 has been published with the title “On the Power of Edge Independent

Graph Models” at the Conference on Neural Information Processing Systems,

2021 [33].

5. Section 5.1 is to be published with the title “Simplified Graph Convolution

with Heterophily” at the Conference on Neural Information Processing Systems,

2022 [31].

6. The work in Section 3.2 on “Nonnegative Symmetric Representations of Sparse

Networks” is under submission.

7. The work in Section 4.2 on “The Role of Edge Dependency in Random Graph

Models” is under submission.

14

CHAPTER 2

UNDERSTANDING MODERN NODE
EMBEDDING METHODS

In this chapter, we pursue two paths to understanding the action of modern node

embedding methods as exemplified by DeepWalk [144]. We first derive a simplified

expression for the DeepWalk objective which clarifies its relationship with classical

spectral embeddings. We also propose and pursue the problem of inverting node

embedding, that is, taking node embeddings as input and outputting a graph with

approximately these embeddings; we then probe the graph to see what information

is captured in the embeddings.

2.1 Deep Network Embeddings as Laplacian Embeddings

with a Nonlinearity
The primary classical approach for the node embedding task is spectral embedding:

nodes are represented by their corresponding values in the smallest eigenvectors of

the graph Laplacian. Spectral embedding methods include the Shi-Malik normalized

cuts algorithm [169], Laplacian Eigenmaps [17], and spectral partitioning methods for

stochastic block models [124]. They also include many spectral clustering methods,

which apply spectral embeddings to general datasets by first transforming them into

a graph based on data point similarity [133]. The spectral embedding approach has

recently been exceeded in predictive performance on many tasks by methods inspired

by Word2vec [126], which performs the related word embedding task. Word2vec

forms representations for words based on the frequency with which they co-occur

15

with other words, called context words, within a fixed distance T in natural text.

The DeepWalk [144], LINE [182], and node2vec [75] algorithms, among others, adapt

this idea to network data. In particular, DeepWalk takes several random walks on

the network, treating the nodes as words, and treating the walks as sequences of

words in text. It has been shown in [109] that the representations learned by this

approach are implicitly forming a low-dimensional factorization of a known matrix,

which contains the pointwise mutual information (PMI) of co-occurences between

nodes in the random walks. Work by Qiu et al. [147] gives a closed form expression

for this matrix and shows a connection to the normalized graph Laplacian. This

motivates their NetMF algorithm, which performs a direct factorization, improving

on the performance of DeepWalk on a number of tasks.

In this section, we consider DeepWalk in the limit as the window size T goes to

infinity. We derive a simple expression for the PMI matrix in this limit:

M∞ = vG ·D
1/2
(
L̃+ − I

)
D

1/2 + J, (2.1)

where D is the degree matrix, vG is the trace of D (twice the number of edges in G),

L̃ is the normalized Laplacian (i.e., I−D1/2AD1/2), and J is the all-ones matrix. L̃+ is

the pseudoinverse of L̃. One can show that D1/2L̃+D1/2 is equal to the unnormalized

Laplacian pseudoinverse L+, the central object in classic spectral embeddings, up to

a rank-2 component (see Equation 2.6 in Section 2.1.2.3). Thus, M∞ is equal to L+

plus at most a rank-3 component and a diagonal matrix.

Not surprisingly, embeddings formed directly using a low dimensional factoriza-

tion of M∞ itself perform poorly on downstream tasks compared to DeepWalk and

other skip-gram methods. However, we show that after an element-wise applica-

tion of a linear function followed by a logarithm, in particular, x → log(1 + x/T),

M∞ approximates the finite-T PMI matrix. Embeddings formed by factorizing this

transformed matrix are competitive with DeepWalk and nearly competitive with the

16

NetMF method of Qiu et al. [147], when evaluated on multi-label node classification

tasks. We call our method InfiniteWalk.

Note that the window hyperparameter T only appears in the entrywise nonlinear-

ity in InfiniteWalk and not in the formula for M∞. This is perhaps surprising, as T is

a key hyperparameter in existing methods. Our results suggest that T ’s importance

lies largely in determining the shape of the nonlinearity applied. Since M∞ is closely

related to the Laplacian pseudoinverse, the key difference between DeepWalk and

classic spectral embedding seems to be the application of this nonlinearity.

In more detail, note that our results show that InfiniteWalk well approximates

DeepWalk by forming a low-rank factorization of a nonlinear entrywise transforma-

tion of M∞. Classic spectral embedding and clustering methods [169, 124, 17] embed

nodes using the eigenvectors corresponding to the smallest eigenvalues of the Lapla-

cian L (or a variant of this matrix), which are the largest eigenvalues of L+. Thus,

these methods can be viewed as embedding nodes using an optimal low-dimensional

factorization of L+ (lying in the span of L+’s top eigenvectors), without applying an

entrywise nonlinearity.

Inspired by this observation, we simplify the idea of a nonlinear transformation

of the Laplacian pseudoinverse even further: thresholding it to a binary matrix. In

particular, we form the binary matrix

[L+ ≥ c],

where c is an element of L+ itself of some hyperparameter quantile (e.g. the median

or the 95th percentile element). Surprisingly, embeddings from factorizing this binary

matrix are also competitive with DeepWalk and the method of Qiu et al. on many

tasks.

Broadly, our results strengthen the theoretical connection between classical meth-

ods based on factorizing the graph Laplacian and more recent “deep” methods for

17

node embedding. They suggest that these methods are not as different conceptually

as they may seem at first glance.

2.1.1 Background

We begin by surveying prior work on skip-gram-based network embeddings and

their connections to matrix factorization, which our work builds on.

2.1.1.1 Skip-Gram

In word embedding models, words are typically treated as both words and contexts.

A context is simply a word that appears within a window of length T of another word.

As formalized in [71], given a dataset of words w ∈ W , contexts c ∈ C (typically

W = C), and (w, c) word-context co-occurrence pairs (w, c) ∈ D, the “skip-gram”

model for training word and context embeddings vw, vc [126] has the following log-

likelihood objective:

argmax
{vc}C ,{vw}W

∑
(w,c)∈D

log Pr(c|w), where Pr(c|w) = evc·vw∑
c′∈C e

vc′ ·vw
.

We can see that the objective encourages co-occuring pairs (w, c) ∈ D to have sim-

ilar embeddings with large dot product vc · vw. This exact objective is not used as

repeatedly evaluating the partition function is too computationally expensive; [126]

proposes a substitute: the skip-gram with negative sampling (SGNS). Here, an aux-

iliary ‘negative’ dataset D′ consisting of random (w, c) pairs not appearing in D is

used. Pairs in this negative set are encouraged to have dissimilar embeddings with

small vc · vw.

2.1.1.2 Implicit PMI Matrix

Levy and Goldberg [109] prove that SGNS implicitly factors a matrix whose en-

tries gave the pointwise mutual information (PMI) of occurrence of a word wi and

18

occurrence of a context cj. Given a dataset of these co-occurrences, an element of

this matrix M is given by

Mij = log

(
Pr(wi, cj)

Pr(wi) Pr(cj)

)
− log(b)

= log

(
#(w, c) · |D|
#(w) ·#(c)

)
− log(b).

where b = |D′|/|D| is the ratio of negative samples to positive samples. Their proof

assumes that the dimensionality of the embedding is at least the cardinality of the

word/context set; the analysis of Li et al. [110] relaxes assumptions under which this

equivalence holds. Several works, including [15] and [68], propose generative models

for word-context co-occurrence to explain the effectiveness of PMI-based methods in

linearizing semantic properties of words. More recently, the analysis of Allen et al.

in [8] and [9] has provided explanations of this phenomenon based on geometric prop-

erties of the PMI matrix, without the strong assumptions required by the generative

models. The extensive research and results on the skip-gram PMI matrix make it an

intrinsically interesting object in representation learning.

2.1.1.3 Networks

The DeepWalk method [144] applies the SGNS model to networks, where the word

and context sets are the nodes in the network, and the co-occuring pairs D are node

pairs that appear within a window of length T hops in a set of length L random walks

run on the graph. Qiu et al. [147] derived the following expression for the PMI matrix

in the context of random walks on undirected, connected, and non-bipartite graphs

for DeepWalk: in the limit as the number of walks originating at each node γ → ∞

and walk length L→∞, it approaches

MT = log

(
vG

(
1
T

T∑
k=1

Pk

)
D−1

)
− log b, (2.2)

19

where log is an element-wise natural logarithm, vG (the “volume” of the graph) is the

sum of the degrees of all of the nodes, and P = D−1A is the random walk transition

matrix.

Rather than sampling from random walks as in DeepWalk, the NetMF algorithm

of Qiu et al. explicitly calculates and factors this matrix to produce embeddings,

outperforming DeepWalk significantly on multi-label node classification tasks. For low

T , NetMF manually computes the exact sum, whereas for high T , it computes a low-

rank approximation via SVD of the symmetrized transition matrix, P̃ = D1/2AD1/2.

While Qiu et al. analyze the effect of increasing T on the spectrum of the resulting

matrix, they do not pursue the T → ∞ limit, stopping at T = 10 as in the original

DeepWalk paper. We show that this limiting matrix is both meaningful and simple

to express.

2.1.1.4 Other Approaches

Some other node embedding algorithms share significant similarities with Deep-

Walk. Qiu et al [147] showed the LINE method to also be implicit matrix factor-

ization, though its algorithm is based on edge sampling rather than sampling from

random walks. In particular, its factorized matrix is a special case of the DeepWalk

matrix with T = 1. We include the performance of LINE in our empirical results.

node2vec [75] is a generalization of DeepWalk which uses second-order random walks:

the distribution of the following node in node2vec walks depends on the current and

preceding nodes rather than only the current node as in DeepWalk. Hyperparame-

ters allow the walk to approach BFS-like or DFS-like behavior as desired, which the

authors assert extract qualitatively different information about node similarities.

Several architectures for applying convolutional neural networks to network data

in an end-to-end fashion have been developed in the past few years, including the

graph convolutional networks (GCNs) of [94] and [46], and some methods leverage

20

these architectures to produce node embeddings: for example, Deep Graph Info-

max [189] uses GCNs to maximize a mutual information objective involving patches

around nodes. Recent work from Wu et al. [197] shows that much of the complexity

of GCNs comes from components inspired by other forms of deep learning that have

limited utility for network data. In the same way, we seek to further the investiga-

tion of the core principles of “deep” network embeddings apart from their inspiration

in word embedding and neural networks. We note that, like DeepWalk, and the re-

lated methods, we focus on unsupervised embeddings, derived solely from a graph’s

structure, without training, e.g., on node labels.

2.1.2 Methodology

We now present our main contributions, which connect DeepWalk in the infinite

window limit to classic spectral embedding with a nonlinearity. We discuss how

this viewpoint clarifies the role of the window size parameter T in DeepWalk and

motivates a very simple embedding technique based on a binary thresholding of the

graph Laplacian pseudoinverse.

2.1.2.1 Derivation of Limiting PMI Matrix

We start by showing how to simplify the expression in Equation 2.2 for the Deep-

Walk PMI given by [147] in the limit T → ∞. We first establish some well-known

facts about random walks on graphs. First, P∞ is well-defined under our assumption

that the graph is undirected, connected, and non-bipartite. It is rank-1 and equal

to 1d̃⊤, where 1 is a column vector of ones and d̃ is the probability mass of each

node in the stationary distribution of the random walk as a column vector. Note that

d̃i = Dii/vG. That is, the probability mass of a node in the stationary distribution is

proportional to its degree. We let D̃ = D/vG denote the diagonal matrix with entries

D̃ii = d̃i.

21

Let λi and wi be the ith eigenvalue and eigenvector of the symmetrized transition

matrix P̃ = D1/2AD1/2. We have λ1 = 1 and w1 =
(√

d̃1, . . . ,
√
d̃n

)⊤
. From [108],

for any positive integer k,

Pk = P∞ +
n∑

j=2

λk
jvjvj

⊤D̃, (2.3)

where vi = D̃1/2wi. We rewrite the expression in Equation 2.3 for Pk and the expres-

sion Equation 2.2 of Qiu et al. for the PMI matrix, setting the negative sampling

ratio b to 1 for the latter (i.e., one negative sample per positive sample):

Pk = 1d̃⊤ + D̃
1/2

n∑
j=2

λk
jwjwj

⊤D̃1/2 and

MT = log

(
T−1

T∑
k=1

PkD̃−1

)
.

Substituting the former into the latter, then rearranging the order of the summations

and applying the geometric series formula yields

MT = log

(
11⊤ + T−1D̃

1/2

(
T∑

k=1

n∑
j=2

λk
jwjwj

⊤

)
D̃

1/2

)

= log

(
11⊤ + T−1D̃

1/2

(
n∑

j=2

λj(1− λT
j)

1− λj

wjwj
⊤

)
D̃

1/2

)
.

Now we consider the limit as T →∞. Define

M∞ = lim
T→∞

T ·MT.

Since |λj| < 1 for j ̸= 1 [108], the (1− λT
j) terms go to 1 as T →∞, and we have:

M∞ = lim
T→∞

T · log

(
11⊤ + T−1D̃

1/2

(
n∑

j=2

λj

1− λj

wjwj
⊤

)
D̃

1/2

)
.

22

Since log(1 + ϵ) → ϵ as ϵ → 0, for any constant real number c, T log(1 + T−1c) → c

as T →∞. We apply this identity element-wise, then simplify:

M∞ = D̃
1/2

(
n∑

j=2

λj

1− λj

wjwj
⊤

)
D̃

1/2

= D̃
1/2

(
n∑

j=2

1

1− λj

wjwj
⊤ −

n∑
j=2

1− λj

1− λj

wjwj
⊤

)
D̃

1/2

= D̃
1/2

(
n∑

j=2

1

1− λj

wjwj
⊤ +w1w1

⊤ −
n∑

j=1

wjwj
⊤

)
D̃

1/2

= D̃
1/2
(
L̃+ +w1w1

⊤ − I
)
D̃

1/2

= 11⊤ + D̃
1/2
(
L̃+ − I

)
D̃

1/2,

where the last step follows from w1 being the element-wise square root of d̃. Note that

the above equation gives the expression for M∞ in Equation 2.1, since D̃ = D/vG.

Similar analysis also leads to the following general expressions for the finite-T PMI

matrix:

MT = log
(
11⊤ + T−1D̃

1/2P̃L̃+(I− P̃T)D̃
1/2
)

= log
(
11⊤ + T−1

(
11⊤ + D̃

1/2
(
L̃+
(
I− P̃T+1

)
− I
)
D̃

1/2
))

. (2.4)

2.1.2.2 Approximation of Finite-T PMI Matrix via Limiting PMI Matrix

Note that the expression Equation 2.4 above for the finite-T matrix, when mul-

tiplied by T−1 differs from the limiting matrix only by the term D̃1/2L̃+P̃T+1D̃1/2,

which vanishes as T → ∞. So, we may approximate the finite-T matrix by simply

dropping this term as follows:

MT ≈ log
(
R
(
11⊤ + T−1

(
11⊤ + D̃

1/2
(
L̃+ − I

)
D̃

1/2
)))

= log
(
R
(
11⊤ + T−1M∞

))
, (2.5)

23

where R(x) is any ramp function to ensure that the argument of the logarithm is

positive. In our implementation, we use the function Rϵ(x) = max(ϵ, x). We use the

64-bit floating-point machine precision limit (∼ e−36) for ϵ. Note that the NetMF

method of [147] uses R1(x); we find that a small positive value consistently performs

better. Both ramping functions can be interpreted as producing the positive shifted

PMI matrix (shifted PPMI) matrix introduced by Levy and Goldberg [109]. Other

methods of avoiding invalid arguments to the logarithm are an interesting avenue for

future work.

Note that the accuracy of Equation 2.5 is limited by the second largest eigenvalue

of P̃, which is known as the Fiedler eigenvalue. Smaller magnitudes of this eigenvalue

are correlated with a faster mixing rate [108], the rate at which Pk → P∞ as k

increases. In Section 2.1.3.2 we show that for typical graphs, the Fiedler eigenvalue is

relatively small, and so the approximation is very accurate for large T , e.g., T = 10,

which is a typical setting for DeepWalk. The approximation is less accurate for small

T , e.g., T = 1 (See Table 2.2.)

Effect of the Window Size T . Intuitively, the effect of T in Equation 2.5 is to

control the “strength” of the logarithm nonlinearity, since, as noted previously, for

any real constant c, log(1+T−1c)→ T−1c as T →∞. That is, the logarithm becomes

a simple linear scaling in this limit. As we will see, even when the approximation

of Equation 2.5 in inaccurate (when T is very low) this approximated matrix qual-

itatively has similar properties to the actual T -window PMI matrix, and produces

similar quality embeddings, as measured by performance in downstream classifica-

tion tasks. This finding suggests that the strength of the logarithm nonlinearity can

influence the locality of the embedding (as modulated in DeepWalk by the window

size T) independently of modifying the arguments of the nonlinearity, which contain

the actual information from the network as filtered by length-T windows.

24

2.1.2.3 Binarized Laplacian Pseudoinverse

Motivated by the view of DeepWalk as a variant of classic Laplacian factoriza-

tion with an entrywise nonlinearity, we investigate a highly simplified version of

InfiniteWalk. We construct a binary matrix by 1) computing the pseudoinverse of

the unnormalized Laplacian L+, 2) picking a quantile hyperparameter q ∈ (0, 1), 3)

determining the quantile q element value, and 4) setting all elements less than this

value to 0 and others to 1. In other words, an element of this matrix B is given

by Bij = [(L+)ij ≥ c], where c is the q quantile element of L+. We then produce

embeddings by partially factoring this matrix B as with the PMI matrices. Inter-

estingly, this can be interpreted as factorizing the adjacency matrix of an implicit

derived network whose sparsity is determined by q. Gaining a better understanding

of the structure and interpretation of this network is an interesting direction from

future work.

Note that in this method, we use the unnormalized Laplacian L rather than the

normalized Laplacian L̃ = D1/2LD1/2, which appears in the expression Equation 2.1

for M∞. This is because, as we will show, the limiting PMI matrix is equal to the

pseudoinverse of the unnormalized Laplacian up to a rank-3 term and a diagonal

adjustment. We can rewrite our expression for the limiting matrix by expanding the

normalized Laplacian in terms of the normalized Laplacian as follows:

M∞ = 11T + vG

(
D

1/2
(
D

1/2LD
1/2
)+

D
1/2︸ ︷︷ ︸−D−1

)
.

Consider the underbraced term above containing L. If this term had a true inverse

rather than a pseudoinverse, the four factors involving the degree matrix would sim-

ply cancel. Instead, application of a variant of the Sherman-Morrison formula for

pseudoinverses [125] results in the following expression for this term:

D
1/2
(
D

1/2LD
1/2
)+

D
1/2 = (I− 1d̃⊤)L+(I− d̃1⊤).

25

This yields the following alternate expression for the limiting PMI matrix:

M∞ = 11T + vG

(
(I− 1d̃⊤)L+(I− d̃1⊤)−D−1

)
. (2.6)

In our context of binarizing L+ by a quantile, note that addition by the all-ones

matrix and multiplication by vG does not affect the ranks of the elements within

the matrix, and the subtraction by the diagonal matrix D−1 affects relatively few

elements. Hence we might expect binarizing L+ by thresholding on quantiles to have

a similar effect as binarizing the limiting PMI matrix itself.

Binarization is arguably one of the simplest possible methods of augmenting the

Laplacian with a nonlinearity. As we will see, this method has good downstream per-

formance compared to DeepWalk and related methods. We argue that this suggests

that the core advancement of deep node embeddings over classical spectral embedding

methods based on factorizing the Laplacian is application of a nonlinearity.

2.1.3 Experimental Setup

We now discuss how we empirically validate the performance of the limiting PMI

matrix method presented in Section 2.1.2.2 and the Laplacian pseudoinverse binariza-

tion method of Section 2.1.2.3.

2.1.3.1 Data Sets

We use three of the four datasets used in the evaluation of the NetMF algorithm

[147]. Table 2.1 provides network statistics. Figure 2.1 provides the eigenvalue dis-

tribution of the symmetrized random walk matrix P̃ for each network.

BlogCatalog [4] is a social network of bloggers. The edges represent friendships

between bloggers, and node labels represent group memberships corresponding to

interests of bloggers.

26

Dataset Nodes Edges Fiedler Eigval.
BlogCatalog 10,312 333,983 0.568
PPI 3,852 76,546 0.800
Wikipedia 4,777 184,812 0.504

Table 2.1. Network statistics for experiments in Section 2.1.

Figure 2.1. Sorted eigenvalues of P̃ for each network. The top eigenvalue of 1 is
excluded, and the Fiedler eigenvalues are marked with X’s.

Protein-Protein Interaction (PPI) [177] is a subgraph of the PPI network for

Homo Sapiens. nodes represent proteins, edges represent interactions between pro-

teins, and node labels represent biological states. We use only the largest connected

component, which has over 99% of the nodes.

Wikipedia is a co-occurrence network of words from a portion of the Wikipedia

dump. Nodes represent words, edges represent co-occurrences within windows of

length 2 in the corpus, and labels represent inferred part of speech (POS) tags.

2.1.3.2 Procedure

Implementation. See Algorithm 1 for the pseudocode of our limiting PMI matrix

method. We use the NumPy [136] and SciPy [89] libraries for our implementation.

The most expensive component of the algorithm is the pseudoinversion of the graph

27

Laplacian. While there is significant literature on approximating this matrix, or vec-

tor products with it [175, 96, 91, 148], we simply use the dense SVD-based function

from NumPy. For graphs of larger scale, this method would not be practical. The

truncated sparse eigendecomposition is handled via SciPy’s packer to ARPACK [101],

which uses the Implicitly Restarted Lanczos Method. As in [147], to generate a d-

dimensional embedding, we return the singular vectors corresponding to the d largest

singular values, scaling the dimensions of the singular vectors by the square roots of

the singular values. For classification, we use the scikit-learn [141] packer to LIBLIN-

EAR [58]. Demo code for InfiniteWalk is available at github.com/schariya/infwalk.

Algorithm 1 InfiniteWalk
1: Compute M∞ = 11⊤ + D̃1/2

(
L̃+ − I

)
D̃1/2

2: Compute M = log
(
Rϵ

(
11⊤ + T−1M∞

))
3: Rank-d approximation by truncated eigendecomposition: M ≈ V×diag(w)×V⊤

4: return V × diag(
√
|w|) as node embeddings

Evaluation Setting. To investigate the usefulness and meaningfulness of the lim-

iting PMI matrix, we evaluate the quality of embeddings generated by its truncated

SVD after applying the element-wise ramp-logarithm described in Section 2.1.2.2. For

this task, we closely follow the same procedure as in [144] and [147]. We use one-vs-

rest logistic regression on the embeddings for multi-label prediction on the datasets.

The classifiers employ L2 regularization with inverse regularization strength C = 1.

Classifiers are trained on a portion of the data, with the training ratio being varied

from 10% to 90%; the remainder is used for testing. As in [144] and [147], we assume

that the number of labels for each test example is given. In particular, given that

a node is assigned k labels, the classifier predicts exactly the k classes to which it

assigned the highest probability. We use the mean scores over 10 random splits of

the training and test data for each training ratio. We evaluate the micro-F1 and

macro-F1 scores of classifiers using our embedding.

28

https://www.github.com/schariya/infwalk

Hyperparameter Choices. We compare our results to those of DeepWalk [144],

LINE [182], and NetMF [147] as reported in [147]. The hyperparameters used for

DeepWalk are the preferred default settings of its authors: window size T = 10, walk

length L = 40, and number of walks starting from each node γ = 80. Results from the

second-order variant of LINE are reported. As the authors of NetMF report results

for window sizes T = 1 and T = 10, we similarly report results for InfiniteWalk with

T = 1 and T = 10. We expect the results of InfiniteWalk, as an approximation

of the NetMF method in the high T limit, to at least be roughly similar for the

higher T = 10 setting. We also include results with our limiting T → ∞ matrix,

though only for illustrative purposes. As the limiting matrix is essentially a simple

linear transformation of the graph Laplacian’s pseudoinverse, we expect embeddings

derived thereof to perform relatively poorly. The entrywise nonlinearity seems to be

critical. The embedding dimensionality is 128 for all methods as in both [144] and

[147].

2.1.3.3 Binarized Laplacian Pseudoinverse

We implement and evaluate the simplified method of factorizing a binarized ver-

sion of the unnormalized Laplacian pseudoinverse (described in Section 2.1.2.3) in

the same way. We present results for the best values of quantile hyperparameter q

found by rough grid search. As with the window size T , the best value is expected

to vary across networks. We compare to the performance of NetMF, the sampling

methods LINE and DeepWalk, and classical methods - since the normalized and un-

normalized Laplacians themselves both perform poorly on these tasks, we compare

to factorizing the adjacency matrix itself. Again, since inverting and binarizing is

one of the simplest possible nonlinearities to apply the Laplacian, good downstream

performance suggests that the addition of a nonlinearity is the key advancement of

deep node embeddings from classical embeddings of the Laplacian itself.

29

Dataset Error
(T = 1)

Error
(T = 10)

Ramped Elts.
(T = 1)

Ramped Elts.
(T = 10)

BlogCatalog 2.456 0.001273 0.18340 0.0004901
PPI 2.588 0.041520 0.14400 0.0025210
Wikipedia 1.355 0.004892 0.08892 0.0005943

Table 2.2. PMI Approximation Error. The first two columns give the Frobenius
norm of the difference between the true PPMI matrix MT and our approximation
based on M∞ (see Equation 2.5), divided by the norm of MT . The log-ramp nonlin-
earity with R1, as used in the NetMF method, is applied to both matrices. The last
two columns give the number of elements that are affected by the ramping compo-
nent of the nonlinearity in one matrix but not the other, normalized by the size of
the matrices.

2.1.4 Results

We now discuss our experimental results on both the limiting PMI-based algorithm

and the simple Laplacian binarization algorithm.

2.1.4.1 PMI Approximation Error

In Table 2.2, we show how closely the PMI approximation given by Equation 2.5

matches the true PMI matrix. We can see from Table 2.1 that the Fiedler eigenvalues

of our graphs are bounded away from 1. Thus, as expected, the approximation

of the finite-T PMI matrix via the limiting matrix is quite close at T = 10, but

not so at T = 1. Additionally, at T = 10, the elements which are affected by

the ramping component of the nonlinearity are similar between our approximation

and the true PMI matrix. The accurate approximation at T = 10 explains why

InfiniteWalk performs similarly on downstream classification tasks. Interestingly, at

T = 1, InfiniteWalk performs competitively, in spite of inaccurate approximation.

2.1.4.2 Multi-Label Classification

In Figure 2.2 we show downstream performance of embeddings based on the lim-

iting M∞ approximation, compared to other methods. Across both metrics and

30

all datasets, NetMF and InfiniteWalk are generally or par with or outperform the

sampling-based methods, LINE and DeepWalk. As observed in [147], DeepWalk and

NetMF with T = 10 have better overall performance than LINE and NetMF with

T = 1 on the BlogCatalog and PPI networks, while the inverse is true for the

Wikipedia network. This suggests that shorter-range dependencies better capture

Wikipedia’s network structure. As expected, InfiniteWalk with the T = 10 nonlin-

earity performs better than the version with the T = 1 nonlinearity on the former two

datasets, while the inverse is true for Wikipedia. In all cases, the factorization of the

M∞ PMI matrix itself performs poorly. These findings support our hypothesis that

changing the strength of the logarithm nonlinearity can largely emulate the effect of

actually changing the window size T in sampling and deterministic approaches.

While maximizing downstream performance is not the focus of our work, we ob-

serve that, overall, InfiniteWalk has performance competitive with if slightly inferior

to NetMF (see Figure 2.3). On BlogCatalog, InfiniteWalk underperforms relative

to NetMF. On PPI, InfiniteWalk outperforms NetMF when less than half the data is

used for training, but underperforms when given more training data. On Wikipedia,

InfiniteWalk underperforms relative to NetMF on macro-F1 score, but outperforms

NetMF on micro-F1 score.

Binarized Laplacian Pseudoinverse. In Figure 2.4 we show down stream per-

formance of our simple method based on factorizing the binarized Laplacian pseu-

doinverse. This method performs remarkably well on both T = 10 networks. On

PPI, it matches the performance of NetMF, and on BlogCatalog, it is nearly on

par again, accounting for most of the improvement from the classical method. On

the T = 1 network, Wikipedia, it is less successful, especially on Macro-F1 error,

but still improves on the classical method. These result again support our hypothesis

that the key ingredient of improved node embeddings seems to be the application of

a nonlinearity to the Laplacian pseudoinverse.

31

Elements of Limiting PMI Matrices. Since we are introducing the limiting PMI

matrix as an object for future investigation, we also give a preliminary qualitative de-

scription of its elements. See Figure 2.5 for a visualization of the element distribution

for the three networks we investigate. Across these networks, these matrices tend to

contain mostly small negative elements, corresponding to weak negative correlations

between nodes, as well as some large positive values, corresponding to strong positive

correlations. The distributions overall have similar shapes, and, interestingly, have

roughly the same ratios of negative values to positive values, corresponding to roughly

the same ratios of negative correlations to positive correlations.

2.1.5 Conclusion

In this section we have simplified known expressions for the finite-T network PMI

matrix and derived an expression for the T →∞ matrix in terms of the pseudoinverse

of the graph Laplacian. This expression strengthens connections between SGNS-based

and classic spectral embedding methods.

We show that, with a simple scaled logarithm nonlinearity, this limiting matrix

can be used to approximate finite-T matrices which yield competitive results on down-

stream node classification tasks. This finding suggests that the core mechanism of

SGNS methods as applied to networks is a simple nonlinear transformation of classi-

cal Laplacian embedding methods. We even find that just binarizing the Laplacian

pseudoinverse by thresholding often accounts for most of the performance gain from

classical approaches, suggesting again the important of the nonlinearity.

We view this work as a step in understanding the core mechanisms of SGNS-based

embedding methods. However many open questions remain.

For example, one may ask why the scaled logarithm non-linearity is a good choice.

Relatedly, how robust is performance to changes in the nonlinearity? Our results

on binarization of the Laplacian pseudoinverse indicate that it may be quite robust,

32

Figure 2.2. Multi-label classification performance on the BlogCatalog, PPI,
and Wikipedia networks. Micro-F1 score (top) and Macro-F1 score (bottom) versus
percent of data used for training. Results for InfiniteWalk (Algorithm 1) all appear
as solid lines.

but this is worth further exploration. Finally, as discussed, our binarization method

can be viewed as producing the adjacency matrix of a graph based on the Lapla-

cian pseudoinverse, and then directly factoring this matrix. Understanding how this

derived graph relates to the input graph would be a very interesting next step in

understanding the surprisingly competitive performance of this method.

Additionally, as discussed previously, node2vec [75] is a generalization of Deep-

Walk that adds additional hyperparameters to create second-order random walks.

Qiu et al. [147] also provide an expression for the matrix that is implicitly factored

by node2vec, so pursuing the T → ∞ limit of this matrix may provide insight into

node2vec and an interesting generalization of DeepWalk’s limiting PMI matrix.

33

Figure 2.3. Performance of InfiniteWalk relative to NetMF [147]. F1 score (%) of
InfiniteWalk minus F1 score of NetMF versus percent of data used for training. For
both methods, T = 10 is used for BlogCatalog and PPI, and T = 1 is used for
Wikipedia.

Figure 2.4. Performance of the binarized Laplacian pseudoinverse method relative
to NetMF, sampling-based methods, and embedding by factorizing the adjacency
matrix. 0.95 is used as the thresholding quantile for BlogCatalog and PPI, and
0.50 is used for Wikipedia. The more suitable setting of T and the more suitable
sampling method is plotted for each network.

34

Figure 2.5. Distribution of elements of the limiting PMI matrices M∞ of the three
networks. The distributions are separated between negative and positive elements
corresponding to negative and positive correlations between nodes.

2.2 From Embeddings Back to Graphs
In this section, we focus on the following high-level question:

What graph properties are encoded in and can be recovered from node
embeddings? How do these properties correlate with learning tasks?

We study the above question on undirected graphs with non-negative edge weights.

Let G denote the set of all such graphs with n nodes. We formalize the question via

Problems 1 and 2 below.

Problem 1 (Embedding Inversion). Given an embedding algorithm E : G → Rn×k

and the embedding E(G) for some G ∈ G, produce G̃ ∈ G with E(G̃) = E(G) or such

that
∥∥∥E(G̃)− E(G)

∥∥∥ is small for some norm ∥·∥.

We refer to k as the embedding dimension. A solution to Problem 1 lets us approx-

imately invert the embedding E(G) to obtain a graph. It is natural to ask what

structure is common between G, G̃. Using the same notation as Problem 1, our sec-

ond problem is as follows.

Problem 2 (Graph Recovery). Given G, G̃ such that
∥∥∥E(G̃)− E(G)

∥∥∥ is small for

some matrix norm ∥·∥, how close are G, G̃ in terms of common edges, degree sequence,

triangle counts, and community structure?

35

25 27 29 211

Embedding Rank
0.00
0.25
0.50
0.75
1.00
1.25

Fr
ob

en
iu

s E
rro

r

Adjacency Matrix

BlogCatalog
Cora
Citeseer

Email
PPI
YouTube

25 27 29 211
Embedding Rank

−0.2

−0.1

0.0

0.1

0.2

Co
nd

uc
ta
nc
e
Er
ro
r

PPI

Communit 33, size = 197
Communit 25, size = 197
Communit 43, size = 194
Communit 5, size = 193
Communit 30, size = 190

(a) (b)

Figure 2.6. (a) Relative Frobenius error
∥∥∥A− Ã

∥∥∥
F
/ ∥A∥F between the adjacency

matrices of G and G̃. (b) Relative error between G and G̃ for the conductances of
the five largest communities (corresponding to biological states) in a human protein-
protein interaction network.

Answering Problems 1 and 2 is an important step towards a better understanding

of a node embedding method E . We focus on the popular DeepWalk method [144].

As discussed in Section 2.1, DeepWalk embedding can be interpreted as low-rank

approximation of a pointwise mutual information (PMI) matrix based on node co-

occurrences in random walks [71]. The NetMF method [147] directly implements this

low-rank approximation using SVD, giving a variant with improved performance in

many tasks. Due to its mathematically clean definition, we use this variant. Many

embedding methods can be viewed similarly – as producing a low-rank approximation

of some graph-based similarity matrix. We expect our methods to extend to such

embeddings.

Our contributions. We make the following findings:

• We prove that when the embedding dimension k is equal to n and the node

embedding method is NetMF in the limit as the co-occurrence window size

parameter goes to infinity, then solving a linear system can provably recover G

from E(G), i.e., find G̃ = G.

36

• We present two algorithms for solving Problem 1 on NetMF embeddings in

typical parameter regimes. The first is inspired by the above result, and relies

on solving a linear system. The second is based on minimizing
∥∥∥E(G)− E(G̃)

∥∥∥
F

,

where ∥·∥F is the matrix Frobenius norm, using gradient based optimization.

• Despite the non-convex nature of the above optimization problem, we show

empirically that our approach successfully solves Problem 1 on a variety of real

word graphs, for a range of embedding dimensions used frequently in practice.

We show that, typically our optimization based algorithm outperforms the linear

system approach with respect to producing a graph G̃ with embeddings closer

to those of the input graph G.

• We study Problem 2 by applying our optimization algorithm to NetMF embed-

dings for a variety of real world graphs. We compare the input graph G and the

output of our inversion algorithm G̃ across different criteria. Our key findings

include the following:

1. Fine-Grained Edge Information. As the embedding dimension k in-

creases up to a certain point G̃ tends closer to G, i.e., the Frobenius norm of

the difference of the adjacency matrices gets smaller. After a certain point,

the recovery algorithm is trying unsuccessfully to reconstruct fine grained

edge information that is “washed-out” by NetMF. Figure 2.6(a) illustrates

this finding for a popular benchmark of datasets (see Section 2.2.3 for more

details).

2. Graph properties. We focus on two fundamental graph properties, counts

of triangles and community structure. Surprisingly, while the number of

triangles in G and G̃ can differ significantly, community structure is well-

preserved. In some cases this structure is actually enhanced/emphasized by

37

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

Figure 2.7. G (left), a stochastic block model graph with 1000 nodes and 4 clusters,
and G̃ (right), a reconstruction of G from a 32-dimensional NetMF embedding. While
G and G̃ differ in the exact edges they contain, we can see that the community
structure is preserved.

the embedding method. That is, the conductance of the same community in

G̃ is even lower than in G.

Figure 2.6(b) shows the relative error between the conductance of a ground-

truth community in G and the conductance of the same community in G̃

vs. k for the five largest communities in a human protein-protein interaction

network.

Figure 2.7 provides another visual summary of the above findings. Specifically,

it shows on the left the spy plot of a stochastic block model graph with 1 000

nodes and four clusters, and on the right the spy plot of the output of our re-

construction algorithm from a 32-dimensional NetMF embedding of the former

graph. The two graphs differ on exact edges, but the community structure is

preserved.

2.2.1 Related work

Graph recovery from embeddings. To the best of our knowledge, Problem 1 has

not been studied explicitly in prior work. [85] study graph recovery using a partial

set of effective resistance measurements between nodes – equivalent to Euclidean

38

distances for a certain embedding, see Section 4 of [174]. Close to our work lies recent

work on node embedding privacy, and in particular graph reconstruction attacks on

these embeddings. [54] identify neighbors of a given node v with good accuracy by

considering the change in embeddings of the other nodes in G and G \ v. [51] study a

graph reconstruction attack that inverts a simple spectral embedding using a neural

network. Training this network requires knowledge of a random subgraph of G, used

as training data, and can be viewed as solving Problem 1, but with some auxiliary

information provided on top of E(G).

Graph sketching algorithms study the recovery of information about G (e.g., ap-

proximations to all its cuts or shortest path distances) from linear measurements of

its edge-vertex incidence matrix [122]. These linear measurements can be thought of

as low-dimensional node embeddings. However, generally they are designed specifi-

cally to encode certain information about G, and they differ greatly from the type

of embeddings used in graph learning applications. In Section 3.1, we show that any

graph with degree bounded by ∆ admits an embedding into 2∆ + 1 dimensions that

can be exactly inverted. These exact embeddings allow for a perfect encoding of the

full graph structure in low-dimensions, and circumvent limitations of a large family

of embeddings that cannot capture triangle richness and edge sparsity provably in low

dimensions [167].

DeepWalk and NetMF. We focus on inverting embeddings produced by the NetMF

variant [147] of the popular DeepWalk method [144]. Consider an undirected, con-

nected, non-bipartite graph G, with adjacency matrix A ∈ {0, 1}n×n, diagonal degree

matrix D ∈ Rn×n and volume vG = tr(D) =
∑

i,j Aij. Qui et al. show that, for

window size hyperparameter T (typical settings are T = 10 or T = 1), DeepWalk

stochastically factorizes the pointwise mutual information (PMI) matrix:

M̂T = log

(
vG
T

T∑
r=1

(D−1A)rD−1

)
,

39

where the logarithm is applied entrywise to its n × n argument. Note that if the

diameter of G exceeds T , then at least one entry of
∑T

r=1(D
−1A)rD−1 will be 0. To

avoid taking the logarithm of 0, NetMF instead employs the positive pointwise mutual

information (PPMI) matrix:

MT = log

(
max

(
1,

vG
T

T∑
r=1

(D−1A)rD−1

))
. (2.7)

Via truncated eigendecomposition of MT , one can find an eigenvector matrix

V ∈ Rn×k and a diagonal eigenvalue matrix W ∈ Rk×k such that MT,k = V WV ⊤

is the best possible k-rank approximation of MT in the Frobenius norm. The NetMF

embedding is set to the eigenvectors scaled by the square roots of the eigenvalue

magnitudes. I.e., E(G) = V
√
|W |, where the absolute value and the square root

are applied entrywise. In practice, these node embeddings perform at least as well as

DeepWalk in downstream tasks. Further, their deterministic nature lets us to define

a straightforward optimization model to invert them.

2.2.2 Proposed methods

In Sections 2.2.2.1 and 2.2.2.2 we present our two proposed NetMF embedding

inversion methods. The first is inspired by our constructive proof of Theorem 2.2.1

and relies on solving an appropriately defined linear system. The second is based

on optimizing a natural objective using a gradient descent algorithm. Since the

NetMF embedding E(G) encodes the best k-rank approximation MT,k = V WV T

to the positive pointwise mutual information (PPMI) matrix MT , we will assume

throughout that we are given MT,k directly and seek to recover G̃ from this matrix.

We also assume knowledge of the number of edges in G in terms of the volume vG.

While all networks used in our experiments are unweighted, simple, undirected

graphs, i.e., their adjacency matrices are binary (A ∈ {0, 1}n×n), our inversion al-

gorithms produce G̃ with Ã ∈ [0, 1]n×n. The real valued edge weights in G̃ can be

40

thought of as representing edge probabilities. We will also convert G̃ to an unweighted

graph with binary adjacency matrix Ãb ∈ {0, 1}n×n. We describe the binarization

process in detail in the following sections.

2.2.2.1 Analytical Approach

We leverage our asymptotic result from Section 2.1, which states that as the

number of samples and the window size T for DeepWalk/NetMF tend to infinity, the

PMI matrix tends to the limit:

lim
T→∞

T · M̂T = M̂∞ = vG ·D−1/2(L̄+ − I)D−1/2 + J , (2.8)

where L̄ = I −D−1/2AD−1/2 is the normalized Laplacian, L̄+ is the Moore-Penrose

pseudoinverse of this matrix, and J is the all-ones matrix. Our first observation is

that if, in addition to M̂∞, we are given the degrees of the vertices in G, then we

know both D and vG, and we can simply invert Equation 2.8 as follows:

L̄ =

(
D

1/2

(
M̂∞ − J

vG

)
D

1/2 + I

)+

A = D
1/2
(
I − L̄

)
D

1/2.

(2.9)

Recovery of Degrees from Limiting PMI. We now show that using just the

graph volume vG, one can perfectly recover the degree matrix D from M̂∞ via a

linear system, provided the graph’s adjacency matrix is full-rank. For an undirected

graph G with adjacency matrix A and unnormalized Laplacian L, let d be the vector

with ith entry equal to the ith node’s degree and d1/2 be its entrywise square root.

Note that

L̄d
1/2 = D−1/2LD−1/2d

1/2 = D−1/2L1 = 0

41

since the all-ones vector 1 is in the null space of the unnormalized Laplacian L.

Suppose we have the limiting PMI matrix M∞ and the graph volume vG. We subtract

the all-ones matrix J from M∞ and multiply by d/vG:

(M∞ − J)(d/vG) = vG ·D−1/2(L̄+ − I)D−1/2(d/vG)

= D−1/2L̄+d
1/2 −D−1/2Id

1/2

= 0− 1 = −1.

Thus, if we solve the linear system (M∞−J)x = −1 for x, we should get x = d/vG,

from which we can determine all nodes’ degrees. Note that without vG, we can still

recover the degrees up to a constant factor. The only issue with the above approach

occurs when (M∞ − J) is singular and the linear system does not have a unique

solution. (M∞−J) is singular iff (L̄+−I) is singular, and this only occurs when L̄+

and hence L̄ has an eigenvalue equal to 1. L̄ = I −D−1/2AD−1/2, so this requires

that D−1/2AD−1/2 has a zero eigenvalue. Thus, L̄+− I is singular exactly when A is

singular.

Combining this fact with Equations 2.8 and 2.9 we obtain the following:

Theorem 2.2.1 (Limiting Invertibility of Full-Rank PMI Embeddings). Let G be

an undirected, connected, non-bipartite graph with full-rank adjacency matrix A ∈

{0, 1}n×n and volume vG. Let M̂T be the PMI matrix of G which is produced with

window size T . There exists an algorithm that takes only M̂T and vG as input and

recovers A exactly in the limit as T →∞.

Approximation. In our embedding inversion task, rather than the exact limiting

PMI matrix M̂∞, we are given the low-rank approximation MT,k of the finite-T PPMI

matrix, through the NetMF embeddings. Our first algorithm is based on essentially

ignoring this difference. We use MT,k to obtain an approximation to M̂∞, which we

42

then plug into Equation 2.9. This approximation is based on inverting the following

limit from Section 2.1:

lim
T→∞

M̂T = log
(

1
T
M̂∞ + J

)
, (2.10)

where the logarithm is applied entrywise.

Due to the various approximations used, the elements of the reconstructed adja-

cency matrix Ã may not be in {0, 1}, and may not even be in [0, 1]; for this reason, as

in [167], we apply an entrywise clipping function, clip(x) = min(max(0, x), 1), after

the inversion steps from Equations 2.9 and 2.10. The overall procedure is given in

Algorithm 2.

Algorithm 2 DeepWalking Backwards (Analytical)
input approximation MT,k of true T -step PPMI, window-size T , degree matrix D,
graph volume vG
output reconstructed adjacency matrix Ã ∈ [0, 1]n×n

1: M̃∞ ← T · (exp (MT,k)− J) ▷ exp is applied entrywise, J is the all-ones matrix
2: ˜̄L←

(
D1/2

(
M̃∞−J

vG

)
D1/2 + I

)+
3: Ã← clip

(
D1/2

(
I − ˜̄L

)
D1/2

)
4: return Ã

Binarization. To produce a binary adjacency matrix Ãb ∈ {0, 1}n×n from Ã, we

use a slight modification of Algorithm 2: rather than clipping, we set the highest vG

off-diagonal entries above the diagonal to 1, and their symmetric counterparts below

the diagonal to 1. This ensures that the matrix represents an undirected graph G̃

with the same number of edges as G.

2.2.2.2 Optimization Approach

Our gradient based approach parameterizes the entries of a real valued adjacency

matrix Ã ∈ (0, 1)n×n with independent logits for each potential edge, and leverages

the differentiability of Equation 2.7. Based on Ã, we compute the PPMI matrix

43

M̃T , and then the squared PPMI error loss, i.e., the squared Frobenius error between

M̃T and the low-rank approximation MT,k of the true PPMI, given by the NetMF

embeddings. We differentiate through these steps, update the logits, and repeat.

Pseudocode is given in Algorithm 3.

Since the input to the algorithm is a low-rank approximation of the true PPMI,

and since this approximation is used for the computation of error, it may seem more

appropriate to also compute a low-rank approximation of the reconstructed PPMI

matrix M̃T prior to computing the error; we skip this step since eigendecomposition

within the optimization loop is both computationally costly and unstable to differen-

tiate through.

Note that we invoke a “shifted logistic” function σv which constructs an adjacency

matrix with a given target volume. The pseudocode for this function is given in

Algorithm 4. This algorithm is an application of Newton’s method. We find that 10

iterations are sufficient for convergence in our experiments.

Our implementation uses PyTorch [140] for automatic differentiation and mini-

mizes the loss using the SciPy [89] implementation of L-BFGS [115, 210] with default

hyperparameters and a maximum of 500 iterations.

Algorithm 3 DeepWalking Backwards (Optimization)
input approximation MT,k of true T -step PPMI, window-size T , graph volume vG,
number of iters. N
output reconstructed adjacency matrix Ã ∈ (0, 1)n×n

1: Initialize elements of X ∈ R(n×n) to 0 ▷ logits of the reconstructed adj. matrix
2: for i← 1 to N do
3: Ã← σvG(X) ▷ construct adj. matrix with target volume, see Algorithm 4
4: M̃T ← PPMI

(
Ã
)

via Eq. 2.7
5: L← ∥M̃T −MT,k∥2F ▷ squared error of PPMI
6: Calculate ∂XL via automatic differentiation through Steps 3 to 5
7: Update X to minimize L using ∂XL

8: return σv(X)

44

Algorithm 4 Shifted Logistic Function σv

input logit matrix X ∈ R(n×n), target sum v ∈ (0, n2), number of iterations I
output matrix A ∈ (0, 1)n×n which sums approximately to v

1: s← 0
2: for i← 1 to I do
3: A← σ(X + s) ▷ σ is the logistic function applied entrywise
4: s← s+ v−Σ(A)

Σ(A◦(J−A))
▷ Σ sums over all elements, ◦ is an entrywise product

5: return σ(X + s)

Binarization. We binarize the reconstructed Ã ∈ (0, 1)n×n differently from the prior

approach. We treat each element of Ã as the parameter of a Bernoulli distribution

and sample independently to produce Ãb ∈ {0, 1}n×n. Since we set Ã’s volume to be

approximately vG using the σv function, the number of edges in the binarized network

after sampling is also ≈ vG.

2.2.3 Experimental results

We now detail the setup and results for applying our inversion algorithms to real-

world and synthetic graphs.

2.2.3.1 Experimental setup

Datasets. We apply the NetMF inversion algorithms described in Section 2.2.2 to a

benchmark of networks, summarized in Table 2.3. As part of our investigation of how

well the output G̃ of our methods matches the underlying graph G, we examine how

community structure is preserved. For this reason, we choose only test graphs with

labeled ground-truth communities. All datasets we use are publicly available: see

[147] for BlogCatalog and PPI, [166] for Citeseer and Cora, and SNAP [106]

for Email and Youtube. The YouTube graph we use is a sample of 20 communities

from the raw network of [106]. For all networks, we consider only the largest connected

component. The community labels that we report for various datasets, such as those

45

Name Nodes Edges Labels

BlogCatalog 10,312 333,983 39
E-mail 986 16,064 42
PPI 3,852 76,546 50
Cora 2,485 10,138 7
Citeseer 2,110 7,388 6
YouTube 10,617 55,864 20

Table 2.3. Network statistics for experiments in Section 2.2.

reported in the legends of Figure 2.10, refer to the labels as given in the input datasets.

Hyperparameter settings. We experiment with a set of different values for the

embedding dimension k, starting from 24 and incrementing in powers of 2, up to

211 = 2048, except for the Email dataset, which has fewer than 210 nodes. For this

dataset we only test for k up to 29. Throughout the experiments, we set the window-

size T to 10, as this is the most commonly used value in downstream machine learning

tasks.

Evaluation. Our first step is to evaluate how well the two algorithms proposed in

Section 2.2.2 solve embedding inversion (Problem 1). To do this, we measure the

error in terms of the relative Frobenius error between the rank-k approximations

of the true and reconstructed PPMI matrices, MT,k and M̃T,k respectively. These

matrices represent the NetMF embeddings of G and G̃. The relative Frobenius error

for two matrices X and X̃ is simply
∥∥∥X − X̃

∥∥∥
F
/ ∥X∥F .

We next study how the reconstructed graph G̃ obtained via embedding inversion

compares with the true G (Problem 2). Here, we binarize the reconstructed adjacency

matrix to produce Ãb. See Sections 2.2.2.1 and 2.2.2.2 for details. Thus, like G, G̃ is

an undirected, unweighted graph. Most directly, we measure the relative Frobenius

error between G’s adjacency matrix A and G̃’s adjacency matrix Ãb. We also measure

the reconstruction error for three other key measures:

46

• Number of triangles (τ). The total number of 3-cliques, i.e., triangles, in

the graph.

• Average path length (ℓ). The average path length between any two nodes

in the graph.

• Conductance (ϕ) of ground-truth communities. For a community S, the

conductance is defined as: ϕ(S) = e(S:S̄)

min(vol(S),vol(S̄)) where e(S : S̄) is the number

of edges leaving community S and vol(S) is number of edges induced by S. S̄

is the complement V \ S.

For the above measures we report the relative error between the measure x for

the true network and the one of the recovered network x̃, defined as (x̃− x)/x.

Finally, we evaluate how well G̃’s low-dimensional embeddings perform in classi-

fication, where the goal is to infer the labels of the nodes of G. We train a linear

model using a fraction of the labeled nodes of G and the low-dimensional embedding

of G̃, and try to infer the labels of the remaining nodes. We report accuracy in terms

of micro F1 score and compare it with the accuracy when using the low-dimensional

embedding of G itself. For this task, we use both the recovered real-valued adjacency

matrix of G̃ and its binarized version. We observe that, contrary to the previous

measures, performance is sensitive to binarization.

Code. All code for this section is written in Python and is available at https:

//github.com/konsotirop/Invert_Embeddings.

Summary of findings. Before we delve into details, we summarize our key findings.

• The optimization approach (Alg. 3), significantly outperforms the analytical

approach (Alg. 2), in terms of how closely the NetMF embeddings of the recon-

structed graph G̃ match those of the true graph G (i.e., in solving Problem 1).

See Figure 2.8.

47

https://github.com/konsotirop/Invert_Embeddings
https://github.com/konsotirop/Invert_Embeddings

25 27 29 211

Embedding Rank

0.5

1.0

1.5

Fr
ob

en
iu

s E
rro

r

Embedding Matrix (Analytic)
BlogCatalog
Cora
Citeseer

Email
PPI
Youtube

25 27 29 211
Embedding Rank

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ob

en
iu
s E

rro
r

Embedding Matrix (Optimization)
BlogCatalog
Cora
Citeseer

Email
PPI
Youtube

Figure 2.8. Relative Frobenius error vs. embedding rank k for the low-rank PPMI
matrices of the graphs reconstructed using the inversion algorithms: the analytical
approach, Alg. 2 (left), and the optimization approach, Alg. 3 (right). For details,
see Section 2.2.3.2.

• Focusing on G̃ produced by Algorithm 3, the NetMF embedding is close to the

input at all ranks. The adjacency matrix error of G̃ trends downwards as the

embedding rank k increases. However, for small k, the two graph topologies

can be very different in terms of edges and non-edges. See Figure 2.9.

• G̃ preserves and or even enhances the community structure present in G, and

tends to preserve the average path length. However, the number of triangles in

G̃ greatly differs from that in G when the embedding rank k is low. See Figure

2.9.

• G̃’s NetMF embeddings perform essentially identically to G’s in downstream

classification on G. However, binarization has a significant effect: if we first

binarize G̃’s edge weights, and then produce embeddings, there is a drop in

classification performance.

• Overall, we are able to invert NetMF embeddings as laid out in Problem 1 and,

in the process, recover G̃ with similar community structure to the true graph G.

Surprisingly, however, G̃ and G can be very different graphs in terms of both

specific edges and broader network properties, despite their similar embeddings.

48

25 27 29 211

Embedding Rank
0.00
0.25
0.50
0.75
1.00
1.25

Fr
ob

en
iu

s E
rro

r

Binarized Adjacency Matrix

BlogCatalog
Cora
Citeseer

Email
PPI
YouTube

25 27 29 211

Embedding Rank
−1

0

1

2

3

Er
ro

r

Triangle Count
BlogCatalog
Cora
Citeseer

Email
PPI
YouTube

25 27 29 211

Embedding Rank

−0.4

−0.2

0.0

0.2

Er
ro
r

Average Path Length

BlogCatalog
Cora
Cite eer

Email
PPI
YouTube

Figure 2.9. From left to right: Relative Frobenius error for the binarized adjacency
matrix; relative error for the number of triangles; and relative error for the average
path length. All plots are versus the embedding rank.

2.2.3.2 Analytical vs. Optimization Based Inversion

Figure 2.8 reports the relative Frobenius error of the analytical method (Alg. 2)

and the optimization approach (Alg. 3) in embedding inversion as we range k. We

can see that Alg. 3 significantly outperforms Alg. 2. While Alg. 2 comes with strong

theoretical guarantees (Theorem 2.2.1) in asymptotic settings (i.e., T → ∞, k = n),

it performs poorly when these conditions are violated. In practice, the embedding

dimension k is always set to be less than n (typical values are 128 or 256), and T

is finite (T is often set to 10). At these settings, the approximations used in Alg. 2

seem to severely limit its performance.

Given the above, in the following sections we focus our attention on the optimiza-

tion approach. This approach makes no assumption on the rank k, or the window-size

T . We can see in Figure 2.8 that the embedding error stays low across different values

of k when using Alg. 3, indicating that performance is insensitive to the dimension

parameter.

2.2.3.3 Evaluating Graph Recovery

Adjacency matrix reconstruction. We next examine how closely the output of

Alg. 3, the binarized adjacency matrix Ãb, matches the original adjacency matrix A,

especially as we vary the embedding dimensionality k. As can be seen in Figure 2.9,

49

at low ranks, the relative Frobenius error is often quite high – near 1. In combination

with Figure 2.8 (left), this shows an interesting finding: two graphs may be very dif-

ferent topologically, but still have very similar low-dimensional node embeddings (i.e.,

low-rank PPMI matrices). We do observe that as the embedding dimension grows,

the adjacency matrix error decreases. This aligns with the message of Theorem 2.2.1

that, in theory, high dimensional node embeddings yield enough information to facil-

itate full recovery of the underlying graph G. We remark that, by construction, G

and G̃ have approximately the same number of edges. Thus, the incurred Frobenius

error is purely due to a reorientation of the specific edges between the true and the

reconstructed networks.

Recovery of graph properties. Bearing in mind that the recovered G̃ differs sub-

stantially from the input graph G in the specific edges it contains, we next investigate

whether the embedding inversion process at least recovers bulk graph properties.

Figure 2.9 shows the relative error of the triangle count versus embedding dimen-

sionality k. We observe that the number of triangles can be hugely different among

the true and the reconstructed networks when k is small. In other words, there exist

networks with similar low-dimensional NetMF embeddings that differ significantly

in their total number of triangles. This is surprising: since the number of triangles

is an important measure of local connectivity, one might expect it to be preserved

by the node embeddings. In constrast, for another important global property, the

average path length, the reconstruction error is always relatively low (also shown in

Figure 2.9).

In Figure 2.10, we plot the relative errors for the conductances of the five most

populous communities of the networks under consideration. We see that the con-

ductance of ground-truth communities is generally preserved in the reconstructed

networks, with the error becoming negligible after rank 27 = 128, an embedding rank

which is often used in practice. This finding is intuitive – since NetMF embeddings

50

25 27 29 211
Embedding Rank

−0.15

−0.10

−0.05

0.00

0.05

0.10
Er
ro
r

BlogCatalog

Comm nity 7, size = 1623
Comm nity 18, size = 986
Comm nity 23, size = 977
Comm nity 4, size = 908
Comm nity 5, size = 876

25 27 29 211

Embedding Rank

−0.2

0.0

0.2

0.4

0.6

0.8

Er
ro
r

Cora
Community 0, si e = 726
Community 5, si e = 406
Community 3, si e = 379
Community 4, si e = 344
Community 6, si e = 285

25 27 29 211

Embedding Rank

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro
r

Citeseer
Community 1, size = 532
Community 0, size = 463
Community 2, size = 388
Community 5, size = 308
Community 4, size = 304

25 27 29
Embedding Rank

 0.4

 0.2

0.0

Er
ro
r

Email

Community 4, size = 107
Community 14, size = 91
Community 1, size = 62
Community 21, size = 56
Community 15, size = 54

25 27 29 211

Embedding Rank

−0.2

−0.1

0.0

0.1

0.2

Er
ro
r

PPI

Community 33, si e = 197
Community 25, si e = 197
Community 43, si e = 194
Community 5, si e = 193
Community 30, si e = 190

25 27 29 211
Embedding Rank

−0.6

−0.4

−0.2

0.0

0.2

Er
ro
r

Yo T be

Comm nity 0, size = 2217
Comm nity 1, size = 1900
Comm nity 2, size = 1098
Comm nity 3, size = 824
Comm nity 4, size = 700

Figure 2.10. Relative error for the conductances of the five largest communities for
each of the selected networks.

Figure 2.11. Multi-label classification using embeddings from reconstructed net-
works. Performance when using embeddings from a random graph is included as a
baseline.

51

are used for node classification and community detection, it is to be expected that

they preserve community structure.

Node classification. In a typical classification setting for a graph G, when we know

only a fraction of the labels of its nodes and want to infer the rest, we can use a

low-dimensional embedding of its nodes as our feature matrix and employ a linear

classifier to infer the labels for the remaining nodes. While our reconstructed networks

G̃ differ from G edge-wise, they have similar low-dimensional NetMF embeddings.

As another indicator of the preservation of community structure, we measure the

performance in this node classification task when using the embeddings E(G̃) as our

feature matrix in place of E(G). We report the performance of two embeddings made

from reconstructed networks: by applying NetMF to G̃ before and after binarizing

its edges as described in Section 2.2.2.2.

Our classification setting is the same as that of [147]: we use a one-vs-rest logistic

regression classifier, sampling a certain portion of the nodes as the training set. We

repeat this sampling procedure 10 times and report the mean micro F1 scores. We

also repeat the experiments as we vary the embedding dimensionality k and as we

change the ratio of labeled examples from 10% to 90%.

As shown in Figure 2.11, when we use E(G̃) generated from the non-binarized

(i.e., expected) G̃ as the input to our logistic regression classifier, we achieve almost

equal performance to when we use the true embedding E(G). This finding can be

interpreted in two ways. First, it shows that the low error observed in Figure 2.8 (left)

extends beyond the Frobenius norm metric, to the perhaps more directly meaningful

metric of comparable performance in classification. Second, it makes clear that losing

local connectivity properties in the inversion process (like total triangle count and the

existence of specific edges) does not significantly effect classification performance. The

reconstructed networks seem to preserve more global properties that are important

for node classification, like community structure.

52

Name Clusters pin pout

SBM 1 4 0.10 0.020
SBM 2 2 0.06 0.015
SBM 3 2 0.10 0.055
SBM 4 2 0.10 0.010
SBM 5 2 0.07 0.040

Table 2.4. Configuration of SBM networks; all networks have 1000 nodes.

While binarization does not significantly affect other metrics used to compare

G̃ to G (e.g., adjacency error, triangles), the classification task seems to be more

sensitive, as performance falls when we use the embedding for the binarized G̃. It is

an interesting open direction to investigate this phenomenon, and generally how the

low-dimensional embeddings of a probabilistic adjacency matrix change when that

matrix is sampled to produce an unweighted graph.

Synthetic graphs. We repeat the above experiments using several synthetic net-

works produced by the stochastic block model (SBM) [2]. This random graph model

assigns each node to a single cluster, and an edge between two nodes appears with

probability pin if the nodes belong to the same cluster and pout otherwise, where gener-

ally it sets pout < pin. The configurations are summarized in Table 2.4. All networks

have 1000 nodes, and, within each network, each cluster has the same size.

As with the real-world networks, we include plots for the error of the NetMF

embedding matrix and the binarized adjacency matrix (Figure 2.12); the error of

triangles count, and average path length (Figure 2.13); the error of the conductances

of the top communities (Figure 2.14); and the node classification performance using

embeddings made from the reconstructed networks (Figure 2.15). For the node clas-

sification task, each node is a member of a single ground-truth community which

corresponds to its cluster in the SBM.

53

25 27 29
Embedding Rank

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu
s E

rro
r

Embedding Matrix
SBM1
SBM2
SBM3

SBM4
SBM5

25 27 29

Embedding Rank
0.00

0.25

0.50

0.75

1.00

1.25

Fr
ob

en
iu
s E

rro
r

(Binarized) Adjacency Matrix

SBM 1
SBM 2
SBM 3

SBM 4
SBM 5

Figure 2.12. Relative Frobenius error for the low-rank PPMI matrices of recon-
structions of the synthetic SBM networks (left) and the binarized adjacency matrix
(right).

25 27 29

Embedding Rank
−1

0

1

2

3

Er
ro

r

Triangle Count
SBM 1
SBM 2
SBM 3

SBM 4
SBM 5

25 27 29
Embedding Rank

0.00

0.02

0.04

0.06

Er
ro
r

Average Path Length
SBM 1
SBM 2
SBM 3

SBM 4
SBM 5

Figure 2.13. Graph reconstruction errors for synthetic SBM networks. Relative
error for the number of triangles (left) and for the average path length (right).

The results here largely match those of the real-world networks: the networks

recovered by applying NetMF embedding inversion differ substantially from the true

networks in terms of adjacency matrix and triangle count. However, we observe that

community structure is well preserved – see Figure 2.7 for a visual depiction.

Finally, we note that when our input is the full rank PPMI matrix (i.e., k = n),

we succeed in reconstructing G exactly (i.e., G̃ = G) for the SBM networks. This

further supports the message of Theorem 2.2.1 that, when embedding dimensionality

is sufficiently high, node embeddings can be exactly inverted. However, at low dimen-

sions, the embeddings seem to capture some important global properties, including

community structure, while washing out more local structure.

54

25 27 29
Embedding Rank

−0.2

0.0

0.2

0.4

Er
ro
r

SBM 1
Communit 0, size = 250
Communit 1, size = 250
Communit 2, size = 250
Communit 3, size = 250

25 27 29

Embedding Rank
−0.2

0.0

0.2

0.4

Er
ro
r

SBM 2
Community 0, si e = 500
Community 1, si e = 500

25 27 29
Embedding Rank

−0.2

0.0

0.2

0.4

Er
ro
r

SBM 3
Communit 0, size = 500
Communit 1, size = 500

25 27 29

Embedding Rank
−0.2

0.0

0.2

0.4

Er
ro
r

SBM 4
Community 0, si e = 500
Community 1, si e = 500

25 27 29

Embedding Rank
−0.2

0.0

0.2

0.4

Er
ro
r

SBM 5
Community 0, si e = 500
Community 1, si e = 500

Figure 2.14. Relative error for the conductances of the five most populous commu-
nities for each synthetic SBM network.

Figure 2.15. Multi-label classification using embeddings from reconstructions of two
of the synthetic SBM networks.

55

2.2.4 Conclusion

We initiate the study of node embedding inversion as a tool to probe the informa-

tion encoded in these embeddings. For the NetMF embedding method, we propose

two approaches based on different techniques, and we show that the inversion prob-

lem can be effectively solved. Building on this, we show that while these embeddings

seem to wash out local information in the underlying graph, they can be inverted to

recover a graph with similar community structure to the original. Two interesting

questions are whether this framework can be extended beyond the NetMF method,

and whether we can formalize these empirical findings mathematically.

56

CHAPTER 3

POWER AND LIMITATIONS OF EMBEDDINGS

In this chapter, we examine upper and lower bounds on the capabilities of node

embeddings at representing graph structure.

3.1 Exact Low-Rank Representations of Complex Networks
This recent explosion of novel node embedding methods, which has been discussed

previously in this thesis, has already proved valuable for numerous graph mining tasks.

But what are the limitations of these methods?

This question was recently posed by Seshadhri, Sharma, Stolman, and Goel in

[167]. Seshadhri et al. remark that (i) regardless of the node embedding method,

the goal is to produce a low-dimensional embedding that captures as much structure

in G as possible, and that (ii) it is well-known that real-world networks are sparse

in edges, and rich in triangles. They ask the following intriguing question: can low-

dimensional node embeddings represent triangle-rich complex networks? Their key

conclusion is that graphs generated from low-dimensional embeddings cannot contain

many triangles on low-degree vertices, and thus the answer to the aforementioned

question is negative. See Theorem 3.1.4 in Section 3.1.1 for a formal statement of

this result.

In this section, we prove that the results in [167] are a consequence of the model

they use, rather than a general property of low-dimensional embeddings. We state

our contributions as informal results; for the formal statements, see Section 3.1.2.

Our first main result is:

57

Figure 3.1. Reconstructions of a toy graph with 100 triangles connected in a
loop and a self-loops on each vertex. Top: Zoomed in to the first 24 vertices, i.e.,
the first 8 triangles; Bottom: Whole graph. Left: True adjacency matrix; Middle:
rank-5 approximation produced by our logistic PCA variant (LPCA); Right: rank-15
approximation with truncated SVD (TSVD) method [167].

Result 3.1.1. Low-dimensional node embeddings are able to represent triangle-rich

graphs.

Figure 3.1 gives an illustrative example of Result 3.1.1. Consider the family of

graphs consisting of a set of triangles connected in a cycle. This family is a hard

instance according to result of [167] since it has near maximum triangle density given

its low maximum degree. Indeed, we can observe that an optimal 15-dimensional

representation using the proposed method of [167] preserves very little structure in

the graph. However, as Figure 3.1 shows, there exists a rank-5 representation which

nearly fully captures the graph structure. We discuss the details in Section 3.1.3.

Our second key result is a low-dimensional model that can perfectly capture all

bounded degree graphs, regardless of structure. An important corollary of this result is

that preferential attachment graphs [16] admit a Θ(
√
n)-rank factorization with high

probability without losing any information about their structure. Furthermore, our

result is constructive.

58

Dataset # Nodes Mean Degree Exact Factorization
Dimension

Pubmed 19 581 4.48 48
ca-HepPh 11 204 21.0 32

BlogCatalog 10 312 64.8 128
Citeseer 3 327 2.74 16

Cora 2 708 3.90 16

Table 3.1. Preview of our results in Section 3.1.3; real-world graphs admit exact
low-rank factorizations.

Result 3.1.2. There exists a low-rank factorization algorithm that provably produces

exact low-dimensional embeddings for bounded degree graphs.

We believe such exact embeddings are of independent interest to researchers work-

ing in the interplay between privacy and node embeddings, e.g., [54, 209] and on

graph autoencoders [185, 192, 139, 162].

We complement our results with several experiments on real-world networks. We

observe that a simple algorithm can produce very low-dimensional exact representa-

tions, that go below the theoretical bounds we prove in Result 3.1.2, and still preserve

all local structure. See Table 3.1 for a preview of our results on some popular datasets.

We show that even lower dimensional factorizations, while not exact, suffice to capture

important structure such as degree and triangle density.

Result 3.1.3. Empirically we observe that our proposed algorithm produces very low-

dimensional embeddings that preserve the local structure of large real-world networks.

3.1.1 Background: Representations of Triangle-rich Networks

Recently, Seshadhri et al. [167] asked a crucial question: are there any inherent

limitations on the ability of low-dimensional embeddings to capture relevant structure

in complex networks? They argue that low-dimensional embeddings provably cannot

59

capture important properties of real-world complex networks. In particular, it is well-

known that real-world networks are sparse and contain many triangles, see e.g., [57,

105]. They argue that a graph generated from a natural low-dimensional embedding

cannot have this property. In particular they consider a truncated dot product model,

where each node vi is associated with an embedding xi ∈ Rk and nodes vi, vj connect

with probability proportional to the dot product x⊤
i xj, truncated to lie in [0, 1].

Formally:

Theorem 3.1.4 (Theorem 1, [167]). Let A = σ(XX⊤) where X ∈ Rn×k and σ(x) =

max(0,min(1, x)) is a thresholding function which is applied entry-wise to XX⊤. For

any c ≥ 4 and ∆ ≥ 0, if a graph G is generated by adding edge (i, j) independently with

probability Aij and the expected number of triangles in G that only involve vertices

of expected degree ≤ c is ≥ ∆n, then the embedding dimension k ≥ min(1,∆4/c9) ·

n/ log2 n.

If the triangle density ∆ and the maximum degree c are fixed, Theorem 3.1.4

implies that X must have near-linear dimension k = On/ log2 n). That is, no low-

dimensional embedding can capture the important feature of high triangle density

on low-degree nodes. This result contrasts with the well-known fact that low-rank

approximations can be used to approximate global triangle counts [186], showing that

counts restricted to a subgraph of bounded degree nodes cannot be preserved.

Seshadhri et al. conjecture that Theorem 3.1.4 generalizes to models where Aij

is generated by natural functions of the embeddings xi,xj other than the truncated

dot product. In the next section we argue that Theorem 3.1.4 is in fact brittle and a

consequence of the specific matrix factorization model used.

3.1.2 Theoretical Results

We start by showing the impossibility result of Theorem 3.1.4 depends critically

on the fact that each node is associated with just a single embedding xi ∈ Rk. This

60

ensures that the low-rank matrix XX⊤ is positive semidefinite (PSD), which is key in

proving Theorem 3.1.4. Many network embeddings, such as DeepWalk and Node2Vec

produce two embeddings xi,yi ∈ Rk for each node – sometimes called “word” and

“context” embeddings due to their use in the word embedding literature [126]. This

leads to a factorization of the form XY ⊤ for X,Y ∈ Rn×k which is not necessarily

PSD. Further, as discussed in [167], other methods [83] base connection probability

on the Euclidean distance between k-dimensional points. The underlying squared

Euclidean distance matrix D ∈ Rn×n is known to be exactly factorized as D = XY ⊤

for X,Y ∈ Rn×(k+2).

We show that this simple relaxation to allow for a non-PSD factorization allows

extremely low-dimensional embeddings to capture sparse, triangle dense graphs.

Theorem 3.1.5 (Low-Dimensional Embeddings Capture Triangles). Let A = σ(XY ⊤)

where X,Y ∈ Rn×3 and σ(x) = max(0,min(1, x)) is applied entrywise to XY ⊤. For

any integer c > 0, there exist X,Y such that if a graph G is generated by adding

edge (i, j) independently with probability Aij then G has maximum degree < c and G

contains Ω(c2n) triangles.

We note that G generated in Theorem 3.1.5 is just a union of n
c
c-cliques and in

fact has the maximum triangle density possible for a graph with max degree c. G’s

adjacency matrix A is block diagonal with blocks of size c. This matrix is very far

from low-rank and cannot be well approximated by a low-rank factorization XY ⊤.

However, as we will see, the simple σ(·) non-linearity is quite powerful here, allowing

an exact factorization of the form σ(XY ⊤) for X,Y ∈ Rn×3.

Proof of Theorem 3.1.5. We show how to form X,Y ∈ Rn×3 such that A = σ(XY ⊤)

is the adjacency matrix for a union of n/c cliques. Each clique contains
(
c
3

)
triangles.

Thus, there are n
c
·
(
c
3

)
= Ω(c2n) triangles in the graph, with maximum degree c− 1,

giving the theorem.

61

We place n points along a line in n/c clusters of c nodes each. All points in a cluster

are very close to each other, and clusters are spaced far apart. We then consider a

constant matrix minus the squared distance matrix between these points. We can

observe that this matrix has rank at most 3: consider x ∈ Rn×1 which represents the

n positions on the line. Let x2 contain the entry-wise squares of the values in x. Let

D = x21
⊤ + 1x⊤

2 − 2xx⊤ be the matrix whose entries are the squared Euclidean

distances between the points in x. Let D̄ = 2J −D, where J is the all-ones matrix.

Note that D̄ has rank ≤ rank(2J −x21
⊤)+ rank(−1x⊤

2)+ rank(−2xx⊤) = 3 and so

can be written as XY ⊤ for X,Y ∈ Rn×3. We set A = σ(XY ⊤) = σ(D̄).

Choose the points in u such that the clusters are separated by distance > 2 and

within each cluster the c points are arbitrarily close. For i, j in the same cluster,

Aij = D̄ij = 2−∥ui − uj∥22 > 1 and so we have an edge in G with probability 1. For

i, j in different clusters, Aij = D̄ij = 2−∥ui − uj∥22 ≤ 0, and so they do not have an

edge in G. Thus, G consists of a union of n/c disjoint c-cliques.

Exact Embeddings of Bounded-Degree Graphs. Observe that in the proof

of Theorem 3.1.5 we use the thresholded dot product model of [167] in a very re-

stricted way: all entries of XY ⊤ are either > 1 or < 0 and thus all large entries

are thresholded to 1 in σ(XY ⊤) and all small entries to 0. Thus, the same example

would hold if we replaced σ with the sign function s with s(x) = 0 for x < 0 and

s(x) = 1 otherwise. In other words, our example relies on the fact that the adjacency

matrix of G has low sign-rank. It can be written as A = s(XY ⊤) for X,Y ∈ Rn×3.

The sign-rank is widely studied due to its connections to circuit complexity [149, 27],

communication complexity [10, 114], and learning theory [12]. It is known via a poly-

nomial interpolation argument [10] that any matrix with sparse rows or columns has

low sign-rank, depending linearly on the sparsity. This yields the following theorem,

as well as a proof following the approach of of [10]:

62

Theorem 3.1.6 (Exact Embeddings for Bounded-Degree Graphs). Let A ∈ {0, 1}n×n

be the adjacency matrix of a graph G with maximum degree c. Then there exist

embeddings X,Y ∈ Rn×(2c+1) such that A = σ(XY ⊤) where σ(x) = max(0,min(1, x))

is applied entry-wise to XY ⊤.

Proof. Let V ∈ Rn×2c+1 be the Vandermonde matrix with Vt,j = tj−1. For any

x ∈ R2c+1, [V x](t) =
∑2c+1

j=1 x(j) · tj−1. That is: V x ∈ Rn is a degree 2c polynomial

evaluated at the integers t = 1, . . . , n.

Let ai be the ith row of A. ai has at most c nonzeros since G has maximum degree

c. We seek to find xi so that s(V xi) = ai, and thus, letting X ∈ Rn×2c+1 have xi as

its ith row, will have A = s(V X⊤). This yields the theorem since, if we scale V X⊤

by a large enough constant (which does not change its rank), all its positive entries

will be larger than 1 and thus we will have σ(V X⊤) = A.

To give xi with s(V xi) = ai, we equivalently must find a degree 2c polynomial

which is positive at all integers t with ai(t) = 1 and negative at all t with ai(t) = 0.

Let t1, t2, . . . , tc denote the indices where ai is 1. Let ri,L and ri,U be any values with

ti−1 < ri,L < ti and ti < ri,U < ti+1. If we chose the polynomial with roots at each ri,L

and ri,U , it will have 2c roots and so degree 2c. Further, this polynomial will switch

signs just at each root ri,L and ri,U . We can observe then that the polynomial will

have the same sign at t1, t2, . . . , tc (either positive or negative). Flipping the sign to

be positive, we have the result.

Theorem 3.1.6 stands in sharp contrast to the impossibility result of [167] (The-

orem 3.1.4). Not only can low-rank models capture complex network structure, but

they can capture the structure of any bounded-degree graph with rank depending only

on the max degree. We remark that the technique used to prove Theorem 3.1.6 ap-

plies also when each row of A is block sparse – with a few contiguous blocks of ones.

Considering the union of cliques example in Theorem 3.1.5, if we set the diagonal of

A to one, we have a block diagonal matrix – each row has a single contiguous block

63

of c ones. This matrix thus has sign rank at most 2 · 1 + 1 = 3, giving an alternative

proof of Theorem 3.1.5.

An interesting corollary of Theorem 3.1.6 is that even random graphs admit exact

low-dimensional factorizations if they have bounded degree. For example, preferential

attachment graphs [16], which bear certain similarities with real-world networks, are

sparse graphs with maximum degree bounded byO(
√
n) with high probability [21, 60].

We thus have:

Corollary 3.1.7. A random preferential attachment graph with n nodes generated

according to the Barabási-Albert-Bollobás-Riordan [16, 21] model admits an exact

Θ(
√
n) factorization.

Corollary 3.1.7 applies to numerous other random graph models with power law

degree distributions as long as the maximum degree produced is sublinear, e.g., [50,

26, 64].

We can interpret Theorem 3.1.6 and Corollary 3.1.7 in multiple ways: they il-

lustrate the power of low-dimensional models to exactly represent local structure in

sparse graphs. At the same time, they show that the goal of finding a low-dimensional

embedding to reconstruct a graph may be misleading, since a sufficiently optimized

embedding can interpolate and maybe ‘over-fit’ any bounded degree graph. This em-

phasizes that obtaining low or even zero approximation error graph embedding may

simply be due to capturing the fact that the given graph has low maximum degree.

We will see that in practice, the bound of Theorem 3.1.6 is not tight. Via a

simple logistic PCA method, we can construct very low-dimensional exact factoriza-

tions of many real-world graphs, even when they have high max degree. The precise

description of our algorithm follows in Section 3.1.3.

64

3.1.3 Empirical Results

We now empirically evaluate the effectiveness of low-dimensional embeddings in

capturing graph structure, showing that a simple approach can find exact embeddings

that match and in fact out perform our theoretical bounds. Code is available at

https://github.com/schariya/exact-embeddings.

Datasets. Our evaluations are based on 11 popular real-network datasets, detailed

below. Table 3.2 lists and shows some statistics of these datasets. For all networks, we

ignore weights (setting non-zero weights to 1) and remove self-loops where applicable.

Protein-Protein Interaction (PPI) [177] is a subgraph of the PPI network

for Homo Sapiens. Vertices represent proteins and edges represent interactions

between them.

Wikipedia [75] is a co-occurrence network of words from a subset of the

Wikipedia dump. Nodes represent words and edges represent co-occurrences

within windows of length 2 in the corpus.

BlogCatalog [4] is a social network of bloggers. Edges represent friendships.

Facebook [107] is a subset of the Facebook social network collected from survey

participants.

ca-HepPh and ca-GrQc [105] are collaboration networks from the “High En-

ergy Physics - Phenomenology” and “General Relativity and Quantum Cos-

mology” categories of arXiv, respectively. Nodes represent authors, and two

authors are connected if they have coauthored a paper.

Pubmed [130] consists of scientific publications from the PubMed database

pertaining to diabetes. Nodes are publications, and edges represent citations

among them.

65

https://github.com/schariya/exact-embeddings.

p2p-Gnutella04 [105] is a snapshot of the Gnutella peer-to-peer network from

August 4, 2002. Nodes are hosts in Gnutella, and directed edges are connections

between hosts.

Wiki-Vote [104] represents voting on Wikipedia till January 2008. In partic-

ular, nodes are users that either request adminship or vote for/against such a

promotion. A directed edge from node i to node j represents that user i voted

on user j.

Citeseer [166] represents papers from six scientific categories as nodes and the

citations among them as directed edges.

Cora [166] contains machine learning papers. Each node is a publication, and

there is a directed edge from node i to node j when paper i cites paper j.

Reconstruction Algorithms. The empirical results of Seshadhri et al. [167] focus

on the Truncated SVD (TSVD) algorithm. Let Z ∈ Rn×k be the orthonormal matrix

whose columns comprise the eigenvectors of the adjacency matrix A ∈ {0, 1}n×n

corresponding to the k largest magnitude eigenvalues. Let W ∈ Rk×k be diagonal,

with entries corresponding to the top k eigenvalues. The TSVD embeddings are given

by X = Zs(W)|W |1/2 and Y = Z|W |1/2, where s(·) denotes the sign function and

all functions are applied entry-wise to W . To form an expected adjacency matrix,

we compute σ(XY ⊤) where σ(x) = max(0,min(1, x)) is applied element-wise.

Note that XY ⊤ produced by TSVD is the rank-k matrix that is closest to A

in terms of Frobenius norm. That is, it would be an optimal low-rank factorization

if the threshold σ(·) were not applied. As discussed in Section 3.1.2, many natural

adjacency matrices, especially triangle dense ones such as the example of Theorem

3.1.5, are very far from low-rank and thus XY ⊤ does not well approximate A either

both before and after the threshold.

66

This motivates our proposed embedding method, which is based on Logistic PCA

(LPCA). Rather than minimizing the error between XY ⊤ and A, we attempt to

directly minimize the error between σ(XY ⊤) and A. For efficiency, we replace σ

with a natural smooth surrogate: the logistic function (the sigmoid). Specifically,

given A ∈ {0, 1}n×n and embeddings X,Y ∈ Rn×k, we let Ã = 2A − 1 denote the

shifted adjacency matrix with −1’s in place of 0’s and use the loss function:

L =
n∑

i=1

n∑
j=1

− log ℓ
(
Ãij[XY ⊤]ij

)
, (3.1)

where ℓ(x) = (1 + e−x)−1 is the logistic function.We initialize elements of the factors

X,Y independently and uniformly at random on [−1,+1]. We find factors that

approximately minimize the loss using the SciPy [89] implementation of the L-BFGS

[115, 210] algorithm with default hyper-parameters and up to a maximum of 2000

iterations. We check for exact factorization by comparing A to σ(XY ⊤). If these

are not equal, the factorization is inexact; in that case, to reconstruct an expected

adjacency matrix, we apply the logistic function ℓ entry-wise to XY ⊤.

Toy Graph. We return to the initial demonstrative example from the start of this

section, where we considered the family of graphs consisting of a set of t triangles

connected in a cycle (Figure 3.1). This family is interesting as it has near maxi-

mum triangle density given its sparsity. It starkly illustrates the difference in the

capacities of LPCA and TSVD. With embeddings of rank 5, our LPCA method re-

constructs a graph with 100 triangles with only minor errors. By contrast, elements

of the reconstruction from TSVD at rank 5 are too small to visualize effectively on

the same scale, with a maximum below 0.08; even at rank 15, TSVD struggles to cap-

ture this graph, significantly diffusing the mass of the adjacency matrix away from

the diagonal. In particular, the relative Frobenius errors of the reconstructions (i.e.

the Frobenius norm of the difference between the true and reconstructed expected

67

adjacency matrices, divided by the norm of the true adjacency matrix) are 0.031 and

0.894, respectively; for a direct comparison, with a rank 5 embedding, the error of

TSVD is 0.966.

Exact Factorization of Real Networks. In Table 3.2 we report the exact factor-

ization dimension (EFD) for 11 real-world networks, the rank at which LPCA exactly

recovers the network within 2000 iterations (i.e., returns X,Y with σ(XY ⊤) = A.).

We only compute factorizations at ranks which are multiples of 16, and thus the EFDs

are calculated up to a multiple of 16. The values for EFDs are remarkably low – for 3

of the tested networks we achieve exact factorization even at our minimum attempted

rank of 16; for these networks, we attempted rank 8 LPCA, but did not achieve exact

factorization within 2000 iterations. Moreover, for the rank that we achieved perfect

reconstruction (EFD), we report the relative Frobenius error of the TSVD approach;

we observe the error is quite high in all cases. For all networks, the EFD is signif-

icantly lower than the upper bound presented in Theorem 3.1.6, of twice the max

degree plus one. With the exception of Pubmed, all network are factored exactly

at or below ranks that are twice just the 95th percentile degree; the max degree for

Pubmed is 171, so it, too, is factored within the theoretical bound.

As a baseline, we generate for each network a set of random graphs with the

same expected degree sequence using the algorithm of [187]. We report the EFD

at which three random networks generated can be perfectly reconstructed; we note

that for a lower rank than the one reported, it was not possible to reconstruct the

networks in any of the runs. In general, results are well concentrated and show that

EFD is consistently higher for the random networks. In other words, the embeddings

capture structure inherent to real-world networks outside just the degree sequence.

Understanding this structure more precisely is an interesting direction for future work.

For completeness, we repeat the previous experiment generating Erdős-Rényi random

graphs with the same expected number of edges. We observe that reconstructing these

68

Table 3.2. Real world graphs for which we find exact adjacency matrix factorizations
of the form A = σ(XY ⊤) where X,Y ∈ Rn×k and σ(x) = max(0,min(1, x)) is a
thresholding function applied entrywise to XY ⊤. EFD is the exact factorization
dimension for LPCA. We report the 95th percentile degree as a more robust and
informative alternative to the maximum degree. TSVD Error is the relative Frobenius
error of TSVD at the EFD for LPCA. The final two columns give the EFDs of the
random graphs related to these networks described above.

Dataset # of
Nodes

Mean
Deg.

95th%
Deg. EFD TSVD

Error
EFD

(Exp. Degree)

EFD
(Erdős–Rényi)

Pubmed 19 581 4.48 18 48 0.95 48 32
ca-HepPh 11 204 21.0 90 32 0.63 96 64
p2p-Gnutella04 10 876 3.68 32 32 0.97 32 16
BlogCatalog 10 312 64.8 239 128 0.71 160 128
Wiki-Vote 7 115 14.6 75 48 0.77 80 48
ca-GrQc 5 242 5.53 20 16 0.85 32 32
Wikipedia 4 777 38.7 99 64 0.69 80 80
Facebook 4 039 43.7 153 32 0.66 96 80
PPI 3 890 19.7 72 48 0.81 64 48
Citeseer 3 327 2.74 8 16 0.94 16 16
Cora 2 708 3.90 9 16 0.93 16 16

networks is in fact easier, due to the absence of high degree nodes. This justifies

the choice of random networks with the same expected degree sequence as the true

networks as a more suitable baseline.

Recovery of Degree and Triangle Count Sequences. We next assess the accu-

racy of very low-dimensional embeddings with respect to reconstructing fundamental

network information, namely the sequence of (i) degrees and (ii) participating trian-

gles per node. See our detailed findings in Figures 3.2 and 3.3. We see that the LPCA

based embeddings are able to capture both sequences near exactly, even with rank

much smaller than the EFD. As we range the rank, LPCA’s reconstruction quality

for both sequences is a monotone function of the rank; TSVD’s performance is not

monotone as can be seen e.g., in the PPI plots in Figures 3.2 and 3.3 for ranks 32

and 128 respectively. Generally, the TSVD method performs significantly worse than

LPCA.

69

Figure 3.2. Sorted expected degrees of reconstructed networks.

Figure 3.3. Sorted expected count of triangles involving each vertex in reconstructed
networks.

70

Recovery of Low-Degree Triangles. We next turn to the challenge of recon-

structing triangles on low-degree nodes, which was the focus of [167]. We assess the

recovery of low-degree triangles in real networks when the embedding rank is not

sufficient for exact factorization. Our results are shown in Figure 3.4 for six networks.

The results are representative of what we observe across all our experiments. In

each figure, we plot using different factorization ranks the reconstructed normalized

number of triangles (y-axis) among all nodes whose degree does not exceed a specific

upper bound (x-axis). We normalize the counts by the number of nodes n to have

a consistent measure across all six networks. Notice that the minimum possible non-

zero value is 1
n

and corresponds to exactly one triangle. We plot the performance of

LPCA using rank 16, and for TSVD using rank 128. We also plot the performance of

both methods for rank equal to the EFD minus 16. Note that, for ca-GrQc, which

is reconstructed exactly at our minimum rank of 16, we simply plot rank 16 itself.

In addition to the reconstruction results, we also plot the true normalized triangle

counts.

In agreement with [167], we find that the TSVD method consistently underes-

timates low-degree triangles: whereas the true network begins producing triangles

with fairly low-degree vertices, TSVD requires much higher-degree vertices to recover

a single expected triangle. This holds at both ranks across the surveyed networks.

By contrast, across all of these networks, the just-below-exact rank LPCA tightly

matches the true triangle-degree curve. With the exception of BlogCatalog, even

rank 16 LPCA closely matches the true curve, especially at low degrees. Interest-

ingly, in BlogCatalog, while rank 16 LPCA has a higher reconstruction Frobenius

error (.82) than either rank 112 TSVD (.73) or rank 128 TSVD (.71), the former still

achieves a single expected triangle with lower-degree vertices and overall matches

the true triangle-degree curve more closely than the TSVD methods. This seems

to suggest an implicit bias of the LPCA method towards capturing local structure

71

Figure 3.4. True and recovered counts of triangles in subgraphs induced by nodes
whose degree is upper bounded by c (y-axis) vs. the degree upper bound c (x-axis) for
six networks. The recovered triangles have been counted in reconstructed networks
using TSVD and LPCA for different ranks.

in real-world graphs even when factorization is inexact. Understanding this bias

more precisely would be an interesting direction for future work. Overall we con-

firm that LPCA not only outperforms TSVD, but more importantly, illustrates that

embeddings can capture the triangle-rich structure of real networks with remarkably

accuracy, even at very low ranks where exact factorization is impossible.

3.1.4 Conclusion

In this work we show that low-dimensional node embeddings can capture accu-

rately the graph structure. Specifically, we prove that the results of Seshadhri et al.

[167] are intimately connected to the positive semidefinite constraint of the factoriza-

tions they consider. While their results are remarkable, and also open an interesting

72

research direction for better understanding node embeddings, our work clarifies that

low-rank factorizations do capture triangle-rich graphs. Furthermore, we show that

a simple algorithm that combines a non-linearity with logistic PCA can recover the

entire graph structure from bounded-degree graphs. Our empirical findings indicate

that our algorithm is able to produce even lower rank matrix factorizations on real-

data by exploiting other structural characteristics; indeed, by using the configuration

model we have verified that random graphs with the same degree sequence require a

rank close to the theoretical rank bound we provide.

Our work in this section leaves several open questions. A key question is if we

can strengthen our theoretical results, and better explain the empirical performance

of our algorithm on real-world graphs. Answering this would help us understand

the type of structure that our embeddings, and perhaps modern node embeddings

more broadly, leverage to compress complex networks. From a practical perspective,

understanding the connection between the ability of an embedding to reconstruct

a graph and performance in downstream classification tasks is an important related

question, key to work on graph auto-encoders and the privacy of node embeddings. In

initial experiments, we find that our LPCA embeddings do not give good performance

in downstream classification tasks. Are there embeddings that simultaneously yield

exact or near exact factorizations and good performance in downstream applications?

We also leave open the question of giving even stronger and more general theoretical

results that help explain explain our empirical findings. We return to this question

in Section 3.2.

73

3.2 Nonnegative Symmetric Representations of Sparse Net-

works
To choose amongst graph models for some downstream task, one must generally

consider two criteria: 1) whether the model can express structures of interest in the

graph, 2) whether the model expresses these structure in an interpretable way.

Expressiveness of low-dimensional embeddings As real-world graphs are high-

dimensional objects, graph models generally compress information about the graph.

Such models are exemplified by the family of dot product models, which associate

each node with a real-valued “embedding” vector; the predicted probability of a link

between two nodes increases with the similarity of their embedding vectors. These

models can alternatively be seen as factorizing the graph’s adjacency matrix to ap-

proximate it with a low-rank matrix. Recent work of [167] has shown that dot product

models are limited in their ability to model common structures in real-world graphs,

such as triangles incident only on low-degree nodes. In contrast, in Section 3.1 we

show that with the logistic principal components analysis (LPCA) model, which has

two embeddings per node (i.e., using the dot product of the ‘left’ embedding of one

node and the ‘right’ embedding of another), not only can such structures be repre-

sented, but further, any graph can be exactly represented with embedding vectors

whose lengths are linear in the max degree of the graph. There are two keys to this

result. First is the presence of a nonlinear linking function in the LPCA model; since

adjacency matrices are generally not low-rank, exact low-rank factorization is gener-

ally impossible without a linking function. Second is that having two embeddings

rather than one allows for expression of non-positive semidefinite (PSD) matrices.

As discussed in [145], that the single-embedding models can only represent PSD ma-

trices precludes representation of ‘heterophilous’ structures in graphs; heterophilous

74

structures are those wherein dissimilar nodes are linked, in contrast to more intuitive

‘homophilous’ linking between similar nodes.

Interpretability and node clustering Beyond being able to capture a given

network accurately, it is often desirable for a graph model to form interpretable

representations of nodes and to produce edge probabilities in an interpretable fash-

ion. Dot product models can achieve this by restricting the node embeddings to be

nonnegative. Nonnegative factorization has long been used to decompose data into

parts [49]. In the context of graphs, this entails decomposing the set of nodes of the

network into clusters or communities. In particular, each entry of the nonnegative

embedding vector of a node represents the intensity with which the node participates

in a community. This allows the edge probabilities output by dot product models to

be interpretable in terms of coparticipation in communities. Depending on the model,

these vectors may have restrictions such as a sum-to-one requirement, meaning the

node is assigned a categorical distribution over communities. The least restrictive and

most expressive case is that of soft assignments to overlapping communities, where the

entries can vary totally independently. In such models, which include the BigClam

model of [202], the output of the dot product may be mapped through a nonlinear

link function (as in LPCA) to produce a probability for each edge, i.e., to ensure the

values lie in [0, 1].

Heterophily: Motivating example To demonstrate how heterophily can mani-

fest in networks, as well as how models which assume homophily can fail to represent

such networks, we provide a simple synthetic example. Suppose we have a graph of

matches between users of a mostly heterosexual dating app, and the users each come

from one of ten cities. Members from the same city are likely to match with each

other; this typifies homophily, wherein links occur between similar nodes. Further-

more, users having the same gender are are unlikely to match with each other; this

75

typifies heterophily. Figure 3.5 shows an instantiation of such an adjacency matrix

with 1000 nodes, which are randomly assigned to man or woman and to one of the

ten cities. We recreate this network with our proposed embedding model and with

BigClam, which explicitly assumes homophily. We also compare with the SVD of

the adjacency matrix, which outputs the best (lowest Frobenius error) low-rank ap-

proximation that is possible without a nonlinear linking function. Since SVD lacks

nonnegativity constraints on the factors, we do not expect intepretability. In Fig-

ure 3.5, we show how BigClam captures only the ten communities based on city,

i.e., only the homophilous structure, and fails to capture the heterophilous distinc-

tion between men and women. We also plot the error of the reconstructions as the

embedding length increases. There are 10 · 2 = 20 different kinds of nodes, meaning

the expected adjacency matrix is rank-20, and our model maintains the lowest error

up to this embedding length; by contrast, BigClam is unable to decrease error after

capturing city information with length-10 embeddings. In Figure 3.7, we visualize

the features generated by the three methods, i.e., the factors returned by each factor-

ization. Our model’s factors captures the relevant latent structure in an interpretable

way. By contrast, SVD’s factors are harder to interpret, and BigClam does not

represent the heterophilous structure.

Summary of main contributions The key contributions of this work are as fol-

lows:

• We prove that the LPCA model admits exact low-rank factorizations of graphs

with bounded arboricity, which is the minimum number of forests into which a

graph’s edges can be partitioned. By the Nash-Williams theorem, arboricity is

a measure of a graph’s density in that, letting S denote an induced subgraph

and nS and mS denote the number of nodes and edges in S, arboricity is the

maximum over all subgraphs S of ⌈ mS

nS−1
⌉. Our result is more applicable to real-

76

world graphs than the prior one for graphs with bounded max degree, since

sparsity is a common feature of real networks, whereas low max degree is not.

• We introduce a graph model which is both highly expressive and interpretable.

Our model incorporates two embeddings per node and a nonlinear linking func-

tion, and hence is able to express both heterophily and overlapping communities.

At the same time, our model is based on symmetric nonnegative matrix factor-

ization, so it outputs link probabilities which are interpretable in terms of the

communities it detects.

• We show how any graph with a low-rank factorization in the LPCA model also

admits a low-rank factorization in our community-based model. This means

that the guarantees on low-rank representation for bounded max degree and

arboricity also apply to our model.

• In experiments, we show that our method is competitive with and often outper-

forms other comparable models on real-world graphs in terms of representing

the network, doing interpretable link prediction, and detecting communities

that align with ground-truth.

0 200 400 600 800
0

200

400

600

800

Expected Adjacency
0 200 400 600 800

0

200

400

600

800

Sampled Adjacency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.5. The motivating synthetic graph. The expected adjacency matrix (left)
and the sampled matrix (right); the latter is passed to the training algorithms. The
network is approximately a union of ten bipartite graphs, each of which correspond
to men and women in one of the ten cities.

77

0 200 400 600 800
0

200

400

600

800

SVD
0 200 400 600 800

0

200

400

600

800

BigClam
0 200 400 600 800

0

200

400

600

800

Ours

5 10 15 20
Embedding Length

0.7

0.8

0.9

Frobenius Error
SVD
BigClam
Ours

Figure 3.6. Left: Reconstructions of the motivating synthetic graph of Figure 3.5
with SVD, BigClam, and our model, using 12 communities or singular vectors. Note
the lack of the small diagonal structure in BigClam’s reconstruction; this corre-
sponds to its inability to capture the heterophilous interaction between men and
women. Right: Frobenius error when reconstructing the motivating synthetic graph
of Figure 3.5 with SVD, BigClam, and our model, as the embedding length is var-
ied. The error is normalized by the sum of the true adjacency matrix (i.e., twice the
number of edges).

0 200 400 600 800
0
2
4
6
8

SVD
0 200 400 600 800

0
2
4
6
8

10

BigClam
0 200 400 600 800

0
2
4
6
8

Ours

0 200 400 600 800

0

1

2

0 200 400 600 800

0

1

0.5

0.0

0.5

0.5

0.0

0.5

0.0

0.5

1.0

0

2

0

2

4

Figure 3.7. Factors resulting from decomposition of the motivating synthetic graph
of Figure 3.5 with the three models, using 12 communities or singular vectors. The
top/bottom rows represent the positive/negative eigenvalues corresponding to ho-
mophilous/heterophilous communities (note that BigClam does not include the lat-
ter). The homophilous factors from BigClam and our model reflect the 10 cities,
and the heterophilous factor from our model reflect men and women. The factors
from SVD are harder to interpret. Note that the order of the communities in the
factors is arbitrary.

3.2.1 Community-Based Graph Factorization Model

Consider the set of undirected, unweighted graphs on n nodes, i.e., the set of

graphs with symmetric adjacency matrices in {0, 1}n×n. We propose an edge-independent

generative model for such graphs. Given nonnegative parameter matrices B ∈ Rn×kB
+

78

and C ∈ Rn×kC
+ , we set the probability of an edge existing between nodes i and j to

be the (i, j)-th entry of matrix Ã:

Ã := σ(BB⊤ −CC⊤), (3.2)

where σ is the logistic function. Here kB, kC are the number of homophilous/heterophilous

clusters. Intuitively, if bi ∈ RkB
+ is the i-th row of matrix B, then bi is the affinity of

node i to each of the kB homophilous communities. Similarly, ci ∈ RkC
+ is the affinity

of node i to the kC heterophilous communities. As an equivalent statement, for each

pair of nodes i and j, Ãi,j := σ(bib
⊤
j − cic

⊤
j). We will soon discuss the precise inter-

pretation of this model, but the idea is roughly similar to the attract-repel framework

of [145]. When nodes i and j have similar ‘attractive’ b embeddings, i.e., when bib
⊤
j

is high, the likelihood of an edge between them increases, hence why the B factor is

homophilous. By contrast, the C factor is ‘repulsive’/heterophilous since, when cic
⊤
j

is high, the likelihood of an edge between i and j decreases.

Alternate expression We note that the model above can also be expressed in a

form which normalizes cluster assignments and is more compact, in that it combines

the homophilous and heterophilous cluster assignments. Instead of B and C, this

form uses a matrix V ∈ [0, 1]n×k and a diagonal matrix W ∈ Rk×k, where k = kB+kC

is the total number of clusters. In particular, let mB and mC be the vectors containing

the maximums of each column of B and C. By setting

V =

(
B × diag

(
m−1

B

)
; C × diag

(
m−1

C

))
W = diag

((
+m2

B; −m2
C

))
,

(3.3)

the constraint on V is satisfied. Further, V WV ⊤ = BB⊤ −CC⊤, so

Ã := σ(BB⊤ −CC⊤) = σ(V WV ⊤). (3.4)

79

Here, if vi ∈ [0, 1]k is the i-th row of matrix V , then vi is the soft (normalized)

assignment of node i to the k communities. The diagonal entries of W represent the

strength of the homophily (if positive) or heterophily (if negative) of the communi-

ties. For each entry, Ãi,j = σ(viWv⊤
j). We use these two forms interchangeably

throughout this work.

Interpretation The edge probabilities output by this model have an intuitive in-

terpretation. Recall that there are bijections between probability p ∈ [0, 1], odds

o = p
1−p
∈ [0,∞), and logit ℓ = log(o) ∈ (−∞,+∞). The logit of the link probability

between nodes i and j is v⊤
i Wvj, which is a summation of terms vicvjcWcc over

all communities c ∈ [k]. If the nodes both fully participate in community c, that

is, vic = vjc = 1, then the edge logit is changed by Wcc starting from a baseline

of 0, or equivalently, the odds of an edge is multiplied by exp(Wcc) starting from a

baseline odds of 1; if either of the nodes participates only partially in community c,

then the change in logit and odds is accordingly prorated. Homophily and heterophily

also have a clear interpretation in this model: homophilous communities, which are

expressed in B, are those with Wcc > 0, where two nodes both participating in the

community increases the odds of a link, whereas communities with Wcc < 0, which

are expressed in C, are heterophilous, and coparticipation decreases the odds of a

link.

3.2.2 Related Work

Community detection via interpretable factorizations There is extensive

prior work on the community detection / node clustering problem [164, 5, 131],

perhaps the most well-known being the normalized cuts algorithm of [169], which

produces a clustering based on the entrywise signs of an eigenvector of the graph

Laplacian matrix. However, the clustering algorithms which are most relevant to our

work are those based on non-negative matrix factorization (NMF) [100, 18, 194, 66].

80

One such algorithm is that of [207], which approximately factors a graph’s adjacency

matrix A ∈ {0, 1}n×n into two positive matrices H and Λ, where H ∈ Rn×k
+ is

left-stochastic (i.e. each of its columns sums to 1) and Λ ∈ Rk×k
+ is diagonal, such

that HΛH⊤ ≈ A. Here H represents a soft clustering of the n nodes into k clusters,

while the diagonal entries of Λ represent the prevalence of edges within clusters. Note

the similarity of the factorization to our model, save for the lack of a nonlinearity.

Other NMF approaches include those of [48], [204], [97], and [98] (SymNMF).

Modeling heterophily Much of the existing work on graph models has an under-

lying assumption of network homophily [88, 134]. There has been significant recent

interest in the limitations of graph neural network (GNN) models [53, 94, 78] at ad-

dressing network heterophily [135, 212], as well as proposed solutions [142, 201], but

relatively less work for more fundamental models such as those for clustering. Some

existing NMF approaches to clustering do naturally model heterophilous structure

in networks. For example, the model of [127] is similar to ours and also allows for

heterophily, though it restricts the cluster assignment matrix V to be binary; addi-

tionally, their training algorithm is not based on gradient descent as ours is, and it

does not scale to larger networks. More recently, [145] propose a decomposition of

the form A ≈ D + BB⊤ − CC⊤, where D ∈ Rn×n is diagonal and B,C ∈ Rn×k

are low-rank. Note that their decomposition does not include a nonlinear linking

function, and their work does not pursue a clustering interpretation or investigate

setting the factors B and C to be nonnegative.

Overlapping communities and exact embeddings Many models discussed

above focus on the single-label clustering task and thus involve highly-constrained

factorizations (e.g., sum-to-one conditions). We are interested in the closely related

but distinct task of multi-label clustering, also known as overlapping community de-

tection [198, 87], which involves less constrained, more expressive factorizations. The

81

BigClam algorithm of [202] uses the following generative model for this task: the

probability of a link between two nodes i and j is given by 1 − exp(−fi · fj), where

fi,fj ∈ Rk
+ represent the intensities with which the nodes participate in each of the

k communities. Note that BigClam assumes strict homophily of the communities:

two nodes participating in the same community always increases the probability of a

link. However, this model allows for expression of very dense intersections of commu-

nities, which the authors observe is generally a characteristic of real-world networks.

To ensure that output entries are probabilities, BigClam’s factorization includes a

nonlinear linking function (namely, f(x) = 1− ex), like our model and LPCA. Recent

work outside clustering and community detection on graph generative models [152]

suggests that incorporating a linking function can greatly increase the expressiveness

of factorization-based graph models, to the point of being able to exactly represent

a graph, as we showed in Section 3.1. This adds to a growing body of literature

on expressiveness guarantees for embeddings on relational data [161, 19, 23]. As

previously discussed, in Section 3.1, we provide a guarantee for exact low-rank rep-

resentation of graphs with bounded max degree when using the LPCA factorization

model. In this section, we provide a new such guarantee, except for bounded arboric-

ity, which is more applicable to real-world networks, and extend these guarantees to

our community-based factorization.

3.2.3 Theoretical Results

We first restate the main result from Section 3.1 on exact representation of graphs

with bounded max degree using the logistic principal components analysis (LPCA)

model, which reconstructs a graph A ∈ {0, 1}n×n using logit factors X,Y ∈ Rn×k

via

A ≈ σ(XY ⊤). (3.5)

82

Note that unlike our community-based factorization, the factors of the LPCA model

are not nonnegative, and the factorization does not reflect the symmetry of the undi-

rected graph’s adjacency matrix. Regardless of the model’s interpretability, the fol-

lowing theorem provides a significant guarantee on its expressiveness. We use the

following notation: given a matrix M , let H(M) denote the matrix resulting from

entrywise application of the Heaviside step function to M , that is, setting all positive

entries to 1, negative entries to 0, and zero entries to 1/2.

Theorem 3.2.1 (Exact LPCA Factorization for Bounded-Degree Graphs). Let A ∈

{0, 1}n×n be the adjacency matrix of a graph G with maximum degree c. Then there

exist matrices X,Y ∈ Rn×(2c+1) such that A = H(XY ⊤).

This corresponds to arbitrarily small approximation error in the LPCA model

(Equation 3.5) because, provided such factors X,Y for some graph A, we have that

lims→∞ σ
(
sXY ⊤) = H(XY ⊤) = A. That is, we can scale the factors larger to

reduce the error to an arbitrary extent.

We expand on this result in two ways. First, give a new bound for exact embed-

ding in terms of arboricity, rather than max degree. This significantly increases the

applicability to real-world networks, which often are sparse (i.e., low arboricity) and

have right-skewed degree distributions (i.e., high max degree). Second, we show that

any rank-k LPCA factorization can be converted to our model’s symmetric nonnega-

tive factorization with O(k) communities. This extends the guarantees on the LPCA

model’s power for exact representation of graphs, both the prior guarantee in terms

of max degree and our new one in terms of arboricity, to our community-based model

as well. After this, we also introduce an example of a natural family of graphs - Com-

munity Overlap Threshold (COT) graphs - for which our model’s community-based

factorization not only exactly represents the graph, but also must capture some latent

structure to do so with sufficiently low embedding dimensionality.

83

Arboricity bound for exact representation We will use the following well-

known fact: the rank of the entrywise product of two matrices is at most the product

of their individual ranks, that is,

rank(X ◦ Y) ≤ rank(X) · rank(Y).

Theorem 3.2.2 (Exact LPCA Factorization for Bounded-Arboricity Graphs). Let

A ∈ {0, 1}n×n be the adjacency matrix of an undirected graph G with arboricity α.

Then there exist embeddings X,Y ∈ Rn×(4α2+1) such that A = H(XY ⊤).

Proof. Let the undirected graph A have arboricity α, i.e., the edges can be partitioned

into α forests. We produce a directed graph B from A by orienting the edges in these

forests so that each node’s edges point towards its children. Now A = B +B⊤, and

every node in B has in-degree at most α.

Let V ∈ Rn×2α be the Vandermonde matrix with Vt,j = tj−1. For any c ∈

R2α, [V c](t) =
∑2α

j=1 c(j) · tj−1, that is, V c ∈ Rn is a degree-(2α) polynomial with

coefficients c evaluated at the integers t ∈ [n] = {1, . . . , n}. Let bi be the ith column

of B. We seek to construct a polynomial such that for t with bi(t) = 1, [V ci](t) = 0,

and [V ci](t) < 0 elsewhere; that is, when inputting an index t ∈ [n] such that the

tth node is an in-neighbor of the ith node, we want the polynomial to output 0, and

for all other indices in [n], we want it to have a negative output. Letting N(i) denote

the in-neighbors of the ith node, a simple instantiation of such a polynomial in t

is −1 ·
∏

j∈N(i)(t − j)2. Note that since all nodes have in-degree at most α, this

polynomial’s degree is at most 2α, and hence there exists a coefficient vector ci ∈ R2α

encoding this polynomial.

Let C ∈ Rn×2α be the matrix resulting from stacking such coefficient vectors for

each of the n nodes. Consider P = V C ∈ Rn×n: Pi,j is 0 if Bi,j = 1 and negative

otherwise. Then (P ◦ P⊤)i,j is 0 when either Bi,j = 1 or (B⊤)i,j = 1 and positive

84

otherwise; equivalently, since A = B +B⊤, (P ◦ P⊤)i,j = 0 iff Ai,j = 1. Take any

positive ϵ less than the smallest positive entry of P ◦ P⊤. Letting J be an all-ones

matrix, define M = ϵJ − (P ◦ P⊤). Note that Mi,j > 0 if A = 1 and Mi,j < 0 if

A = 0, that is, M = H(A) as desired. Since rank(J) = 1 and rank(P) ≤ 2α, by

the bound on the rank of entrywise products of matrices, the rank of M is at most

(2α)2 + 1.

Exact representation with community factorization LPCA factors X,Y ∈

Rn×k can be processed into nonnegative factors B ∈ Rn×kB
+ and C ∈ Rn×kC

+ such that

kB + kC = 6k and

BB⊤ −CC⊤ = 1
2

(
XY ⊤ + Y X⊤) . (3.6)

Observe that the left-hand side can only represent symmetric matrices, but XY ⊤ is

not necessarily symmetric even if H(XY ⊤) = A for a symmetric A. For this reason,

we use a symmetrization: let L = 1
2

(
XY ⊤ + Y X⊤). Note that H(L) = H(XY ⊤),

so if XY ⊤ constitutes an exact representation of A in that H(XY ⊤) = A, so too do

both expressions for L in Equation 3.6. Pseudocode for the procedure of constructing

B,C given X,Y is given in Algorithm 5. The concept of this algorithm is to first

separate the logit matrix L into a sum and difference of rank-1 components via

eigendecomposition. Each of these components can be written as +vv⊤ or −vv⊤

with v ∈ Rn, where the sign depends on the sign of the eigenvalue. Each component

is then separated into a sum and difference of three outer products of nonnegative

vectors, via Lemma 3.2.3 below.

Lemma 3.2.3. Let ϕ : R → R denote the ReLU function, i.e., ϕ(z) = max{z, 0}.

For any vector v,

vv⊤ = 2ϕ(v)ϕ(v)⊤ + 2ϕ(−v)ϕ(−v)⊤ − |v||v|⊤.

85

Proof. Take any v ∈ Rk. Then

vv⊤ = (ϕ(v)− ϕ(−v)) · (ϕ(v)⊤ − ϕ(−v)⊤)

= ϕ(v)ϕ(v)⊤ + ϕ(−v)ϕ(−v)⊤ − ϕ(v)ϕ(−v)⊤ − ϕ(−v)ϕ(v)⊤

= 2ϕ(v)ϕ(v)⊤ + 2ϕ(−v)ϕ(−v)⊤ − (ϕ(v) + ϕ(−v)) · (ϕ(v) + ϕ(−v))⊤

= 2ϕ(v)ϕ(v)⊤ + 2ϕ(−v)ϕ(−v)⊤ − |v||v|⊤,

where the first step follows from v = ϕ(v) − ϕ(−v), and the last step from |v| =

ϕ(v) + ϕ(−v).

Algorithm 5 follows from Lemma 3.2.3 and constitutes a constructive proof of the

following theorem:

Theorem 3.2.4 (Exact Community Factorization from Exact LPCA Factorization).

Given a symmetric matrix A ∈ {0, 1} and X,Y ∈ Rn×k such that A = H(XY ⊤),

there exist nonnegative matrices B ∈ Rn×kB
+ and C ∈ Rn×kC

+ such that kB + kC = 6k

and A = H(BB⊤ −CC⊤).

Algorithm 5 Converting LPCA Factorization to Community Factorization
input logit factors X,Y ∈ Rn×k

output B ∈ Rn×kB
+ and C ∈ Rn×kC

+ such that kB + kC = 6k and
BB⊤ −CC⊤ = 1

2

(
XY ⊤ + Y X⊤)

1: Set Q ∈ Rn×2k and λ ∈ R2k by truncated eigendecomposition such that
Q× diag(λ)×Q⊤ = 1

2
(XY ⊤ + Y X⊤)

2: B∗ ← Q+ × diag(
√
+λ+), where λ+, Q+ are the positive eigenvalues/vectors

3: C∗ ← Q− × diag(
√
−λ−), where λ−, Q− are the negative eigenvalues/vectors

4: B ←
(√

2ϕ(B∗);
√
2ϕ(−B∗); |C∗|

)
▷ ϕ / | · | are entrywise ReLU / abs. value

5: C ←
(√

2ϕ(C∗);
√
2ϕ(−C∗); |B∗|

)
6: return B,C

As stated in the introduction to this section, Theorem 3.2.4 extends any up-

per bound on the exact factorization dimensionality from the LPCA model to our

community-based model. That is, up to a constant factor, the bound in terms of max

86

degree from Theorem 3.2.1 and the bound in terms of arboricity from Theorem 3.2.2

also apply to our model; for brevity, we state just the latter here.

Corollary 3.2.5 (Exact Community Factorization for Bounded-Arboricity Graphs).

Let A ∈ {0, 1}n×n be the adjacency matrix of an undirected graph G with arboricity

α. Then there exist nonnegative embeddings B ∈ Rn×kB
+ and C ∈ Rn×kC

+ such that

kB + kC = 6(4α2 + 1) and A = H(BB⊤ −CC⊤).

Note that Corollary 3.2.5 is purely a statement about the capacity of our model;

Theorem 3.2.2 stems from a constructive proof based on polynomial interpolation,

and therefore so too does this corollary. We do not expect this factorization to be

informative about the graph’s latent structure. In the following Section 3.2.4, we will

fit the model with an entirely different algorithm for downstream applications.

Exact representation of COT Graphs As a theoretical demonstration of the

capability of our model to learn latent structure, we additionally show that our model

can exactly represent a natural family of graphs, which exhibits both homophily

and heterophily, with small k and interpretably. The family of graphs is specified

below in Definition 3; roughly speaking, nodes in such graphs share an edge iff they

coparticipate in some number of homophilous communities and don’t coparticipate in

a number of heterophilous communities. For example, the motivating graph described

at the start of this section would be an instance of such a graph if an edge occurs

between two users iff the two users are from the same city and have different genders.

Definition 3 (Community Overlap Threshold (COT) Graph). An unweighted, undi-

rected graph whose edges are determined by an overlapping clustering and a “thresh-

olding” integer t ∈ Z as follows: for each vertex i, there are two latent binary vectors

bi ∈ {0, 1}kb and ci ∈ {0, 1}kc, and there is an edge between vertices i and j iff

bi · bj − ci · cj ≥ t.

87

Theorem 3.2.6 (Compact Representation of COT Graphs). Suppose A is the ad-

jacency matrix of a COT graph on n nodes with latent vectors bi ∈ {0, 1}kb and

ci ∈ {0, 1}kc for i ∈ {1, 2, . . . , n}. Let k = kb + kc. Then, for any ϵ > 0, there exist

V ∈ [0, 1]n×(k+1) and diagonal W ∈ R(k+1)×(k+1) such that
∥∥σ(V WV ⊤)−A

∥∥
F < ϵ.

Proof. Let t be the thresholding integer of the graph, and let the rows of B ∈

{0, 1}n×kb and C ∈ {0, 1}n×kc contain the vectors b and c of all nodes. Via Equa-

tion 3.3, we can find V ∗ ∈ [0, 1]n×k and diagonal W ∗ ∈ Rk×k such that V ∗W ∗V ∗⊤ =

BB⊤ −CC⊤. Now let

V =

(
V ∗ 1

)
W =

W ∗ 0

0 1
2
− t

 .

Then (V WV ⊤)ij = bi·bj−ci·cj+ 1
2
−t. Hence (V WV ⊤)ij > 0 iff bi·bj−ci·cj > t− 1

2
,

which is true iff Aij = 1 by the assumption on the graph. Similarly, (V WV ⊤)ij < 0

iff Aij = 0. It follows that

lim
s→∞

σ
(
V (sW)V ⊤) = lim

s→∞
σ
(
sV WV ⊤) = A.

3.2.4 Experiments

We now present a training algorithm to fit our model, then evaluate our method

on a benchmark of five real-world networks.

3.2.4.1 Dataset Descriptions

We first briefly describe the five real-world datasets that are employed in this

section, including discussion how some of them exhibit heterophily. These are fairly

common small to mid-size datasets ranging from around 1K to 10K nodes. Statistics

for these datasets are given in Table 3.3.

88

Table 3.3. Network statistics for experiments in Section 3.2. As in [178], for
YouTube and Amazon, we take only nodes which participate in at least one of
the largest 5 ground-truth communities. Note that degeneracy is an upper bound on
arboricity.

Name Reference Nodes Edges Labels Max Degree Degeneracy

Blog [183] 10,312 333,983 39 3992 114
YouTube [203] 5,346 24,121 5 628 19
POS [147] 4,777 92,406 40 3644 49
PPI [25] 3,852 76,546 50 593 29
Amazon [203] 794 2,109 5 29 6

Blog is a social network of relationships between online bloggers; the node la-

bels represent interests of the bloggers. Similarly, YouTube is a social network of

YouTube users, and the labels represent groups that the users joined.

POS is a word co-occurrence network: nodes represent words, and there are edges

between words which are frequently adjacent in a section of the Wikipedia corpus.

Each node label represents the part-of-speech of the word. PPI is a subgraph of the

protein-protein interaction network for Homo Sapiens. Labels represent biological

states. Finally, Amazon is a co-purchasing network: nodes represent products, and

there are edges between products which are frequently purchased together. Labels

represent categories of products.

While social networks like the former two in this list are generally dominated

by homophily [123], the latter three should exhibit significant heterophily. For co-

purchasing networks like Amazon, depending on the product, two of the same kind

of product are generally not co-purchased, e.g., Pepsi and Coke, as discussed in [145].

Though less intuitively accessible, there is also prior discussion of disassortativity in

word adjacencies [61, 213], as well as in PPI networks [132, 80].

3.2.4.2 Training Algorithm

Given an input graph A ∈ {0, 1}n×n, we find low-rank nonnegative matrices B and

C such that the model produces Ã = σ(BB⊤ −CC⊤) ∈ (0, 1)n×n as in Equation 3.2

89

which approximately matches A. In particular, we train the model to minimize the

sum of binary cross-entropies of the link predictions over all pairs of nodes:

R = −
∑(

A log(Ã) + (1−A) log(1− Ã)
)
, (3.7)

where
∑

denotes the scalar summation of all entries in the matrix. We fit the

parameters by gradient descent over this loss, as well as L2 regularization of the

factors B and C, subject to the nonnegativity of B and C. This algorithm is fairly

straightforward; pseudocode is given in Algorithm 6. This is quite similar to the

training algorithm from Section 3.1, but in contrast to that section, which only targets

an exact fit, here we explore the expression of graph structure in the factors and their

utility in downstream tasks. Regularization of the factors is implemented to this

end to avoid overfitting. Though we outline a non-stochastic version of the training

algorithm, it generalizes straightforwardly to a stochastic version, i.e., by sampling

links and non-links for the loss function.

Algorithm 6 Fitting the Constrained Model
input adjacency matrix A ∈ {0, 1}n×n, regularization weight λ ≥ 0, number of
iterations I, number of homophilous/heterophilous communities kB/kC
output fitted factors B ∈ Rn×kB

+ and C ∈ Rn×kC
+ such that σ(BB⊤ −CC⊤) ≈ A

1: Initialize B,C by setting entries to independent samples of
Unif(0, 1/√kB),Unif(0, 1/√kC)

2: for i← 1 to I do
3: Ã← σ(BB⊤ −CC⊤)

4: R← −
∑(

A log(Ã) + (1−A) log(1− Ã)
)

5: R← R + λ (∥B∥2F + ∥C∥2F)
6: Calculate ∂B,CR via differentiation through Steps 2 to 4
7: Update B,C to minimize R using ∂B,CR, subject to B,C ≥ 0

8: return B,C

Implementation details Our implementation uses PyTorch [140] for automatic

differentiation and minimizes loss using the SciPy [89] implementation of the L-

90

BFGS [115, 210] algorithm with default hyperparameters and up to a max of 200

iterations of optimization. We set regularization weight λ = 10 as in [202].

3.2.4.3 Results

Expressiveness First, we investigate the expressiveness of our generative model,

that is, the fidelity with which it can reproduce an input network. At the start of this

section, we used a simple synthetic network to show that our model is more expressive

than others due to its ability to represent heterophilous structures in addition to

homophilous ones. We now evaluate the expressiveness of our model on real-world

networks. As with the synthetic graph, we fix the number of communities or singular

vectors, fit the model, then evaluate the reconstruction error. In Figure 3.8, we

compare the results of our model with those of SVD, BigClam (which is discussed in

detail in Section 3.2.2), and SymNMF [98]. SymNMF simply factors the adjacency

matrix as A ≈ HH⊤, where H ∈ Rn×k
+ ; note that, like SVD, SymNMF does not

necessarily output a matrix whose entries are probabilities (i.e., bounded in [0, 1]),

and hence it is not a graph generative model like ours and BigClam.

POS PPI Blog Amazon YouTube
2

0

2
1

2
2

Fr
ob

en
iu

s
Er

ro
r

POS PPI Blog Amazon YouTube
2

0

2
2

2
4

C
ro

ss
-E

nt
ro

py Method
SVD
SymNMF
BigClam
Ours

Figure 3.8. Reconstruction error on real-world networks, relative to our model’s
error.

For each method, we fix the number of communities or singular vectors at the

ground-truth number. For this experiment only, we are not concerned with learning

the latent structure of the graph; the only goal is accurate representation of the

network with limited parameters. So, for a fair comparison with SVD, we do not

regularize the training of the other methods. Our method consistently has the lowest

91

reconstruction error, both in terms of Frobenius error and entrywise cross-entropy

(Equation 3.7). Interestingly, we find the most significant improvement exactly on

the three datasets which have been noted to exhibit significant heterophily: POS,

PPI, and Amazon.

Similarity to ground-truth communities To assess the interpretability of clus-

ters generated by our method, we evaluate the similarity of these clusters to ground-

truth communities (i.e., class labels), and we compare other methods for overlapping

clustering. We additionally compare to another recent but non-generative approach,

the vGraph method of [178], which is based on link clustering; the authors found

their method to generally achieve state-of-the-art results in this task. For all meth-

ods, we set the number of communities to be detected as the number of ground-truth

communities. We report F1-Score as computed in [202]. See Figure 3.9 (left): the

performance of our method is competitive with SymNMF, BigClam, and vGraph.

POS PPI Blog Amazon YouTube
0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
 S

co
re

Community Detection

Method
vGraph
SymNMF
BigClam
Ours

POS PPI Blog Amazon YouTube
0.0

0.1

0.2

0.3

F1
 S

co
re

Link Prediction

Method
Random
SymNMF
BigClam
Ours

Figure 3.9. Left: Similarity of recovered communities to ground-truth labels of
real-world datasets. We are unable to run the authors’ implementation of vGraph
on Blog with limited memory. Right: Accuracy of link prediction on real-world
datasets.

Interpretable link prediction We assess the predictive power of our generative

model on the link prediction task. As discussed in Section 3.2.1, the link probabilities

output by our model are interpretable in terms of a clustering of nodes that it gener-

ates; we compare results with our method to those with other models which permit

similar interpretation, namely BigCLAM and SymNMF. We randomly select 10%

92

of node pairs to hold out, fit the models on the remaining 90%, then use the trained

models to predict links between node pairs in the held out 10%. As a baseline, we

also show results for randomly predicting link or no link with equal probability. See

Figure 3.9 (right). The performance of our method is competitive with or exceeds

that of the other methods in terms of F1 Score.

3.2.5 Conclusion

We introduce a community-based graph generative model based on symmetric

nonnegative matrix factorization which is capable of representing both homophily

and heterophily. We expand on our prior guarantee of exact representation for

bounded max degree graphs from Section 3.1 with a new, more applicable guaran-

tee for bounded arboricity graphs, and we show that both of these bounds apply to

our more interpretable graph model. We illustrate our model’s capabilities with ex-

periments on a synthetic motivating example. Experiments on real-world networks

show its effectiveness on several key tasks. More broadly, our results suggest that

incorporating heterophily into models and methods for networks can improve both

theoretical grounding and overall empirical performance, while maintaining simplicity

and interpretability. A deeper understanding of the expressiveness of both nonnega-

tive and arbitrary low-rank logit models for graphs is an interesting future direction.

93

CHAPTER 4

POWER AND LIMITATIONS OF
RANDOM GRAPH MODELS

In this chapter, we abstract away from node embeddings and examine upper and

lower bounds on the capabilities of different random graph models at representing

graph structure.

4.1 Inherent Limitations of Edge Independent Models
This section centers on edge independent graph models, in which each edge (i, j)

is added to the graph independently with some probability Pij ∈ [0, 1]. Formally,

Definition 4 (Edge Independent Graph Model). For any symmetric matrix P ∈

[0, 1]n×n let G(P) be the distribution over undirected unweighted graphs where G ∼

G(P) contains edge (i, j) independently, with probability Pij. That is, p(G) =∏
(i,j)∈E(G) Pij ·

∏
(i,j)/∈E(G)(1− Pij).

Edge independent models encompass many classic random graph models. This

includes the Erdös-Rényi model, where for all i ̸= j, Pij = p for some fixed p ∈ [0, 1]

[56]. It also includes the stochastic block model where Pij = p if two nodes are in the

same community and Pij = q if two nodes are in different communities for some fixed

p, q ∈ [0, 1] with q < p [172]. Other examples include e.g., the Chung-Lu configuration

model [39], stochastic Kronecker graphs [103].

Recently, significant attention has focused on graph generative models, which seek

to learn a distribution over graphs that share similar properties to a given training

graph, or set of graphs. Many algorithms parameterize this distribution as an edge

94

independent model or closely related distribution. E.g., NetGAN and the closely re-

lated CELL model both produce P ∈ [0, 1]n×n and then sample edges independently

without replacement with probabilities proportional to its entries, ensuring that at

least one edge is sampled adjacent to each node [20, 151]. Variational Graph Au-

toencoders (VGAE), GraphVAE, Graphite, and MolGAN are also all based on edge

independent models [93, 171, 45, 76].

Given their popularity in both classical and modern graph generative models, it

is natural to ask:

How suited are edge independent models to modeling real-world net-
works. Are they able to capture features such as power-law degree distri-
butions, small-world properties, and high clustering coefficients (triangle
densities)?

4.1.1 Impossibility Results for Edge Independent Models

In this work we focus on the ability of edge independent models to generate graphs

with high triangle, or other small subgraph densities. High triangle density (equiva-

lently, a high clustering coefficient) is a well-known hallmark of real-work networks

[195, 160, 52] and has been the focus of recent work exploring the power and limita-

tions of edge-independent graph models [167, 34].

It is clear that edge independent models can generate triangle dense graphs. In

particular, P ∈ [0, 1]n×n in Definition 4 can be set to the binary adjacency matrix

of any undirected graph, and G(P) will generate that graph with probability 1, no

matter how triangle dense it is. However, this would not be a particularly interesting

generative model – ideally G(P) should generate a wide range of graphs. To capture

this intuitive notion, we define the overlap of an edge-independent model, which is

closely related to the overlap stopping criterion for training used in training graph

generative models [20, 151].

95

Definition 5 (Expected Overlap). For symmetric P ∈ [0, 1]n×n let Vol(P) :=

EG∼G(P)|E(G)| and

Ov(P) :=
EG1,G2∼G(P)|E(G1) ∩ E(G2)|

Vol(P)
.

That is, for any P ∈ [0, 1]n×n, Ov(P) ∈ [0, 1] is the ratio of the expected number of

edges shared by two graphs drawn independently from G(P) to the expected number

of edges in a graph drawn from G(P). In one extreme, when P is a binary adjacency

matrix, Ov(P) = 1, and our generative model has simply memorized a single graph.

In the other, if Pij = p for all i ̸= j (i.e., G(P) is Erdös-Rényi), Ov(P) = p. This is

the minimum possible overlap when Vol(P) = p ·
(
n
2

)
.

Our main result is that for any edge independent model with bounded overlap,

G ∼ G(P) cannot have too many triangles in expectation. In particular:

Theorem 4.1.1 (Main Result – Expected Triangles). For a graph G, let ∆(G) denote

the number of triangles in G. Consider symmetric P ∈ [0, 1]n×n.

EG∼G(P) [∆(G)] ≤
√
2

3
·Ov(P)3/2 · Vol(P)3/2.

As an example, consider the setting where the distribution generates sparse graphs,

with Vol(P) = Θ(n). Theorem 4.1.1 shows that whenever Ov(P) = o(1/n1/3), we

have EG∼G(P)∆(G) = o(n). That is, the graph is very triangle sparse with the number

of triangles sublinear in the number of nodes. This verifies that an Erdös-Rényi graph

cannot achieve simultaneously linear number of edges (i.e., Ov(P) = O(1/n)) and

super-linear number of triangles (i.e., Ov(P) = Ω(1/n1/3)) under our proposed lens

of viewing generative models.

We extend Theorem 4.1.1 to give similar bounds for the density of squares and

other k-cycles (Theorem 4.1.4), as well as for the global clustering coefficient (Theo-

96

rem 4.1.6). In all cases we show that our bounds are tight – e.g., in the triangle case,

there is indeed an edge independent model with

EG∼G(P) [∆(G)] = Θ
(
Ov(P)3/2 · Vol(P)3/2

)
,

matching the lower bound in Theorem 4.1.1.

4.1.2 Empirical Findings

Our theoretical results help explain why, despite performing well in a variety

of other metrics, edge independent graph generative models have been reported to

generate graphs with many fewer triangles and squares on average than the real-world

graphs that they are trained on. Rendsburg et al. [151] test a suite of these models,

including their own CELL model and the related NetGAN model [20]. Of all these

models, when trained on the Cora-ML graph with 2,802 triangles and 14,268 squares,

none is able to generate graphs with more than 1,461 triangles and 6,880 squares on

average. Similar gaps are observed for a number of other graphs. Rendsburg et al.

also report that the triangle count increases as their notion of overlap (closely related

to Definition 5) increases. Theorem 4.1.1 demonstrates that this underestimation

of triangle count, and its connection to overlap is inherent to all edge independent

models, no matter how refined a method used to learn the underlying probability matrix

P .

While our theoretical results bound the performance of any edge independent

model, there may still be variation in how specific models trade-off overlap and real-

istic graph generation. To better understand this trade-off, we introduce two simple

models with easily tunable overlap as baselines. One is based on reproducing the

degree sequence of the original graph; the other, which is even simpler, is based on

reproducing the volume. In both models, P is a weighted average of the input graph

adjacency matrix and a probability matrix of minimal complexity which matches ei-

97

ther the input degrees or the volume. In the latter case, to match just the volume, we

simply use an Erdös-Rényi graph. In the former case, to match the degree sequence,

we introduce our own model, the odds product model; this model is similar to the

Chung-Lu configuration model [39], but, unlike Chung-Lu, is able to match degree

sequences of real-world graphs with high maximum degree. We find that these sim-

ple baselines are often competitive with more complex models like CELL in terms of

matching key graph statistics, like triangle count and clustering coefficient, at similar

levels of overlap.

4.1.3 Related Work

Existing impossibility results. Our work is inspired by that of Seshadhri et

al. [167], which also proves limitations on the ability of edge independent models to

represent triangle dense graphs. They show that if P = max(0,min(1,XX⊤)) where

X ∈ Rn×k for k ≪ n and the max and min are applied entrywise, then G ∼ G(P)

cannot have many triangles adjacent to low-degree nodes in expectation. This set-

ting arises commonly when P is generated using low-dimensional node embeddings

– represented by the rows of X. In Section 3.1, we show that in a slightly more

general model, where P = max(0,min(1,XY ⊤)), this lower bound no longer holds –

X,Y ∈ Rn×k can be chosen so that P is the binary adjacency matrix of any graph

with maximum degree upper bounded by O(k) – no matter how triangle dense that

graph is. Thus, even such low-rank edge independent models can represent triangle

dense graphs – by memorizing a single one.

Our results show that this trade-off between the ability to capture triangle density

and memorization is inherent – even without any low-rank constraint, edge indepen-

dent models with low overlap simply cannot represent graphs with high triangle or

other small subgraph density.

98

It is well understood that specific edge independent models, e.g., Erdös-Rényi

graphs, the Chung-Lu model, and stochastic Kronecker graphs, do not capture many

properties of real-world networks, including high triangle density [195, 146]. Our

results can be viewed as a generalization of these observations, to all edge independent

models with low overlap. Despite the limitations of classic models, edge independent

models are still very prevalent in today’s literature on graph generative models. Our

more general results make clear the limitations of this approach.

Non-independent models. While edge independent models are very prevalent

in the literature, many important models do not fit into this framework. Classic

models include the Barabási–Albert and other preferential attachment models [16],

Watts–Strogatz small-world graphs [195], and random geometric graphs [43]. Many

of these models were introduced directly in response to shortcomings of classic edge

independent models, including their inability to produce high triangle densities.

More recent graph generative models include GraphRNN [205] and a number of

other works [111, 112]. Our impossibility results do not apply to such models, and

in fact suggest that perhaps they may be preferable to edge independent models,

if a distribution over graphs with high triangle density is desired. An interesting

direction that we return to in Section 4.2 is proving limitations on broad classes of

non-independent models, and perhaps to understand exactly what type of correlation

amongst edges is needed to generate graphs with both low overlap and hallmark

features of real-world networks.

4.1.4 Impossibility Results for Edge Independent Models

We now prove our main results on the limitations of edge independent models

with bounded overlap. We start with a simple lemma that will be central in all our

proofs.

Lemma 4.1.2. For any symmetric P ∈ [0, 1]n×n, ∥P ∥2F
2
≤ Ov(P) · Vol(P) ≤ ∥P ∥2F .

99

Proof. Let I[(i, j) ∈ G] be the 0, 1 indicator random variable that an edge (i, j)

appears in the graph G. Ov(P) ·Vol(P) = EG1,G2∼G(P)|E(G1)∩E(G2)|. By linearity

of expectation and the independence of G1 and G2 we have,

Ov(P) · Vol(P) = EG1,G2∼G(P)

∑
i≤j

I[(i, j) ∈ G1] · I[(i, j) ∈ G2] =
∑
i≤j

P 2
ij.

The bound follows since P is symmetric. Note that the lower bound ∥P ∥2F
2
≤ Ov(P) ·

Vol(P) is an equality if P is 0 on the diagonal – i.e., there is no probability of self

loops.

4.1.4.1 Triangles

Lemma 4.1.2 connects Ov(P) · Vol(P) to ∥P ∥2F and in turn the eigenvalue spec-

trum of P since ∥P ∥2F =
∑n

i=1 λi(P)2, where λ1(P), . . . , λn(P) ∈ R are the eigenval-

ues of P . The expected number of triangles in G ∼ G(P) can be written in terms

of this spectrum as well, allowing us to relate overlap to this expected triangle count,

and prove our main theorem (Theorem 4.1.1), restated below.

Theorem 4.1.1. For a graph G, let ∆(G) denote the number of triangles in G.

Consider symmetric P ∈ [0, 1]n×n.

EG∼G(P) [∆(G)] ≤
√
2

3
·Ov(P)3/2 · Vol(P)3/2.

Proof. By linearity of expectation,

EG∼G(P) [∆(G)] =
1

6

n∑
i=1

n∑
j=1

n∑
k=1

Pr [(i, j) ∈ E(G) ∩ (j, k) ∈ E(G) ∩ (k, i) ∈ E(G)]

=
1

6

n∑
i=1

n∑
j=1

n∑
k=1

PijPjkPki =
1

6
tr(P 3) =

1

6

n∑
i=1

λi(P)3. (4.1)

100

Letting λ1(P) denote the largest magnitude eigenvalue of P , we can in turn bound

tr(P 3) ≤ |λ1(P)| ·
n∑

i=1

λi(P)2 = |λ1(P)| · ∥P ∥2F .

Since |λ1(P)| ≤ ∥P ∥F , this gives via Lemma 4.1.2

tr(P 3) ≤ ∥P ∥3F ≤ 2
√
2 ·Ov(P)3/2 · Vol(P)3/2.

Combining this bound with Equation 4.1 completes the theorem.

The bound of Theorem 4.1.1 is tight up to constants, for any possible value of

Ov(P). The tight example is when P is simply an Erdös-Rényi graph.

Theorem 4.1.3 (Tightness of Expected Triangle Bound). For any γ ∈ (0, 1], there

exists a symmetric P ∈ [0, 1]n×n with Ov(P) = γ and EG∼G(P)[∆(G)] = Θ(γ3/2 ·

Vol(P)3/2).

Proof. Let Pij = γ for all i ̸= j. We have Vol(P) = γ·
(
n
2

)
and Ov(P)·Vol(P) = γ2·

(
n
2

)
Thus, Ov(P) = γ. Further, by linearity of expectation,

EG∼G(P)[∆(G)] = γ3 ·
(
n

3

)
= Θ(γ3 · n3) = Θ(γ3/2 · Vol(P)3/2).

We note that another example when Theorem 4.1.1 is tight is when P is a union of

a fixed clique on Θ(γ ·n) nodes and an Erdös-Rényi graph with connection probability

1/n on the rest of the nodes.

4.1.4.2 Squares and Other k-cycles

We can extend Theorem 4.1.1 to bound the expected number of k-cycles in G ∼

G(P) in terms of Ov(P).

101

Theorem 4.1.4 (Bound on Expected k-cycles). For a graph G, let Ck(G) denote the

number of k-cycles in G. Consider symmetric P ∈ [0, 1]n×n.

EG∼G(P) [Ck(G)] ≤ 2k/2

2k
·Ov(P)k/2 · Vol(P)k/2.

Proof. For notational simplicity, we focus on k = 4. The proof directly extends to

general k. C4(G) is the number of non-backtracking 4-cycles in G (i.e. squares),

which can be written as

EG∼G(P) [C4(G)] =
1

8
·

n∑
i=1

∑
j∈[n]\i

∑
k∈[n]\{i,j}

∑
ℓ∈[n]\{i,j,k}

PijPjkPkℓPℓi.

The 1/8 factor accounts for the fact that in the sum, each square is counted 8 times –

once for each potential starting vector i and once of each direction it may be traversed.

For general k-cycles this factor would be 1
2k

. We then can bound

EG∼G(P) [C4(G)] ≤ 1

8
·
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
ℓ∈[n]

PijPjkPkℓPℓi =
1

8
· tr(P 4).

For general k-cycles this bound would be EG∼G(P) [Ck(G)] ≤ 1
2k
tr(P k). This in turn

gives

EG∼G(P) [Ck(G)] ≤ 1

2k
· |λ1(P)|k−2 · ∥P ∥2F ≤

1

2k
∥P ∥kF ≤

2k/2

2k
Ov(P)k/2 · Vol(P)k/2,

where the last bound follows from Lemma 4.1.2. This completes the theorem.

It is not hard to see that Theorem 4.1.4 is also tight up to a constant depending on

k for any overlap γ ∈ (0, 1], also for an Erdös-Rényi graph with connection probability

γ.

Theorem 4.1.5 (Tightness of Expected k-cycle Bound). For any γ ∈ (0, 1], there

exists P ∈ [0, 1]n×n with Ov(P) = γ and EG∼G(P)[Ck(G)] = Θ
(

γk/2·Vol(P)k/2

k!

)
.

102

4.1.4.3 Clustering Coefficient

Theorem 4.1.1 shows that the expected number of triangles generated by an edge

independent model is bounded in terms of the model’s overlap. Intuitively, we thus

expect that graphs generated by the edge independent model will have low global

clustering coefficient, which is the fraction of wedges in the graph that are closed into

triangles [195].

Definition 6 (Global Clustering Coefficient). For a graph G with ∆(G) triangles, no

self-loops, and node degrees d1, d2, . . . , dn, the global clustering coefficient is given by

C(G) =
3∆(G)∑n

i=1 di(di − 1)
.

We extend Theorem 4.1.1 to give a bound on EG∼G(P) [C(G)] in terms of Ov(P).

The proof is related, but more complex due to the
∑n

i=1 di(di−1) in the denominator

of C(G).

Theorem 4.1.6 (Bound on Expected Clustering Coefficient). Consider symmetric

P ∈ [0, 1]n×n with zeros on the diagonal and with Vol(P) ≥ 2n.

EG∼G(P) [C(G)] = O

(
Ov(P)3/2 · n

Vol(P)1/2

)
.

Proof. By Theorem 4.1.1 we have EG∼G(P) [3∆(G)] ≤
√
2 ·Ov(P)3/2 · Vol(P)3/2. We

will show that with high probability,
∑n

i=1 di(di−1) = Ω(Vol(P)2/n), which will give

the theorem. Note that EG∼G(P) [
∑n

i=1 di] = EG∼G(P)[2|E(G)|] = 2 ·Vol(P). Thus, by

a Bernstein bound, for large enough n since Vol(P) ≥ 2n.

Pr

[∣∣∣∣∣
n∑

i=1

di − 2Vol(P)

∣∣∣∣∣ ≥ Vol(P)/5

]
≤ 2 exp

(
− Vol(P)2/50

Vol(P) + Vol(P)/15

)
≪ 1

n2
,

103

We can bound
∑n

i=1 d
2
i ≥

(
∑n

i=1 di)
2

n
. Thus, with probability ≥ 1− 1/n2,

n∑
i=1

di(di − 1) ≥ (8/5)2 · Vol(P)2

n
− 12

5
Vol(P) ≥ Vol(P)2

n
,

where in the last step we use that Vol(P) ≥ 2n and so 12
5
· Vol(P) ≤ 6

5
· Vol(P)2

n
.

Combined with our bound on EG∼G(P) [3∆(G)], and the fact that C(G) ≤ 1 always,

we have

EG∼G(P) [C(G)] = O

(
Ov(P)3/2Vol(P)3/2

Vol(P)2

n

+
1

n2

)
= O

(
Ov(P)3/2 · n

Vol(P)1/2

)
.

Thus, to have a constant clustering coefficient for a graph with O(n) edges in

expectation, we need Ov(P) = Ω(1/n1/3). Note that the requirement of Vol(P) ≥ 2n

is very mild – it means that the expected average degree is at least 1.

As with our triangle bound, Theorem 4.1.6 is tight when G(P) is just an Erdös-

Rényi distribution.

Theorem 4.1.7 (Tightness of Expected Clustering Coefficient Bound). For any

γ ∈ (0, 1], there exists P ∈ [0, 1]n×n with zeros on the diagonal, Ov(P) ≤ γ and

EG∼G(P)[C(G)] = Θ
(

γ3/2·n
Vol(P)1/2

)
.

Proof. Let Pij = γ for all i ̸= j. We have Vol(P) = γ ·
(
n
2

)
= Θ(γn2) and Ov(P) = γ.

Additionally, E[∆(G)] = Θ(γ3 · n3), and, if n is large enough with respect to γ, with

very high probability,
∑n

i=1 di(di − 1) ≤
∑n

i=1 d
2
i = O(γ2n3). This gives:

EG∼G(P)[C(G)] = Θ(γ) = Θ

(
γ3/2 · n
γ1/2 · n

)
= Θ

(
γ3/2 · n

Vol(P)1/2

)
.

4.1.5 Baseline Edge Independent Models

We now shift from proving theoretical limitations of edge independent models to

empirically evaluating the tradeoff between overlap and performance for a number of

104

particular models. Given an input adjacency matrix A ∈ {0, 1}n×n, these generative

models produce a P ∈ [0, 1]n×n, samples from which should match various graph

statistics of A, such as the triangle count, clustering coefficient, and assortativity. At

the same time, P should ideally have lower overlap so that the model does not just

memorize the original graph. We propose two simple generative models as baselines

to more complicated existing models – in both the level of overlap is easily tuned. Our

first baseline, the odds product model, is based on just matching the degree sequence

of A; more simple still, the second baseline computes P as a linear function of A,

just matching its volume.

Odds product model. In this model, each node is assigned a logit ℓ ∈ R, and the

probability of adding an edge between nodes i and j is Pij = σ(ℓi+ℓj), where σ is the

logistic function. We fit the model by finding a vector ℓ ∈ Rn of logits, with one logit

for each node, such that the reconstructed network has the same expected degrees

(i.e., row and column sums) as the original graph. We note that this model can be

seen as a special case of the MaxEnt [44] and inner-product [118, 81, 82] models. In

the context of directed graphs, ℓi has been called the expansiveness or popularity of

node i [72].

For adjacency matrix A ∈ {0, 1}n×n, we denote its degree sequence by d = A1 ∈

Rn, where 1 is the all-ones vector of length n. Similarly, the degree sequence of

the model is d̂ = P1. We pose fitting the model as a root-finding problem: we

seek ℓ ∈ Rn such that the degree errors are zero, that is, d̂ − d = 0. We use the

multivariate Newton-Raphson method to solve this root-finding problem. To apply

Newton-Raphson, we need the Jacobian matrix J of derivatives of the degree errors

with respect to the entries of ℓ. Since d does not vary with ℓ, these derivatives are

exactly ∂d̂i

∂ℓj
. Letting δij be 1 if i = j and 0 otherwise (i.e. the Kronecker delta),

105

∂d̂i

∂ℓj
= ∂

∂ℓj

∑
k∈[n]

Pik

= ∂
∂ℓj

∑
k∈[n]

σ(ℓi + ℓk)

= ∂
∂ℓj

σ(ℓi + ℓj) + δij
∑

k∈[n]
∂
∂ℓi

σ(ℓi + ℓk)

= σ(ℓi + ℓj) (1− σ(ℓi + ℓj)) + δij
∑

k∈[n]
σ(ℓi + ℓk) (1− σ(ℓi + ℓk))

= Pij (1− Pij) + δij
∑

k∈[n]
Pik (1− Pik) .

In Algorithm 7, we provide pseudocode for computing the Jacobian matrix J and for

implementing Newton-Raphson method to compute P . We do not have a proof that

Algorithm 7 always converges and produces ℓ which exactly reproduces in the input

degree sequence. However, the algorithm converged on all test cases, and proving

that it always converges would be an interesting future direction.

Algorithm 7 Fitting the odds product model
input graphical degree sequence d ∈ Rn, error threshold ϵ
output symmetric matrix P ∈ (0, 1)n×n with row/column sums approximately d

1: ℓ← 0 ▷ ℓ ∈ Rn is the vector of logits, initialized to all zeros
2: P ← σ

(
ℓ1⊤ + 1ℓ⊤

)
▷ σ is the logistic function applied entrywise, and
1 is the all-ones column vector of length n

3: d̃← P1 ▷ degree sequence of P
4: while

∥∥∥d̃− d
∥∥∥
2
> ϵ do

5: B ← P ◦
(
11⊤ − P

)
▷ ◦ is an entrywise product

6: J ← B + diag (B1)

7: ℓ← ℓ− J−1
(
d̃− d

)
▷ rather than inverting J , we solve this linear system

8: P ← σ
(
ℓ1⊤ + 1ℓ⊤

)
9: d̃← P1

10: return P

Our odds product model can be viewed as a variant of the Chung-Lu configuration

model [39], which is also based on degree sequence matching. However, our model

comes without a certain restriction on the maximum degree: in Chung-Lu, it is

assumed that the degrees of all nodes are bounded above by the square root of the

volume of the graph, that is, di ≤
√

Vol(A) for all nodes i. Given this restriction,

106

each node is assigned a weight wi = di/
√

Vol(A), and the probability of adding edge

(i, j) is Pij = wiwj. Since the weights are all in [0, 1], they can be interpreted as

probabilities, and the probability of adding an edge between two nodes is the product

of the two nodes’ probabilities.

Our odds product model works similarly, but instead of a probability, for each

node, there is an associated odds, that is, a value in (0,∞), and the odds of adding

an edge between two nodes is the product of the two nodes’ odds. There is a one-

to-one-to-one relationship between probability p ∈ [0, 1], odds o = p
1−p
∈ [0,∞), and

logit ℓ = ln(o) ∈ (−∞,+∞). We outlined above how our model is based on adding

logits associated with each node; since the odds is the exponentiation of the logit, the

model can equally be viewed as multiplying odds associated with nodes.

Varying overlap in the odds product model. We propose a simple method

to control the trade-off between overlap and accuracy in matching the input graph

statistics in the odds product model. Given the original adjacency matrix A and the

P generated by the odds product model to match the degree sequence of A, we use

a convex combination of P and A. That is, we use P̃ = (1 − ω)P + ωA, where

0 ≤ ω ≤ 1. As ω increases to 1, P̃ approaches a model which returns the original

graph with high certainty; hence high ω produce P̃ with high overlap which closely

match graph statistics, while low ω produce P̃ with lower overlap which may diverge

from A in some statistics. Note that since P̃ is a convex combination of adjacency

matrices with the expected degree sequence of A, P̃ also has the same expected

degree sequence regardless of the value of ω.

Linear model. As an even simpler baseline, we also propose and evaluate the

following model: we produce an Erdös-Rényi model P with the same expected volume

as the original graph A, then return a convex combination P̃ of P and A. In

particular, each entry of P is Vol(A)/n2, and, as with the odds product model,

P̃ = (1 − ω)P + ωA, where 0 ≤ ω ≤ 1. This model can alternatively be seen as

107

producing a P̃ by lowering each entry of A which is 1 to some probability α, and

raising each entry of A which is 0 to a probability β, with α ≥ β, such that the

volume is conserved.

4.1.6 Experimental Results

We now present our evaluations of different edge independent graph generative

models in terms of the tradeoff achieved between overlap and performance in gen-

erating graphs with similar key statistics to an input network. These experiments

highlight the strengths and limitations of each model, as well as the overall limita-

tions of this class, as established by our theoretical bounds.

4.1.6.1 Methods

We compare our proposed models from Section 4.1.5 with a number of existing

models described below

1. CELL [151] (Cross-Entropy Low-rank Logits) An alternative to the popular

NetGAN method [20] which strips the proposed architecture of deep leaning

components and achieves comparable performance in significantly less time, via

a low-rank approximation approach. To control overlap, we follow the approach

of the original paper, halting training once the generated graph exceeds a spec-

ified overlap threshold with the input graph. We set the rank parameter to a

value that allows us to get up to 75% overlap (typical values are 16 and 32).

2. TSVD (Truncated Singular Value Decomposition) A classic spectral method

which computes a rank-k approximation of the adjacency matrix using trun-

cated SVD. As in [167], the resulting matrix is clipped to [0,1] to yield P .

Overlap is controlled by varying k.

108

3. CCOP (Convex Combination Odds Product) The odds product model as of

Sec. 4.1.5 with overlap controlled by taking a convex combination of P and the

input adjacency matrix A.

4. HDOP (Highest Degree Odds Product) The odds product model, but with

overlap controlled by fixing the edges adjacency to a certain number of the

highest degree nodes.

5. Linear The convex combination between the input adjacency matrix and an

Erdös-Rényi graph, as described in Sec. 4.1.5, with overlap controlled by vary-

ing the ω parameter.

CCOP, HDOP, and Linear all produce edge probability matrices P with the same

volume, Vol(G), in expectation as the original adjacency matrix. For TSVD, letting

L be the low-rank approximation of the adjacency matrix, we learn a scalar shift

parameter σ using Newton’s method such that P = max(0,min(1,L+σ)) has volume

Vol(G). We then generate new networks from the edge independent distribution G(P)

(Definition 4). For CELL, we follow the authors’ approach of generating Vol(G) edges

without replacement - an edge (i, j) is added with probability proportional to Pij).

We sample 5 networks from each distribution and report the average for every

statistic.

4.1.6.2 Datasets and network statistics

For evaluation, we use the following seven popular datasets with varied structure,

from triangle-rich social networks to planar road networks:

1. PolBlogs: A collection of political blogs and the links between them.

2. Citeseer: A collection of papers from six scientific categories and the citations

among them.

109

Table 4.1. Network statistics for experiments in Section 4.1.

Dataset Nodes Edges Triangles
PolBlogs [3] 1,222 33,428 101,043
Citeseer [166] 2,110 7,336 1,083
Cora [166] 2,485 10,138 1,558
Road-Minnesota [155] 2,640 6,604 53
Web-Edu [69] 3,031 12,948 10,058
PPI [177] 3,852 75,682 91,461
Facebook [107] 4,039 176,468 1,612,010

3. Cora: A collection of scientific publications and the citations among them.

4. Road-Minnesota: A road network from the state of Minnesota. Each inter-

section is a node.

5. Web-Edu: A web-graph drawn from educational institutions.

6. PPI: A subgraph of the PPI network for Homo Sapiens. Vertices represent

proteins and edges represent interactions.

7. Facebook: A union of ego networks of Facebook users.

See Table 4.1 for statistics about the networks. We treat all networks as binary, in

that we set all non-zero weights to 1, and undirected, in that if edge (i, j) appears

in the network, we also include edge (j, i) . Also, we keep only the largest connected

component of each network.

We evaluate performance in matching the following key network statistics:

1. Pearson correlation of the degree sequences of the input and the generated

network.

2. Maximum degree over all nodes.

3. Exponent of a power-law distribution fit to the degree sequence.

110

4. Assortativity, a measure that captures the preference of nodes to attach to

others with similar degree (ranging from -1 to 1).

5. Pearson correlation of the triangle sequence (number of triangles a node partic-

ipates in).

6. Total triangle count (analyzed theoretically in Theorem 4.1.1).

7. Global clustering coefficient (defined in Definition 6 and analyzed theoretically

in Theorem 4.1.6).

8. Characteristic path length (average path length between any two nodes).

4.1.6.3 Results

The theoretical results from Section 4.1.4 highlight a key weakness of edge inde-

pendent generative models: they cannot generate many triangles (or other higher-

order locally dense areas), without having high overlap and thus not generating a

diversity of graphs. We observe that these theoretical findings hold in practice – gen-

erally speaking, all models tested tend to significantly underestimate triangle count

and global clustering coefficient, as well as inaccurately match the triangle degree

sequence, when overlap is low. See Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 for

results on the tested networks. As overlap increases, performance in reconstructing

these metrics does as well, as expected.

All methods are able to capture certain network characteristics accurately, even

at low overlap. Even for a relatively small overlap (less than 0.2), the CCOP and

HDOP methods accurately capture the degree sequences of the true networks (as they

are designed to do). These methods, especially HDOP which fixes edges from high

degree nodes, often outperform more sophisticated methods like CELL in terms of

triangle density and triangle degree sequence correlation. On the other hand, CELL

seems to do a somewhat better job capturing global features, like the characteristic

111

0.0 0.5 1.0
0.5

0.6

0.7

0.8

0.9

1.0
Degree Correlation

0.0 0.5 1.0
50

100
150
200
250
300
350

Max Degree

0.0 0.5 1.0

1.4

1.6

1.8

2.0

2.2
Power Law Exp.

0.0 0.5 1.0
0.25
0.20
0.15
0.10
0.05
0.00
0.05

Assortativity

0.0 0.5 1.0

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Triangle Correlation

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Norm. Triangle Count

0.0 0.5 1.0

0.05

0.10

0.15

0.20

0.25

0.30

Clustering Coeff.

0.0 0.5 1.0
2.5

2.6

2.7

2.8

Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 4.1. Graph statistics fidelity vs overlap with edge independent models on
PolBlogs.

path length. TSVD provides a fair compromise – it performs better than CELL in

terms of degree sequence and triangle counts, but worse in terms of characteristic

path length. In general, it is the method that gives the best results when the overlap

is extremely small, appearing to be less sensitive to the variation in overlap.

Broadly speaking, all methods do reasonably well in matching the power-law de-

gree distribution of the networks, even when they do not match the actual degree

sequence closely. With the exception of Web-Edu, they tend to underestimate the

characteristic path length. This is perhaps not surprising due to the independent ran-

dom edge connections, but it would be interesting to understand more theoretically.

Code for reproducing results. Code is available at

https://github.com/konsotirop/edge_independent_models. Our implementation

of the methods we introduce is written in Python and uses the NumPy [79] and

SciPy [191] packages. Additionally, to calculate the various graph metrics, we use the

following packages: powerlaw [14] and MACE (MAximal Clique Enumerator) [180].

112

https://github.com/konsotirop/edge_independent_models

0.0 0.5 1.0
0.2

0.4

0.6

0.8

1.0
Degree Correlation

0.0 0.5 1.0

20

40

60

80

100

Max Degree

0.0 0.5 1.0
1.80

1.85

1.90

1.95

2.00

2.05

Power Law Exp.

0.0 0.5 1.0

0.05

0.00

0.05

0.10

0.15

Assortativity

0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0.0 0.5 1.0
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Clustering Coeff.

0.0 0.5 1.0

5

6

7

8

9

Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 4.2. Graph statistics fidelity vs overlap with edge independent models on
Citeseer.

0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0.0 0.5 1.0

50

100

150

Max Degree

0.0 0.5 1.0

1.78

1.80

1.82

1.84

1.86

1.88

Power Law Exp.

0.0 0.5 1.0

0.10

0.08

0.06

0.04

0.02

0.00
Assortativity

0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

Clustering Coeff.

0.0 0.5 1.0

4.5

5.0

5.5

6.0

Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 4.3. Graph statistics fidelity vs overlap with edge independent models on
Cora.

113

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0.0 0.5 1.0

6

8

10

12

Max Degree

0.0 0.5 1.0
2.00

2.05

2.10

2.15

2.20

2.25

Power Law Exp.

0.0 0.5 1.0
0.20

0.15

0.10

0.05

0.00

0.05

0.10
Assortativity

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0.0 0.5 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Norm. Triangle Count

0.0 0.5 1.0
0.00

0.01

0.02

0.03

0.04

Clustering Coeff.

0.0 0.5 1.0

10

15

20

25

30

35
Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 4.4. Graph statistics fidelity vs overlap with edge independent models on
Road-Minnesota.

0.0 0.5 1.0

0.4

0.6

0.8

1.0
Degree Correlation

0.0 0.5 1.0

20

40

60

80

100

Max Degree

0.0 0.5 1.0
1.75

1.80

1.85

1.90

1.95

2.00

Power Law Exp.

0.0 0.5 1.0

0.2

0.1

0.0

0.1

0.2

0.3

Assortativity

0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0.0 0.5 1.0
0.0

0.1

0.2

0.3

Clustering Coeff.

0.0 0.5 1.0
4

5

6

7

8

Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 4.5. Graph statistics fidelity vs overlap with edge independent models on
Web-Edu.

114

0.0 0.5 1.0
0.6

0.7

0.8

0.9

1.0
Degree Correlation

0.0 0.5 1.0

100

200

300

400

500

600

Max Degree

0.0 0.5 1.0

1.40

1.45

1.50

1.55

1.60

1.65

Power Law Exp.

0.0 0.5 1.0

0.1

0.0

0.1

0.2
Assortativity

0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0
Triangle Correlation

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0
Norm. Triangle Count

0.0 0.5 1.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Clustering Coeff.

0.0 0.5 1.0

2.9

3.0

3.1

3.2

3.3
Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 4.6. Graph statistics fidelity vs overlap with edge independent models on
PPI

0.00 0.25 0.50 0.75 1.00

0.6

0.7

0.8

0.9

1.0
Degree Correlation

0.00 0.25 0.50 0.75 1.00

200

400

600

800

1000

Max Degree

0.00 0.25 0.50 0.75 1.00

1.4

1.6

1.8

2.0

2.2

2.4
Power Law Exp.

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

Assortativity

0.00 0.25 0.50 0.75 1.00

0.7

0.8

0.9

1.0
Triangle Correlation

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Norm. Triangle Count

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5

Clustering Coeff.

0.00 0.25 0.50 0.75 1.00
2.6

2.8

3.0

3.2

3.4

3.6

3.8
Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 4.7. Graph statistics fidelity vs overlap with edge independent models on
Facebook.

115

4.1.7 Conclusion

Our theoretical results prove limitations on the ability of any edge independent

graph generative model to produce networks that match the high triangle densities

of real-world graphs, while still generating a diverse set of networks, with low model

overlap. These results match empirical findings that popular edge independent mod-

els indeed systematically underestimate triangle density, clustering coefficient, and

related measures. Despite the popularity of edge independent models, many non-

independent models, such as graph RNNs [205] have been proposed. This section

leaves open the study of the representative power and limitations of such models,

giving general theoretical results that provide a foundation for the study of graph

generative models. We return to this direction in Section 4.2.

4.2 On the Role of Edge Dependency in Random

Graph Models
In Section 4.1, we introduced the notion of overlap, to quantify the diversity of the

graphs generated by a given model. Intuitively, useful models that produce diverse

output graphs have bounded overlap. Further, without the requirement of bounded

overlap, it is trivial to generate graphs that have the same statistical properties as a

given input graph, by simply memorizing that graph and outputting it with probabil-

ity 1. Formally, we showed a trade-off between the number of triangles that an edge

independent model can generate and the model overlap.

The notion of overlap will play a central role in this section. In particular, we

introduce the following definition, which generalizes the concept of overlap beyond

edge independent models. For simplicity, we focus on node-labeled, unweighted, and

undirected graphs.

116

Definition 7 (Overlap). Suppose A is a distribution over binary adjacency matrices

of undirected unweighted graphs on n nodes without self-loops. Let the ‘volume’ of A

be the expected number of edges in a sample:

Vol(A) := EA∼A

[∑
i<j

Aij

]
.

The overlap of A is the expected number of shared edges between two samples, nor-

malized by volume:

Ov(A) :=
EA,A′∼A

[∑
i<j Aij ·A′

ij

]
Vol(A) .

Our Contributions. Our main contributions in this section are summarized as

follows:

• We advocate for a new evaluation framework of generative models that includes

the overlap, to require that models generate graphs that are both accurate and

edge-diverse.

• We propose a hierarchy of graph generative models with three levels of complex-

ity: edge independent, node independent, and fully dependent models. These

levels capture many of today’s most popular methods — see Table 4.2.

• We prove theoretical bounds on the number of triangles and other short-length

cycles that can be generated by each level of our hierarchy, as a function of

the model overlap. Table 4.2 summarizes our bounds. Furthermore, we provide

instances that show that our bounds are (asymptotically) optimal. Intuitively,

models with more dependencies can achieve higher triangle/motif counts for

a given level of overlap. Our bounds here extend those of Section 4.1, which

considered only edge independent models (the lowest level of our hierarchy).

• We propose new generative models for each of the three levels that are based

on dense subgraph discovery via maximal clique detection [67].

117

• We evaluate our models and other popular models on real-world datasets focus-

ing on the output quality and the overlap. We see that while several models

can succeed in memorizing the input graph, they fail to match graph statistics

at a low overlap.

Table 4.2. Summary of results for Section 4.2. The level of edge dependency in graph
generative models inherently limits the range of graph statistics, such as triangle
counts, that they can produce. Note that Ov(A) ∈ [0, 1], so a higher power on Ov(A)
means a tighter bound on the number of triangles.

Model Upper Bound on ∆/n3 Examples
Edge Independent Ov(A)3 • Erdős–Rényi

• SBM
• NetGAN [20, 152]

Node Independent Ov(A)3/2 • Variational Graph Auto-Encoder
(VGAE) [94]

Fully Dependent Ov(A) • GraphVAE [170]
• GraphVAE-MM [208]
• Exponential Random Graph Models

(ERGMs) [62]

4.2.1 Hierarchy of Graph Generative Models

Our main conceptual contribution is a hierarchical categorization of graph gener-

ative models into three nested levels: edge independent, node independent, and fully

dependent. For each level, we prove asymptotic upper bounds on triangle count with

respect to overlap; we defer the proof of these bounds, as well as generalizations to

bounds on k-cycles, to Section 4.1.4. Also for each level, we provide a simple charac-

teristic family of graphs that achieves this upper bound on triangle counts, showing

that the bound is asymptotically tight. We also discuss examples of models from

prior work that fit into each level.

118

4.2.1.1 Edge Independent Model

We begin with the well-established class of edge independent models. This class of

models includes many important models. Classical models that are edge independent

include the Erdős-Rényi model and the stochastic block model (SBM) [1] as well

as modern deep-learning based models such as NetGAN [20, 151], Graphite [76], and

MolGAN [45] as they ultimately output a P matrix based on which edges are sampled

independently.

Definition 8 (Edge Independent Graph Model). An edge independent (EI) graph

generative model is a distribution A over symmetric adjacency matrices A ∈ {0, 1}n×n,

such that, for some symmetric P ∈ [0, 1]n×n, Aij = Aji = 1 with probability Pij for

all i, j ∈ [n], otherwise Aij = Aji = 0. Furthermore, all entries (i.e., in the upper

diagonal) of A are mutually independent.

Any EI graph generative model satisfies the following theorem:

Theorem 4.2.1. Any edge independent graph model A with overlap Ov(A) has O(n3 ·

Ov(A)3) triangles in expectation. That is, for a sample A drawn from A, the number

of triangles ∆(A) in A in expectation is

E[∆(A)] = O(n3 ·Ov(A)3) (4.2)

In Section 4.1, we give a spectral proof of the upper bound Equation 4.2. Here we

provide an alternative proof based on an elegant generalization of Shearer’s Entropy

Lemma [13, 41] due to [63]. Furthermore, we show that the upper bound is tight.

Consider the G(n, p) model. The expected volume is Vol(A) = p ·
(
n
2

)
, whereas the

expected number of shared edges between two samples is p2 ·
(
n
2

)
, yielding an overlap of

p (see Definition 7). Furthermore, since any triangle is materialized with probability

p3, by the linearity of expectation there are O(n3 · p3) triangles, which shows that

inequality Equation 4.2 is tight.

119

4.2.1.2 Fully Dependent Model

We now move to the other end of the edge dependency spectrum, namely to

models that allow for arbitrary edge dependencies. A classic fully dependent model

is the ERGM [62, 35] as it can model arbitrary higher order dependencies.

Definition 9 (Fully Dependent Graph Model). A fully dependent graph generative

model allows for any possible distribution A over symmetric adjacency matrices A ∈

{0, 1}n×n.

Allowing for arbitrary edge dependencies enables us to have models with signifi-

cantly more triangles as a function of the overlap:

Theorem 4.2.2. For any fully-dependent model A with overlap Ov(A), the expected

number of triangles is O(n3 ·Ov(A)).

As in the case of EI models, there is a simple instance that shows that the bound

is tight. Specifically, consider a model that outputs a complete graph with probability

p and an empty graph otherwise. Each edge occurs with probability p, so by the same

computation as for EI models, the overlap is p. As for the triangle count, there are no

triangles when the graph is empty, but when it is complete, there are all
(
n
3

)
possible

triangles. Thus, the expected number of triangles is O(n3 · p) = O(n3 ·Ov(A)), again

showing that our bound is tight.

At a high level, fully dependent graph generative models often arise when methods

sample a graph-level embedding, then produce a graph sample from this embedding,

allowing for arbitrary dependencies between edges in the sample. A specific example

is the graph variational auto-encoder (GraphVAE) [170], in which decoding involves

sampling a single graph-level embedding xG ∈ Rk, and the presence of each edge is

an independent Bernoulli random variable with a parameter that is some function

fij of x: Aij = Bernoulli(fij(xG)). In particular, these functions are encoded by a

fully-connected neural network. Assuming these fij can closely approximate the sign

120

function, with a 1-dimensional graph embedding (k = 1), this model can in fact match

the triangle bound of Theorem 4.2.2 by simulating the tight instance described above

(outputting a complete graph with probability p and the empty graph otherwise).

4.2.1.3 Node Independent Model

We have managed to identify a natural middle layer in the hierarchy, between the

two extremes of EI and FD generative models. This level is built upon the common

concept of node embeddings that are stochastic and generated independently for each

node.

Definition 10 (Node Independent Graph Model). A node independent (NI) graph

generative model is a distribution A over symmetric adjacency matrices A ∈ {0, 1}n×n,

where, for some embedding space E , some mutually independent random variables

x1, . . . ,xn ∈ E , and some symmetric function e : E ×E → [0, 1], the entries of A are

Bernoulli random variables Aij = Bernoulli (e(xi,xj)) that are mutually independent

conditioned on x1, . . . ,xn.

Interestingly the triangle bound for this class of generative models lies in the

middle of the EI and FD triangle bounds.

Theorem 4.2.3. Any node independent graph model A with overlap Ov(A) has

O(n3 ·Ov(A)3/2) triangles in expectation.

The proof of Theorem 4.2.3 requires expressing the probability of edges and tri-

angles appearing as integrals in the space of node embeddings. Then we apply a

continuous version of Shearer’s inequality. We show that the bound of Theorem 4.2.3

is tight. Generate a random graph by initially starting with an empty graph com-

prising n nodes. Subsequently, each node independently becomes “active” with a

probability of √p, and any edges connecting active nodes are subsequently added

into the graph. Note that for a given edge to be added, both of its endpoint nodes

121

must be active, which occurs with probability p; this again yields an overlap of p as

with the prior tight examples. For a triangle to be added, all three of its endpoint

nodes must be active, which occurs with probability p3/2. Hence the expected number

of triangles is O(n3 · p3/2) = O(n3 ·Ov(A)3/2).

The random graph can be represented using embeddings based on the provided

definition. Consider a 1-dimensional embedding x ∈ Rn×1. Let xi = 1 with probabil-

ity √p and otherwise let xi = 0, independently for each i ∈ [n]. These coin tosses are

made independently for each i ∈ [n]. To capture the edges between nodes, we define

e(xi,xj) as 1 when both arguments are 1, and 0 otherwise. This embedding-based

representation precisely implements the described random graph.

Node independent graph models most commonly arise when methods indepen-

dently sample n node-level embeddings, then determine the presence of edges between

two nodes based on some compatibility function of their embeddings. One notable

example is the variational graph auto-encoder (VGAE) model [93]. In the decoding

step of this model, a Gaussian-distributed node embedding is sampled independently

for each node, and the presence of each possible edge is an independent Bernoulli

random variable with a parameter that varies with the dot product of the correspond-

ing embeddings as follows: Aij = Bernoulli(σ(xi · xj)). Thus, the VGAE model

seamlessly fits into our node independent category.

4.2.2 Impossibility Results for Random Graph Models

We now prove the bounds on triangle count that were discussed in Section 4.2.1,

then state generalized bounds for k-cycles. We start with some notions that will be

useful for the proofs.

122

4.2.3 Theoretical Preliminaries

Inner product space formulation of overlap. We now state equivalent defini-

tions for volume and overlap that may be more illuminating, and will be useful for

proofs. We first make the following observation:

Observation 1 (Inner Product Space of Distributions over Vectors). Suppose U ,V

are distributions over real-valued d-dimensional vectors. Then the following operation

defines an inner product:

⟨U ,V⟩ := E
u∼U ,v∼V

[u · v],

where u · v is the standard vector dot product.

For the remainder of this paper, we deal with adjacency matrices of undirected

graphs on n nodes without self-loops, and distributions over such matrices. Dot prod-

ucts and inner products of these objects are taken over
(
n
2

)
-dimensional vectorizations

of entries below the diagonal. Let F denote the distribution that returns the adja-

cency matrix F of a such a graph which is fully connected (i.e., has all possible edges)

with probability 1. Then

Vol(A) = ⟨A,F⟩ and Ov(A) = ⟨A,A⟩Vol(A) .

In addition to these expressions for overlap and volume, we will also continue to use

F and F as defined above through the rest of this paper.

These expressions allow us to derive the following upper bound on volume in terms

of overlap, which applies to any graph generative model:

Lemma 4.2.4. For a graph generative model A with overlap Ov(A), the expected

number of edges Vol(A) is at most
(
n
2

)
·Ov(A).

123

Proof. By the definition of overlap and Cauchy-Schwarz,

Ov(A) = ⟨A,A⟩
⟨A,F⟩

≥ ⟨A,F⟩2

⟨A,F⟩ · ⟨F ,F⟩
=
⟨A,F⟩
⟨F ,F⟩

=
Vol(A)
⟨F ,F⟩

.

Since ⟨F ,F⟩ = ⟨F ,F ⟩ =
(
n
2

)
, rearranging yields

Vol(A) ≤
(
n
2

)
·Ov(A).

4.2.4 Triangle Count

We now prove the upper bounds on expected triangle count for edge independent,

node independent, and fully dependent models of O(n3 · Ov(A)3), O(n3 · Ov(A)3/2),

and O(n3 ·Ov(A)), respectively.

Edge independent. A proof for Theorem 4.2.1 based on expressing triangle count

in terms of eigenvalues of P follows directly from Lemma 4.2.4 and results from

Section 4.1, but we present a different proof based on the following variant of Cauchy-

Schwarz from [63]:

∑
ijk

aijbjkcki ≤
√∑

ij
a2ij
∑

ij
b2ij
∑

ij
c2ij.

Proof of Theorem 4.2.1. Let P be the edge probability matrix of the edge indepen-

dent model A. Then, by the above inequality, for a sample A from A,

E[∆(A)] = 1
6

∑
ijk

PijPjkPki ≤ 1
6

√(∑
ij
P 2

ij

)3
= 1

6

(
2
∑

i<j
P 2

ij

)3/2

= 1
6
(2 ·Ov(A)Vol(A))3/2 =

√
2
3
·Ov(A)3/2Vol(A)3/2.

Now, applying Lemma 4.2.4,

E[∆(A)] ≤
√
2
3

(
n
2

)3/2 ·Ov(A)3.

124

Fully dependent. We now prove the triangle bound for fully dependent (arbitrary)

graph generative models, which follows from Lemma 4.2.4. Note that, given a random

adjacency matrix A ∈ {0, 1}n×n, the product AijAjkAik is an indicator random

variable for the existence of a triangle between nodes i, j, k ∈ [n].

Proof of Theorem 4.2.2. Let A be a sample from A. From Lemma 4.2.4, we have

∑
i<j

E[Aij] = Vol(A) ≤
(
n
2

)
·Ov(A).

So, for the expected number of triangles in a sample, we have:

E[∆(A)] = E
[∑

i<j<k
AijAjkAik

]
=
∑

i<j<k
E [AijAjkAik]

≤
∑

i<j<k
E[Aij] = O(n)

∑
i<j

E[Aij] ≤ O(n3) ·Ov(A).

Node independent. Before we prove Theorem 4.2.3, which is more involved than

proofs for the prior theorems, we first establish the following lemma:

Lemma 4.2.5. For a sample A from any node independent model on n nodes and

any three nodes i, j, k ∈ [n], the probability that i, j, k form a triangle is upper-bounded

as follows:

E[AijAjkAik] ≤
√

E[Aij]E[Ajk]E[Aik].

The concept for how we will prove this is essentially to express the probability of

edges and triangles appearing as integrals in the space of node embeddings. After

this, we can apply the following theorem from [63] (also proven by [59]), which can

be seen as a continuous version of Shearer’s inequality.

125

Theorem 4.2.6 ([63]). Let X,Y, Z be three independent probability spaces and let

f : X × Y → R, g : Y × Z → R, and h : Z ×X → R

be functions that are square-integrable with respect to the relevant product measures.

Then

∫
f(x, y)g(y, z)h(z, x) dx dy dz ≤

√∫
f 2(x, y) dx dy

∫
g2(y, z) dy dz

∫
h2(z, x) dz dx.

Given this theorem, we proceed with the proof of the lemma:

Proof. Fix a triplet of distinct nodes (i, j, k). Then, by assumption, the embeddings

of these nodes Zi, Zj, Zk are independent random variables. Let ρZi
, ρZj

, ρZk
be the

corresponding PDFs of the respective nodes’ embeddings. Recall that there exists a

symmetric function e : Rk × Rk → [0, 1] of two nodes’ embeddings that determines

the probability of an edge between them. Based on this, the probability that nodes

i, j, k form a triangle is:

E[AijAjkAik] =

∫
ρZi

(zi)ρZj
(zj)ρZk

(zk)e(zi, zj)e(zj, zk)e(zi, zk) dzi dzj dzk

Now, define f(zi, zj) =
√
ρZi

(zi) · ρZj
(zj) · e(zi, zj), g(zj, zk) =

√
ρZj

(zj) · ρZk
(zk) ·

e(zj, zk), and h(zi, zk) =
√
ρZi

(zi) · ρZk
(zk) · e(zi, zk), so that

E[AijAjkAik] =

∫
f(zi, zj)g(zj, zk)h(zi, zk) dzi dzj dzk

Now, we can apply Theorem 4.2.6, yielding:

126

E[AijAjkAik] ≤

√∫
f 2(zi, zj) dzi dzj

∫
g2(zj, zk) dzj dzk

∫
h2(zi, zk) dzi dzk

=

√∫
ρZi

(zi)ρZj
(zj)e2(zi, zj) dzi dzj

∫
ρZj

(zj)ρZk
(zk)e2(zj, zk) dzj dzk

∫
ρZi

(zi)ρZk
(zk)e2(zi, zk) dzi dzk

≤

√∫
ρZi

(zi)ρZj
(zj)e(zi, zj) dzi zj

∫
ρZj

(zj)ρZk
(zk)e(zj, zk) dzj dzk

∫
ρZi

(zi)ρZk
(zk)e(zi, zk) dzi dzk.

where the last inequality simply uses the fact that since the image of the function e

is [0, 1], it must be that e2(x, y) ≤ e(x, y). Finally, one can observe that

∫
ρZi

(zi)ρZj
(zj)e(zi, zj) dzi dzj = E[Aij],

from which the lemma follows.

Provided this lemma, it is straightforward to prove Theorem 4.2.3:

Proof of Theorem 4.2.3. Let A be a sample from a node independent model. For the

expected number of triangles E[∆(A)] in the sample, we have that

E[∆(A)] =
∑

i<j<k
E[AijAikAjk] ≤

∑
i<j<k

√
E[Aij] · E[Aik] · E[Ajk].

Let T denote the last expression. By Cauchy-Schwarz and the identity (
∑

i

√
ai)

2 ≤

n
∑

i ai, we get

T 2 ≤
(
n
3

)
·
∑

i<j<k
E[Aij]E[·Aik] · E[Ajk] ≤

(
n
3

)2Ov(A)3,

where the last inequality follows from Theorem 4.2.1 for edge independent models.

Finally, rearranging yields

E[∆(A)] ≤ T ≤
(
n
3

)
·Ov(A)3/2.

127

4.2.5 Squares and Other k-cycles

We can extend the prior bounds on triangles to bounds on the expected number

of k-cycles in graphs sampled from the generative model A in terms of Ov(A). For

the adjacency matrix A of a graph G, let Ck(A) denote the number of k-cycles in G.

Theorem 4.2.7 (Bound on Expected k-cycles). Let A be an adjacency matrix sam-

pled from a graph generative model A, and let Ck(A) denote the number of k-cycles

in the graph corresponding to A. If A is edge independent, node independent, or fully

dependent then E[Ck(A)] is bounded above asymptotically by nk ·Ov(A)k, nk ·Ov(A)k/2,

and nk ·Ov(A), respectively.

Proof. For notational simplicity, we focus on k = 4. The proof directly extends to

general k. Let C4(G) be the number of non-backtracking 4-cycles in G (i.e. squares),

which can be written as

EA∼A [C4(A)] =
1

8
·

n∑
i=1

∑
j∈[n]\{i}

∑
k∈[n]\{i,j}

∑
ℓ∈[n]\{i,j,k}

AijAjkAkℓAℓi.

The 1/8 factor accounts for the fact that in the sum, each square is counted 8 times –

once for each potential starting vector i and once of each direction it may be traversed.

For general k-cycles this factor would be 1
2k

. We then can bound

EA∼A [C4(A)] ≤ 1

8
·
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
ℓ∈[n]

AijAjkAkℓAℓi.

If A is an edge independent model, the bound on the expected number of 4-cycles

proceeds like the one for triangles, except using the following variant of Cauchy-

Schwarz: ∑
ijkl

aijbjkckldli ≤
√∑

ij
a2ij
∑

ij
b2ij
∑

ij
c2ij
∑

ij
d2ij,

128

which, letting P = E[A] be the edge probability matrix for A ∼ A, yields

E[C4(A)] = 1
8

∑
ijkl

PijPjkPklPli ≤ 1
8

√(∑
ij
P 2

ij

)4
= 1

8
(2 ·Ov(A)Vol(A))4/2 = O

(
n4Ov(A)4

)
,

where again the last step is applying Lemma 4.2.4.

If A is a fully dependent model, the proof of the bound carries through almost

exactly:

E[C4(A)] =
∑

i<j<k<l

E [AijAjkAklAli] ≤
∑

i<j<k<l

E[Aij]

= O(n2)
∑

i<j
E[Aij] = O(n2) · Vol(A) ≤ O(n4) ·Ov(A).

If A is a node independent model, the bound on the expected number of 4-cycles

follows as before, except using the following variant of Theorem 4.2.6:

∫
f(x, y)g(y, z)h(z, w)l(w, x) dx dy dz dw

≤

√∫
f 2(x, y) dx dy

∫
g2(y, z) dy dz

∫
h2(z, w) dz dw

∫
l2(w, x) dw dx.

Applying this equation as before yields

E[AijAjkAklAli] ≤
√

E[Aij]E[Ajk]E[Akl]E[Ali],

which allows us to apply the edge independent bound for squares:

E[C4(A)] =
∑

i<j<k<l

E[AijAjkAklAli] ≤
∑

i<j<k<l

√
E[Aij]E[Ajk]E[Akl]E[Ali]

≤
√(

n
4

)∑
i<j<k<l

E[Aij]E[Ajk]E[Akl]E[Ali]

≤
√
O ((n4)2 ·Ov(A)4) = O(n4Ov(A)4/2).

129

4.2.6 Experimental Methodology and Baselines

We turn our attention to evaluating the real-world trade-off between overlap and

performance for several specific models empirically on real world networks. In this

work, we focus on graph generative models that, given an input adjacency matrix A ∈

{0, 1}n×n, produce a distribution A over adjacency matrices in {0, 1}n×n. Broadly, it

is desirable for these distributions to have two properties:

1. Samples from A should approximately match various graph statistics of the

input graph A, such as the degree distribution and triangle count.

2. A should have low overlap, to prevent the model from just memorizing and

outputting A.

Because there is generally some inherent tension between these two objectives for A,

it is desirable for the model to allow for easily tuning overlap.

Recent graph generative models, especially those that incorporate edge depen-

dency, often involve complex deep architectures with a large number of parameters

that are trained with (stochastic) gradient descent. The abundance of parameters

implies that these models may have the capacity to simply memorize the input graph.

At the same time, the complexity of the approaches obscures the roles of each compo-

nent in yielding performance (in particular, the role of edge dependency is unclear),

and specifying a desired overlap with the input graph is generally not possible, short

of heuristics like early stopping. Altogether, the preceding discussion inspires the

following research questions:

1. Are the looser theoretical limitations on triangle counts and other graph statis-

tics for graph generative models with edge dependency reflected in modeling of

real-world networks?

2. Can edge dependency be achieved with simple baselines that allow for overlap

to be easily tuned?

130

3. Can such simple models match graph statistics comparably well to deep models,

at given levels of overlap?

As a preview of our results in Section 4.2.7, we find overall positive answers to each

of these three questions.

4.2.6.1 Graph Generative Models based on Dense Subgraph Discovery

As interpretable baselines to compare to deep-learning models, we introduce three

graph generative models, one for each of the categories of our framework: edge in-

dependent (EI), node independent (NI), and fully dependent (FD). These baseline

models mainly exploit the dense subgraph structure of the input graph, specifically

the set of maximal cliques (MCs) [55]. We refer to our models as MCEI, MCNI,

and MCFD, respectively. The high-level concept of these models is to start with an

empty graph and plant edges from each of the input graph A’s max cliques with

some fixed probability hyperparameter p. How the edges are planted depends on the

desired type of edge dependency and reflects the characteristic ‘tight’ examples for

each category of the hierarchy from Section 4.2.1 – see Algorithm 8 for details. Note

that, the lower p, the fewer the expected edges in the final sampled graph Gp, and

hence the greater the ‘residual’ with respect to the input graph. To compensate, we

also sample a second graph Gr and return the union of Gp and Gr.

Specifically, we produce Gr by sampling from a simple edge independent model,

the odds product model, which we also leveraged in Section 4.1. Recall that this is as

a variant of the well-known Chung-Lu configuration model [6, 39, 40], which produces

graphs that match an input degree sequence in expectation. The odds product model

does the same, except without constraints on the input degree sequence. In this

section, we generalize this model to produce a sampled graph Gr such that its union

with a Gp matches the input graph’s degree distribution in expectation. Essentially

131

Algorithm 8 Sampling Gp for our max clique-based graph generative baselines
input input graph Gi, planting probability p, model type (MCEI, MCFD, or MCNI)
output sampled graph Gp

1: initialize the sampled graph Gp to be empty
2: for each max clique M ∈ input graph Gi do
3: if MCEI then
4: for each edge e ∈M do
5: with probability p, add e to Gp

6: else if MCFD then
7: with probability p, add all edges in M to Gp

8: else if MCNI then
9: for each node v ∈M do

10: with probability √p, set v to be ‘active’ in M

11: add edges between all pairs of nodes active in M to Gp

12: return Gp

the same derivation yields the modified fitting method, pseudocode for which is given

in Algorithm 9.

Overall, this generative process gives rise to two desirable properties shared by

our baseline models:

1. Each model has a single hyperparameter, the planting probability p, and ranging

this probability from 0 to 1 ranges the overlap of the resulting distribution

from very low to 1. In particular, the distribution A goes from being nearly

agnostic to the input graph A (depending only on its degree sequence), to

exactly returning A with probability 1.

2. Given input graph A, samples from the distribution A that these models output

will exactly match the node degrees of A in expectation.

The first of these properties encapsulates the two desiderata for graph generative

models that were listed at the start of this section. As for the second, matching the

degree sequence is an especially beneficial starting point for a generative model since

doing so also results in matching some other statistics of interest, such as max degree

and best-fit power-law exponent, as a byproduct.

132

Algorithm 9 Fitting the modified odds product model
input target degrees d ∈ Rn, primary expected adjacency matrix E[Ap] ∈ [0, 1]n×n,

error threshold ϵ
output symmetric probability matrix E[Ar] ∈ [0, 1]n×n

1: ℓ← 0 ▷ ℓ ∈ Rn is the vector of logits, initialized to all zeros
2: E[Ar]← σ

(
ℓ1⊤ + 1ℓ⊤

)
▷ σ is the logistic function applied entrywise, and
1 is the all-ones column vector of length n

3: E[Au]← 11⊤ −
(
11⊤ − E[Ap]

)
◦
(
11⊤ − E[Ar]

)
▷ ◦ is an entrywise product

4: d̃← E[Au]1 ▷ expected degree sequence of E[Au]

5: while
∥∥∥d̃− d

∥∥∥
2
> ϵ do

6: B ← E[Ar] ◦
(
11⊤ − E[Au]

)
7: J ← B + diag (B1)

8: ℓ← ℓ− J−1
(
d̃− d

)
▷ rather than inverting J , we solve this linear system

9: E[Ar]← σ
(
ℓ1⊤ + 1ℓ⊤

)
10: E[Au]← 11⊤ −

(
11⊤ − E[Ap]

)
◦
(
11⊤ − E[Ar]

)
11: d̃← E[Au]1

12: return E[Ar]

4.2.7 Experimental Results

In this section we perform an evaluation of different graph generative models under

the perspective of the overlap criterion.We choose 8 statistics that capture both the

connectivity of a graph, as well local patterns within it. We look at the following

network statistics:

• Pearson correlation coefficient (PCC) of the input and generated degree se-

quences (number of nodes incident to each node), as well as max degree.

• PCC of the input and generated triangle sequences (number of triangles each

node belongs to).

• Normalized triangle, 4-clique, and 4-cycle counts.

• Characteristic (average) path length and fraction of node pairs which are con-

nected. Letting |Ci| be the size of i-th connected component, the latter quantity

is
∑

i

(|Ci|
2

)
/
(
n
2

)
).

133

We evaluate the following methods. It is worth outlining that we also explored

ERGMs but they do not scale to our datasets.

• The three models we introduce in Section 4.2.6: MCEI, MCNI and MCFD.

• CELL [151], an efficient variant of the edge independent NetGAN method [20].

• VGAE [93], a node independent autoencoder-based model.

• GraphVAE [170], a fully dependent deep generative model. As this model is de-

signed for small-sized graphs, we only evaluate it on a subset of smaller datasets.

Summary of experimental setting. We evaluate the above models on 8 publicly

available graph datasets. In order to tune the overlap for our models (MCEI, MCNI,

and MCFD), we simply increase the probability parameter p. For CELL and Graph-

VAE, we follow an early stopping criterion as in [20, 151]. More precisely, we pause

the training at certain intervals and sample graphs from the model trained so far. For

the VGAE model, we increase the dimension of the hidden layers and train for 5, 000

epochs. Each point in the following figures is an average over 10 samples.

Results. Our findings highlight the importance of overlap as a third dimension in

the evaluation of graph generative models. See our plots of graph statistics vs overlap

in Figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, and 4.15. We see that deep-learning based

models, like GraphVAE and CELL, can almost fit the input graph as we allow the

training to be performed for a sufficient number of epochs. However, when one wants

to generate a diverse set of graphs, these models fail to match certain statistics of

the input graph. For example, we see in Figure 4.8 that the CELL method generates

graphs with a low number of triangles for the CiteSeer dataset when the overlap

between the generated graphs is small. We observe similar results for almost all

datasets and other statistics, especially those pertaining to small dense subgraphs

(like 4-cliques and 4-cycles). Similarly, the GraphVAE method almost always fits

134

0 0.5 1

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0 0.5 1

20

40

60

80

100

120
Max Degree

0 0.5 1

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. 4-cliques

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. 4-cycles

0 0.5 1
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Connected Pairs

0 0.5 1

5.0

6.0

7.0

8.0

9.0

Charac. Path Length

True MCEI MCNI MCFD CELL VGAE

Figure 4.8. Graph statistics fidelity vs overlap with edge dependent models on
CiteSeer.

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0 0.5 1

15

20

25

30

35

Max Degree

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0 0.5 1

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. 4-cliques

0 0.5 1

0.2

0.4

0.6

0.8

1.0

Norm. 4-cycles

0 0.5 1

0.80

0.85

0.90

0.95

1.00
Connected Pairs

0 0.5 1
2.3

2.4

2.5

2.6

2.7

2.8
Charac. Path Length

True MCEI MCNI MCFD CELL VGAE GraphVAE

Figure 4.9. Graph statistics fidelity vs overlap with edge dependent models on Les
Miserables.

135

0 0.5 1
0.2

0.4

0.6

0.8

1.0
Degree Correlation

0 0.5 1

50

100

150

200

250
Max Degree

0 0.5 1

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0 0.5 1
0.0

0.2

0.5

0.8

1.0

1.2

1.5
Norm. 4-cliques

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. 4-cycles

0 0.5 1
0.80

0.85

0.90

0.95

1.00
Connected Pairs

0 0.5 1
4.5

5.0

5.5

6.0

Charac. Path Length

True MCEI MCNI MCFD CELL VGAE

Figure 4.10. Graph statistics fidelity vs overlap with edge dependent models on
Cora.

0 0.5 1

0.7

0.8

0.9

1.0
Degree Correlation

0 0.5 1
50

100

150

200

250

300

350
Max Degree

0 0.5 1

0.6

0.7

0.8

0.9

1.0
Triangle Correlation

0 0.5 1
0.0

0.2

0.5

0.8

1.0

1.2

1.5
Norm. Triangle Count

0 0.5 1
0.0

0.5

1.0

1.5

2.0

Norm. 4-cliques

0 0.5 1
0.0

0.5

1.0

1.5

Norm. 4-cycles

0 0.5 1
0.88

0.90

0.92

0.94

0.96

0.98

1.00
Connected Pairs

0 0.5 1
2.5

2.6

2.7

2.8

Charac. Path Length

True MCEI MCNI MCFD CELL VGAE

Figure 4.11. Graph statistics fidelity vs overlap with edge dependent models on
PolBlogs.

136

0 0.5 1

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0 0.5 1

20
40
60
80

100
120
140

Max Degree

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. 4-cliques

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. 4-cycles

0 0.5 1

0.80

0.85

0.90

0.95

1.00
Connected Pairs

0 0.5 1
4.0

5.0

6.0

7.0

8.0

9.0
Charac. Path Length

True MCEI MCNI MCFD CELL VGAE

Figure 4.12. Graph statistics fidelity vs overlap with edge dependent models on
Web-Edu.

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0 0.5 1

25

50

75

100

125

150

Max Degree

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0 0.5 1
0.0

0.2

0.5

0.8

1.0

1.2

1.5
Norm. Triangle Count

0 0.5 1
0.0

0.5

1.0

1.5

2.0

Norm. 4-cliques

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Norm. 4-cycles

0 0.5 1

0.70

0.80

0.90

1.00
Connected Pairs

0 0.5 1
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Charac. Path Length

True MCEI MCNI MCFD CELL VGAE GraphVAE

Figure 4.13. Graph statistics fidelity vs overlap with edge dependent models on
WikiElect.

137

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0 0.5 1

30

40

50

60

70

80

Max Degree

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0 0.5 1

0.2

0.4

0.6

0.8

1.0

Norm. Triangle Count

0 0.5 1
0.0

0.2

0.5

0.8

1.0

1.2

Norm. 4-cliques

0 0.5 1
0.0

0.2

0.5

0.8

1.0

1.2

1.5
Norm. 4-cycles

0 0.5 1

0.90

0.92

0.94

0.96

0.98

1.00
Connected Pairs

0 0.5 1

2.5

2.8

3.0

3.2

3.5

3.8
Charac. Path Length

True MCEI MCNI MCFD CELL VGAE GraphVAE

Figure 4.14. Graph statistics fidelity vs overlap with edge dependent models on
Facebook-Ego.

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0 0.5 1
10

12

14

16

18

20

Max Degree

0 0.5 1

1.0

1.0

1.0

1.0

1.0

Triangle Correlation

0 0.5 1

0.2

0.4

0.6

0.8

1.0
Norm. Triangle Count

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0
Norm. 4-cliques

0 0.5 1

0.2

0.4

0.6

0.8

1.0
Norm. 4-cycles

0 0.5 1

0.80

0.85

0.90

0.95

1.00
Connected Pairs

0 0.5 1

3.0

4.0

5.0

Charac. Path Length

True MCEI MCNI MCFD CELL VGAE GraphVAE

Figure 4.15. Graph statistics fidelity vs overlap with edge dependent models on
RingOfCliques. As each node belongs to the same number of triangles, triangle
correlation is not defined here. Thus, we replace it with transitivity.

138

the input graph in a high overlap regime. Although GraphVAE possesses greater

theoretical capacity as an FD generative model, we observe that instances with low

overlap deviate significantly from the statistical characteristics of the input graph, as

illustrated in Figure 4.9. Consequently, this approach fails to achieve generalization

when trained on a single graph instance. the VGAE model encounters additional

limitations due to its dot-product kernel, which has been demonstrated to have certain

constraints in generating graphs with sparsity and triangle density [167]. As depicted

in Figures 4.8 and 4.9, we observe that this model fails to adequately capture the

characteristics of the input graph, even when trained for an extensive number of

epochs.

Surprisingly, despite their simplicity, the three introduced models exhibit desir-

able characteristics. Firstly, the overlap can be easily adjusted by increasing the

probability hyperparameter p, providing more predictability compared to other mod-

els. Secondly, these models generally generate a higher number of triangles, which

closely aligns with the input graph, in comparison to methods such as CELL. For in-

stance, in Figures 4.8 and 4.9, these baselines produce graphs with a greater number

of triangles, 4-cliques, and 4-cycles than CELL and GraphVAE, particularly when

the overlap is low.

Furthermore, as the level of dependency rises (from edge independent to fully

dependent), we observe a higher triangle count for a fixed overlap. This finding

supports our theoretical assertions from Section 4.2.1 regarding the efficacy of different

models within the introduced hierarchy. However, a drawback of these two-stage

methods is their inability to capture the connectivity patterns of the input graph,

as evident from the fraction of connected pairs and the characteristic path length

statistics.

139

4.2.8 Conclusion

We have proved tight trade-offs for graph generative models between their ability

to produce networks that match the high triangle densities of real-world graphs, and

their ability to achieve low overlap and generate a diverse set of networks. We show

that as the models are allowed higher levels of edge dependency, they are able to

achieve higher triangle counts with lower overlap, and we formalize this finding by

introducing a three-level hierarchy of edge dependency. An interesting future direc-

tion is to refine this hierarchy to be finer-grained, and also to investigate the roles of

embedding length and complexity of the embedding distributions. We also emphasize

our introduction of overlap as a third dimension along which to evaluate graph gener-

ative models, together with output quality and efficiency. We believe these directions

can provide a solid groundwork for the systematic theoretical and empirical study of

graph generative models.

140

CHAPTER 5

SIMPLIFYING DEEP GRAPH NETWORKS

In this chapter, we investigate simpler alternatives to deep representation learning

for network data. Note that in this chapter only, the graphs we work with are also

associated with node feature vectors, that is, the graph data comprise not only an

n× n adjacency matrix A, but also a node feature matrix X ∈ Rn×d.

5.1 Adaptive Simple Graph Convolution
Deep learning [99] has enjoyed great success in modeling image and text data, and

graph convolutional networks (GCNs) [94] attempt to extend this success to graph

data. Various deep models branch off from GCNs, offering additional speed, accuracy,

or other features. However, like other deep models, these algorithms involve repeated

nonlinear transformations of inputs and are therefore time and memory intensive to

train. Recent work has shown that a much simpler model, simple graph convolution

(SGC) [197], is competitive with GCNs in common graph machine learning bench-

marks. SGC is much faster than GCNs, partly because the role of the graph in SGC

is restricted to a feature extraction step in which node features are smoothed across

the graph; by contrast, GCNs include graph convolution steps as part of an end-to-

end model, resulting in expensive backpropagation calculations. However, the feature

smoothing operation in SGC implicity assumes the common but not universal graph

characteristic of homophily, wherein nodes mostly link to similar nodes; indeed, re-

cent work [135] suggests that many GCNs may assume such structure. In this section,

we ask whether a feature extraction approach, that, like SGC, is free of deep learning,

141

can tackle heterophilous (i.e., non-homophilous) graph structure. We see this work

as extending the following broader research question introduced by the SGC paper

to a wider range of graphs:
Are nonlinearities, end-to-end backpropagation, and other character-

istics of deep learning essential to effective learning on graphs?

Contributions. We confirm that SGC, which uses a fixed smoothing filter, can

indeed be ineffective for heterophilous features via experiments on synthetic and real-

world datasets. We propose adaptive simple graph convolution (ASGC), which fits

a different filter for each feature. These filters can be smoothing or non-smoothing,

and thus can adapt to both homophilous and heterophilous structures. Like SGC,

ASGC is not a deep model, instead being based on linear least squares, and hence

is fast, scalable, and interpretable. We propose a natural synthetic model for net-

works with a node feature, Featured Stochastic Block Models (FSBMs), and prove

that ASGC denoises the network feature regardless of whether the model is set to

produce homophilous or heterophilous networks, in contrast to SGC, which we show

is inappropriate for the heterophilous setting. Finally, we show that the performance

of ASGC is superior to that of SGC at node classification on real-world heterophilous

networks, and generally competitive with recent deep methods on a benchmark of

both heterophilous and homophilous networks. The SGC paper suggested that deep

learning is not necessarily required for good performance on common graph learn-

ing tasks and benchmarks involving homophilous networks; our results suggest that

simple methods can also be competitive for heterophilous networks.

5.1.1 Background

Preliminaries. We first establish common notation for working with graphs. An

undirected, possibly weighted graph on n nodes can be represented by its symmetric

adjacency matrix A ∈ Rn×n
≥0 . Letting 1 denote an all-ones column vector, d = A1 is

the vector of degrees of the nodes; the degree matrix D is the diagonal matrix with d

142

along the diagonal. The normalized adjacency matrix is given by S = D−1/2AD−1/2,

while the symmetric normalized graph Laplacian is L = I−S, where I is an identity

matrix. Note that the eigenvectors of L are exactly the eigenvectors of S. It is a well

known fact that the eigenvalues of S are contained within [−1,+1]. It follows that

the eigenvalues of L are within [0, 2], so L is positive semidefinite.

Consider a feature x ∈ Rn on the graph, that is, a real-valued vector where each

entry is associated with a node. The quadratic form over L is known to have the

following equivalency:

x⊤Lx = 1
2

∑
(i,j)∈[n]2

Aij

(
1√
di
xi − 1√

dj
xj

)2
.

Up to a reweighting based on the nodes’ degrees, this expression is the sum of squared

differences of the feature’s values between adjacent nodes. Hence, the quadratic form

has a low value, near 0, if the feature x is ‘smooth’ across the graph, that is, if

adjacent nodes have generally similar values of the feature. Similarly, the quadratic

has a high value if the feature is ‘rough’ across the graph, if adjacent nodes have

generally differing values of the feature. When x is an eigenvector of L, these ‘smooth’

and ‘rough’ cases correspond to the eigenvalue being low or high, respectively. (In

terms of eigenvalues of S, the opposite is true, with positive eigenvalues being smooth

and negative eigenvalues being rough.) More generally, decomposition of an arbitrary

feature vector x as a linear combination of the eigenvectors of L separates x into

components ranging from ‘smooth’ to ‘rough’ across the graph. In the graph signal

processing literature [137, 86, 176], these smooth and rough components are also

called low and high frequency ‘modes,’ respectively, based on the eigenvalues of L.

Simple graph convolution. Our work is primarily inspired by the simple graph

convolution (SGC) algorithm [197]. SGC comprises logistic regression after the follow-

143

ing feature extraction step, which can be interpreted as smoothing the nodes’ features

across the graph’s edges:

xSGC = S̃Kx. (5.1)

This equation shows how a single raw feature x is filtered to produce the smoothed

feature xSGC. Here S̃ ∈ Rn×n is the normalized adjacency matrix after addition of

a self-loop to each node (that is, addition of the identity matrix to the adjacency

matrix), and K ∈ Z+ is a hyperparameter; K determines the radius of the filter,

that is, the maximum number of hops between two nodes whose features can directly

influence others’ features in the filtering process. [197] show that the addition of

the self-loop increases the minimum eigenvalue of S; intuitively, the self-loop limits

the extent to which a feature can be ‘rough’ across the graph. This results in the

highest magnitude eigenvalues of the normalized adjacency S̃ tending to be positive

(smooth). Because the eigenvalues of S̃ all have magnitude at most 1, powering up

S̃ results in a filter which generally attenuates the feature x, but does so least along

these high magnitude, smooth eigenvectors. Hence the SGC filter smooths out the

feature locally along the edges. Since it attenuates the high-frequency modes more

than the low-frequency ones, SGC is described as a ‘low-pass’ filter.

Heterophily. If node features are used for node classification or regression, smooth-

ing the features of nodes along edges encourages similar predictions along locally

connected nodes. This seems sensible when locally connected nodes should be gen-

erally similar in terms of features and labels; if the variance in features and labels

between connected nodes is generally attributable to noise, then this smoothing pro-

cedure acts as a useful denoising step. Graphs in which connected nodes tend to

be similar are called homophilous or assortative. An example would be a citation

network of papers on various topics: papers concerning the same topic tend to cite

144

each other. Much of the existing work on graph models has an underlying assumption

of network homophily, and there has been significant recent interest (discussed fur-

ther in Section 5.1.5) on the limitations of graph models at addressing network het-

erophily/disassortativity, wherein connections tend to be between dissimilar nodes.

An example would be a network based on adjacencies of words in text, where the

labels are based on the part of speech: adjacent words tend to be of different parts

of speech. For disassortative networks, smoothing a feature across connections as in

SGC may not be sensible, since encouraging predictions of connected nodes to be

similar is contrary to disassortativity.

5.1.2 Methodology

Adaptive SGC. In our method, we replace the fixed feature propagation step of

SGC (Equation 5.1) with an adaptive one, which may or may not be smoothing based

on the feature and graph. We produce a filtered version xASGC of the raw feature x

by multiplying x with a learned polynomial of the normalized adjacency matrix S;

this polynomial is set so that xASGC ≈ x:

xASGC =
(∑K

k=0
βkS

k
)
x ≈ x, (5.2)

where K is a hyperparameter which, as in SGC, controls the radius of feature prop-

agation, and the coefficients β ∈ RK+1 are learned by minimizing the approximation

error in a least squares sense. Note that, unlike SGC, we do not add self-loops to

S. This approximation error would be trivially minimized with β0 = 1 and all other

coefficients set to zero, resulting in xASGC = S0x = x, so we regularize the magnitude

of β0.

145

More concretely, let T ∈ Rn×(K+1) denote the Krylov matrix generated by mul-

tiplying a feature vector x ∈ Rn by the normalized adjacency matrix S up to some

K ∈ Z>0 times:

T =

(
S0x;S1x;S2x; . . . ;SKx

)
. (5.3)

Here the leftmost column of T is just the raw feature x, and each column represents

the feature generated by propagating the feature vector to its left across the graph,

i.e., by multiplying once by S. We produce a filtered version xASGC of the raw feature

x by linear combination of the columns of T . That is, xASGC = Tβ, and we set the

combination coefficients β ∈ Rk+1 by minimizing a loss function as follows:

min
β

(
∥Tβ − x∥22 + (Rβ0)

2
)
. (5.4)

The term on the right is L2 regularization applied to the zeroth combination coefficient

β0 (which multiplies the raw feature S0x), and R ∈ R≥0 if a hyperparameter which

controls the strength of this regularization. Equation 5.4 is solved for the optimal

coefficents β using linear least squares.

Algorithm 10 Adaptive Simple Graph Convolution (ASGC) Filter
Input: undirected graph A ∈ {0, 1}n×n, node feature x ∈ Rn, number of hops
K ∈ Z>0, regularization strength R ∈ R≥0

Output: ASGC-filtered feature xASGC
D ← diag (A1) ▷ degree matrix
S ←D−1/2AD−1/2 ▷ normalized adjacency matrix
T ∈ Rn×(K+1) ← 0 ▷ k-step propagated features
T0 ← x
for k = 1 to K do

Tk ← STk−1

R ∈ RK+1 ←
(
R, 0, 0, . . . , 0

)
β ← least squares solution of

(
T
R

)
β ≈

(
x
0

)
Return: Tβ

146

Intuition. As noted above, if we set the regularization R = 0, or more generally

in the limit as R→ 0, the approximation error in Equation 5.4 is trivially minimized

and results in xASGC = x; that is, the learned filter just ignores the graph structure

and maps the input feature through unchanged. Nonzero regularization forces the

least squares reconstruction to use the graph structure as it approximates the raw,

unpropagated feature. Ideally, this results in a denoising effect that is able to ex-

tend beyond SGC’s fixed smoothing along edges. For example, when a graph S is

homophilous with respect to a node feature x, in that neighbors tend to have similar

feature values, the raw feature is correlated positively with the propagated version

Sx of the feature. By contrast, when a graph is heterophilous with respect to a fea-

ture, the correlation is negative. The least squares in ASGC is able to adapt to both

cases and exploit this correlation, as well as correlations that occur when repeatedly

propagating features (i.e., correlations of x with Skx for k > 1).

Further remarks. In theory, as K is raised to higher values, T will provide a

sufficiently high-rank basis that xASGC will be arbitrarily close to x, even if R is very

high. Then ASGC would have essentially the same performance as using the raw

feature. While this issue could be resolved by introducing a smaller regularization

term for the remaining coefficients, we find that this is generally not a problem over

reasonable values of K on real-world graphs; hence, for simplicity, we do not introduce

this further regularization.

Pseudocode to filter a single feature is given in Algorithm 10. This algorithm is

applied independently to all features; note that this is trivially parallelizable across

features. After this, as in SGC, the filtered features are passed as input to a logistic

regression classifier for node classification. The core computations in Algorithm 10

are 1) creation of the matrix T by multiplying x by S up to K times, for which

the time complexity is O(mK), where m is the number of edges; and 2) linear least

147

squares with a matrix of dimensionality (n+ 1)× (K + 1), for which the complexity

is O(nK2).

Spectral Interpretation of ASGC. ASGC admits an interesting alternate inter-

pretation based on a spectral view of Equation 5.4. Let S = Q diag(λ)Q⊤ be an

eigendecomposition of S, and let γ = Q−1x, that is, γ is the graph Fourier transform

of the feature x. The central objective in ASGC is the norm of the residual of the

least squares in Equation 5.4. As in Parseval’s Theorem, due to the orthogonality of

Q, this norm is invariant under the graph Fourier transform:

∥xASGC − x∥2 = ∥Tβ − x∥2 =
∥∥Q⊤ (Tβ − x)

∥∥2 = ∥∥Q−1 (Tβ − x)
∥∥2 .

Recall that each column of T is of the form Six for some nonnegative power i. Then

Q−1Six = Q−1
(
Q diag(λ)iQ⊤) (Qγ) = diag(λ)iγ,

and the minimization objective can be written as

∥xASGC − x∥2 =
∥∥Q−1Tc−Q−1x

∥∥2 = ∥diag(γ)Vλβ − γ∥2 = ∥diag(γ) (Vλβ − 1)∥2 ,

where, letting superscript ◦i denote the entrywise ith power of a vector,

Vλ =

(
λ◦0;λ◦1;λ◦2; . . . ;λ◦K

)

is the Vandermonde matrix of powers 0 to K of the eigenvalues of S. Note that

multiplying Vλ by the vector β yields the values of the polynomial with coefficients β,

evaluated at the eigenvalues λ. Hence ASGC can be interpreted as fitting a K-degree

polynomial over the graph’s eigenvalues, with the target being all-ones. The value

148

the polynomial takes over each eigenvalue represents how the learned filter scales

the component of the feature x which is along the direction of the corresponding

eigenvector of S; the all-ones target corresponds to a do-nothing filter. The least

squares loss is weighed proportionately to the magnitude of this component at each

eigenvalue. That K is small, and the use of regularization on the zeroth coefficient,

precludes the learned filter actually being the do-nothing filter, and instead results in

a simple polynomial which adapts to the feature.

5.1.3 Motivating Example

We now use a synthetic network to demonstrate the capability of ASGC, and

the potential deficiencies of SGC, at denoising a single heterophilous feature. We

propose Featured SBMs, which augment stochastic block models (SBMs) [84] with a

single feature; we note that our FSBMs can be seen as a simplified variant of recently

studied Contextual SBMs [47].

Definition 11 (Featured SBM). An SBM graph G has n nodes partitioned into r

communities C1, C2, . . . , Cr, with intra- and inter- community edge probabilities p and

q. Let c1, c2, . . . , cr ∈ {0, 1}n be indicator vectors for membership in each community,

i.e., the jth entry of ci is 1 if the jth node is in Ci and 0 otherwise. A Featured SBM

(FSBM) is such a graph model G, plus a feature vector x = f + η ∈ Rn, where

η ∼ N (0, σ2I) is zero-centered, isotropic Gaussian noise and f =
∑

i µici for some

µ1, µ2, . . . , µr ∈ R, which are the expected feature values of each community.

We consider FSBMs with n = 1000, 2 equally-sized communities C+ and C−,

feature means µ+ = +1, and µ− = −1, and noise variance σ = 1. Thus, there are 500

nodes in each community; calling these communities ‘plus’ and ‘minus,’ the feature

mean is +1 for nodes in the former and −1 for the latter, to which standard normal

noise is added. We generate different graphs by setting the expected degree of all

nodes to 10 (that is, 1
2
(p+ q) · n = 10) , then varying the intra- and inter-community

149

0 500 1000
0

500

1000

Heterophilous
0 500 1000

0

500

1000

Neither
0 500 1000

0

500

1000

Homophilous

0 500 1000
Node

4

2

0

2

4

Fe
at

ur
e

Figure 5.1. Synthetic dataset visualization. Left: 3 sample adjacency matrices,
from the highly heterophilous (q ≪ p) to the highly homophilous (p≫ q); for visual
clarity, these graphs are 10 times denser the description in Section 5.1.3. Right:
Feature values by node; note the feature means.

edge probabilities p and q from p ≫ q (highly homophilous, in that ‘plus’ nodes are

much more likely to connect to other ‘plus’ nodes than to ‘minus’ nodes) to q ≫ p

(highly heterophilous, in that ‘plus’ nodes tend to connect to ‘minus’ nodes). See

Figure 5.1 for illustration.

We seek to denoise the feature by exploiting the graph, which should result in the

feature values moving towards the means of the respective communities. We employ

SGC and our ASGC, both with number of hops K = 2. Figure 5.2 (left) shows

the deviation from the feature means after denoising. It also shows the proportion

of nodes whose filtered feature differs from the community mean in sign, that is,

the error when classifying nodes into C+ and C−. By both metrics, ASGC outper-

forms SGC on heterophilous graphs, while SGC outperforms ASGC on homophilous

graphs. Both methods can lose accuracy relative to just using the raw feature when

the graph is neither homophilous nor heterophilous, that is, when the graph is not

informative about the communities. However, the performance of ASGC increases

similarly as the graph becomes either more heterophilous or homophilous, whereas

SGC’s performance improves significantly less in the heterophilous direction. Finally,

the performance gap between the two is smaller on homophilous graphs, particularly

on sign accuracy, suggesting that ASGC can better adapt to varying degrees of ho-

150

0.4

0.6

0.8

M
ea

n
Ab

s.
Er

ro
r

-1.0
(Heterophilous)

-0.5 0 +0.5 +1.0
(Homophilous)p q

p + q

0.0

0.1

0.2

0.3
Si

gn
 E

rro
r

Raw
SGC
ASGC

0

50

100

150
Raw

0

50

100

150
SGC

4 3 2 1 0 1 2 3 4
0

50

100

150
ASGC

Figure 5.2. Left: Denoising results on the synthetic graphs using SGC and ASGC
with number of hops K = 2. ‘Raw’ shows the error when no filtering method is applied.
ASGC and SGC are more effective at denoising on heterophilous and homophilous
networks, respectively, and ASGC is more effective overall. Right: Distribution of
the feature values before and after applying each of the filtering methods on a very
heterophilous synthetic graph (p−q

p+q
= − 9/10), separated by ground-truth communities.

SGC tends to merge the two communities, while ASGC is able to keep them separated.

mophily/heterophily. We examine the highly heterophilous case in more detail in

Figure 5.2 (right), which shows the distributions of the feature before and after fil-

tering. The fixed propagation of SGC tends towards merging the two communities’

feature distributions; by contrast, ASGC is able to keep them separated, preserves the

feature means, and pulls the feature distributions towards the respective community

means.

5.1.4 Theoretical Guarantees

To support our empirical investigation in Section 5.1.3, we now theoretically verify

the limitations and capabilities of SGC and ASGC at denoising FSBM networks. For

simplicity, we analyze SGC without the addition of a self-loop (that is, using S in

Equation 5.1 rather than S̃); the distinction between the two in the analysis vanishes

as the number of intra-community edges grows, i.e., if n · p is high. Further, we

assume that the regularization hyperparameter R for ASGC is high, in which case

the coefficient β0 is fixed to zero, or equivalently, the column S0x is removed from

151

the Krylov matrix T in Equations 5.3 and 5.4. Finally, we analyze using expected

adjacency matrices from the model, though we conjecture that via concentration

bounds one could extend the following results to the sampled setting [173].

Two Community Case. We begin by analyzing FSBMs with 2 equally-sized com-

munities. Unless otherwise specified, we use the same notation as Definition 11.

Theorem 5.1.1 (Effect of SGC on Two-Community FSBM Networks). Consider

FSBMs having 2 equally-sized communities with indicator vectors cu and cv, expected

adjacency matrix A, and feature vector x = f + η. Let xSGC be the feature vector

returned by applying SGC, with number of hops K, to A and x. Further, let µ̄ =

1
2
(µu + µv) be the average of the feature means. Then, xSGC = f ′ + θucu + θvcv,

where f ′ = λK
2 f + (1 − λK

2)(µ̄1), and θu and θv are both distributed according to

N
(
0, 1

n
(1 + λ2K

2)σ2
)
.

Proof. In expectation, an entry Aij of the adjacency matrix of the graph is p if

both i, j ∈ Cu or both i, j ∈ Cv, and it is q otherwise. The eigendecomposition

Q diag(λ)Q⊤ of the associated normalized adjacency matrix S has two nonzero eigen-

values: λ1 = 1, with eigenvector q1 = (1/√n)1 = (1/√n)(cu + cv), and λ2 =
p−q
p+q

, with

q2 = (1/√n)(cu − cv). In the following analysis, we use the fact that zero-centered,

isotropic Gaussian distributions are invariant to rotation, meaning Q⊤η = η′ ∼

N (0, σ2I) for any orthonormal matrix Q.

152

xSGC = SKx = Q diag(λ)KQ⊤(µucu + µvcv + η)

= q1q
⊤
1 (µucu + µvcv + η) + λK

2 q2q
⊤
2 (µucu + µvcv + η)

= q1

(√
n
2
(µu + µv) + η′1

)
+ λK

2 q2

(√
n
2
(µu − µv) + η′2

)
=
(

1
2
(µu + µv) +

1√
n
η′1

)
(cu + cv) + λK

2

(
1
2
(µu − µv) +

1√
n
η′2

)
(cu − cv)

= λK
2 (µucu + µvcv) + (1− λK

2) · 12(µu + µv)(cu + cv)

+ 1√
n

(
η′1 + λK

2 η
′
2

)
cu + 1√

n

(
η′1 − λK

2 η
′
2

)
cv

= λK
2 f + (1− λK

2)(µ̄1) + θ+cu + θ−cv,

where θ± = 1√
n
(η′1 ± λK

2 η
′
2), which has the specified distribution.

Note that λ2 =
p−q
p+q
∈ [−1,+1], with negative values indicating heterophily (p < q)

and positive values indicating homophily (p > q). SGC only preserves the feature

means in certain limiting cases. In particular, this occurs as λ2 → +1, or as λ2 → −1

if K is even; then λK
2 → 1, so the expected filtered feature vector f ′ → f . On

the other hand, if λ2 → 0, then λK
2 → 0 and f ′ → µ̄1, that is, the feature value

means are averaged between the communities. Finally, if λ2 → −1 and K is odd,

then λK
2 → −1 and f ′ = µ̄1+ (µ̄1− f) = µvcu + µucv: the feature value means are

entirely exchanged across the communities. By contrast, ASGC preserves the means,

while similarly reducing noise by an Ω(n) factor, with much looser restrictions on λ2

and K:

Theorem 5.1.2 (Effect of ASGC on Two-Community FSBM Networks). Consider

FSBMs with p ̸= q having 2 equally-sized communities with community indicator

vectors cu and cv, expected adjacency matrix A, and feature vector x = f + η. Let

xASGC be the feature vector returned by applying ASGC, with number of hops K ≥ 2,

to A and x. Then xASGC = f + θ′+cu + θ′−cv, where θ′+ and θ′− are both distributed

according to N
(
0, 2

n
σ2
)
.

153

Proof. The least squares in ASGC is equivalent to projecting the feature x onto the

column span of the Krylov matrix T =

(
S1x;S2x; . . . ;SKx

)
. Observe that the

column span of T is contained in the column span of S. Further, S is rank-2 (by

the assumption that p ̸= q), so with probability 1 over the distribution of η, as long

as K ≥ 2, the column span of T equals that of S. Thus ASGC projects x onto the

column span of S, i.e., the span of q1, q2, the eigenvectors of S. The following analysis

proceeds exactly like the one for SGC, just without the terms for the eigenvalue λ2,

so we use the same notation and abbreviate the steps:

xASGC = QQ⊤x

= q1q
⊤
1 (µucu + µvcv + η) + q2q

⊤
2 (µucu + µvcv + η)

= f + θ′+cu + θ′−cv,

where θ′± = 1√
n
(η′1 ± η′2), which has the specified distribution.

Observe that in the sampled setting, standard matrix concentration results can

be used to show that, while S will be full rank with high probability, it will have

two outlying eigenvalues, corresponding to eigenvectors close to q1 and q2 [173]. It is

well known that the span of the Krylov matrix T will align well with these outlying

eigendirections [158]. Thus, we expect the projection QQ⊤x = QQ⊤f + QQ⊤η

to still approximately preserve f . At the same time, QQTη is the projection of a

random Gaussian vector η onto a fixed K-dimensional subspace. Thus, we will have∥∥QQ⊤η
∥∥2
2
≈ K

n
∥η∥22, so ASGC will still perform significant denoising when K is

small.

Multi-Community Case. We now prove generalizations of the preceding theo-

rems for FSBMs that may have more than 2 communities, i.e., with r ≥ 2 from

Definition 11, and otherwise the same assumptions. The theorem statements and

154

their implications are essentially the same. The proofs are also similar in concept,

just using a different projection matrix Q, though the proof for the generalized The-

orem 5.1.3 is significantly more involved.

Theorem 5.1.3 (Effect of SGC on FSBM Networks). Consider FSBMs having

r equally-sized communities with indicator vectors c1, c2, . . . , ck, expected adjacency

matrix A, and feature vector x = f + η. Let xSGC be the feature vector returned by

applying SGC, with number of hops K, to A and x. Further, let µ̄ = 1
r

∑
i µi be the

average of the feature means. Then, xSGC = f ′ +
∑

i θici, where f ′ = λK
2 f + (1 −

λK
2)(µ̄1), and each θi is distributed according to N

(
0, 1

n

(
1 + λ2K

2 (r − 1)
)
σ2
)
.

Proof. Let 1̂ = (1/√n)1, where 1 is the n-length all-ones vector. Also let C =(
c1; c2; . . . ; cr

)
and Q =

(√
r/n
)
C. Note that 1̂ has norm 1, and the columns

of Q are orthonormal. Finally, let λ2 = p−q
p+(r−1)q

. We we will not make use of this

fact, but, as in the two-community case, this is still the second largest eigenvalue of

S, and it now has multiplicity r − 1.

The expected adjacency matrix of the graph is

A = (p− q)CC⊤ + q11⊤ = (p− q)(n/r)QQ⊤ + qn1̂1̂⊤,

and the expected degree vector is

d = A1 = (p− q)(n/r)1+ qn1 = (p+ (r − 1)q) (n/r)1,

yielding the expected normalized adjacency matrix

S =
(p− q)(n/r)QQ⊤ + qn1̂1̂⊤

(p+ (r − 1)q) (n/r)

= λ2QQ⊤ +
qr

p+ (r − 1)q
1̂1̂⊤

= λ2QQ⊤ + (1− λ2)1̂1̂
⊤

=
(
QQ⊤) (λ2I + (1− λ2)1̂1̂

⊤) .
155

Note that
(
QQ⊤)2 = QQ⊤ and

(
1̂1̂⊤)2 = 1̂1̂⊤ since these are projection matrices.

We show that (
λ2I + (1− λ2)1̂1̂

⊤)K = λK
2 I +

(
1− λK

2

)
1̂1̂⊤

by induction as follows:

(
λ2I + (1− λ2)1̂1̂

⊤)K =
(
λ2I + (1− λ2)1̂1̂

⊤) (λ2I + (1− λ2)1̂1̂
⊤)K−1

=
(
λ2I + (1− λ2)1̂1̂

⊤) (λK−1
2 I +

(
1− λK−1

2

)
1̂1̂⊤)

= λK
2 I +

(
λ2

(
1− λK−1

2

)
+ (1− λ2)λ

K−1
2 + (1− λ2)

(
1− λK−1

2

))
1̂1̂⊤

= λK
2 I +

(
1− λK

2

)
1̂1̂⊤.

Using this result and the fact that
(
QQ⊤) (1̂1̂⊤) = (1̂1̂⊤) (QQ⊤) = 1̂1̂⊤, we have

SK =
((
QQ⊤) (λ2I + (1− λ2)1̂1̂

⊤))K
=
(
QQ⊤)K (λ2I + (1− λ2)1̂1̂

⊤)K
=
(
QQ⊤) (λK

2 I +
(
1− λK

2

)
1̂1̂⊤) . (5.5)

Now, as in the two-community case, Q⊤η = η′ ∼ N (0, σ2I), yielding

Q⊤x = Q⊤
(∑

i
µici + η

)
=
(√

r/n
)(

µ1, µ2, . . . , µr

)⊤

+

(
η′1, η

′
2, . . . , η

′
r

)⊤

,

QQ⊤x =
∑

i

(
µi +

(√
r/n
)
η′i

)
ci, and (5.6)(

1̂1̂⊤) (QQ⊤)x =
(

1
r

∑
i

(
µi +

(√
r/n
)
η′i

))
1.

Finally, combining these equations with the expression for SK , we have

156

xSGC = SKx = λK
2

∑
i

(
µi +

(√
r/n
)
η′i

)
ci +

(
1− λK

2

) (
1
r

∑
j

(
µj +

(√
r/n
)
η′j

))
1

=
∑

i

(
λK
2

(
µi +

(√
r/n
)
η′i

)
+
(
1− λK

2

)
· 1
r

∑
j

(
µj +

(√
r/n
)
η′j

))
ci

=
∑

i

(
λK
2 µi +

(
1− λK

2

)
µ̄+ λK

2

(√
r/n
)
η′i +

(
1− λK

2

)
· 1
r

∑
j

(√
r/n
)
η′j

)
ci

= f ′ +
∑

i

(
λK
2

(√
r/n
)
η′i +

(
1− λK

2

)
· 1
r

∑
j

(√
r/n
)
η′j

)
ci,

so the expectation f ′ of the filtered feature is as desired. Further, letting the noise

term summands be θici, we have

θi = λK
2

(√
r/n
)
η′i +

(
1− λK

2

)
· 1
r

∑
j

((√
r/n
)
η′j

)
=
(
λK
2 + 1

r

(
1− λK

2

)) (√
r/n
)
η′i +

(
1− λK

2

) (
1
r

∑
j ̸=i

(√
r/n
)
η′j

)
,

which is normally distributed with mean 0 and variance

(
λK
2 + 1

r

(
1− λK

2

))2 · r
n
σ2 +

(
1− λK

2

)2 · 1
r2
(r − 1) · r

n
σ2

= σ2

n

((
rλK

2 +
(
1− λK

2

))2 · 1
r
+
(
1− λK

2

)2 (
1− 1

r

))
= σ2

n

(
1 + λ2K

2 (r − 1)
)
,

so the noise variance is also as desired.

Theorem 5.1.4 (Effect of ASGC on FSBM Networks). Consider FSBMs with p ̸=

q having r equally-sized communities with indicator vectors c1, c2, . . . , ck, expected

adjacency matrix A, and feature vector x = f + η. Let xASGC be the feature vector

returned by applying ASGC, with number of hops K ≥ r, to A and x. Then, xASGC =

f +
∑

i θ
′
ici, where each θ′i is distributed according to N

(
0, r

n
σ2
)
.

Proof. Following the same argument as for the two-community case, the least squares

in ASGC is equivalent to projecting the feature x onto the column span of the Krylov

157

matrix T =

(
S1x;S2x; . . . ;SKx

)
. The column span of T is contained in the column

span of S, and since S is rank-r (by the assumption that p ̸= q), with probability 1

over the distribution of η, as long as K ≥ r, the column span of T equals that of S;

by Equation 5.5 for S, this span is exactly that of the community indicator matrix Q.

Thus, ASGC is equivalent to multiplication of the feature x by the projection matrix

QQ⊤, for which we use Equation 5.6 as follows:

xASGC = QQ⊤x

=
∑

i

(
µi +

(√
r/n
)
η′i

)
ci

= f +
∑

i

(√
r/n
)
η′ici

= f +
∑

i
θ′ici,

where θ′i =
(√

r/n
)
η′i, which has the specified distribution.

5.1.5 Related Work

Deep graph models. As discussed previously, the SGC algorithm is a drastic

simplification of the graph convolutional network (GCN) model [94]. GCNs learn a

sequence of node representations that evolve via repeated propagation through the

graph and nonlinear transformations. The starting node representations H(0) are set

to the input feature matrix X ∈ Rn×f , where f is the number of features. The kth-

step representations are H(k) = σ
(
SH (k−1)Θ(k)

)
, where Θ(k) is the learned linear

transformation matrix for the kth layer and σ is a nonlinearity like ReLU. After K

such steps, the representations are used to classify the nodes via a softmax layer, and

the whole model is trained end-to-end via gradient descent. [197] observe that if the

nonlinearities are ignored, all of the linear transformations collapse into a single one,

while the repeated multiplications by S collapse into a single one by SK ; this yields

their algorithm of the SGC filter (Equation 5.1) followed by logistic regression. GCNs

158

have spawned streamlined versions like FastGCN [36], as well as more complicated

variants like graph isomorphism networks (GINs) [199] and graph attention networks

(GATs) [188]; despite being much simpler and faster than these competitors, SGC

manages similar performance on common benchmarks, though, based on the analysis

of [135], this may be due in part to the simplicity of the benchmark datasets in that

they mainly exhibit homophily/assortativity.

Addressing heterophily. Like our work, some other recent methods attempt to

address node heterophily. [65] and [211] augment classical feature propagation and

GCNs, respectively, to accommodate heterophily by modifying feature propagation

based on node classes. [212] and [201] analyze common structures in heterophilous

graphs and the failure points of GCNs, then propose GCN variants based on their anal-

yses. The Geom-GCN paper [142] introduces several of the real-world heterophilous

networks which are commonly used in related papers, including this one. Their

method allows for long-range feature propagation based on similarity of pre-trained

node embeddings. The preceding is just a sample of recent works in this area, which

has seen a surge of activity [116, 117, 179]. We note that, like the GNN method of [94]

but unlike SGC and our ASGC, almost all of these methods are based on deep learning

and are trained via backpropagation through repeated feature propagation and linear

transformation steps, and hence incur an associated speed and memory requirement.

Understanding and implementing these methods is also more complicated relative to

our method, which just constitutes a learned feature filter and logistic regression. We

mainly compare our results with the deep method which is most similar to ours, Gen-

eralized PageRank GNN (GPR-GNN) [38]. Like ASGC, GPR-GNN produces node

representations by linear combination of propagated versions of node features; unlike

ASGC, the raw features are first transformed by a neural network, and parameters

for this network, as well as the linear combination coefficients, are learned by back-

159

propagation using the known node labels. To our knowledge, our work is the first to

show that heterophily can be handled using just feature pre-processing.

5.1.6 Empirical Performance

We test the performance of ASGC for the node classification task on a benchmark

of real-world datasets given in Table 5.1, and compare with SGC and several deep

methods.

Real-world datasets. We experiment on 10 commonly-used datasets, the same

collection of datasets as [38]. Cora, Citeseer, and Pubmed are citation networks

which are common benchmarks for node classification [166, 130]; these have been used

for evaluation on the GCN [94] and GAT [188] papers, in addition to SGC itself. The

features are bag-of-words representations of papers, and the node labels give the top-

ics of the paper. Computers and Photo are segments of the Amazon co-purchase

graph [121, 168]; features are derived from product reviews, and labels are product cat-

egories. These first 5 datasets are considered assortative/homophilous; the remaining

5 datasets, which are disassortative/heterophilous, come from the Geom-GCN pa-

per [142], which also introduces the following measure of of a network’s homophily:

H(G) = 1
|V |
∑

v∈V
v’s neighbors with the same label as v

neighbors of v ∈ [0, 1]. We include this statistic in

Table 5.1. The latter 5 datasets have much lower values of H(G). Chameleon and

Squirrel are hyperlink networks of pages in Wikipedia which concern the two topics

[157]. Features derive from text in the pages, and labels correspond to the amount

of web traffic to the page, split into 5 categories. Actor is the actor-only induced

subgraph of the film-director-actor-writer network of [183]. Nodes and edges repre-

sent actors and co-occurrence on a Wikipedia page. Features are based on keywords

on the webpage, and labels derive from the number of words on the page, split into

5 categories. Finally, Texas and Cornell are hyperlink networks from university

160

Table 5.1. Network statistics for experiments in Section 5.1, separated by ho-
mophilous vs heterophilous.

Dataset Cora Cite. PubM. Comp. Photo Cham. Squi. Actor Texas Corn.
Nodes 2708 3327 19717 13752 7650 2277 5201 7600 183 183
Edges 5278 4552 44324 245861 119081 31421 198493 26752 295 280
Features 1433 3703 500 767 745 2325 2089 932 1703 1703
Classes 7 6 3 10 8 5 5 5 5 5
H(G) 0.825 0.718 0.792 0.802 0.849 0.247 0.217 0.215 0.057 0.301

websites [42]; features derive from webpage text, and the labels represent the type of

page: student, project, course, staff, or faculty.

Implementation. The SGC and ASGC algorithms are implemented in Python

using NumPy [79] for least squares regression and other linear algebraic computations.

We use scikit-learn [141] for logistic regression with 1,000 maximum iterations and

otherwise default settings. For our implementations of SGC and ASGC, we treat

each network as undirected, in that if edge (i, j) appears, we also include edge (j, i).

Like [38], we use random 60%/20%/20% splits as training/validation/test data for

the 5 heterophilous datasets, as in [142], and use random 2.5%/2.5%/95% splits for

the homophilous datasets, which is closer to the original setting from [94] and [168].

We release code in the form of a Jupyter notebook [143] demo which is available at

github.com/schariya/adaptive-simple-convolution.

Hyperparameter settings. We tune the number of hops over K ∈ {1, 2, 4, 8},

roughly covering the range analyzed in [197], and the regularization strength R =
√
n ·R′ over log10(R

′) ∈ {−4,−3,−2,−1, 0}. This dependency on the number of

nodes n allows the regularization loss to scale with the least squares loss, which

generally grows linearly with n.

Classification results. We apply our implementations of SGC and ASGC to these

datasets and report the mean test accuracy across 10 random splits of the data. As

a baseline, we also report the accuracy of logistic regression on the ‘raw,’ unfiltered

161

https://github.com/schariya/adaptive-simple-convolution

SGC AGC GCN GEO GPR

20

40

60

80
Cora

SGC AGC GCN GEO GPR
10
20
30
40
50
60
70

Citeseer

SGC AGC GCN GEO GPR
50

60

70

80

PubMed

SGC AGC GCN GPR
80

82

84

86

88
Computers

SGC AGC GCN GPR
89

90

91

92

93
Photo

SGC AGC GCN GEO GPR
50

55

60

65

70

75
Chameleon

SGC AGC GCN GEO GPR
30
35
40
45
50
55
60

Squirrel

SGC AGC GCN GEO GPR
20

25

30

35

40
Actor

SGC AGC GCN GEO GPR
40

50

60

70

80

90

Cornell

SGC AGC GCN GEO GPR
40

50

60

70

80

90

Texas

Figure 5.3. Test classification accuracy on the benchmark of datasets from Table 5.1
for selected methods: 2 non-deep, SGC and ASGC; and 3 deep, GCN, Geom-GCN,
and GPR-GNN. Error bars show the 95% confidence intervals. SGC is generally
competitive with the deep methods on the homophilous datasets (top row), but not
so on the heterophilous ones, whereas ASGC is competitive throughout.

features, ignoring the graph. We compare to results from [38] for 9 deep methods ap-

plied to these datasets. These methods are 1) a multi-layer perceptron which ignores

the graph; 2) GCN; 3) GAT; 4) SAGE [78]; 5) JKNet [200]; 6) GCN-Cheby [46]; 7)

Geom-GCN; 8) APPNP [95]; and 9) GPR-GNN.

We plot accuracies for selected methods in Figure 5.3. In addition to SGC and

ASGC, we include 3 deep methods: ‘vanilla’ GCN; Geom-GCN, which originated the

heterophilous datasets; and GPR-GNN, a recent method claiming state-of-the-art

performance. We find that SGC is generally competitive with the deep methods on

the homophilous datasets, but not so on the heterophilous ones, whereas ASGC is

generally competitive throughout. Interestingly, the datasets on which GPR-GNN

significantly outperforms ASGC (PubMed, Actor, Texas, Cornell) are exactly

those on which a multi-layer perceptron significantly outperforms logistic regression;

note that the latter two methods both ignore the graph. This suggests that the

some nonlinear processing of the node features may be key to performance on these

162

Raw SGC ASGC MLP GCN GAT SAGE JKNet GCN
Cheby

Geom
GCN

APP
NP

GPR
GNN

0.5

0.6

0.7

0.8

0.9

1.0 Mean

Raw SGC ASGC MLP GCN GAT SAGE JKNet GCN
Cheby

Geom
GCN

APP
NP

GPR
GNN

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Min

Figure 5.4. Test accuracy as a proportion of the best method’s accuracy; mean
and minimum performance over the 10 networks. The 3 non-deep (logistic regression)
methods are on the left. ASGC achieves the highest minimum performance, and is
competitive with GPR-GNN on the mean.

networks, separate from how the graph is exploited. To compactly compare all 12

of the methods across these 10 datasets, we aggregate the performance across the

datasets as follows. For each dataset, we calculate the accuracy of each method as a

proportion of the accuracy of the best method. We plot the mean and the minimum

across the 10 datasets of each method’s proportional accuracies. See Figure 5.4. GPR-

GNN and ASGC achieve the highest mean performance. Further, ASGC achieves the

highest minimum performance: at worst, it achieves over 90% of the best method’s

test accuracy on each of the datasets.

5.1.7 Conclusion

Building on SGC, we propose a feature filtering technique, ASGC, based on feature

propagation and least-squares regression. We propose a natural class of synthetic

featured networks, FSBMs, and show both empirically and with theoretical guarantees

that ASGC can denoise both homophilous and heterophilous FSBMs, whereas SGC is

inappropriate for the latter. Further, we find that ASGC is generally competitive with

recent deep learning-based methods on a benchmark of real-world datasets, covering

both homophilous and heterophilous networks. Our results suggest that deep learning

is not strictly necessary for handling heterophily, and that even a simple feature pre-

163

processing method can be competitive. We hope that, like SGC, ASGC can serve as a

good first method to try, especially for node classification on heterophilous networks,

and a baseline for future works.

164

CHAPTER 6

CONCLUSION

To characterize the power and limitations of modern node embedding methods,

especially in contrast to classical spectral embedding, we have explored the roles

of three central factors: linear algebraic constraints, nonlinearities, and randomness.

We find that the constraint of positive semi-definiteness imposed by some embed-

ding methods can be restrictive: perhaps surprisingly, even for undirected graphs,

factorizations of the adjacency matrix of the form A ≈ XY ⊤ can be significantly

more expressive than those of the form A ≈ XX⊤. In Sections 3.1 and 3.2, we

show that, when coupled with a nonlinearity, the former is provably highly expres-

sive: we provide several guarantees for exact embedding in the A ≈ σ(XY ⊤) and

A ≈ σ(BB⊤ −CC⊤) models. In Section 2.1, we also find empirically that much of

the performance gain of modern methods, e.g., in node classification tasks, can be at-

tributed to the (possibly implicit) addition of a nonlinearity, and we explore possible

explanations in that section and in Section 2.2. Finally, we look beyond matching

a single graph to expressing distributions over graphs, which can be seen as arising

from graph models with random node embeddings rather than deterministic ones. In

Section 4.1, we establish an inherent trade-off between a model’s ability to produce

a diverse set of graphs, and its ability to produce graphs with certain (often realistic)

properties such as high triangle count. We also show, in Section 4.2, how more com-

plex dependency structures amongst the random node embeddings’ distributions can

yield provably more expressive graph models.

165

Future directions include extensions of the expressiveness guarantees, which could

come in several varieties. First, the guarantees in this thesis all assume that the

embeddings can be represented with infinite precision. Considering limited precision

would better reflect real-world usage, and may also inspire new constructions of exact

embeddings, similar to the polynomial interpolation-based ones in Sections 3.1 and

3.2, but with better performance in downstream applications. Further, we only look

here at guarantees of capacity of certain graph models, but we have not provided any

guarantees for fitting the models. The possibility of such guarantees raises several

questions. For example, provided a k-dimensional exact embedding of a graph exists,

under what circumstances is gradient descent guaranteed to find an exact embedding?

Also, more broadly, how do embeddings produced by gradient descent differ from the

ones produced by our polynomial-based constructions? Finally, as perhaps the most

straightforward kind of extension, here we focus on guarantees for embedding the

simplest kind of undirected graphs, but there are other settings to explore, including

directed graphs, temporal graphs, multiplex graphs, etc.

Shifting to longer-term implications and directions from this thesis, much of the

work here explores what is gained by nonlinearity, e.g., the power of A ≈ σ(XY ⊤) vs

A ≈ XY ⊤. While we can prove that the former model is significantly more expres-

sive than the latter, adding nonlinearity is less fruitful in other settings: as we show

in Section 5.1, for filtering of node features, a linear algebraic method can compete

with deep methods. Given that nonlinearity can add computational complexity, and

can make theoretical analysis more difficult, a potentially fruitful goal is achieving

a predictive understanding of when and what kind of nonlinearity is necessary for

different graph tasks. Besides this, focusing on an important case where we have

shown that nonlinearity is fruitful – exact low-rank representation of graphs with the

A ≈ σ(XY ⊤) model – another direction is treating such an exact embedding as

a way of representing the graph, and developing mathematical tools to exploit this

166

representation for computational gains. For example, multiplying vectors by the ad-

jacency matrix of a graph (“matvecs” with A), are a key primitive in various spectral

graph methods – can these matvecs be sped up if provided an exact embedding of

the graph? Specifically, given a vector v ∈ Rn and an exact embedding X,Y ∈ Rn×k

with k ≪ n, is it possible to exploit the low-rank structure and approximate the

matvec Av ≈ σ(XY ⊤)v in sub-quadratic, that is, o(n2), time? If so, the guarantees

we provide here on the capacity of nonlinear low-rank factorizations of graphs may

be channeled into new runtime guarantees for graph algorithms. Finally, we look

towards applications of the results in this thesis beyond machine learning on graph

data. In particular, graph methods are closely related to kernel machines and self-

attention, as each of these three areas centers on some similarity matrix. For this

reason, perhaps our approaches here can yield some fresh insights for these methods

as well.

167

BIBLIOGRAPHY

[1] Abbe, Emmanuel. Community detection and stochastic block models: recent
developments. The Journal of Machine Learning Research 18, 1 (2017), 6446–
6531.

[2] Abbe, Emmanuel, Bandeira, Afonso S, and Hall, Georgina. Exact recovery in
the stochastic block model. IEEE Transactions on Information Theory 62, 1
(2015), 471–487.

[3] Adamic, Lada A, and Glance, Natalie. The political blogosphere and the 2004
us election: divided they blog. In Proceedings of the 3rd International Workshop
on Link Discovery (2005), pp. 36–43.

[4] Agarwal, Nitin, Liu, Huan, Murthy, Sudheendra, Sen, Arunabha, and Wang,
Xufei. A social identity approach to identify familiar strangers in a social net-
work. In Third International AAAI Conference on Weblogs and Social Media
(2009).

[5] Aggarwal, Charu C, and Wang, Haixun. A survey of clustering algorithms for
graph data. In Managing and Mining Graph Data. Springer, 2010, pp. 275–301.

[6] Aiello, William, Chung, Fan, and Lu, Linyuan. A random graph model for
power law graphs. Experimental mathematics 10, 1 (2001), 53–66.

[7] Airoldi, Edoardo M, Blei, David M, Fienberg, Stephen E, and Xing, Eric P.
Mixed membership stochastic blockmodels. Journal of Machine Learning Re-
search 9, Sep (2008), 1981–2014.

[8] Allen, Carl, Balazevic, Ivana, and Hospedales, Timothy. What the vec? towards
probabilistically grounded embeddings. In Advances in Neural Information
Processing Systems (2019), pp. 7465–7475.

[9] Allen, Carl, and Hospedales, Timothy. Analogies explained: Towards under-
standing word embeddings. In International Conference on Machine Learning
(2019), pp. 223–231.

[10] Alon, Noga, Frankl, Peter, and Rodl, V. Geometrical realization of set systems
and probabilistic communication complexity. In Proceedings of the 26th Annual
IEEE Symposium on Foundations of Computer Science (FOCS) (1985), pp. 277–
280.

168

[11] Alon, Noga, and Milman, Vitali D. λ1, isoperimetric inequalities for graphs, and
superconcentrators. Journal of Combinatorial Theory, Series B 38, 1 (1985),
73–88.

[12] Alon, Noga, Moran, Shay, and Yehudayoff, Amir. Sign rank versus VC dimen-
sion. In Proceedings of the 29th Annual Conference on Computational Learning
Theory (COLT) (2016), pp. 47–80.

[13] Alon, Noga, and Spencer, Joel H. The probabilistic method. John Wiley & Sons,
2016.

[14] Alstott, Jeff, Bullmore, Ed, and Plenz, Dietmar. powerlaw: a python package
for analysis of heavy-tailed distributions. PloS one 9, 1 (2014), e85777.

[15] Arora, Sanjeev, Li, Yuanzhi, Liang, Yingyu, Ma, Tengyu, and Risteski, Andrej.
A latent variable model approach to pmi-based word embeddings. Transactions
of the Association for Computational Linguistics 4 (2016), 385–399.

[16] Barabási, Albert-László, and Albert, Réka. Emergence of scaling in random
networks. Science 286, 5439 (1999), 509–512.

[17] Belkin, Mikhail, and Niyogi, Partha. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation 15, 6 (2003), 1373–1396.

[18] Berry, Michael W, Browne, Murray, Langville, Amy N, Pauca, V Paul, and
Plemmons, Robert J. Algorithms and applications for approximate nonnegative
matrix factorization. Computational Statistics & Data Analysis 52, 1 (2007),
155–173.

[19] Bhattacharjee, Robi, and Dasgupta, Sanjoy. What relations are reliably em-
beddable in euclidean space? In Algorithmic Learning Theory (2020), PMLR,
pp. 174–195.

[20] Bojchevski, Aleksandar, Shchur, Oleksandr, Zügner, Daniel, and Günnemann,
Stephan. NetGAN: Generating graphs via random walks. Proceedings of the
35th International Conference on Machine Learning (ICML) (2018).

[21] Bollobás, Béla, Riordan, Oliver, Spencer, Joel, and Tusnády, Gábor. The degree
sequence of a scale-free random graph process. Random Structures & Algorithms
18, 3 (2001), 279–290.

[22] Bonato, Anthony. A survey of models of the web graph. In Workshop on
Combinatorial and Algorithmic Aspects of Networking (2004), Springer, pp. 159–
172.

[23] Boratko, Michael, Zhang, Dongxu, Monath, Nicholas, Vilnis, Luke, Clarkson,
Kenneth L, and McCallum, Andrew. Capacity and bias of learned geometric
embeddings for directed graphs. Advances in Neural Information Processing
Systems 34 (2021), 16423–16436.

169

[24] Bourgain, Jean. On Lipschitz embedding of finite metric spaces in Hilbert space.
Israel Journal of Mathematics 52, 1-2 (1985), 46–52.

[25] Breitkreutz, Bobby-Joe, Stark, Chris, Reguly, Teresa, Boucher, Lorrie, Bre-
itkreutz, Ashton, Livstone, Michael, Oughtred, Rose, Lackner, Daniel H, Bäh-
ler, Jürg, Wood, Valerie, et al. The biogrid interaction database: 2008 update.
Nucleic Acids Research 36, suppl_1 (2007), D637–D640.

[26] Buckley, Pierce G, and Osthus, Deryk. Popularity based random graph models
leading to a scale-free degree sequence. Discrete Mathematics 282, 1-3 (2004),
53–68.

[27] Bun, Mark, and Thaler, Justin. Improved bounds on the sign-rank of AC0. In
Proceedings of the 43rd International Colloquium on Automata, Languages and
Programming (ICALP) (2016).

[28] Cao, Shaosheng, Lu, Wei, and Xu, Qiongkai. GraRep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management
(2015), pp. 891–900.

[29] Cao, Shaosheng, Lu, Wei, and Xu, Qiongkai. Deep neural networks for learning
graph representations. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI) (2016).

[30] Chanpuriya, Sudhanshu, and Musco, Cameron. InfiniteWalk: Deep network
embeddings as Laplacian embeddings with a nonlinearity. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD) (2020).

[31] Chanpuriya, Sudhanshu, and Musco, Cameron. Simplified graph convolution
with heterophily. In Advances in Neural Information Processing Systems 35
(NeurIPS) (2022).

[32] Chanpuriya, Sudhanshu, Musco, Cameron, Sotiropoulos, Konstantinos, and
Tsourakakis, Charalampos. Deepwalking backwards: from embeddings back
to graphs. In International Conference on Machine Learning (2021), PMLR,
pp. 1473–1483.

[33] Chanpuriya, Sudhanshu, Musco, Cameron, Sotiropoulos, Konstantinos, and
Tsourakakis, Charalampos. On the power of edge independent graph models.
Advances in Neural Information Processing Systems 34 (2021), 24418–24429.

[34] Chanpuriya, Sudhanshu, Musco, Cameron, Sotiropoulos, Konstantinos, and
Tsourakakis, Charalampos E. Node embeddings and exact low-rank represen-
tations of complex networks. In Advances in Neural Information Processing
Systems 33 (NeurIPS) (2020).

170

[35] Chatterjee, Sourav, and Diaconis, Persi. Estimating and understanding expo-
nential random graph models. The Annals of Statistics (2013), 2428–2461.

[36] Chen, Jie, Ma, Tengfei, and Xiao, Cao. Fastgcn: fast learning with graph
convolutional networks via importance sampling. International Conference on
Learning Representations (2018).

[37] Chen, Wei, Fang, Wenjie, Hu, Guangda, and Mahoney, Michael W. On the
hyperbolicity of small-world and treelike random graphs. Internet Mathematics
9, 4 (2013), 434–491.

[38] Chien, Eli, Peng, Jianhao, Li, Pan, and Milenkovic, Olgica. Adaptive universal
generalized pagerank graph neural network. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021
(2021).

[39] Chung, Fan, and Lu, Linyuan. The average distances in random graphs with
given expected degrees. Proceedings of the National Academy of Sciences 99,
25 (2002), 15879–15882.

[40] Chung, Fan, and Lu, Linyuan. Connected components in random graphs with
given expected degree sequences. Annals of combinatorics 6, 2 (2002), 125–145.

[41] Chung, Fan RK, Graham, Ronald L, Frankl, Peter, and Shearer, James B. Some
intersection theorems for ordered sets and graphs. Journal of Combinatorial
Theory, Series A 43, 1 (1986), 23–37.

[42] Craven, Mark, DiPasquo, Dan, Freitag, Dayne, McCallum, Andrew, Mitchell,
Tom, Nigam, Kamal, and Slattery, Seán. Learning to construct knowledge bases
from the world wide web. Artificial intelligence 118, 1-2 (2000), 69–113.

[43] Dall, Jesper, and Christensen, Michael. Random geometric graphs. Physical
Review E 66, 1 (2002), 016121.

[44] De Bie, Tijl. Maximum entropy models and subjective interestingness: an
application to tiles in binary databases. Data Mining and Knowledge Discovery
23, 3 (2011), 407–446.

[45] De Cao, Nicola, and Kipf, Thomas. MolGAN: An implicit generative model for
small molecular graphs. ICML Deep Generative Models Workshop (2018).

[46] Defferrard, Michaël, Bresson, Xavier, and Vandergheynst, Pierre. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain
(2016), pp. 3837–3845.

171

[47] Deshpande, Yash, Sen, Subhabrata, Montanari, Andrea, and Mossel, Elchanan.
Contextual stochastic block models. In Advances in Neural Information Pro-
cessing Systems (2018).

[48] Ding, Chris, Li, Tao, and Jordan, Michael I. Nonnegative matrix factorization
for combinatorial optimization: Spectral clustering, graph matching, and clique
finding. In 2008 Eighth IEEE International Conference on Data Mining (2008),
IEEE, pp. 183–192.

[49] Donoho, David L., and Stodden, Victoria. When does non-negative matrix
factorization give a correct decomposition into parts? In Advances in Neural
Information Processing Systems 16 (2003), MIT Press, pp. 1141–1148.

[50] Drinea, Eleni, Enachescu, Mihaela, and Mitzenmacher, Michael. Variations on
random graph models for the web. In SODA (2001), Citeseer.

[51] Duddu, Vasisht, Boutet, Antoine, and Shejwalkar, Virat. Quantifying privacy
leakage in graph embedding. arXiv:2010.00906 (2020).

[52] Durak, Nurcan, Pinar, Ali, Kolda, Tamara G, and Seshadhri, C. Degree rela-
tions of triangles in real-world networks and graph models. In Proceedings of
the 21st ACM International Conference on Information and Knowledge Man-
agement (2012).

[53] Duvenaud, David, Maclaurin, Dougal, Aguilera-Iparraguirre, Jorge, Gómez-
Bombarelli, Rafael, Hirzel, Timothy, Aspuru-Guzik, Alán, and Adams, Ryan P.
Convolutional networks on graphs for learning molecular fingerprints. In Ad-
vances in Neural Information Processing Systems 28 (2015), pp. 2224–2232.

[54] Ellers, Michael, Cochez, Michael, Schumacher, Tobias, Strohmaier, Markus, and
Lemmerich, Florian. Privacy attacks on network embeddings. arXiv:1912.10979
(2019).

[55] Eppstein, David, Löffler, Maarten, and Strash, Darren. Listing all maximal
cliques in sparse graphs in near-optimal time. arXiv preprint arXiv:1006.5440
(2010).

[56] Erdös, Paul, and Rényi, Alfréd. On the evolution of random graphs. Publica-
tions of the Mathematical Institute of the Hungarian Academy of Sciences 5, 1
(1960), 17–60.

[57] Faloutsos, Christos, Miller, Gary, and Tsourakakis, Charalampos Babis. Large
graph-mining: Power tools and a practitioner’s guide. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD) (2009), Citeseer.

[58] Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, and Lin,
Chih-Jen. Liblinear: A library for large linear classification. Journal of machine
learning research 9, Aug (2008), 1871–1874.

172

http://arxiv.org/abs/2010.00906
http://arxiv.org/abs/1912.10979

[59] Finner, Helmut. A generalization of holder’s inequality and some probability
inequalities. The Annals of Probability (1992), 1893–1901.

[60] Flaxman, Abraham, Frieze, Alan, and Fenner, Trevor. High degree vertices
and eigenvalues in the preferential attachment graph. Internet Mathematics 2,
1 (2005), 1–19.

[61] Foster, Jacob G, Foster, David V, Grassberger, Peter, and Paczuski, Maya.
Edge direction and the structure of networks. Proceedings of the National
Academy of Sciences 107, 24 (2010), 10815–10820.

[62] Frank, Ove, and Strauss, David. Markov graphs. Journal of the american
Statistical association 81, 395 (1986), 832–842.

[63] Friedgut, Ehud. Hypergraphs, entropy, and inequalities. The American Math-
ematical Monthly 111, 9 (2004), 749–760.

[64] Frieze, Alan, and Tsourakakis, Charalampos E. On certain properties of random
apollonian networks. In International Workshop on Algorithms and Models for
the Web-Graph (2012), Springer, pp. 93–112.

[65] Gatterbauer, Wolfgang. Semi-supervised learning with heterophily. arXiv
preprint arXiv:1412.3100 (2014).

[66] Gillis, Nicolas. Nonnegative Matrix Factorization. SIAM, 2020.

[67] Gionis, Aristides, and Tsourakakis, Charalampos E. Dense subgraph discovery:
Kdd 2015 tutorial. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2015), pp. 2313–2314.

[68] Gittens, Alex, Achlioptas, Dimitris, and Mahoney, Michael W. Skip-gram- zipf+
uniform= vector additivity. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (2017),
pp. 69–76.

[69] Gleich, David, Zhukov, Leonid, and Berkhin, Pavel. Fast parallel pagerank: A
linear system approach. Yahoo! Research Technical Report 13 (2004), 22.

[70] Goemans, Michel X, and Williamson, David P. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM (JACM) 42, 6 (1995), 1115–1145.

[71] Goldberg, Yoav, and Levy, Omer. word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[72] Goldenberg, Anna, Zheng, Alice X, Fienberg, Stephen E, Airoldi, Edoardo M,
et al. A survey of statistical network models. Foundations and Trends® in
Machine Learning 2, 2 (2010), 129–233.

173

[73] Gopalan, Prem K, and Blei, David M. Efficient discovery of overlapping com-
munities in massive networks. Proceedings of the National Academy of Sciences
110, 36 (2013), 14534–14539.

[74] Grohe, Martin. Descriptive complexity, canonisation, and definable graph struc-
ture theory, vol. 47. Cambridge University Press, 2017.

[75] Grover, Aditya, and Leskovec, Jure. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD) (2016), ACM, pp. 855–864.

[76] Grover, Aditya, Zweig, Aaron, and Ermon, Stefano. Graphite: Iterative gener-
ative modeling of graphs. In Proceedings of the 36th International Conference
on Machine Learning (ICML) (2019).

[77] Gupta, Anupam. Embedding tree metrics into low dimensional euclidean spaces.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting (1999), pp. 694–700.

[78] Hamilton, Will, Ying, Zhitao, and Leskovec, Jure. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems
30 (NeurIPS) (2017), pp. 1024–1034.

[79] Harris, Charles R., Millman, K. Jarrod, van der Walt, Stéfan J., Gommers,
Ralf, Virtanen, Pauli, Cournapeau, David, Wieser, Eric, Taylor, Julian, Berg,
Sebastian, Smith, Nathaniel J., Kern, Robert, Picus, Matti, Hoyer, Stephan,
van Kerkwijk, Marten H., Brett, Matthew, Haldane, Allan, del Río, Jaime Fer-
nández, Wiebe, Mark, Peterson, Pearu, Gérard-Marchant, Pierre, Sheppard,
Kevin, Reddy, Tyler, Weckesser, Warren, Abbasi, Hameer, Gohlke, Christoph,
and Oliphant, Travis E. Array programming with NumPy. Nature 585, 7825
(Sept. 2020), 357–362.

[80] Hase, Takeshi, Niimura, Yoshihito, and Tanaka, Hiroshi. Difference in gene
duplicability may explain the difference in overall structure of protein-protein
interaction networks among eukaryotes. BMC Evolutionary Biology 10, 1 (2010),
1–15.

[81] Hoff, Peter D. Random effects models for network data. In Dynamic Social
Network Modeling and Analysis: Workshop Summary and Papers (2003), Cite-
seer.

[82] Hoff, Peter D. Bilinear mixed-effects models for dyadic data. Journal of the
American Statistical Association 100, 469 (2005), 286–295.

[83] Hoff, Peter D, Raftery, Adrian E, and Handcock, Mark S. Latent space ap-
proaches to social network analysis. Journal of the American Statistical associ-
ation 97, 460 (2002), 1090–1098.

174

[84] Holland, Paul W, Laskey, Kathryn Blackmond, and Leinhardt, Samuel.
Stochastic blockmodels: First steps. Social Networks 5, 2 (1983), 109–137.

[85] Hoskins, Jeremy G, Musco, Cameron, Musco, Christopher, and Tsourakakis,
Charalampos E. Learning networks from random walk-based node similarities.
In Advances in Neural Information Processing Systems 31 (NeurIPS) (2018).

[86] Huang, Weiyu, Goldsberry, Leah, Wymbs, Nicholas F, Grafton, Scott T, Bas-
sett, Danielle S, and Ribeiro, Alejandro. Graph frequency analysis of brain
signals. IEEE Journal of Selected Topics in Signal Processing 10, 7 (2016),
1189–1203.

[87] Javed, Muhammad Aqib, Younis, Muhammad Shahzad, Latif, Siddique, Qadir,
Junaid, and Baig, Adeel. Community detection in networks: A multidisciplinary
review. Journal of Network and Computer Applications 108 (2018), 87–111.

[88] Johnson, Samuel, Torres, Joaquín J, Marro, J, and Munoz, Miguel A. Entropic
origin of disassortativity in complex networks. Physical Review Letters 104, 10
(2010), 108702.

[89] Jones, Eric, Oliphant, Travis, Peterson, Pearu, et al. SciPy: Open source
scientific tools for Python, 2001.

[90] Kang, Ross J, and Müller, Tobias. Sphere and dot product representations of
graphs. In Proceedings of the Twenty-Seventh Annual Symposium on Compu-
tational Geometry (2011), pp. 308–314.

[91] Kelner, Jonathan A, Orecchia, Lorenzo, Sidford, Aaron, and Zhu, Zeyuan Allen.
A simple, combinatorial algorithm for solving sdd systems in nearly-linear time.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing
(2013), pp. 911–920.

[92] Kemp, Charles, Tenenbaum, Joshua B, Griffiths, Thomas L, Yamada, Takeshi,
and Ueda, Naonori. Learning systems of concepts with an infinite relational
model. In Proceedings of the 20th AAAI Conference on Artificial Intelligence
(AAAI) (2006).

[93] Kipf, Thomas N, and Welling, Max. Variational graph auto-encoders. NeurIPS
Bayesian Deep Learning Workshop (2016).

[94] Kipf, Thomas N, and Welling, Max. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Representations
(2017).

[95] Klicpera, Johannes, Bojchevski, Aleksandar, and Günnemann, Stephan. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. In
7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019 (2019).

175

[96] Koutis, Ioannis, Miller, Gary L, and Peng, Richard. Approaching optimality for
solving sdd linear systems. SIAM Journal on Computing 43, 1 (2014), 337–354.

[97] Kuang, Da, Ding, Chris, and Park, Haesun. Symmetric nonnegative matrix fac-
torization for graph clustering. In Proceedings of the 2012 SIAM International
Conference on Data Mining (2012), SIAM, pp. 106–117.

[98] Kuang, Da, Yun, Sangwoon, and Park, Haesun. Symnmf: nonnegative low-
rank approximation of a similarity matrix for graph clustering. Journal of
Global Optimization 62, 3 (2015), 545–574.

[99] LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep learning. Nature
521, 7553 (2015), 436–444.

[100] Lee, Daniel D, and Seung, H Sebastian. Learning the parts of objects by non-
negative matrix factorization. Nature 401, 6755 (1999), 788–791.

[101] Lehoucq, Richard B, Sorensen, Danny C, and Yang, Chao. ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted
Arnoldi methods, vol. 6. Siam, 1998.

[102] Leighton, Tom, and Rao, Satish. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. Journal of the ACM
(JACM) 46, 6 (1999), 787–832.

[103] Leskovec, Jure, Chakrabarti, Deepayan, Kleinberg, Jon, Faloutsos, Christos,
and Ghahramani, Zoubin. Kronecker graphs: an approach to modeling networks.
Journal of Machine Learning Research 11, 2 (2010).

[104] Leskovec, Jure, Huttenlocher, Daniel, and Kleinberg, Jon. Signed networks in
social media. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (2010), pp. 1361–1370.

[105] Leskovec, Jure, Kleinberg, Jon, and Faloutsos, Christos. Graph evolution: Den-
sification and shrinking diameters. ACM transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2–es.

[106] Leskovec, Jure, and Krevl, Andrej. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, 2014.

[107] Leskovec, Jure, and Mcauley, Julian J. Learning to discover social circles in ego
networks. In Advances in Neural Information Processing Systems 25 (NeurIPS)
(2012), pp. 539–547.

[108] Levinson, Howard. An eigenvalue representation for random walk hitting times
and its application to the rook graph.

[109] Levy, Omer, and Goldberg, Yoav. Neural word embedding as implicit ma-
trix factorization. In Advances in Neural Information Processing Systems 27
(NeurIPS) (2014), pp. 2177–2185.

176

http://snap.stanford.edu/data

[110] Li, Yitan, Xu, Linli, Tian, Fei, Jiang, Liang, Zhong, Xiaowei, and Chen, Enhong.
Word embedding revisited: A new representation learning and explicit matrix
factorization perspective. In Twenty-Fourth International Joint Conference on
Artificial Intelligence (2015).

[111] Li, Yujia, Vinyals, Oriol, Dyer, Chris, Pascanu, Razvan, and Battaglia, Peter.
Learning deep generative models of graphs. arXiv:1803.03324 (2018).

[112] Liao, Renjie, Li, Yujia, Song, Yang, Wang, Shenlong, Nash, Charlie, Hamilton,
William L, Duvenaud, David, Urtasun, Raquel, and Zemel, Richard S. Efficient
graph generation with graph recurrent attention networks. arXiv:1910.00760
(2019).

[113] Linial, Nathan, London, Eran, and Rabinovich, Yuri. The geometry of graphs
and some of its algorithmic applications. Combinatorica 15, 2 (1995), 215–245.

[114] Linial, Nati, Mendelson, Shahar, Schechtman, Gideon, and Shraibman, Adi.
Complexity measures of sign matrices. Combinatorica 27, 4 (2007), 439–463.

[115] Liu, Dong C, and Nocedal, Jorge. On the limited memory BFGS method for
large scale optimization. Mathematical Programming 45, 1-3 (1989), 503–528.

[116] Liu, Meng, Wang, Zhengyang, and Ji, Shuiwang. Non-local graph neural net-
works. arXiv preprint arXiv:2005.14612 (2020).

[117] Luan, Sitao, Hua, Chenqing, Lu, Qincheng, Zhu, Jiaqi, Zhao, Mingde, Zhang,
Shuyuan, Chang, Xiao-Wen, and Precup, Doina. Is heterophily a real night-
mare for graph neural networks to do node classification? arXiv preprint
arXiv:2109.05641 (2021).

[118] Ma, Zhuang, Ma, Zongming, and Yuan, Hongsong. Universal latent space model
fitting for large networks with edge covariates. J. Mach. Learn. Res. 21 (2020),
4–1.

[119] Maehara, Hiroshi. Space graphs and sphericity. Discrete Applied Mathematics
7, 1 (1984), 55–64.

[120] Mason, Oliver, and Verwoerd, Mark. Graph theory and networks in biology.
IET Systems Biology 1, 2 (2007), 89–119.

[121] McAuley, Julian, Targett, Christopher, Shi, Qinfeng, and Van Den Hengel,
Anton. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development
in Information retrieval (2015), pp. 43–52.

[122] McGregor, Andrew. Graph stream algorithms: a survey. ACM SIGMOD Record
43, 1 (2014), 9–20.

177

http://arxiv.org/abs/1803.03324
http://arxiv.org/abs/1910.00760

[123] McPherson, Miller, Smith-Lovin, Lynn, and Cook, James M. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[124] McSherry, Frank. Spectral partitioning of random graphs. In Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS)
(2001), pp. 529–537.

[125] Meyer, Jr, Carl D. Generalized inversion of modified matrices. SIAM Journal
on Applied Mathematics 24, 3 (1973), 315–323.

[126] Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff.
Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems 26 (NeurIPS) (2013),
pp. 3111–3119.

[127] Miller, Kurt, Jordan, Michael I, and Griffiths, Thomas L. Nonparametric latent
feature models for link prediction. In Advances in Neural Information Processing
Systems 22 (NeurIPS) (2009), pp. 1276–1284.

[128] Morris, Christopher, Ritzert, Martin, Fey, Matthias, Hamilton, William L,
Lenssen, Jan Eric, Rattan, Gaurav, and Grohe, Martin. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Proceedings of the −1953th
AAAI Conference on Artificial Intelligence (AAAI) (2019), vol. 33, pp. 4602–
4609.

[129] Musco, Cameron, Musco, Christopher, and Tsourakakis, Charalampos E. Min-
imizing polarization and disagreement in social networks. In Proceedings of the
27th International World Wide Web Conference (WWW) (2018), pp. 369–378.

[130] Namata, Galileo, London, Ben, Getoor, Lise, Huang, Bert, and EDU, UMD.
Query-driven active surveying for collective classification. In 10th International
Workshop on Mining and Learning with Graphs (2012), vol. 8, p. 1.

[131] Nascimento, Maria CV, and De Carvalho, Andre CPLF. Spectral methods for
graph clustering–a survey. European Journal of Operational Research 211, 2
(2011), 221–231.

[132] Newman, Mark EJ. Assortative mixing in networks. Physical Review Letters
89, 20 (2002), 208701.

[133] Ng, Andrew Y, Jordan, Michael I, and Weiss, Yair. On spectral clustering: Anal-
ysis and an algorithm. In Advances in Neural Information Processing Systems
15 (NeurIPS) (2002), pp. 849–856.

[134] Noldus, Rogier, and Van Mieghem, Piet. Assortativity in complex networks.
Journal of Complex Networks 3, 4 (2015), 507–542.

[135] NT, Hoang, and Maehara, Takanori. Revisiting graph neural networks: All we
have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).

178

[136] Oliphant, Travis E. A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[137] Ortega, Antonio, Frossard, Pascal, Kovačević, Jelena, Moura, José MF, and
Vandergheynst, Pierre. Graph signal processing: Overview, challenges, and
applications. Proceedings of the IEEE 106, 5 (2018), 808–828.

[138] Palla, Konstantina, Knowles, David, and Ghahramani, Zoubin. An infinite
latent attribute model for network data. arXiv:1206.6416 (2012).

[139] Pan, Shirui, Hu, Ruiqi, Long, Guodong, Jiang, Jing, Yao, Lina, and Zhang,
Chengqi. Adversarially regularized graph autoencoder for graph embedding.
arXiv:1802.04407 (2018).

[140] Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James,
Chanan, Gregory, Killeen, Trevor, Lin, Zeming, Gimelshein, Natalia, Antiga,
Luca, Desmaison, Alban, Kopf, Andreas, Yang, Edward, DeVito, Zachary, Rai-
son, Martin, Tejani, Alykhan, Chilamkurthy, Sasank, Steiner, Benoit, Fang,
Lu, Bai, Junjie, and Chintala, Soumith. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Process-
ing Systems 32 (NeurIPS) (2019), pp. 8024–8035.

[141] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[142] Pei, Hongbin, Wei, Bingzhe, Chang, Kevin Chen-Chuan, Lei, Yu, and Yang,
Bo. Geom-gcn: Geometric graph convolutional networks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020 (2020).

[143] Pérez, Fernando, and Granger, Brian E. IPython: a system for interactive
scientific computing. Computing in Science and Engineering 9, 3 (May 2007),
21–29.

[144] Perozzi, Bryan, Al-Rfou, Rami, and Skiena, Steven. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (2014), ACM, pp. 701–710.

[145] Peysakhovich, Alexander, and Bottou, Leon. An attract-repel decomposition
of undirected networks. arXiv preprint arXiv:2106.09671 (2021).

[146] Pinar, Ali, Seshadhri, Comandur, and Kolda, Tamara G. The similarity between
stochastic Kronecker and Chung-Lu graph models. In Proceedings of the 2012
SIAM International Conference on Data Mining (2012).

179

http://arxiv.org/abs/1206.6416
http://arxiv.org/abs/1802.04407

[147] Qiu, Jiezhong, Dong, Yuxiao, Ma, Hao, Li, Jian, Wang, Kuansan, and Tang,
Jie. Network embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining (2018), ACM, pp. 459–467.

[148] Ranjan, Gyan, Zhang, Zhi-Li, and Boley, Daniel. Incremental computation
of pseudo-inverse of laplacian. In International Conference on Combinatorial
Optimization and Applications (2014), Springer, pp. 729–749.

[149] Razborov, Alexander A, and Sherstov, Alexander A. The sign-rank of AC0.
SIAM Journal on Computing 39, 5 (2010), 1833–1855.

[150] Reiterman, Jan, Rödl, Vojtech, and Šinajová, E. Geometrical embeddings of
graphs. Discrete Mathematics 74, 3 (1989), 291–319.

[151] Rendsburg, Luca, Heidrich, Holger, and von Luxburg, Ulrike. NetGAN without
GAN: From random walks to low-rank approximations. In Proceedings of the
37th International Conference on Machine Learning (ICML) (2020).

[152] Rendsburg, Luca, Heidrich, Holger, and Von Luxburg, Ulrike. Netgan with-
out gan: From random walks to low-rank approximations. In International
Conference on Machine Learning (2020), PMLR, pp. 8073–8082.

[153] Roberts, Fred S. On the boxicity and cubicity of a graph. Recent progress in
combinatorics 1, 1 (1969), 301–310.

[154] Rohe, Karl, Chatterjee, Sourav, Yu, Bin, et al. Spectral clustering and the
high-dimensional stochastic blockmodel. The Annals of Statistics 39, 4 (2011),
1878–1915.

[155] Rossi, Ryan A., and Ahmed, Nesreen K. The network data repository with
interactive graph analytics and visualization. In AAAI (2015).

[156] Roweis, Sam T, and Saul, Lawrence K. Nonlinear dimensionality reduction by
locally linear embedding. Science 290, 5500 (2000), 2323–2326.

[157] Rozemberczki, Benedek, Allen, Carl, and Sarkar, Rik. Multi-scale attributed
node embedding. J. Complex Networks 9, 2 (2021).

[158] Saad, Yousef. Numerical methods for large eigenvalue problems: revised edition.
SIAM, 2011.

[159] Sala, Alessandra, Cao, Lili, Wilson, Christo, Zablit, Robert, Zheng, Haitao, and
Zhao, Ben Y. Measurement-calibrated graph models for social network exper-
iments. In Proceedings of the 19th International World Wide Web Conference
(WWW) (2010), pp. 861–870.

180

[160] Sala, Alessandra, Cao, Lili, Wilson, Christo, Zablit, Robert, Zheng, Haitao, and
Zhao, Ben Y. Measurement-calibrated graph models for social network exper-
iments. In Proceedings of the 19th International World Wide Web Conference
(WWW) (2010).

[161] Sala, Frederic, De Sa, Chris, Gu, Albert, and Ré, Christopher. Representation
tradeoffs for hyperbolic embeddings. In International Conference on Machine
Learning (2018), PMLR, pp. 4460–4469.

[162] Salha, Guillaume, Hennequin, Romain, and Vazirgiannis, Michalis. Keep
it simple: Graph autoencoders without graph convolutional networks.
arXiv:1910.00942 (2019).

[163] Sarkar, Rik. Low distortion delaunay embedding of trees in hyperbolic plane.
In International Symposium on Graph Drawing (2011), Springer, pp. 355–366.

[164] Schaeffer, Satu Elisa. Graph clustering. Computer Science Review 1, 1 (2007),
27–64.

[165] Scott, John. Social network analysis. Sociology 22, 1 (1988), 109–127.

[166] Sen, Prithviraj, Namata, Galileo, Bilgic, Mustafa, Getoor, Lise, Gallagher,
Brian, and Eliassi-Rad, Tina. Collective classification in network data. AI
Mag. 29, 3 (2008), 93–106.

[167] Seshadhri, C, Sharma, Aneesh, Stolman, Andrew, and Goel, Ashish. The im-
possibility of low-rank representations for triangle-rich complex networks. Pro-
ceedings of the National Academy of Sciences 117, 11 (2020), 5631–5637.

[168] Shchur, Oleksandr, Mumme, Maximilian, Bojchevski, Aleksandar, and Günne-
mann, Stephan. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[169] Shi, Jianbo, and Malik, Jitendra. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000),
888–905.

[170] Simonovsky, Martin, and Komodakis, Nikos. Graphvae: Towards generation of
small graphs using variational autoencoders. In Artificial Neural Networks and
Machine Learning–ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27
(2018), Springer, pp. 412–422.

[171] Simonovsky, Martin, and Komodakis, Nikos. GraphVAE: Towards generation
of small graphs using variational autoencoders. In International Conference on
Artificial Neural Networks (2018), Springer, pp. 412–422.

181

http://arxiv.org/abs/1910.00942

[172] Snijders, Tom AB, and Nowicki, Krzysztof. Estimation and prediction for
stochastic blockmodels for graphs with latent block structure. Journal of Clas-
sification 14, 1 (1997), 75–100.

[173] Spielman, Daniel. Spectral graph theory. Combinatorial Scientific Computing
18 (2012).

[174] Spielman, Daniel A, and Srivastava, Nikhil. Graph sparsification by effective
resistances. SIAM Journal on Computing 40, 6 (2011), 1913–1926.

[175] Spielman, Daniel A, and Teng, Shang-Hua. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing (2004),
pp. 81–90.

[176] Stanković, Ljubiša, Daković, Miloš, and Sejdić, Ervin. Introduction to graph
signal processing. In Vertex-Frequency Analysis of Graph Signals. Springer,
2019, pp. 3–108.

[177] Stark, Chris, Breitkreutz, Bobby-Joe, Chatr-Aryamontri, Andrew, Boucher,
Lorrie, Oughtred, Rose, Livstone, Michael S, Nixon, Julie, Van Auken, Kim-
berly, Wang, Xiaodong, Shi, Xiaoqi, et al. The BioGRID interaction database:
2011 update. Nucleic Acids Research 39 (2010), D698–D704.

[178] Sun, Fan-Yun, Qu, Meng, Hoffmann, Jordan, Huang, Chin-Wei, and Tang,
Jian. vgraph: A generative model for joint community detection and node
representation learning. In Advances in Neural Information Processing Systems
32 (2019), pp. 512–522.

[179] Suresh, Susheel, Budde, Vinith, Neville, Jennifer, Li, Pan, and Ma, Jianzhu.
Breaking the limit of graph neural networks by improving the assortativity
of graphs with local mixing patterns. In KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore,
August 14-18, 2021 (2021), ACM, pp. 1541–1551.

[180] Takeaki, UNO. Implementation issues of clique enumeration algorithm. Spe-
cial issue: Theoretical computer science and discrete mathematics, Progress in
Informatics 9 (2012), 25–30.

[181] Tang, Jian, Qu, Meng, and Mei, Qiaozhu. PTE: Predictive text embedding
through large-scale heterogeneous text networks. In Proceedings of the 21st
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD) (2015), pp. 1165–1174.

[182] Tang, Jian, Qu, Meng, Wang, Mingzhe, Zhang, Ming, Yan, Jun, and Mei,
Qiaozhu. LINE: Large-scale information network embedding. In Proceedings of
the 24th International World Wide Web Conference (WWW) (2015), pp. 1067–
1077.

182

[183] Tang, Lei, and Liu, Huan. Relational learning via latent social dimensions. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2009), ACM, pp. 817–826.

[184] Tenenbaum, Joshua B, De Silva, Vin, and Langford, John C. A global geometric
framework for nonlinear dimensionality reduction. Science 290, 5500 (2000),
2319–2323.

[185] Tian, Fei, Gao, Bin, Cui, Qing, Chen, Enhong, and Liu, Tie-Yan. Learning
deep representations for graph clustering. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI) (2014).

[186] Tsourakakis, Charalampos E. Fast counting of triangles in large real networks
without counting: Algorithms and laws. In 2008 Eighth IEEE International
Conference on Data Mining (2008), IEEE, pp. 608–617.

[187] Van Der Hofstad, Remco. Random graphs and complex networks, vol. 1. Cam-
bridge University Press, 2016.

[188] Veličković, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana,
Lio, Pietro, and Bengio, Yoshua. Graph attention networks. International
Conference on Learning Representations (2018).

[189] Veličković, Petar, Fedus, William, Hamilton, William L, Liò, Pietro, Ben-
gio, Yoshua, and Hjelm, R Devon. Deep graph infomax. arXiv preprint
arXiv:1809.10341 (2018).

[190] Verbeek, Kevin, and Suri, Subhash. Metric embedding, hyperbolic space, and
social networks. In Proceedings of the thirtieth annual symposium on Compu-
tational geometry (2014), pp. 501–510.

[191] Virtanen, Pauli, Gommers, Ralf, Oliphant, Travis E., Haberland, Matt, Reddy,
Tyler, Cournapeau, David, Burovski, Evgeni, Peterson, Pearu, Weckesser, War-
ren, Bright, Jonathan, van der Walt, Stéfan J., Brett, Matthew, Wilson, Joshua,
Millman, K. Jarrod, Mayorov, Nikolay, Nelson, Andrew R. J., Jones, Eric, Kern,
Robert, Larson, Eric, Carey, C J, Polat, İlhan, Feng, Yu, Moore, Eric W., Van-
derPlas, Jake, Laxalde, Denis, Perktold, Josef, Cimrman, Robert, Henriksen,
Ian, Quintero, E. A., Harris, Charles R., Archibald, Anne M., Ribeiro, An-
tônio H., Pedregosa, Fabian, van Mulbregt, Paul, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17 (2020), 261–272.

[192] Wang, Daixin, Cui, Peng, and Zhu, Wenwu. Structural deep network embed-
ding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD) (2016), pp. 1225–1234.

183

[193] Wang, Hongwei, Wang, Jia, Wang, Jialin, Zhao, Miao, Zhang, Weinan, Zhang,
Fuzheng, Xie, Xing, and Guo, Minyi. GraphGAN: Graph representation learn-
ing with generative adversarial nets. In Proceedings of the 32nd AAAI Confer-
ence on Artificial Intelligence (AAAI) (2018).

[194] Wang, Yu-Xiong, and Zhang, Yu-Jin. Nonnegative matrix factorization: A
comprehensive review. IEEE Transactions on Knowledge and Data Engineering
25, 6 (2012), 1336–1353.

[195] Watts, Duncan J, and Strogatz, Steven H. Collective dynamics of ‘small-
world’networks. Nature 393, 6684 (1998), 440–442.

[196] Weber, Melanie. Neighborhood growth determines geometric priors for rela-
tional representation learning. In International Conference on Artificial Intel-
ligence and Statistics (2020), PMLR, pp. 266–276.

[197] Wu, Felix, Souza, Amauri, Zhang, Tianyi, Fifty, Christopher, Yu, Tao, and
Weinberger, Kilian. Simplifying graph convolutional networks. In Proceed-
ings of the 36th International Conference on Machine Learning (2019), PMLR,
pp. 6861–6871.

[198] Xie, Jierui, Kelley, Stephen, and Szymanski, Boleslaw K. Overlapping commu-
nity detection in networks: The state-of-the-art and comparative study. ACM
Computing Surveys 45, 4 (2013), 43:1–43:35.

[199] Xu, Keyulu, Hu, Weihua, Leskovec, Jure, and Jegelka, Stefanie. How powerful
are graph neural networks? International Conference on Learning Representa-
tions (2019).

[200] Xu, Keyulu, Li, Chengtao, Tian, Yonglong, Sonobe, Tomohiro, Kawarabayashi,
Ken-ichi, and Jegelka, Stefanie. Representation learning on graphs with jump-
ing knowledge networks. In International Conference on Machine Learning
(2018), PMLR, pp. 5453–5462.

[201] Yan, Yujun, Hashemi, Milad, Swersky, Kevin, Yang, Yaoqing, and Koutra,
Danai. Two sides of the same coin: Heterophily and oversmoothing in graph
convolutional neural networks. arXiv preprint arXiv:2102.06462 (2021).

[202] Yang, Jaewon, and Leskovec, Jure. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the Sixth ACM
International Conference on Web Search and Data Mining (2013), pp. 587–596.

[203] Yang, Jaewon, and Leskovec, Jure. Defining and evaluating network communi-
ties based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

[204] Yang, Zhirong, Hao, Tele, Dikmen, Onur, Chen, Xi, and Oja, Erkki. Clustering
by nonnegative matrix factorization using graph random walk. In Advances in
Neural Information Processing Systems (2012), pp. 1079–1087.

184

[205] You, Jiaxuan, Ying, Rex, Ren, Xiang, Hamilton, William, and Leskovec, Jure.
GraphRNN: Generating realistic graphs with deep auto-regressive models. In
Proceedings of the 35th International Conference on Machine Learning (ICML)
(2018), pp. 5708–5717.

[206] Young, Stephen J, and Scheinerman, Edward R. Random dot product graph
models for social networks. In International Workshop on Algorithms and Mod-
els for the Web-Graph (2007), Springer, pp. 138–149.

[207] Yu, Kai, Yu, Shipeng, and Tresp, Volker. Soft clustering on graphs. In Advances
in Neural Information Processing Systems (2005), pp. 1553–1560.

[208] Zahirnia, Kiarash, Schulte, Oliver, Naddaf, Parmis, and Li, Ke. Micro and
macro level graph modeling for graph variational auto-encoders. In Advances in
Neural Information Processing Systems (2022), S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35, Curran Associates, Inc.,
pp. 30347–30361.

[209] Zhou, Jun, Chen, Chaochao, Zheng, Longfei, Zheng, Xiaolin, Wu, Bingzhe,
Liu, Ziqi, and Wang, Li. Privacy-preserving graph neural network for node
classification. arXiv:2005.11903 (2020).

[210] Zhu, Ciyou, Byrd, Richard H, Lu, Peihuang, and Nocedal, Jorge. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on Mathematical Software (TOMS) 23, 4 (1997), 550–560.

[211] Zhu, Jiong, Rossi, Ryan A, Rao, Anup, Mai, Tung, Lipka, Nedim, Ahmed,
Nesreen K, and Koutra, Danai. Graph neural networks with heterophily. AAAI
Conference on Artificial Intelligence (2020).

[212] Zhu, Jiong, Yan, Yujun, Zhao, Lingxiao, Heimann, Mark, Akoglu, Leman, and
Koutra, Danai. Beyond homophily in graph neural networks: Current limita-
tions and effective designs. Advances in Neural Information Processing Systems
33 (2020).

[213] Zweig, Katharina Anna. Are word-adjacency networks networks? In Towards a
theoretical framework for analyzing complex linguistic networks. Springer, 2016,
pp. 153–163.

185

http://arxiv.org/abs/2005.11903

	Foundations of Node Representation Learning
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Summary of Contributions
	Understanding Modern Node Embedding Methods
	Power and Limitations of Embeddings
	Power and Limitations of Random Graph Models
	Simplifying Deep Graph Networks

	Bibliography Notes

	Understanding Modern Node Embedding Methods
	Deep Network Embeddings as Laplacian Embeddings with a Nonlinearity
	Background
	Skip-Gram
	Implicit PMI Matrix
	Networks
	Other Approaches

	Methodology
	Derivation of Limiting PMI Matrix
	Approximation of Finite-T PMI Matrix via Limiting PMI Matrix
	Binarized Laplacian Pseudoinverse

	Experimental Setup
	Data Sets
	Procedure
	Binarized Laplacian Pseudoinverse

	Results
	PMI Approximation Error
	Multi-Label Classification

	Conclusion

	From Embeddings Back to Graphs
	Related work
	Proposed methods
	Analytical Approach
	Optimization Approach

	Experimental results
	Experimental setup
	Analytical vs. Optimization Based Inversion
	Evaluating Graph Recovery

	Conclusion

	Power and Limitations of Embeddings
	Exact Low-Rank Representations of Complex Networks
	Background: Representations of Triangle-rich Networks
	Theoretical Results
	Empirical Results
	Conclusion

	Nonnegative Symmetric Representations of Sparse Networks
	Community-Based Graph Factorization Model
	Related Work
	Theoretical Results
	Experiments
	Dataset Descriptions
	Training Algorithm
	Results

	Conclusion

	Power and Limitations of Random Graph Models
	Inherent Limitations of Edge Independent Models
	Impossibility Results for Edge Independent Models
	Empirical Findings
	Related Work
	Impossibility Results for Edge Independent Models
	Triangles
	Squares and Other k-cycles
	Clustering Coefficient

	Baseline Edge Independent Models
	Experimental Results
	Methods
	Datasets and network statistics
	Results

	Conclusion

	On the Role of Edge Dependency in Random Graph Models
	Hierarchy of Graph Generative Models
	Edge Independent Model
	Fully Dependent Model
	Node Independent Model

	Impossibility Results for Random Graph Models
	Theoretical Preliminaries
	Triangle Count
	Squares and Other k-cycles
	Experimental Methodology and Baselines
	Graph Generative Models based on Dense Subgraph Discovery

	Experimental Results
	Conclusion

	Simplifying Deep Graph Networks
	Adaptive Simple Graph Convolution
	Background
	Methodology
	Motivating Example
	Theoretical Guarantees
	Related Work
	Empirical Performance
	Conclusion

	Conclusion
	Bibliography

