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ABSTRACT

WHEN TO HOLD AND WHEN TO FOLD:
STUDIES ON THE TOPOLOGY OF

ORIGAMI AND LINKAGES

SEPTEMBER 2023

M. E. V. LEE-TRIMBLE

B.Sc., GEORGIA INSTITUTE OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Christian D. Santangelo

Linkages and mechanisms are pervasive in physics and engineering as models for a

variety of structures and systems, from jamming to biomechanics. With the increase

in physical realizations of discrete shape-changing materials, such as metamaterials,

programmable materials, and self-actuating structures, an increased understanding

of mechanisms and how they can be designed is crucial. At a basic level, linkages

or mechanisms can be understood to be rigid bars connected at pivots around which

they can rotate freely. We will have a particular focus on origami-like materials, an

extension to linkages with the added constraint of faces. Self-actuated versions typ-

ically start flat and when exposed to an external stimulus - such as a temperature

change or magnetic field - spontaneously fold. Since these structures fold all at once,

and the number of folding patterns accessible to a given origami are exponential, they

are prone to folding to a configuration other than the desired one. Other work has

suggested methods for avoiding this misfolding, but it assumes ideal, rigid origami.
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Here, we expand on these models to account for the elasticity of real structures and

introduce methods for accounting for Gaussian curvature in them. We also explore

how to find and set an upper bound on minimal forcing sets, or the minimum set of

folds required to force an origami, and present a graph theory algorithm for finding

them in arbitrary origami. Taken altogether, these origami studies give insight into

how the physical properties of origami influence folding and a new set of tools for

avoiding misfolding. Next, we turn back to a more fundamental study of linkages

and present a new method for finding the manifold of their critical points. We then

demonstrate a design protocol that utilizes this manifold to create linkages with tun-

able motions, before turning to several example structures, including the four-bar

linkage and the Kane-Lubensky chain.
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INTRODUCTION

In the past few decades, we’ve seen a dramatic rise in man-made materials that

can change their shape, behavior, or general physical properties when an external

stimulus is applied. This class of materials gets called by a variety of names, from

self-programmable materials to shape-changing smart materials. The possibilities

presented by these materials are nearly endless: 3D structures that can be shipped

compactly and deployed at their destinations are less expensive to ship and a holy

grail for space exploration; mechanical computers that perform calculations under ex-

ternal conditions don’t need power sources and can be used in extreme environments;

metamaterials with tunable properties can create multi-use devices; self-actuated,

untethered robots that do not need an operator have applications from medicine to

package delivery to defense. In addition to these applications, they also present a new

perspective through which to view, probe, and understand the entwined relationship

between a material’s geometry and its behavior. In this thesis, we will explore a

limited class of these new materials that can be described as linkages or mechanisms,

with a special focus on origami-like materials.

A linkage is a graph whose edges have a fixed length but whose vertices are oth-

erwise freely rotating joints. This superficial simplicity belies behavior that can be

surprisingly complex and rich. Indeed, in addition to having been prolific in engi-

neering since the beginning of automation, they also serve as prototypical mechanical

models for many different physical systems, including animal limbs and joints [3–5],

polymer physics [6], protein allostery [7–11], DNA rigidity [12, 13] origami [14–16]

and jamming [17–19]. Meanwhile, their complexity is particularly apparent in the

recent rise of mechanical metamaterials [20] - materials whose mechanical response
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arises from their geometry - the discovered topological-protection of soft modes in iso-

static lattices [21], and the anomalous rigidity of undercoordinated spring and fiber

networks [22].

To understand the difficulties of designing linkages, consider Kempe’s universality

theorem, which showed that a linkage can be designed such that a given vertex traces

out a portion of any rational algebraic curve [23, 24]. However, the results of following

the proof’s procedure can be unwieldy for even simple curves. A planar curve of degree

d requires no more than 3d + 2 edges where d is the degree of the curve [25] (there

is a different bound in three dimensions [24]), but these edges must be arranged in

very specific geometries, and consequently the tolerances required in their fabrication

is unclear. Moreover, if one wants to change the motion or proscribed path of an

existing mechanism - desirable when designing programmable materials - there is no

guarantee that the result can be achieved without changing the connectivity of the

linkage itself.

We start this thesis by considering materials inspired by origami and kirigami,

which here we will use to refer to materials with discrete, solid faces connected at

folds or folds and holes in the kirigami case. When forces are applied to these origami-

like materials, the deformations in the materials are distributed to the folds and the

structures fold out of their initial plane. We can model them as we do for linkages, with

the added considerations of faces defined by the edges of the graph of the origami. This

specification of linkages has been proposed as a framework to engineer new materials

with complex mechanical responses [26–30]. Self-actuating or self-folding origami-

like structures are found throughout nature [31, 32] and have inspired a number of

engineering applications from medicine [33, 34], to solar panel deployment [35], to

robotics [36, 37].

Past work on modeling these origami-like structures has been largely focused on

flat, rigid origami, or origami with rigid faces that do not stretch or bend and starts
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from a flat sheet with no curvature (Gaussian or otherwise) [38–40]. Even for this

highly constrained case, the space of configurations accessible to a rigid origami struc-

ture becomes increasingly complicated as the fold pattern itself becomes more com-

plex, with the number of possible configurations increasing exponentially with the

number of internal vertices of an origami [41, 42]. In the rigid case, the configura-

tion space of these structures takes the form of branches, or paths along which the

origami can fold without deforming the faces, connected at the flat state [41]. In

order to reach a different branch, the origami would have to unfold to the flat state.

Allowing face bending, however, allows access to configurations away from these

branches that would otherwise be impossible in purely rigid origami [27, 28, 43–46].

Physical origami systems have elasticity, and thus are able to access this larger range of

configurations. Additionally, many physical systems have limitations in how they can

be programmed[2, 47]. These features lead to multistability through the proliferation

of local minima of the energy [48–50], sometimes resulting in origami that does not

fold easily or repeatably into the target shape, impacting device performance. Various

methods to avoid misfolding (the folding of an origami to a configuration other than

the target configuration) have been introduced, including biasing the vertices [51]

or fine tuning individual fold stiffnesses [39, 52], but the actual mechanisms behind

misfolding are still not well understood.

In this thesis, we will explore these topics starting with the specific case of origami

before expanding outward to address linkage design problems. In Chapter 1, we will

study non-ideal origami, or origami that is not rigid or flat or both, focusing on non-

Euclidean structures (those with Gaussian curvature at their vertices) and elastic

origami (those with faces that are allowed to deform and edges that are allowed to

stretch). Both of these additions to rigid models expose some of the factors that con-

tribute to misfolding and present new options for avoiding it in physical realizations.
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In Chapter 2, we will continue to explore origami but for two new cases. In the

first, we will consider self-actuating origami-like structures that are actuated on the

faces rather than at the folds. Most experimental realizations of these structures are

actuated at the fold, but an increasing number achieve actuation at the faces. Most

models do not apply to these newer actuation methods. We present a method for re-

lating torques on faces to forces on vertices, from which we can use previous methods,

and along the way gain new insight into how non-triangulated faces contribute to the

mechanisms’ allowed motions. Second, we address the problem of how many folds

are required to fully actuate an origami and present a new method for using tools

from graph theory to identify these minimum fold sets. Using simulation methods

developed in Chapter 1, we also see that the minimum fold sets can be used to design

origami that minimize misfolding.

Finally, in Chapter 3 we will turn back to generalized linkages and address how to

design linkages that change general behavior without changing their connectivity. To

do so, we introduce a new formalism that represents the tangent to the configuration

space for a given connectivity of a mechanisms as a function of its bar lengths. Finding

the points where this tangent field changes sign gives the bar lengths at critical points

- the only points across which a qualitative motion change can occur. Moreover, we

can use this tangent field formalism to find entire critical value surfaces in the space of

bar lengths. By categorizing these surfaces and the spaces delineated by them, we can

find bar length changes corresponding to desired motion changes in the linkage. We

demonstrate this design principle for both the four bar linkage, a classic engineering

example, and to gate a Kane-Lubensky chain, a mechanism that can propagate signals

along its length.

In Chapter 4 we wrap up our discussions and conclude the previous three chapters.

We also examine how these seemingly disparate projects interweave, their contribu-

tions to the field, and the outlook for future projects built off of these.
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CHAPTER 1

NON-IDEAL ORIGAMI

Past modeling of origami has been primarily focused on flat, rigid origami - origami

that starts as a flat sheet and has rigid faces and folds, meaning the origami does not

stretch and its faces do not bend. In this chapter we will discuss some of this past

work and seek to fill some of these gaps, first by considering origami with Gaussian

curvature at the vertices then by considering elastic origami.

A note on collaboration in this chapter: The first section was done with fellow

graduate student Michelle Berry, with my primary contribution being the bar length

expansion and decomposition that leads to Eq. 1.10. The second section was done

with Professor Ryan Hayward and his postdoc Ji-Hwan Kang, who designed and

performed the experiments, although all theoretical and numerical work was done by

me.

1.1 Non-Euclidean Origami 1

Though most examples of origami structures are foldable from an initially flat

sheet, two threads of research suggest a need to understand the motions of a broader

class of “curved” origami. First, kirigami structures, initially flat structures with

holes which can be glued together along their free edges to create intrinsically buckled

structures [30]. Second, newer origami fabrication methods have enabled vertices with

Gaussian curvature and curved faces [53–56].

1This section is adapted from Ref. [1] with permission from the American Physical Society.
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(a) (b) (c)

α1

α2
α3

α4
α5

Figure 1.1. (a) A generic non-Euclidean origami structure. The vertex Gaussian
curvature is defined by K = 2π −

∑
i αi (b,c) Degree four vertices with positive and

negative Gaussian curvatures respectively necessarily buckle out of the plane.

This section analyzes the kinematics of non-Euclidean origami in the limit that it

is almost flat. By “non-Euclidean origami,” we mean that faces are flat, but that the

vertices have Gaussian curvature (Fig. 1.1 a–c). This Gaussian curvature manifests

as either a deficit or excess angle when summing the sector angles around the internal

vertices (Fig. 1.1a). By “almost flat,” we mean that both the sum of sector angles

around internal vertices is near 2π and that the dihedral angles of the folds are nearly

π. In this limit, we will develop a general framework for studying origami motions, and

make contact with both the kinematics of flat origami structures [41] and continuum

equations governing the small deformations of elastic sheets [57].

Understanding whether an origami fold pattern can be folded without tearing is

NP-hard [58]. More generally, when mapping out the space of possible configurations

of a given origami fold pattern, the configuration space defined by the angles of the

folds can be geometrically complex. Additionally, these spaces can undergo topo-

logical changes as the fold pattern changes that lead to changes in the mechanical

properties of origami [14]. Here, we show that vertex Gaussian curvature can induce a

topological change in the configuration space of origami structures. In particular, we

will show that origami with positive Gaussian curvature vertices have configuration
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spaces that become disconnected, and that such disconnection need not (and likely

does not) occur for negative Gaussian curvature.

1.1.1 Mathematical Formulation

We model origami by a collection of polygonal faces meeting at point-like vertices

and joined along rigid edges, as shown in Fig. 1.1 for triangular faces. We find it

useful to distinguish internal vertices, whose number we will denote Vi, from bound-

ary vertices, whose number is Vb. Note that in traditional origami nomenclature a

“vertex” denotes only the internal vertices. Similarly, we denote the internal and

boundary edges by Ei and Eb, respectively. The internal edges are the folds in the

origami literature.

We are primarily interested in determining the isometries of a given origami fold

pattern, i.e. the motions that preserve the length of all edges and the angles between

any two adjacent edges on the same face. In the case of triangular faces, the angle

constraint is redundant – once the length of all the edges are known, the angles

between edges are already uniquely determined.

In this section, we will focus mainly on origami with triangular faces. This is

not very restrictive; we will see that the configuration space of an origami structure

with polygonal faces can be obtained by taking a lower dimensional slice through the

configuration space of a suitable triangulated origami fold pattern. In Section 1.2,

we will additionally show that this can account for face deformations. To define the

discrete Gaussian curvature of an internal vertex, we measure the sector angles, αi,

between adjacent folds with one end on a given vertex (Fig. 1.1a). The Gaussian

curvature of that vertex is then Kn = 2π −
∑

i αi [59].

One of the primary features of triangulated origami is that the number of in-

finitesimal isometries is almost precisely balanced by the number of constraints. This

is true for any Gaussian curvature though it manifests in different ways when Kn = 0
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Figure 1.2. A nearly flat origami structure can be projected to a fold pattern in
the xy−plane. In-plane and out-of-plane displacements are unambiguously decom-
posable.

on each internal vertex. Understanding this distinction turns out to be important to

developing a fuller picture of the origami configuration space so we review it here. If

Xn denotes the three dimensional position of the nth vertex, then any pair of vertices

joined by an edge induces a geometrical constraint,

(Xn −Xm)
2 = L2

nm, (1.1)

where Lnm is the length of the edge between n andm. We then write un (Fig. 1.2b) as

the displacement of the nth vertex, and find that, to first order, motions are governed

by the linear equations

2(Xn −Xm) · (un − um) = 0. (1.2)

There is one equation of this type for each edge (n,m), where n and m represents the

vertices connected by the edge.
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To understand the generic behavior of Eq. (1.2), we note that there are Ei + Eb

constraints, one for each edge and 3Vi + 3Vb naive degrees of freedom associated

with the three-dimensional displacements of the vertices. A triangulated origami fold

pattern also satisfies both Euler’s theorem, F −Ei−Eb+Vi+Vb = 1, where F is the

number of faces, and satisfies the 2Ei+Eb = 3F to account for the fact that each face

is associated to three edges but each internal edge joins two faces. Similarly, we have

Eb = Vb because the boundary of the fold pattern is a polygon. Taken together, these

equations imply Ei = Vb +3Vi − 3 and so naive counting suggests that the dimension

of the configuration space of origami is D = Vb + 3. Six of these degrees of freedom

are Euclidean motions.

Though this generic counting should be valid for most configurations, it fails when

the origami is flat because the constraints at first order are not all independent. In

that case, only the in-plane deformations are fixed by the length constraints: any

vertex can be displaced vertically without causing a first-order change in the edge

lengths. Though this suggests that D = Vi + Vb + 3, it turns out that there are

additional constraints at quadratic order in the lengths, If we define h = (h1, h2, · · · )

as a vector specifying the vertical displacement of each of the vertices above the

xy−plane, then a necessary and sufficient condition for a motion to be an isometry

to second order is

hTQnh = 0, (1.3)

for each internal vertex, n, where the matrix Qn depends on the sector angles of

internal vertex n [41]. The left-hand side of Eq. (1.3) is the Gaussian curvature

of internal vertex n induced by the height changes [41] so Eq. (1.3) is simply the

statement that no infinitesimal deformation can change the Gaussian curvature of

the internal vertices. There are precisely enough quadratic constraints, one for each

internal vertex, to recover the generic result, D = Vb + 3.
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We now wish to modify Eq. (1.3) to allow for internal vertices to have a small but

nonzero Gaussian curvature. In this regime, the vertices continue to remain almost

planar, although will not typically lie flat. Our problem, then is to reconcile the

linear and quadratic length-preserving motions. Hence, we would expect them to be

well-described by the linear equation Eq. (1.2). As the Gaussian curvature goes to

zero, however, quadratic constraints must somehow emerge.

As before, we will approach the analysis of the possible motions by expanding

around the flat state. We expect this expansion to be valid so long as the Gaussian

curvature of the vertices is sufficiently small. Denoting the planar angles around any

vertex with αn, the discrete Gaussian curvature is K = 2π−
∑

n αn. We imagine that

the deformation of a structure is governed by an expansion of the form

Xn = X(0)
n + u(1)

n + u(2)
n (1.4)

where X
(0)
n is the position of a flattened origami structure and the superscript of u

represents the order in a formal expansion of the displacement from the flat state.

Because we are expanding the deformations around an otherwise flat structure,

the equilibrium lengths of the edge connecting vertex n and m will not be represented

by the distances between the planar vertex positions, X
(0)
n . Instead, we let ∆nm =

L2
nm − (X

(0)
n − X

(0)
m )2 measure the deviation of the equilibrium edge lengths from

the lengths of the edges when projected to the xy−plane. We denote ∆ the vector

formed by concatenating the components ∆nm for each edge. We similarly write u(1)

and u(2) as the concatenation of the vertex displacements at first and second order.

Finally, introduce a quadratic function, f(u) with components (un − um)
2 for each

edge, (n,m). Then we have

∆ = Ru(1) +Ru(2) + f(u(1)), (1.5)
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where R is the compatibility matrix mapping vertex displacements to linear changes

in the edge lengths [60, 61].

To linear order, one should solve ∆ = Ru(1). However, this linear equation can

only have a solution if the left-hand side of the equation lies in the image of R.

We denote the projection of a vector into the image of R with a subscript ||, and a

projection into the orthogonal complement ⊥. Therefore, Eq. (1.5) decomposes into

the pair

∆|| = Ru(1) +Ru(2) + f||(u
(1)) (1.6)

∆⊥ = f⊥(u
(1)) (1.7)

Eq. (1.6) can now be solved order by order. To first order, u(1) = u|| + h, where

u|| is any solution of Ru|| = ∆||, and h is in the right null space of R. At the next

order, we obtain a correction Ru(2) = −f||(u|| + h).

Since we are expanding around a flat origami structure, we can further restrict

the structure of u|| and h. Particularly, it must be that h can only involve the

three in-plane Euclidean motions and the vertical displacements of all of the vertices.

Consequently, u|| can be chosen so that the vertex displacements lie in the xy−plane

and h can then contain only vertex displacements along the ẑ.

Eq. (1.7) is not dispensed with so easily. It remains a quadratic constraint on h

of the form

∆⊥ = f⊥(u|| + h) = f⊥(u||) + f⊥(h). (1.8)

The last equality follows from the fact that u|| is perpendicular to h and f is quadratic.

Finally, we neglect f⊥(u||) since it is quadratic in |∆|||. This is valid when |∆⊥| ∼

|∆|||.

To interpret Eq. (1.8), we let {σ1,σ2, · · · } be the basis of wheel stresses of ker RT

described in Ref. [41]. In this basis,
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σn · f(h) ≈ σn ·∆, (1.9)

where the left-hand side can be interpreted as the discrete Gaussian curvature at

vertex n, Kn, or alternatively as a quadratic form, hTQnh [41]. This allows us to

arrive at, finally,

hTQnh = σn ·∆ ≡ Kn. (1.10)

We note that, when Kn = 0, Eq. (1.10) reproduces the results of Chen et al. [41]

for flat origami. Notice that the right-hand side of Eq. (1.10) involves only lengths

of the bonds, encoded through ∆. This is then a discrete version of Gauss’ theorema

egregium, which relates the Ricci curvature on a surface – a completely intrinsic

quantity – to the Gaussian curvature – an extrinsic quantity.

Eq. (1.10) can be contrasted to the equations governing the small isometries of a

continuum elastic sheet, which are governed by the approximate equations [57]

K = −1

2

2∑
ijkl=1

ϵikϵjl∂i∂jh∂k∂lh, (1.11)

where ϵij is the antisymmetric Levi-Civita symbol with ϵ12 = 1, h(x, y) is the vertical

height of the elastic sheet above the xy−plane, and K(x, y) is the Gaussian curvature.

Eq. (1.11) is accurate in the limit of small slopes |∂ih| ≪ 1, which is precisely the

same limit of our discrete formulation. In that sense, Eq. (1.10) is a discrete analogue

to the better known continuum result of Eq. (1.11).

We can also rewrite the Gaussian curvature around any internal vertex in closed

form. To do so, we need to introduce some additional notation. We denote the central

vertex with 0 and number the boundary vertices from n = 1 to N . Denote αn,n+1 as

the angle between fold n and n+1, interpreted assuming αN,N+1 = αN,1, and assume

that αn,n+1 is always between 0 and π. Since we are interested in single vertices near

the flat state, it is useful to change variables from the vertex heights to the angles
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made by the folds with respect to the ẑ axis, oriented with respect to the reference

z−axis: ψn = π/2 + (h0 − hn)/Ln0 where Ln0 is the length of fold n.

αi−1,i
αi,i+1

ψi−1 ψi
ψi+1

(a) (b)

βi−1,i βi,i+1

θ+
iθ−

i

Figure 1.3. The intersection of a sphere with a vertex at its center is a spherical
polygon, which we decompose into triangular slices as shown. (a) The dihedral angle
of the ith fold is θ+i + θ−i . (b) The side lengths are the planar angles αi,i+1 and the
angle the folds make with respect to the xy−plane, ψi.

It is well known that a single vertex can be interpreted as a spherical polygon in

which the side lengths are given by the planar angles αn,n+1 and the dihedral angles

by the interior angles of the polygon (Fig. 1.3); this connection has been used to

explore the full configuration space of single origami vertices in general [62, 63]. Fig.

1.3 shows that such a polygon can be decomposed into triangular slices. Spherical

trigonometry then allows one to write the dihedral angles entirely in terms of the ψn.

For small deformations, these N angles ψn = π/2 + δψn where δψn = (hn − h0)/Ln0.

Finally, we define θn as the dihedral angle made by the nth fold; the diagram in Fig.

1.2 shows that θn = θ+n + θ−n . Finally, we let θn = π − δθn and assume δθn is small.

Expanding to quadratic order, we obtain the linear relationship

δθn =
∑
m

Mnmδψm (1.12)

where
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Mnm = − cscαn,n+1δn,m+1 − cscαn−1,nδn,m−1 (1.13)

+(cotαn,n+1 + cotαn−1,n)δnm.

Expanding the angles βn,n+1 around αn,n+1 and using
∑

n βn,n+1 = 2π, we also find

an expression for the Gaussian curvature of the vertex, K = 2π −
∑

n αn,n+1,

K = −1

2

∑
nm

δψnδψmMnm. (1.14)

Comparing Eq. (1.14) to Eq. (1.10) provides a connection between the matrix Q

governing the configuration space in terms of the vertex heights to the matrix M,

having componentsMnm, governing the configuration space in terms of angles δψn. In

particular, while Q should have an additional zero eigenvalue from global translations

of the vertex in the ẑ direction, it shares the same number of positive and negative

eigenvalues as M [41].

σ1,1

1

σ1,2

σ1,3

σ1,4

σ1,5

α(1)
2,3

Figure 1.4. Notation for the vicinity of a single vertex when there are multiple
vertices.
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To rewrite this and expand to multiple internal vertices, we introduce even more

notation, the illustration for which can be seen in Fig. 1.4. Let σ(n, 1) through

σ(n,N(n)) be the vertices connected to an internal vertex n in counterclockwise

order, where N(n) is the number of edges with n at one end. We also denote Lnm as

the length of the edge joining vertex n to m. Then,

Kn = −1

2

N(n)∑
i

N(n)∑
j

(
hσ(n,i) − hn
Lσ(n,i)n

)
M

(n)
ij

(
hσ(n,j) − hn
Lσ(n,j)n

)
, (1.15)

where the matrix M
(n)
ij is the same matrix as in 1.13 but re-indexed for clarity. Note

that it is an N(n) × N(n) square matrix depending on the sector angles around

each internal vertex. Additionally, note that for sector angles smaller than π, the

matrices M(n) have two zero eigenvalues, one negative eigenvalue, and the remaining

eigenvalues are positive (see Ref. [62] or Appendix C of Ref. [41] for a detailed proof).

1.1.2 Single vertices

To better understand Eq. (1.15), consider an origami structure with one internal

vertex from which N folds emerge (Fig. 1.5a). This case has been analyzed in some

depth due to the correspondence between origami vertices of degree N and spherical

linkages with N segments [62, 63]. We denote the height of the central vertex h0 and

the heights of the surrounding vertices h1 through hN , and we explicitly eliminate rigid

body motions by fixing the heights of vertices (h0, h1, h2) = (0, 0, 0). One quadratic

constraint remains on the remaining heights, h3 to hN , leaving N − 3 distinct degrees

of freedom.

So what does the configuration space of a single non-Euclidean vertex look like?

We suppose e−,i are the components of the normalized eigenvector corresponding to

the negative eigenvalue, −λ−, of M(0). We then suppose en,i are the components of
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2

3
4

5

θ02

θ03

θ04

θ02

θ04

θ04

θ02

θ03
θ03

(a) (b)

(c) (d)
Figure 1.5. The configuration space of a symmetric five-fold vertex (a) near the
flat state with zero (b), positive (c), and negative (d) Gaussian curvature projected
onto the fold angles (θ02, θ03, θ04). The fraction of red and blue, [r, b], in the coloring
is determined by [(θ01 − π)/(2π), (θ05 + π)/(2π)].
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the nth normalized eigenvector with positive eigenvalues, λn. We can then attempt

to solve Eq. (1.15) with the ansatz

hi − h0
Li0

=
1√
2λ−

c−e−,i +
∑
n

1√
2λn

cnen,i. (1.16)

We find that c2− −
∑

n c
2
n = K0, where K0 is the Gaussian curvature of vertex 0.

When K0 = 0, we recover the results of Ref. [41]: the solution forms a cone

described by the equation c− = ±
√
c2n with a singularity at c− = cn = 0. Each nappe

of the solution space is characterized by the sign of c− (called branch signs in [41]).

When K0 > 0, we must instead solve,

c2− = K0 +
∑
n

c2n, (1.17)

showing that |c−| ≥ K0. This would seem to imply that the two nappes have split

into two disconnected components characterized by the sign of c−. Finally, we turn

to K0 < 0, for which

c2− + |K| =
∑
n

c2n. (1.18)

Here, it is clear that there is no obstruction to c− = 0. Instead,
∑

n c
2
n ≥ |K|. We

conclude that the conical configuration space is one in which both nappes remain

connected near the flat state but are connected by a neck (Fig. 1.5d). This is quite

different than what happens for degree four vertices [64].

In Fig. 1.5, we numerically plot the configuration space of a symmetric degree-5

vertex. To do this, we compute radial trajectories from a known configuration of

the origami vertex. Each point of the radial trajectory is found in a sequence of

steps. For each step, we solve Eq. (1.2) to identify the infinitesimal isometries from

any configuration that is not flat and project the previous tangent direction onto the

17



new tangent space. After finding a new configuration using the linear isometry, we

numerically minimize the energy functional,

E =
1

2

∑
nm

[
(Xn −Xm)

2 − L2
nm

]2
, (1.19)

where the sum is over edges joining vertex n to m, using the BFGS (“QuasiNewton”)

algorithm in Mathematica 11. This prevents numerical errors in the linear isometries

from building up as the integration proceeds. This process proceeds until one of the

fold angles exceeds π or −π, indicating that a face has come into contact with an

adjacent face. Finally, the trajectories are assembled into a mesh to produce a surface.

Generically, we find that the configuration space near the flat state follows the

analytical results we obtained. Specifically, it appears that the configuration space

decomposes into two nappes with the topology of a disk which are either touching at

one point (K = 0), disconnected (K > 0), or connected by a narrow neck (K < 0).

At first glance, this appears to contradict Streinu and Whitely [63], who showed that

the configuration space of single vertices with K0 > 0 is always connected. However,

in their analysis, faces can pass through each other; whereas in Fig. 1.5, fold angles

must remain strictly between −π and π. Anecdotally, it does appear that when faces

are allowed to pass through each other, isometric trajectories can pass from one nappe

to the other for any K. In this case, however, the surfaces become difficult to plot,

even more difficult to understand, and, in any case, are unphysical.

Degree-four vertices, those with only four folds emerging from a central vertex,

are a special case that has been recently explored [65]. The configuration space

of a degree-four vertex can be obtained from Fig. 1.5 by considering a particular

planar slice. For example, if we create a degree-four vertex by removing fold θ02 from

Fig. 1.5a, the configuration space of the degree-four vertex is the intersection of the

surfaces in Fig. 1.5 with the plane θ02 = 0. This configuration space is, therefore, one

18



dimensional and the two nappes become disconnected for both positive and negative

Gaussian curvature.

This reasoning can also be used to explore the configuration spaces of non-triangulated

origami. If we are given an arbitrary origami fold pattern, any non-triangular faces

can be triangulated, introducing new fold angles, (ϕ1, · · · , ϕM). The proper isome-

tries of the non-triangulated origami are then the intersection of the triangulated

configuration space with the hyperplane defined by (ϕ1, · · · , ϕM) = 0. Therefore, the

dimension of the configuration space becomes D = Vb − 3−M , where M is the num-

ber of diagonals added to triangulate the fold pattern. Because these hyperplanes

pass through the origin (where the origami is unfolded), they do not change the fun-

damental topology of the configuration spaces of triangulated origami shown in Fig.

1.5.

The configuration spaces in Fig. 1.5b – d give us a first picture of the interplay

between origami energetics and kinematics. If we imagine that a torsional spring of

stiffness κ has been placed on each fold of Fig. 1.5a, the energy functional would be

E = (κ/2)
∑N

i=1 θ
2
nN . The equi-energy surfaces are given by spheres centered on the

state with θ0i = 0 and so the ground state is the configuration (or configurations)

that are closest to the flat state. The previous section provided some mathematical

machinery to expand this discussion to general origami fold patterns, which we will

continue to use here. In addition to determining the kinematics of an origami structure

near the flat state, the matrix M
(n)
ij also determines the fold angles as a function of

the vertex heights through

θσ(n,i)n =
∑
j

N(n)
M

(n)
ij

(
hσ(n,j) − hn
Lσ(n,j)n

)
, (1.20)

where θσ(n,i)n is the fold angle connecting vertex σ(n, i) to vertex n. Note that the

quadratic terms in Eq. (1.20) actually vanish so this equation is accurate to quadratic
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order as well. Using Eq. (1.20) we can write an energy functional for a nearly-flat

origami structure as

E =
1

2

∑
n

N(n)∑
ijk

κnσ(n,i)M
(n)
ij M

(n)
ik (1.21)

×
(
hσ(n,j) − hn
Lσ(n,j)n

)(
hσ(n,k) − hn
Lσ(n,k)n

)

where the sum over n is over internal vertices only. Any fold that joins an internal

vertex n to a boundary vertex k has torsional stiffness κnk whereas a fold connecting

internal vertex n to internal vertex m has stiffness 2κnm because such folds are double

counted in Eq. (1.21). Thus, for a single vertex with equal fold stiffness κ and

zero equilibrium fold angles, the decomposition of deformations in terms of collective

variables c− and cn yields an energy

E =
1

2
κ

[
λ−(c−)

2 +
∑
n

λn(cn)
2

]
. (1.22)

For K0 > 0, we introduce a new collective variable ξ such that c− = ±K0 cosh ξ and

cn = K0nn sinh ξ, where nn are the components of a unit vector. When K0 < 0, we

instead use c− = |K| sinh ξ and cn = ±|K|nn cosh ξ. Therefore,

E =
κK2

2

 λ− cosh2 ξ + sinh2 ξ
∑

n λn(nn)
2, K0 > 0,

λ− sinh2 ξ + cosh2 ξ
∑

n λn(nn)
2, K0 < 0.

(1.23)

There is an obvious generalization of Eq. (1.23) to the case when the fold stiffnesses

are not all equal.

For both signs of K0, Eq. (1.23) has a minimum at ξ = 0. When K0 < 0, this

implies E = κK2λ−c
2
−/2 and is independent of the choice of nn or the values of λn.

There are two energy minima corresponding to the two points closest to the flat state
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in Fig. 1.5c, independent of any other details of the shape. When K0 < 0, on the

other hand, the component of nn corresponding to the smallest eigenvalue λn will be

1 and the remaining components will be 0. Hence, E = κK2λnmin
c2nmin

/2, where nmin

is the index of the smallest eigenvalue.

1.1.3 Discussion

To conclude, we have derived the form of the configuration space of non-Euclidean

origami for small amounts of Gaussian curvature near the flat state. For single pos-

itive Gaussian curvature vertices, the configuration is characterized by nappes that

are separated near the flat state, whereas for negative Gaussian curvature, the con-

figuration space remains connected. Though we have analyzed the case of a single

degree-N vertex in detail, the procedure we have used can be applied to explore

the kinematics and energetics of more complex, nearly flat origami structures with

or without Gaussian curvature. We first consider the case of multiple vertices with

Kn > 0. Around each vertex, Eq. (1.15) establishes a single equation for hn as a

function of the heights of the vertices surrounding it. We further assume that this

equation has two distinct real solutions for hn. Then the analysis in the previous

section establishes that no matter how we deform the boundary vertices, there is no

way for the configuration of this vertex to pass from one configuration space nappe

to the other. The conclusion is that distinct branches of the configuration space of

a complex, origami fold pattern that are distinguished by a K > 0 vertex being on

different nappes are topologically disconnected – if they were not, there would be also

be a way of passing from one nappe to the other on a single vertex. Unfortunately, it

is difficult to determine whether or not every combination of nappes can be realized

when K > 0. The case for K < 0 is murkier because, while a single vertex remains

connected, there is no reason that global constraints might not lead to disconnected

components of the configuration space. Indeed, this must be possible in principle, as

21



triangulated fold patterns with disconnected configuration spaces, albeit rare, have

been found [50].

We also note that this work provides a new mechanism by which the mechanical

response of an origami metamaterial sheet can be molded. In principle, an initially

flat structure could be stiffened by imposing a small amount of positive Gaussian

curvature. Moreover, Gaussian curvature provides a new means of controlling how

a responsive origami structure self-folds by separating the individual nappes so that

misfolding is significantly less likely. A more thorough investigation of the interplay

between self-folding and Gaussian curvature could be done through simulation. In

the next section we will discuss simulating self-folding in more detail, but here we

will simply point out that inducing Gaussian curvature at a single vertex within a

structure is as simple as lengthening or shortening the equilibrium lengths of the folds

connecting to that vertex while maintaining the original equilibrium lengths of the

rest of the structure.

1.2 Elastic Origami 2

In this section we will more directly address misfolding and its causes and possible

prevention.

Before moving on, it is useful to introduce previously introduced methods to

prevent misfolding. Tachi and Hull have proposed a method that takes advantage

of the branched structure of the origami configuration space [39]. They assume each

fold is a torsional spring and adjust the torques induced by the springs to force the

origami in a direction in configuration space perpendicular to all undesirable folding

pathways. Unfortunately, due to the high dimensionality of the configuration space,

there is often no choice of torques that satisfies all of these requirements [41]. On the

2This section is adapted from Ref. [2] with permission from the Royal Society of Chemistry
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other hand, Stern et al. explored a large class of origami structures made from only

quadrilateral faces and, even in this restricted set, found a proliferation of energy

mimima [42, 52]. However, most rigid quadrilateral origami cannot be folded at

all [44], and so these energy minima represent configurations involving stretching

rather than distinguishing between several valid branches. This suggests a more

careful treatment of elasticity in origami is crucial to uncovering the mechanisms of

misfolding.

In this section, we compute energy landscapes of weakly folded origami using a

bar-and-hinge model of self-folding that includes both face stretching and face bend-

ing [16, 43, 44, 50]. Energy landscapes provide a detailed picture of the vicinity of

the flat state, where multiple origami branches meet. We show that the mechanisms

governing the formation of competing local energy minima are poorly captured by the

assumption of rigid, unstretchable origami. Instead, the undesirable energy minima

that compete with the target configuration are regulated by saddle-node bifurcations

nucleated near the unfolded state, even when the target configuration is very folded.

Our model allows us to determine how the “foldability” of an origami design is deter-

mined both by the stretching and bending moduli of the faces: more bendable faces

allow additional folding pathways while more stretchable faces induce saddle-node

bifurcations that reduce the number of local energy minima. Critically, the reduction

in the number of energy minima does not arise from transitions between branches

that induce large strains in the faces but is, nevertheless, enabled by small amounts

of strain while the origami is barely folded. Our analysis leads to new insights on

the robustness of the target folding pathway to programming errors in the target fold

angles.

To go beyond our theoretical analysis, we also demonstrate these effects ex-

perimentally on self-folding origami structures using a previously-published trilayer

swelling gel system [47, 51]. These experiments demonstrate the possibility of using
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face stiffness to tune the metastability of self-folding origami. In contrast, the few

methods that have been proposed to prevent misfolding require a more careful tuning

of fold angles and stiffnesses [39, 42, 52]. We demonstrate that robust folding can

still be induced in systems where such precise control may not be possible.

1.2.1 Folding rigid origami

Rigid origami, having both unbendable and unstretchable faces, can be modeled

as a triangulated surface with V vertices joined by N edges of fixed length spanned by

F polygonal faces with additional torsional springs. Because each face is decomposed

into triangles, the length constraints of the edges also preserve the sector angles of

the faces. We assume there are NB edges that are adjacent to a single face which

we dub boundary edges to distinguish them from the NF edges that adjoin a pair of

faces, which we refer to as folds. Many origami fold patterns do not have triangular

faces, however. In those cases, we decompose each face into triangular subfaces along

their shortest diagonals [27, 28, 44]. This suggests a further division of folds into

“face folds”, those folds spanning a rigid face, and “active folds”, which drive the

self-folding of the origami.

Since the faces are triangular, the state of any origami structure can be represented

completely by its fold angles, (ρ1, · · · , ρNF
), where each angle ρi is the supplement

of the corresponding dihedral angle made by the faces adjacent to the edge. We

introduce self-folding by incorporating torsional springs on the folds of the form

EB =
1

2

∑
I≤NF

κB,I(ρI − ρ̄I)
2, (1.24)

where κB,I is the torsional modulus of the I th fold and ρ̄I the equilibrium angle of

the fold. For face folds, we require ρ̄I = 0 so that Eq. (1.24) penalizes bending of the

faces. On active folds, however, ρ̄I ̸= 0 which imposes a bending torque that drives

the origami to fold along its active folds.
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For models of this type, there are singular configurations where several branches

of allowed configurations meet [1, 39, 41]. Each branch has a tangent space where

it meets the singular configuration and many such branches meet at this point [41].

Tachi and Hull have proposed that misfolding can be prevented when the torque,

defined by τI = −κB,I ρ̄I , is perpendicular to the tangent space of each branch [39] in

the space of folds. Indeed, examining Eq. (1.24) shows that the Tachi-Hull condition

is precisely the condition that there is no direction along an undesirable branch along

which the energy decreases.

It is notable that the Tachi-Hull condition can be impossible to satisfy if the

origami fold pattern is sufficiently complicated, as the number of branches grows

exponentially with the number of vertices while the number of folds grows linearly

[41]. If there are several branches along which EB decreases, each of these branches

must have at least one local energy minimum. Consequently, the number of potential

competing energy minima in a rigid, self-folding origami system can be quite sensitive

to even small errors in the programmed torques τI . The question of stability and

metastability of an origami folding becomes even more complex when one considers

Eq. (1.24) along an entire origami trajectory, and such an analysis has only been

undertaken for some single origami vertices [49].

1.2.2 Elastic origami

Part of the sensitivity of competing minima to torques arises from the singular

nature of the unfolded, flat origami. To study this further, we augment our model

to allow for stretching. We supplement Eq. (1.24) with additional terms [43] of the

form,

ES =
1

2

∑
i≤N

κS,iγ
2
i , (1.25)

where κS,i the stiffness of edge i and the elastic strain is given by
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γi =
1

2

(
L2
i

L̄i
2 − 1

)
. (1.26)

Note that small deformations of the edges ∆ ≪ L̄i gives γi ≈ ∆/L̄i as does the

slightly more common form for the elastic strain γi = Li/L̄i − 1.

By formulating the energy in terms of a dimensionless strain, κS,i has the same

units as κB,I evaluated on the same edge (i = I). We set κS,I = Y2DĀI where Y2D is

the two dimensional Young’s modulus of the origami faces and ĀI is a characteristic

face area. Here, we will set ĀI to one third the total area of the faces adjoining edge

I, which implies that AI ∝ LI , and that edges can be subdivided without changing

the energy cost of a given strain. There are more complex choices for κS,I that are

expected to capture more detailed features of the stretching deformations [45]. As an

alternative, we also consider a more realistic model in which the faces themselves are

elastic polygons that deform affinely, finding good agreement with our simpler model.

We will go into more detail about both of these points in the subsequent sections.

The advantage of Eq. (1.25) is that it allows us to make contact with the rigidity

theory of frameworks on which the analysis of branched configuration spaces has been

done [41, 49].

Eq. (1.25) also provides a convenient geometrical interpretation of the stretching

energy of weakly-folded origami in terms of the Gaussian curvature of the vertices [1].

In the limit that κS,I ≫ κB,I , we obtain an approximate expression for the energy

valid when the fold angles are small. To do so, we note that vertical motions of the

vertices off the xy−plane preserve LI to lowest order. Therefore, after accounting for

rigid body motions we can express ES as a function of the VB +VI − 3 vertex heights

only, where VB is the number of vertices adjoining a boundary edge and VI are the

number of vertices adjoining only folds. This expression for the energy, quartic in the

vertex heights and can be expressed as
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ES =
1

8

∑
n≤VB+VI−3

(
hTQnh

)2
(1.27)

for a vector of vertex heights h = (h1, ..., hVI
) where hi is the height of the ith vertex

and Qn a symmetric matrix which encodes the geometrical constraints associated

with the branches as well as the stiffnesses of the origami. One can show that ES = 0

if and only if the discrete Gaussian curvature of each origami vertex vanishes, and

that the matrices Qn have two zero eigenvalues, one eigenvalue of either positive or

negative sign, and the rest of the opposite sign [41].

To derive the elastic energy for nearly flat origami in the small strain limit in Eq.

1.27, we assume we have already added face folds so that the origami is built from

only triangular faces. We then define a vector function of the vertex positions

fi(u) =

√
Ki

2

(
L2
i

L̄2
i

− 1

)
(1.28)

where u = (X1, · · ·XV ) is a vector containing the position of all V vertices. Then

the stretching energy is written as

ES =
1

2

E∑
i=1

fi(u)
2. (1.29)

We now expand fi(u) around the flat state u0 to find

fi(u0 + δu) ≈ ∂nfi(u0)δu
n +

1

2
∂n∂mfi(u0)δu

nδum (1.30)

We next construct an orthonormal basis in the space of possible edges indexed by

i, {σ1,i, · · · , σS,i, e1,i, · · · , eE−S,i} where
∑

i σN,i∂nfi(u0) = 0. The σN,i are, therefore,

the components of the self-stresses of the linkage representing the origami structure.
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Now the energy can be written as

ES =
1

2

E−S∑
N=1

[∑
i

eN,i

(
∂nfi(u0)δu

n +
1

2
∂n∂mfi(u0)δu

nδum
)]2

(1.31)

+
1

2

S∑
N=1

(∑
i

σN,i
1

2
∂n∂mfi(u0)δu

nδum

)2

Finally, we drop higher order contributions to the first term to obtain

ES =
1

2

E−S∑
N=1

(∑
i

eN,i∂nfi(u0)δu
n

)2

+
1

8

S∑
N=1

(∑
i

σN,i∂n∂mfi(u0)δu
nδum

)2

. (1.32)

The first term is the harmonic contribution to the energy. For flat origami, we know

that these correspond to the in-plane motions. On the other hand, the second term

corresponds to the out-of-plane motion of the vertices. Finally, we note that the

number of self-stresses S is given by the number of internal vertices VI .

For small strains, we assume that the first term is zero so that only out-of-plane

deformations can occur. Finally, we obtain an approximate energy for flat origami

near the flat state as a sum of terms quartic in the vertical displacements of the

vertices,

ES ≈ 1

8

VI∑
N=1

(
V∑

n=1

V∑
m=1

QNnmhnhm

)2

, (1.33)

where hn is the height of the nth vertex above the xy-plane and

QNnm =
∑
i

√
KS,iσN,i

∂

∂hn

∂

∂hm
γi

∣∣∣∣
hn=0

, (1.34)

where γi is the strain of the ith edge defined in the main text.

1.2.2.1 Estimate of the stretching energy of elastic origami

We now want to consider how to set the relative magnitudes of the torsional

spring moduli in our energy. As a model of self-folding origami, we consider a trilayer
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polymer system described previously [47] and shown in Fig. 1.6, in which faces are

characterized by a hydrogel of thickness hN sandwiched between two stiffer layers

hP ≪ hN and active folds are induced by cutting trenches in either the top or bottom

of the two stiff layers of a given width. To estimate the bending rigidity for the faces,

we imagine that the bending energy arises from bending along a cylinder oriented

along each fold of characteristic width WI . Active folds, intuitively, have a WI of

the width of the cuts in the stiff layer, while we assume that the face folds have a

WI determined by the width of the vertices and thus are determined by the WI of

the active folds. For the rest of the paper, we will neglect the small changes in WI

between different folds. We will estimate the elastic moduli for our trilayer system

origami based on the estimates YN/Yp ∼ 5× 10−4 and hp/hN ∼ 0.04.

We estimate the elastic energy of a face according to

E =
1

2

∫
dA

[∫ −hN/2

−hN/2−hP

dz Yp +

∫ hN/2

−hN/2

dz YN +

∫ hN/2+hP

hN/2

dz Yp

]
γ2, (1.35)

where YN and Yp are the three dimensional Young’s moduli and hN is the thickness of

the hydrogel layer, hP is the thickness of each polymer layer, and γ is a dimensionless

strain.

Then assuming that γ is approximately constant across a face and assuming

YphP ≫ YNhN , we obtain

E ≈ YphpAγ
2. (1.36)

For the area, A and an edge surrounded by two faces, we use the area in Fig. 1.6,

which is conveniently one third the total area of the two adjoining faces. For edges

on the boundary, the corresponding stretching energy is obtained from a single face.

Comparing this to our spring energy,

E =
1

2
κSγ

2, (1.37)
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hN

hp

hp

YN

Yp

Figure 1.6. (left) a cross-section of a trilayer origami face showing the thicknesses
and three-dimensional Young’s moduli. (right) the area of each face adjacent to an
edge that is closer to that edge than any other.

we obtain an estimate κS,I ≈ 2YphpAI for the stretching modulus associated with

edge I, where AI is the appropriately chosen area.

1.2.2.2 The bending modulus of the folds

For an active fold, we assume the fold is bent along a width WI to a constant

curvature R, so that R = WI/θ. Therefore, the bending energy of a face can be

approximately computed as

EB =
1

2

YN
1− ν2

WL

∫ hN/2

−hN/2

dz
z2

R2
+

1

2

Yp
1− ν2

WL

∫ −hN/2

−hN/2−hP

dz
z2

R2

+
1

2

Yp
1− ν2

WL

∫ hN/2+hP

hN/2

dz
z2

R2

(1.38)

≈ 1

2
θ2L

Yph
2
NhP

2W (1− ν2)
(1.39)

Thus, κface,I ≈ LI/WI(Yph
2
NhP )/(2(1− ν2)). For an active fold we obtain
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R
R

θ θ

W = θR W = θR

Figure 1.7. Bending a face or a fold to have constant curvature R−1. The angle
θ is identical to the apparent fold angle of the fold. When bending a face (left), we
assume the face bends along the midsurface whereas for an active fold, we assume
the surface bends along the stiffest layer.
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≈ 1

2
θ2L

YNh
3
N

3W (1− ν2)
(1.41)

Thus, κfold,I ≈ LI/WIYNh
3
N/(3(1− ν2)). We expect that the width of an active fold

is set by the size of the cut used to create the folding face whereas the width of a fold

associated with bending a face is set by the size of a vertex which is also the width

of the trenches. Therefore, we assume WI is the same for both types of folds.

1.2.2.3 Stiffness ratios

In our numerical calculations, we divide all the moduli by 2YphpA where A is the

characteristic area. Neglecting the Poisson ratio, we use

31



κS,I ≈ AI/A

κfold,I ≈ LI

ℓ

(
YN
Yp

ℓ

W

h3N
6hpA

)
(1.42)

κface,I ≈ LI

ℓ

(
h2Nℓ

4WA

)

where ℓ is the characteristic length of a fold. For hP ≈ 0.2µm, hN ≈ 5µm, YN/Yp ≈

5 × 10−4, W ≈ 44µm, A ≈ 2 × 104µm2, and ℓ ≈ 260µm, we obtain κfold,I ≈

2× 10−5LI/ℓ and κface,I ≈ 2× 10−3LI/ℓ, or Kfold = 2× 10−5 and Kface = 2× 10−3

For the theoretical numerics and simulations, we will nondimensionalize the spring

moduli by a characteristic linear spring moduli, κS,c, letting us combine the material

parameters and define κface,I/κS,c ≈ KfaceL̄I/ℓ and κfold,I/κS,c ≈ KfoldL̄I/ℓ. We will

also define κS,I/κS,c ≈ KSL̄
2
I/ℓ

2. The characteristic fold length ℓ is introduced to keep

Kface, Kfold, and KS nondimensional and independent of edge.

1.2.3 The origami “bird’s foot”

Eq. (1.27) provides a means of computing and plotting energy landscapes for

weakly-folded origami. We start our study of the folding and mis-folding of elastic

origami with the simplest non-trivial example, the self-folding “bird’s foot” origami

(Fig. 1.8A). The bird’s foot is a single origami vertex from which four folds emerge.

We supplement these four folds with two additional face folds, shown as dashed lines

in Fig. 1.8A. It is well known that there are two folding pathways possible which can

be characterized by the relative signs of the fold angles between vertices 4 and 1, ρ1

and ρ3 (Fig. 1.8B).

For the rigid case, in the space of fold angles (ρ1, · · · , ρ4) the trajectories of the fold

angles are perpendicular and can be projected conveniently to just a pair of angles as

in Fig. 1.8C. In the elastic case, if we orient the bird’s foot so that vertices 1, 2 and 7

per Fig. 1.8A lie on the xy−plane, Eq. (1.27) suggests plotting the energy landscape
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Figure 1.8. Schema, configuration spaces, and energy landscapes for the birdsfoot
origami. (A) A schematic of the birdsfoot. The folds are marked in solid lines, while
the folds added in the model to imitate face bending are marked with dashed lines.
The folds used to define fold space are highlighted in red. The face we have “pinned”
to a plane is highlighted in yellow, then the heights of vertices 4 and 6 above this plane
defines the height space. (B) The configurations that correspond to each branch. (C-
D) The branches for a rigid origami in both fold and height space, respectively. In
(D), the heights are non-dimensionalized using the characteristic fold length ℓ. The
dashed lines show the linearized trajectories between the branches at two magnitudes.
The height space projection of the trajectory takes advantage of the linearity between
height and fold space at small heights. In (C), note that the branches in fold space
are perpendicular. (D) also shows the shape of branch 2 in the approximate energy
used to draw the energy landscapes in Fig. 2.
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near the unfolded state in terms of the heights of the remaining four vertices above

the plane, h = (h3, h4, h5, h6) (Fig. 1.8D) rather than the fold angles.

We program target angles according to

ρ⃗ = (1− A)Mρ⃗B1 + AMρ⃗B2, (1.43)

where ρ⃗B1 = (−1, 0,−1, 0) and ρ⃗B2 = (−1, 1, 1, 1) are the fold angles of each branch

when folded flat, and M ranges from 0 to π and controls the degree of folding. The

parameter A, which lies between 0 and 1, tunes the target angles between the two

branches accessible by rigid origami. For values of A other than 0 and 1, the target

angles lie between the two branches. It should be noted that A = 0.5 is not precisely

between the two branches geometrically, and the geometric center, though dependent

on the precise value of M , is closer to A ≈ 0.425. Fig. 1D shows this trajectory

in height space for M = π/8 by taking advantage of the linear relationship between

folds and heights to quadratic order [41].

Since h3 and h5 are the heights of vertices associated with face folds, in order to

plot the energy landscapes, we numerically minimize E(h3, h4, h5, h6) with respect to

h3 and h5 to express the energy in terms of only (h4, h6). Contours of the energy

obtained this way are shown in Fig. 1.9 for various values of A and for M = π/8.

The minima of the energy are depicted as closed white circles and saddle points are

shown in red, while the target point is denoted by an open white circle.

All of the theoretical figures in this paper were created using a package devel-

oped for creating and manipulating origami structures and other similar mecha-

nisms in Mathematica. This package is located on GitHub at https://github.

com/cdsantan/mechanisms. Mathematica notebooks for each figure and the as-

sociated data are also located on GitHub at https://github.com/meleetrimble/

robust-folding-paper-support.
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Figure 1.9. Energy landscapes in height space for the bird’s foot at different values
of the control parameter A, for the small magnitude trajectory between branches
shown in Fig. 1.8(C-D), at Kface = 10−2 and Kfold = 10−4. The white dots represent
local minima and the red dots represent saddle points. The dashed line represents the
projection of the trajectory between branches into height space (as in Fig. 1.8(D)),
with the circle denoting the location on the trajectory of the landscape. Notice that
as A increases, the original minimum moves toward the flat state. Between A = 0
and A = 0.37, a saddle point and the minimum for branch 2 are created, then after
A = 0.56 the saddle point and the minimum for branch 1 annihilate each other. The
created minimum also moves out away from the flat state as A increases. Note that
the contours and color scheme are on a log scale and inconsistent between landscapes
to emphasize features.
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As seen in Fig. 1.9, which shows the energy landscapes of the birds foot with

contours on a log-scale, the configuration space of the rigid origami lies along the

bottom of steep valleys defined by Eq. (1.27). Because the torsional springs are

weaker than the stretching springs, as A changes from 0 to 1 at fixed M = 1/8,

the energy minimum on the first branch moves inward along the energy valley. At a

critical value of A > 0, a new minimum and saddle point nucleate near the flat state

and as the new minimum moves outward along the other branch, the old minimum

eventually approaches and annihilates with the saddle point.

As the stretching energy is increased, the energy valleys become steeper but the

shape of the energy landscape near the flat state remains the same. As KS increases

and we approach the rigid limit, the critical A at which a new minimum forms de-

creases. Yet for any finite value of KS, the energy landscape is monostable near A ≈ 0

and A ≈ 1.

1.2.3.1 Phase Diagrams

We can determine the size of the region of bistability for different values of Kface,

Kfold, and prescribed fold angle using the full elastic energy. To do so, we start at one

end of the linearization we have introduced and find the minimum at that point. Then

we increase the linearization parameter A by one step, and repeat the minimization

using the minimum just found as the initial position. We continue taking the next

step in the parameterization, using the previous minimum, and minimizing until the

other branch has been reached. To see where both minima are present, we repeat this

process but instead start from the opposite branch and follow the parameterization

backwards. The regime in which both minima are present across both directions is

the bi-stable regime.

To get the full idea of the bistable regime between the two branches, we repeat the

method described above for different values of M , which represents the magnitude of
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Figure 1.10. Slices of a four-dimensional phase diagram defined by Kfold, Kface,
control parameter A, and target fold angle magnitude M at four different values of
Kface and Kfold. The regions in light purple represent the region of bi-stability, where
both minima are present. The purple and tan represent the regions where only the
branch 1 minimum and branch 2 minimum are present, respectively.
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folding, to draw the phase diagram between the two branches as a function of M and

A for given elastic moduli.

In Fig. 1.10, we show the region of bistability as a function of M and A for four

different values of Kfold and Kface. The plots are asymmetric and, in particular,

shifted toward values of A < 0.5. This is consistent with the midpoint between both

branches being at A ≈ 0.425 rather than A = 0.5. Overall, we see two separate

trends: decreasing Kfold widens the region of bistability with more widening seen at

lower values of M , while more surprisingly decreasing Kface also widens the region of

bistability but with more growth seen at higher values of M .

These results implicate the balance of in-plane stretching and torsional spring

moduli in governing bistability. In particular, when Kfold is small, indicating that

the system is approaching the inextensible limit, we see that even a small error in

programming the fold angles can lead to multistability. This is, in fact, entirely con-

sistent with Ref. [39] which argues that for rigid origami, for which Kfold/KS → 0, a

metastable minimum exists unless the vector with components κB,I ρ̄I is perpendicular

to a branch.

It is important to note that the change in bistability occurs even though Kfold ≪

KS, indicating that in-plane strains are still small and Eq. (1.27) remains a reasonable

approximation. Indeed, in our simulations the energy from stretching is typically 1%

of the total energy. This is also consistent with the energy landscapes in Fig. 1.10,

which show that the bistability arises from the nucleation of additional minima near

the flat state and not far out along a branch even when M is large, precisely where

we expect our theoretical analysis of elastic origami to be most accurate.

As an additional check, we also did a limited run of bistability diagrams with

affine elastic triangles for faces rather than our spring model.

The in-plane elastic energy for a Hookean, isotropic two-dimensional solid can be

written as
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Eel =
1

2
λ

(∑
i

γii

)2

+ µ
∑
ij

γ2ij, (1.44)

where γij = ∂iuj + ∂jui and λ and µ are the Lamè coefficients. We assume that

each triangular face has an energy of the form of Eq. (1.44). The in-plane elastic

deformations ui are determined by assuming the face has deformed affinely. For a

triangular face on the xy−plane, this uniquely determines the displacement and allows

us to estimate the elastic energy of arbitrarily deformed triangular faces.

To compare this to our linear spring edge model, we use the same method for

plotting the phase diagrams for the birdsfoot as in the main body of the paper but

with the above energy. Fig. 1.11 shows a side-by-side comparison of the resulting

plots generated by the two different energies at the experimental values for default

and softened faces. Minimizing the more complicated elastic polygon energy is more

computationally costly, so the grid size has been reduced and grid squares with black

lines denote points that failed to converge, with their color assigned based on neigh-

boring squares. The agreement between models overall is good, even without fitting

parameters.

1.2.3.2 Experimental Methods

We next turn to a discussion of self-folding in a trilayer, thermo-responsive system

[47], adapted from our previous report [51]. In brief, self-folding origami was prepared

by using a bilayer bending mechanism of polymer films. P(pMS-BP-RhB) (poly(p-

methylstyrene-benzophenone-rhodamine B) and P(DEAM-AA-BP-RhB) (poly

(diethylacrylamide-acrylic acid-benzophenon-rhodamine B) were used as a stiff layer

and a thermosensitive hydrogel layer with a lower critical solution temperature at

around 30°C, respectively. Pendant groups of benzophenone contained in both pre-

synthesized co-polymers were utilized as a photoreactive cross-linker for multi-layer

patterning. First, the bottom stiff layer was deposited by spin coating of toluene
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Figure 1.11. Phase diagrams for the birdsfoot with axes of the magnitude of the
target angles, M , and the control parameter A, as described in the main body of the
paper. The blue and red regions represent only one branch appearing while the center
pink region represents the bistable region. The left column uses the linear spring edge
model for face stretching while the right column uses the elastic polygon model. The
top row has torsion spring constants corresponding to experiment with default faces
while the bottom row corresponds to softened faces.
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solution of P(pMS-BP-RhB) on a silicon wafer with a water-soluble sacrificial layer

of poly(vinyl alcohol) (PVA, Aldrich).

To create a microscale crease pattern, UV-light (365 nm, pE-100, CoolLED) was

projected on the layer of P(pMS-BP-RhB) by an inverted optical microscope (Nikon

Eclipse Ti, 10x objective lens) equipped with a digital micromirror device (DMD).

Pixelated UV illumination for each layer of birdsfoot pattern was obtained by the

Mathematica notebook provided from Robert J. Lang (Tessellatica 11.1d7)[66] based

on the folding angle calibration at a fixed temperature, 20°C. After cured, a typical de-

velopment process was followed by stripping uncured area of the film with a marginal

solvent (e.g., mixture of toluene and hexane with 1:3 vol%). Next, a few-micron

thick hydrogel layer was deposited on the sample pattern by casting a chlorobenzene

polymer solution and slowly drying in the dark chamber. Patterned UV curing with

computer-controlled alignment was then followed for crosslinking of the mid layer on

top of the bottom layer. Finally, another thin layer of P(pMS-BP-RhB) was photo-

patterned as a top stiff layer by using the same procedure as the bottom layer. For

folds with a target angle of zero, a series of square holes was additionally applied

to all three layers as a perforated line between the vertices of the crease pattern, as

shown in Fig. 1.12A. Because the perforations align on both sides, the resulting face

folds have a target angle of 0 but are stiffer than the active folds represented by slits.

The resultant trilayer origami was fully dried before further use. To release the

origami as flat from the substrate, the sample was dipped in the pre-heated buffer

solution (pH 7.0 PBS, 60°C). After full dissolution of PVA layer, the water bath was

cooled down to induce programmed folding of the crease patterns, which was observed

by using the optical microscope (Zeiss AxioTech Vario, with 2.5x objective lens).

We can now have a small amount of control over Kface by utilizing the perforated

0 angle folds explained above. Perforating the faces decreases the amount of stiff
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trilayer by a factor of 3 to 4, and since the stiff layer provides the majority of the

bending modulus we expect Kfold/Kface to decrease by the same factor.

We created batches of 10 bird’s foot origami both with and without perforated

faces for several values of A, corresponding to different target fold angles and con-

trolled by the width of the cuts in the stiff layer, between the two branches. Fig.

1.12B shows the fraction of bird’s foot samples that folded to branch ρ⃗B2 with non-

perforated samples (circles) and perforated samples (squares). In the non-perforated

samples, we see a sharp transition between branch 1 at small A and branch 2 at large

A, with a small region of values near A ≈ 0.5 that show some bistability. In the

perforated samples we see this bistable region widen, with both states observed in

the A ≈ 0.33 samples.

Some care must be taken in interpreting the results quantitatively. Because the

experimental system folds slowly, we expect the number of minima to be governed

to some degree by the small M portion of Fig. 1.10, even when the programmed

fold angles are large, since we expect that a structure that has found a stable con-

figuration will tend to remain in that configuration as it folds. In addition, failure

to see misfolded states does not indicate that those states do not exist; in contrast,

even a small number of misfolds indicates metastability. Finally, the programmed

fold angles are controlled by the width of the long cuts in either the top or bottom

rigid layers. The cuts that lead to folding then also affect the torsional stiffness of

the folds. This effect is negligible for most folds, except for those with zero fold angle

(those remaining flat), which must be cut on both top and bottom surfaces. This

leads to folds that are weaker than active folds, as is the case at the A = 0.5 point.

This point does, however, highlight that using target angle tuning to avoid misfolding

can be more complicated to realize in experiment than in theory.

To compare our experimental and theoretical results, we use the estimates KS ≈ 1

on the folds and boundary edges, Kface ≈ 2×10−3 and Kfold ≈ 2×10−5 (see SI), and
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Figure 1.12. Experimental schema and results for folding the birdsfoot with and
without weakened faces. (A) Schematic of the tri-layer origami structure with per-
forated faces. (B) The percentage of samples folded to the second branch for both
non-perforated and perforated faces. Each point corresponds to 10 samples. Error
bars are from the rule of three. (C) The folded samples with perforated faces at
control parameters (i) A = 0.33 and (ii) A = 0.67. At A = 0.33 (i), you can see the
two samples that folded to branch 1 while the rest shallowly folded to branch 2.
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use the factor stated above when faces are weakened (Kface ≈ 6×10−4). According to

the relevant region of plots in Fig. 3, perforating the faces should widen the bistable

region by weakening the face folds and this effect is seen quite prominently in Fig.

1.12B, as well as the bistable region occurring for smaller A. In Fig. 1.12C, we show

a representative batch of 10 origami structures. It is also notable that the misfolded

configurations in 1.12C are quite shallow, as we expect from our theoretical analysis.

Though the experiments are in qualitative agreement with our theoretical model, the

effect of softening the torsional moduli of the faces affects the stability of experimental

bird foot origami rather dramatically whereas the theory shows more subtle effects.

The origin of this discrepancy remains unclear.

1.2.4 Folding complex origami

Finally, we turn to a more complex fold pattern, the “Randlett bird” [67], (Fig.

1.14), which we have previously explored with the trilayer, self-folding origami system

[47]. Here, we use the same programmed fold angles from Ref. [51] for both the

experiment and the simulations. They can be seen in Fig. 1.13. .

Figure 1.13. (left) the Randlett bird with true folds in black and added face folds
in lighter blue with vertices numbered. (right) the programmed fold angles used in
the simulations. Folds are denoted by their end vertices.
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We previously reported that self-folding trilayer Randlett birds misfold at a rate

of 0.55± 0.15 [51]. Some examples of both correctly and incorrectly folded birds can

be seen in Fig. 1.14.

Figure 1.14. (A) An optical image of the experiment before folding. (B) Some
examples of folded and mis-folded structures. The experiment folds correctly at a
rate of 0.45± 0.15.

Unlike the bird’s foot origami, the Randlett bird is not foldable without bending

faces. If we introduce face folds across the shortest diagonal of the faces, however,

we expect the Randlett bird to have 2048 branches each with 6 degrees of freedom

(as predicted by formulas in Ref. [41]). The high dimensionality of this enlarged

configuration space makes direct visualization of the energy landscape impossible.

Instead, we will apply a statistical analysis to the folded minima.

We first initialize the Randlett bird in the folded configuration according to ver-

tices provided by Ref. [38] (described in [68]) and attempt to numerically minimize

using the BFGS algorithm [69]. For Kface ≥ 10Kfold, this direct numerical mini-

mization of the pre-folded state fails. The gray regions in Fig. 1.15 represents this

region. To avoid complications when counting minima, we only use values of Kface

and Kfold for which this minimization produces a reliable energy minimum. Note

that, for the trilayer origami system, the expected stiffnesses, Kface ≈ 2 × 10−3 and

Kfold ≈ 2 × 10−5, are within this region. A Mathematica notebook for this subfig-
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Figure 1.15. (A) A density plot of the number of different configurations seen
from near the flat state for given Kfold/KS and Kface/KS. Each point represents
a minimum of either 500 simulated folds or 10 times the number of different states
observed, whichever was larger. The number of configurations reflects whether the
origami is mono- or multistable, but may not predict the precise number of possible
fold configurations for the given parameters. Note that the color scale is a log scale
to emphasize features at lower configuration numbers. The gray region represents the
region in which the pre-folded, initial numerical minimization fails. (B) A density plot
showing the percentage of the simulated birds that fold into the target state. This
does not represent a prediction of experiment, rather that the basin of attraction for
the correct state is larger when the degree of multistability is less.
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ure is located on GitHub at https://github.com/meleetrimble/robust-folding-paper-

support.

For a given set ofKface andKfold, we start by generating a sample of 300 randomly

perturbed Randlett birds at a given set of Kface and Kfold by moving each vertex of

the bird out of its flat starting position by a normal distribution with a width of 50%

of the shortest fold in the origami. We then minimize each bird’s energy and discard

any results that fail to find a minimum to within a target accuracy goal. We continue

to generate further samples until we reach a total of the larger of 500 successful

minimizations or 10 times the number of distinct minima found. We then identify

distinct folded states by first determining the optimal alignment by a least-squares

minimization of the distance between corresponding vertices of a pair of birds with

respect to Euclidean motions, then determining whether all corresponding vertices

are closer to each other than a threshold value. This threshold value is chosen so that

the number of distinct minima does not change when the threshold value is changed.

Finally, we count the number of distinct states, each representing a mechanically

stable state. While there is no way to guarantee that this procedure finds every

metastable state, we expect the relative number of energy minima found to scale

with the actual number of metastable minima. We then also extract the percentage

of samples folded to the target state. We perturbed the simulated samples from the

flat state using a normal distribution, so the initial birds represent a uniform cloud of

initial states in position space. Thus, this percentage does not represent the folding

rate of experiment, but rather the relative size of the basin of attraction for the target

minima.

Fig. 1.15A shows the resulting number of minima we find as a function of Kface

and Kfold on a log scale to emphasize the points that have only a single minima. Fig.

1.15B shows the percentage of samples folded to the target minimum for the same

data. In both plots, each point represents at least the larger of 500 birds or 10 times
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the number of distinct states seen. The two plots together show that a lesser degree

of multistability leads to the basin of attraction for the correct minimum increasing.

This implies that there is a relationship between the number of minima and the

robustness of the folding origami.

Overall, we see the same effect for the Randlett bird that we saw for the bird’s foot:

multistability increases with both decreasingKfold and decreasingKface. The method

to arrive at this result for the Randlett bird can be generalized for any origami, and

we would expect the same general result.

1.2.5 Discussion

We have introduced a simple model to study self-folding origami that accounts for

the finite elasticity of the origami. With finite elasticity, a more complicated picture

of the energy landscapes and folding of these structures arises than in rigid origami.

Though the energy landscape is characterized by deep valleys along the configuration

space of the rigid structures (so that strains while folding are still typically small) we

find that the number of energy minima changes with the elastic moduli of the folds

through a series of bifurcations near the flat configuration. Because these bifurcations

occur near the flat configuration, where finite elasticity dominates the shape of the

energy landscape, they are not well-captured by analyses of rigid origami.

We demonstrated two methods for using this model to examine the stability of

origami for different stretching and bending parameters: first one that can be applied

to simple origami with low-dimensional configuration spaces that can be easily repre-

sented, and a second method that can be applied to much more complicated origami.

In both cases, we saw that weakening both faces and folds results in an increase in

the degree of multistability of the structures. In other words, thicker, elastic origami

self-folds better than idealized origami with infinitely stiff faces and floppy folds.
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Both Tachi and Hull[39] and Stern et al. [52] proposed methods for avoiding

misfolding that utilize tuning the target fold angles and fold stiffnesses to avoid mis-

folding. Both methods require a more precise fine-tuning of fold stiffnesses and angles

that are often difficult to achieve in many experimental platforms. Tuning the in-

plane and out-of-plane stiffnesses of the faces themselves, either by weakening as

suggested here or stiffening by adding additional layers, is an additional simple tool

to avoid misfolding even when geometric constraints are still dominant.
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CHAPTER 2

OTHER ORIGAMI PROBLEMS

In this chapter, we will briefly discuss two other origami problems. First, we will

discuss self-actuating origami with non-standard forcing mechanisms that result in

torques on faces rather than torques about the folds and present a set of tools for

designing these mechanisms. Second, we will introduce minimal forcing sets, or the

minimum set of folds required to be assigned to fold to cause the entire origami to

fold. By first finding the minimum number of folds needed to fold an arbitrary single

vertex, we can then minimize the total number of assigned folds across the entire

origami. Using tools from graph theory, we will do so and set an effective upper

bound on the size of minimal forcing sets.

2.1 Face-Forced Origami

Most self-actuated origami is driven at the fold - ranging from trilayer origami, like

the swelling gel origami discussed in detail last chapter, where the incompatibilities

between the layers is forced into the folds [47, 51, 70], to capillary origami where

the folds are the capillaries[71], to more robotics-inspired origami where mechanical

actuators are placed on the folds[72, 73]. As such, almost all modeling of origami

structures have emphasis placed on the folds as actuators, from energetically designed

spring models like our own to models that focus on forces or torques about the folds

[15, 39, 42, 52]. More recently, there have been an emerging class of origami where

torques are exerted on the faces. Zhang et. al.[74], for example, achieve self-folding

by placing magnetic dipoles on the faces and then applying a magnetic field. The
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dipoles then attempt to align with the magnetic field, exerting a torque from where

they are placed on the faces. This presents a new challenge - how do we determine

how these structures fold? What angles will they fold to?

In this section, we will present a method for predicting how a structure will fold

under torques on the faces. Assuming rigid origami, we will utilize the geometry of

the origami to develop a framework for relating torques on faces to forces on vertices,

which can then be used to determine how the structure folds. We will also provide

some additional tools for realizing physical versions, including how to avoid face

bending and achieve experimentally realizable torques.

2.1.1 Connectiviy Matrix

Consider the origami in the flat state. As we discussed in Section 1.1.1, near the

flat state the folding problem can be reduced to quadratic order in the heights. This

means that only forces in the direction out of the initial plane of the origami will

result in folding motions, so we will consider only the in-plane components of the

torques. For clarity, let’s consider the initial plane of the origami to be the x-y plane

and the z-direction to be out of plane.

Now let’s take advantage of the geometry of the origami, and work backwards

from the torques to get the forces on the vertices, from which we can eventually get

fold angles. Starting with triangular faces, we are assuming we have a known torque

in the x-y plane and a set of three unknown forces in the z direction, one for each

vertex. Then, choose a coordinate system such that (0, 0) lies inside the triangle at

the center of mass, as seen in Fig. 2.1. This gives a geometric relationship between

the torque and forces,

τ⃗face = (y1f1 + y2f2 + y3f3)x̂+ (x1f1 + x2f2 + x3f3)ŷ. (2.1)
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Repeating this process for every face - assigning each face its own center-of-mass-

centered coordinate system and finding this relationship - leads to a natural way to

write the relationship between the torques and forces,

τ⃗ = Cf⃗ , (2.2)

where in order to maintain matrix notation τ⃗ = {τ1,x, τ1,y, ..., τF,x, τF,y} where F is

the number of faces and f⃗ = {f1,z, ..., fV,z} where V is the number of vertices. We

will then call the matrix C the face-vertex connectivity matrix. Note that C has

dimension 2F × V .

Figure 2.1. A sample coordinate system for relating the torques to the forces for a
triangular face. If the face is in the plane of the page, the forces are perpendicular to
the page.

While we have used a triangular face as an example, this method is agnostic

to face geometry. We can utilize computational methods for finding the center of

mass of arbitrary faces, such as the Mathematica function RegionCentroid[] which
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finds the centroid of an arbitrary shape by integrating over the specified region and

normalizing by the region’s measure. We can then use these centroids to construct

C. Code and documentation for finding the face-vertex connectivity matrix can be

found in Appendix A.

Figure 2.2. Two different versions of the birdsfoot origami, one with parallelogram
faces and one with triangulated faces, with vertices labeled in black and faces labeled
in blue.

As examples, we will write the face-vertex connectivity matrices for the birdsfoot

in the case of parallelogram and triangular faces. The parallelogram case yields the

matrix
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while the triangular case yields
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Note the relative dimensions and overall structure. We could have constructed these

matrices in two separate parts, one a traditional connectivity matrix as seen in graph

theory with only 0 and 1 entries and a second matrix that accounted for the exact

geometry.

Before we move on to using this matrix to find torques, forces, or design origami

we need to account for the non-triangulated faces. Triangular faces are rigid under

forces on the vertices in 3D (i.e. any applied forces will move or rotate the triangle

but never cause it to bend or flex) while faces with more edges are not. The face

coordinate system introduced here lends itself to a new way to understand isometries

in nontriangulated origami. First, we find the allowed motions of each face in the face-

centered coordinates. Then we find the null space of a matrix constructed from these

allowed motions, resulting in the force vectors that would bend each non-triangular

face. We can then use these vectors to construct a projection matrix that takes a

force vector and projects it into only allowed motions.

2.1.2 Disallowing Bending in the Vertex Forces

From the flat state, where we define the x-y plane to be the initial plane of the

origami, we can reduce the allowed motion of an origami to each face either being

able to translate in the z-direction or rotate around the x or y axis. We can write the

translation vector for the ith face as

T⃗i =
∑
n

Bi,nen (2.5)
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where Bi,n is a matrix that encodes the connectivity of the faces, i, to the vertices, n,

taking the value 1 if n bounds i and 0 if not. The sum and unit vector en represent

that the vector is in the space of forces in the z-direction on the vertices.

Then the face coordinates can be used to find the two rotation vectors,

R⃗x,i =
∑
n

Bi,n(x̂× r⃗i,n)en (2.6)

R⃗y,i =
∑
n

Bi,n(ŷ × r⃗i,n)en (2.7)

where × is a cross product, r⃗i,n represents the position vector to the nth vertex from

the center of the ith face in that faces’ coordinates, and the sum again represents

that the vectors are in the space of forces on the vertices with zero components when

the vertex is not connected to the face.

We can now use these allowed motions to construct a matrix for each face. The

nullspaces of these matrices then represent the force vectors that would result in the

faces bending. By the rank-nullity theorem, and since the three vectors are linearly

independent as defined, a triangular face has no force vectors that correspond to the

face bending while a quadrilateral face has one, a five-sided face has two, etc. To re-

turn to our birdsfoot example in Fig. 2.2, the triangular faced example has no bending

forces while following this procedure for the quadrilateral example returns the vec-

tors (−1, 1,−1, 1, 0, 0, 0, 0, 0)T , (1,−1, 0, 0,−1, 1, 0, 0, 0)T , (0, 1,−1, 0, 0, 0,−1, 1, 0)T ,

and (0, 1, 0, 0, 0,−1,−1, 0, 1)T .

To use this information in designing or predicting origami, we can construct a

projection operator that when acting on a force vector will remove the components

that would result in face bending,

PB = IV −MB(M
T
BMB)

−1MT
B (2.8)
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where IV is the identity matrix of dimension V ×V where V is the number of vertices

and MB is the basis matrix constructed with the calculated bending force vectors as

its columns. By construction the basis is linearly independent but not normalized, but

this definition for the projection operator accounts for this. We could have orthog-

onalized our basis, but keeping it in this form preserves the physical interpretation

of the components as forces on the vertices. The code for this process for arbitrary

origami can be found in Appendix A.

Now that we have all of these pieces, we can address designing and predicting the

behavior of face-forced origami.

2.1.3 Predicting and Designing Face-Forced Origami

Let’s start with the case where we know the torques and want to predict how

the origami will fold. Since we are already using computational methods, the easiest

process is to use a psuedo inverse to solve the system of linear equations in Eq. 2.2.

At least one psuedo inverse exists for every rectangular matrix, and different types

of pseudo inverses have different properties. For the scope of this problem, we will

focus on Moore-Penrose inverses, which satisfy the following properties,

AA+A = A (2.9)

A+AA+ = A+ (2.10)

(AA+)∗ = AA+ (2.11)

(A+A)∗ = A+A (2.12)

where A is an arbitrary matrix and A+ is its Moore-Penrose inverse. Since all of our

matrix components represent a physical geometry and thus take real values, we can

ignore the last two conditions as they will always hold. To construct these matrices,
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we use singular value decomposition, the method used by the Mathematica function

PseudoInverse[]. Then the linear equation Ax = b has a solution when

AA+b = b, (2.13)

in which case the most general form of the solution is

x = A+b+ (I − A+A)y (2.14)

where y is arbitrary.

For our case then, after finding the pseudo inverse for the face-vertex connectivity

matrixC+ the naive solution is simply to check if the given torques satisfyC+Cτ⃗ = τ⃗ .

However, this is not true for many torque choices and ignores the physics of the

problem. The column space of C is the orthogonal complement of its left nullspace,

so we can decompose the torque vectors into its components in the range of C and

those in its left nullspace. Physically, we can think of this as being the components

that would result in forces on the vertices which cause the origami to fold and those

that are counteracted by internal forces in the origami due to geometric constraints

encoded by C.

We then have a few choices for finding this decomposition. If we represent the

jth vector in the nullspace of C with σj, then the components of the torques that are

compatible with C are given by

τ⃗C = τ⃗ −
∑
j

(σj · τ⃗)σj. (2.15)

This construction is presented to draw parallels between self-stresses and the internal

forces imposed by the geometry of the origami encoded in the face-vertex connec-

tivity matrix. We also find it slightly more transparent than the next option for

decomposition.
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Our other option is to utilize CC+, which for the Moore-Penrose inverse can be

interpreted as a projection operator on the column space of C along the nullspace of

C+ per Corollary 2.7 in Ref. [75]. Since, by construction via singular value decompo-

sition, the nullspace of C+ is the left nullspace of C, CC+ acting on any τ⃗ will yield

the projection of τ⃗ on the column space of C along its nullspace, i.e.

τ⃗C = CC+τ⃗ . (2.16)

This is the same result as in Eq. 2.15, although we find the construction of Eq. 2.15

more transparent. This version, however, makes it clear that τ⃗C satisfies Eq. 2.13

(using Eq. 2.10) and is thus a solution to our matrix equation, Eq. 2.2.

Now that we have a method for extracting the compatible components of our

torques, we can use the compatible forms to calculate the forces on the vertices.

Additionally, we can use PB to project the forces into those that won’t bend the

faces. From there, we can use the force vectors to predict the branch that the origami

will choose. We have a few choices for how to do this depending on the origami.

For rigid origami where the branches have unique M-V assignments, we can treat

the magnitudes of the forces as infinitesimal initial z-displacements and convert these

heights directly to fold angles. Near the flat state, the heights are linearly related to

the folds to quadratic order [41], and the matrix to convert between the two can be

found using the TorsionalFoldMatrix[] function in the mechanisms package. From

these near-flat fold angles we can extract the M-V assignments, giving us the branch

information. For one degree of freedom origami, this information with the forces,

which also encode the ”pop” direction of each vertex, will usually uniquely define a

branch with a few notable exceptions [41].

For elastic origami or origami that do not meet these conditions, we can instead

utilize the energy introduced in Section 1.2. Using the forces to create an initial
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displacement of the vertices in the z-direction, we can then minimize the energy to

identify the branch.

To design origami, if we have a known set of target angles we can find the corre-

sponding vertex positions and use the heights of the vertices for a naive choice for the

force vector f⃗ . Then we can project out the bending components and simply mul-

tiply this resulting vector by C to find a set of torques. Here is where the problem

becomes more complicated - most physical implementations of this type of origami

are restricted in the torques that can be applied. Following similar logic as the pro-

jection of the torques into compatible form, we can add elements of the nullspace of

C+ to the torques without affecting the resulting forces. This presents a method for

designing torques for any origami system, although at this point we would need to

work with an experimental group on exact implementation.

2.1.4 Discussion

In this section we presented a set of tools for handling origami that are actuated

due to torques on the faces rather than at the folds. While this may seem to only

apply to this specific class of origami, the face coordinate system introduced can

be used to understand the isometries of non-triangular faces. To continue further

with this project, however, we would need to work with an experimental group to

understand the limitations of programming their specific systems.

2.2 Maximal Minimal Forcing Sets

Forcing sets, or sets of folds that when actuated will cause the rest of the origami

to fold, were first introduced by Ballinger et. al. [76]. Minimal forcing sets are

then relevant for self-folding as they present the fewest number of engineered folds

needed. This is particularly of interest for tethered origami or origami with mechanical

actuators [72, 73]. So far there is no procedure for finding minimal forcing sets for

59



general origami, although they have been established for 1D origami [77], the special

Miura-Ori fold pattern [76], and flat-foldable single vertices [78].

In this section, we will first present a condition for the folding of any given single

vertex regardless of its exact geometry. We will then show how to globally apply

this condition to an arbitrary origami while minimizing the number of forced folds

both by using a graph theory treatment and a Monte Carlo method. Comparing our

condition to the results on flat-foldable single vertices from Ref. [78], we know that

this condition is not the minimum condition for every single vertex, but overall we

present a way to find an upper bound on the forcing set and what we will term a

maximal minimal forcing set.

2.2.1 Forcing an arbitrary single vertex

Consider a single vertex origami with EI folds. We also have that the number of

external edges EB and boundary vertices VB are equivalent to EI , EB = EI = VB. We

have previously shown[41] that an origami has 2VI branches, so a single vertex origami

has 2 branches. We will also introduce the terminology assigned to refer to folds that

have a prescribed target angle and thus drive the folding of the motion. We will use

unassigned to refer to folds that are not driving the folding motion, although later

we will need to address that for almost every experimental realization a non-driving

fold typically does not want to fold and thus can be understood as having a target

angle of zero.

To find minimal forcing sets, let’s consider the fold space of a single vertex origami.

The dimension of fold space is simply the number of folds, DF = EI . For a given

origami, the dimension of its branches, which is also its degree of freedom, is given by

DB = VB − 3, as discussed in Sec. 2.1.1. Naively, this would suggest that the number

of assigned folds needed for a single vertex to fold robustly would be N∗ = EI − 3.

However, the branching of origami configuration spaces means that there is not a
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single, smooth coordinate system. An additional constraint needs to be added to

essentially specify the branch, leading to our final condition,

N∗ = EI − 2. (2.17)

Note that this additional fold assignment is not truly selecting a branch, just as a

set of EI − 3 folds would not choose a position on a branch. The condition above

is general and does not require any consideration of the way origami branches are

structured.

Alternatively, we can consider the height space of the origami. We typically define

height space by the heights of an origami’s vertices relative to a chosen reference face.

Correspondingly, the dimension of height space is the total number of vertices less 3,

DH = VB + V1 − 3. For a single vertex origami, we can reduce this to DH = EI − 2.

With constraints from the geometry of the origami, the height space is actually a full

description of the origami at a lower dimension than fold space, so this immediately

yields our condition N∗ = EI − 2.

It should be noted, however, that the condition for robust folding for a single

vertex as presented above is purely an upper bound. Abel et. al. [78] have shown

that there are some flat-foldable - origami that when folded return to a plane - single

vertex fold patterns that require fewer than n−2 forced folds due to symmetries, but

these are often only true for specific mountain-valley specifications for those origami.

For example, the birdsfoot origami as introduced in Section 1.2.3 has been shown to

only need one assigned fold to completely fold. However, this can only be used to fold

into the branch where no folds have an equilibrium angle of zero (branch 2 as seen

in Fig. 1.8b), and two folds still need to be assigned to fold into the other branch

(branch 1 as seen in Fig. 1.8b). We will discuss accounting for these in more detail

in Section 2.2.5, but for now will focus on this condition.
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2.2.2 Finding a 2-Subgraph

Instead of the more intuitive approach of tracking or finding the number of as-

signed folds, the relationship above indicates that what we want to track instead is

the number of unassigned folds. Every vertex has 2 unassigned folds, regardless of

its actual degree. If we are thinking of an origami as a graph, by reducing it to its

vertices and edges, then what we are attempting to find is then instead a 2-subgraph

on its internal vertices.

Before moving on, it will be useful to introduce some graph theory definitions.

First, a graph is simply a set of vertices and their adjoining edges. The degree of

a vertex is the number of edges that adjoin a vertex. A subgraph is collection of

vertices and edges that belong to a larger graph that are in themselves a graph. An

independent edge set or a matching is a set of edges that do not share vertices. The

largest matching possible for a given graph is called a maximal matching. A perfect

matching is a maximal matching that is able to include all of the vertices as end

points for the edge set.

There are many different types of graphs that have been defined because of their

unique properties. One type that will come into our discussion here are bipartite.

Bipartite graphs are characterized by having two distinct sets of vertices where no

two vertices within each set are connected to each other. As an example, the subgraph

consisting of the two sets of vertices highlighted in blue and the edges adjoining the

two sets in Fig. 2.3is a bipartite graph.

Our problem is then reduced to finding a 2-subgraph, meaning a subgraph of the

original origami where each internal vertex is now degree 2. The problem of finding a

2-subgraph on a general network is related to finding Hamiltonian cycles, or a sequence

of edges that visit every vertex exactly once, a classical graph theory problem. Proving

the existence of a Hamiltonian cycle or a 2-subgraph is NP-complete, but - depending

on the problem and graph - finding them can be NP-hard[79, 80].
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Tutte[81] proposed a polynomial-time algorithm for finding 2-subgraphs by chang-

ing the problem to a maximal matching problem [80], after which it can be solved using

known algorithms, such as the blossom algorithm[79, 82]. Briefly, Tutte’s method is to

first replace each internal vertex n of degree d with the bipartite graph Gn = Kd,d−2.

Then preserve the original edges, i.e. edge En,m should now connect graphs Gn and

Gm, on the d sides of the bipartitions. This process is shown for a degree 4 vertex

in Fig. 2.3. Finally, find a perfect matching over the new graph. In order to include

the vertices within the bipartite graphs as part of the matching, the algorithm must

select d − 2 edges within the bipartite graph, leading to only two edges leaving the

expanded vertex to be included in the perfect matching. This is shown in Fig. 2.3

with dashed red lines and vertices.

Typically, this method would also be applied to the boundary vertices of the graph

as well, but we do not need (or want) the 2-subgraph to extend to the boundary

vertices or edges. Instead, we will separate the internal edges leading to a boundary

vertex, creating additional vertices where needed. This first step is shown in Fig.

2.4b. Here, we diverge from Tutte’s algorithm. Introducing additional vertices with

degree 1 results in a perfect matching no longer existing for almost all origami patterns

[81]. A maximal matching, however, in most cases will still behave as in the original

algorithm, selecting d−2 edges inside the bipartite graphs and two edges in the original

origami for each original vertex. A maximal matching for our example origami can be

seen in Fig. 2.4c. The Mathematica functions and documentation for this procedure

for arbitrary origami can be found in the code appendix.

There are notable exceptions. When there are too few interior vertices relative

to exterior vertices, and thus too many 1-degree vertices, the maximal matching

will sometimes choose to highlight additional edges leading to these 1-degree vertices

rather than the connections within the bipartite graphs. Luckily, determining whether

a generated set of folds meets the requirement that two edges at each vertex be
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Figure 2.3. An example bipartite expansion of a vertex with degree 4 as part of the
algorithm for finding a 2-subgraph on an origami in order to find a minimal forcing
set. The red dashed lines demonstrate a matching that would include the d−2 vertex
set as end points, and the red dashed vertices show the two vertices that would be
free to be included in a maximal matching over the whole graph.
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Figure 2.4. The method for finding the maximal minimal forcing set using Tutte’s
2-subgraph algorithm using a simple two vertex origami as an example. (a) shows
the original origami while (b) is its corresponding bipartite expansion. The red high-
lighted edges in (c) show the maximal matching on the full graph while in (d) they
represent the chosen unassigned folds. Correspondingly, the black internal folds in
(d) are the maximal minimal forcing set.
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included in the edge set is easy to check. The difference between the number of edges

in the maximal edge set of the graph and the number of selected folds in the origami

should be d−2 summed over all vertices, i.e. in every bipartite vertex expansion d−2

edges should be selected.

To understand how often this occurs, we generate random origami with four

boundary vertices and 3, 4, 5, and 6 internal vertices. Generating 1000 random

origami for each number of internal vertices, running each origami through our pro-

cedure for finding the forcing set, and then checking that each one is indeed a forcing

set gives us an idea of how common these edge cases are. We found that 16.1% of

the generated 3 vertex origami, 2.9% of the 4 vertex origami, 0.2% of the generate 5

vertex origami, and none of the 6 vertex origami returned correct minimal edge sets.

2.2.3 Spin System Version

This section is largely included for completion, although it can also be used as

an alternative method for the cases where the above graph theory-based algorithm

fails. We introduce a spin-system inspired energy for the number of assigned folds at

each vertex, with whether a fold is assigned or unassigned mapped to spins and the

vertices as interaction sites. We can then borrow Monte Carlo method techniques

developed for Ising models to generate the maximal minimal folding set, although it

is more computationally expensive and should only be used when the other method

fails.

Let’s start be rewriting our single vertex folding condition. From Section 2.2.1, at

every vertex n we want the assigned folds to satisfy the condition

Nn∗ − En + 2 = 0 (2.18)

where Nn∗ is the ideal number of assigned folds and En is the number of folds at

vertex n. This equation represents that at every vertex we want precisely two of the
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folds to be unassigned. To turn this into an energy, we want too many and too few

assigned folds to be equally costly. This leads us to the Hamiltonian

H =
∑
n

(Nn − En + 2)2, (2.19)

where Nn is the number of currently assigned folds (a variable).

To turn this into something that looks like a spin system or Ising model, let’s

define the incidence matrix Ine to be 1 when edge e connects to vertex n and 0

otherwise. Next, place spins on the edges, and take σe to have a value of 1 if a fold

is assigned, meaning it has a prescribed target angle, and 0 otherwise. This leads to

an expression for the number of assigned folds,

Nn =
∑
e

Ineσe, (2.20)

as well as a site interaction matrix equivalent,

Je1,e2 =
∑
n

Ine1Ine2 , (2.21)

which takes a value of 1 if e1 and e2 interact through n and 0 otherwise.

Now, we can expand H

H =
∑
n

N2
n + 4

∑
n

Nn − 2
∑
n

NnEn +
∑
n

(E2
n − 4En + 4). (2.22)

The first term becomes
∑

e1,e2
Je1,e2σe1σe2 , the second two terms can be combined,

∑
ne(4Ineσe − 2EnIneσe) = 2

∑
e

(
∑
n

(2Ine − EnIne))σe, (2.23)

and the final term is simply a number. Putting this all together, we get

H =
∑
e1,e2

Je1,e2σe1σe2 + 2
∑
e

heσe (2.24)
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where he =
∑

n(2Ine − EnIne). Now, this looks like an Ising model complete with

a “magnetic field”. Simple tests using a Metropolis-Hastings algorithm to find the

minimal forcing set were successful but slow.

2.2.4 Simulations

As further evidence that our maximal minimum forcing set truly forces the origami,

we performed simulations on random origami and compared the cases where every

fold is programmed to have a target angle and where only the folds chosen by the

maximal minimum forcing set are programmed. For each generated random origami

we found sets of target angles by generating an uniform distribution of vertex dis-

placements with a width of the smallest fold angle and applying these displacements

to the origami before minimizing its energy. We could then select target angle sets

from this list.

From here, we followed a similar procedure as that used for the Randlett bird

simulations in Sec. 1.2.4. After either assigning all of the target angles or only

those of the minimal forcing set, we generated an uniform distribution of vertex

displacements with a width of 20% of the smallest fold length and applied these

displacements to the origami. Then we used this distribution as the initial conditions

for the energy minimizations. After minimizing all of the origami, we then found the

average difference squared between each folded origami and the target fold angles,

∆ = Avg[(αtarget,i − αactual,i)
2] (2.25)

where αtarget represents the programmed angle, αactual represents the minimized angle,

and i indexes over all folds. The code and documentation for this process can be found

in the Appendix A.

Some care must then be taken when assigning fold stiffness constants and inter-

preting the results. In an experiment, a truly unassigned fold does not exist. For
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Figure 2.5. Comparisons of different torsional spring stiffness constants for the
assigned and unassigned folds for the folding simulations. Each cluster of points
represents 100 folded origami.
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example, if we consider the trilayer swelling gel origami introduced in Chapter 1, the

closest we can get to an unassigned fold is to cut both sides of the stiff layer rather

than just one. The fold is then biased to be neither a mountain or valley fold and

rather wants to stay flat, although it does have a reduced stiffness. In the simula-

tions, this means that while we can set the torsional spring stiffness of an unassigned

fold to zero, a more accurate choice would be to set its target angle to zero and its

spring stiffness to a small but nonzero value. Because these unassigned folds are still

contributing to the energy, they will act against the total folding. To understand the

effect of spring constant choices, we ran the same random 3 vertex origami through

our minimization with different choices for the torsional spring constants and com-

pared to the case where every angle is precisely programmed. This data can be seen

in Fig. 2.5.

We then chose to use values of 10−4 for the assigned fold stiffness constants and

10−5 for the unassigned fold stiffness constants and iterated the described process.

Out of 50+ randomly generated origami with a range of internal vertices from 3 to

7, each with a minimum of 3 different target angle sets we saw only one origami

and angle set that resulted in the origami not folding. This case was a 3 vertex

origami with two angles that nearly bisected the origami and the set of fold angles

corresponded to only those two fold angles actuating. The partially simulated version

simply did not fold and remained flat. In every other case the origami folded and

was close to the target values. A representative sampling of 5 origami and angle sets

can be seen in Table 2.1. We see that the partially programmed origami does not

get quite as close to the target angles as the fully programmed origami, but both

versions have the same mountain-valley assignment, which is the only requirement

for the traditional definition of the forcing set [76].

Additionally, this comparison of fully and partially programmed origami is not

entirely representative of how physical origami will respond to a reduction in the
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Table 2.1. Simulation data for a few random origami with both only the minimal
forcing set programmed with target angles and with all folds programmed. The
average fold difference is calculated using Eq. 2.25 and represents the distance from
the target angles in radians2. Each line consists of around 500 iterations for each set
of target angles.

Number of Avg Fold Difference Avg Fold Difference Max. Difference
Internal Vertices Fully Programmed Partially Prog. Part. Prog.

1.2086× 10−9 0.0219024 0.0219284
1.1663× 10−9 0.0015457 0.0015536

3 1.4058× 10−9 0.0070801 0.0070852
9.2121× 10−10 0.17632 0.17633
2.5356× 10−10 0.043531 0.043557
5.0384× 10−10 0.043210 0.043247
8.3471× 10−10 0.0060604 0.0060736

4 1.0800× 10−9 0.0038227 0.0038313
4.5105× 10−10 0.00030619 0.00030783
3.7775× 10−10 0.056115 0.056137
5.4227× 10−10 0.089906 0.089916
3.1493× 10−9 0.0021736 0.0021793

5 1.0517× 10−9 0.10964 0.10964
3.8708× 10−10 0.0021234 0.0021314
9.2448× 10−10 0.0082082 0.0082351
2.7602× 10−9 0.065087 0.065089
2.5157× 10−10 0.034605 0.034629

6 2.0346× 10−9 0.060375 0.060445
6.1892× 10−10 0.0052119 0.0052010
6.1697× 10−10 0.082349 0.082351
4.2413× 10−10 0.028590 0.028599
7.5415× 10−10 0.0021709 0.0021755

7 5.0676× 10−10 0.0032008 0.0032050
4.7600× 10−10 0.027133 0.027148
3.7314× 10−10 0.049496 0.049516
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number of programmed folds. Physical origami has limits in what its angles can and

cannot be programmed to, and certainly does not have precision in angle programming

to fractions of radians. To get a preliminary idea of how a physical origami will behave,

we need to know the experimental target fold angles, not those directly on the target

branch. In Section 1.2.4, we used the example of the Randlett bird, for which we have

experimental target angles. We also previously investigated how choosing face and

fold stiffnesses effects the number of branches seen and so additionally have guidance

for which stiffnesses to use. Accordingly, we choose Kface ≈ 10−5 and Kfold ≈ 10−6.

Then we will consider the unassigned folds to be set to zero by removing both stiff

layers along the folds leading to a choice of Kunassigned ≈ 10−7. Following the same

procedure as explained for randomly generated origami, we can find how closely the

simulated origami will fold to the target angles. A histogram comparing the minimally

and fully assigned versions can be seen in Fig. 2.6.

Figure 2.6. (Left) The randlett bird with the unassigned folds marked in red,
assigned folds in black, and face folds in blue. (Right) The average difference be-
tween the final fold angles of the simulation and the programmed target angles. Blue
represents the minimally programmed version while orange represents the fully pro-
grammed version.

The simulation results are quite promising. We do see a similar effect to the

random origami where the minimally programmed version does not fold quite as
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closely to the target angles as the fully programmed version when comparing the

states closest to the targets. However, we do see a drastic change in the relative

percentage of target fold patterns reached, with fully programmed version misfolding

drastically more than the partially programmed version.

2.2.5 Discussion

Taken altogether, here we have presented a method for finding an upper bound

on the minimal forcing set for arbitrary origami. Our graph theory based procedure

will, for most origami, select for a 2-subgraph on the internal edges of an origami,

maximizing the number of unassigned folds while still meeting the condition for every

vertex to fold robustly. While origami with low internal connectivity may cause prob-

lems, it is easy to check that each generated maximal minimal forcing set meets our

condition on every vertex. Additionally, we presented a Monte Carlo based method

that can be used in these cases. We then checked our results with simulations for

random origami.

This still is not, however, the true minimal forcing set for any origami, as noted

earlier. By classifying the single vertex geometries with fewer needed forced folds

found in Ref. [78], we could account for these edge cases by introducing an alternative

energy condition into the spin-system method for finding the forcing set. To reduce

computational time, we can start by finding the maximal minimal forcing set using

the graph-theory-based algorithm above and feeding it as an initial state to the spin-

system Monte Carlo. We may also be able to incorporate these special cases as

weightings on the graph, but it would likely involve writing out own maximal matching

algorithms and will be outside of the scope of this thesis.
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CHAPTER 3

DESIGNING LINKAGES

This chapter arises from the following observation: there are many applications

where the precise motion of the vertices of a linkage is less important than the motion’s

qualitative features. In these cases, not only can we achieve the desired effect, but we

can do so with simpler linkages. Moreover, we demonstrate that select small changes

in the linkage geometry can drive large, qualitative changes in the behavior of the

mechanism, without changing connectivity.

A note on collaboration in this chapter: The work on this chapter was done in

collaboration with fellow graduate students Michelle Berry, whose main focus was

on the numeric and computational aspects, and David Limberg who designed and

performed the Lego experiments. I contributed to theoretical basis and analysis, with

my main contribution being the interpretation of the regions of space demarcated by

the critical value surfaces as being regions of distinct behavior.

In this chapter, we introduce an approach to linkage design that takes advantage

of the critical points of a configuration space [84, 85]. At a critical point, a mechanism

has an anomalously large class of potential linear motions available to it, but higher

order corrections from the mechanical constraints restrict the motion to a subset of

these motions [86–89]. Many linkages of this type have branched configuration spaces,

meaning that many different qualitative motions are accessible. For example, generic

origami and kirigami mechanisms have highly branched configuration spaces, as we

This chapter is adapted from Ref. [83] with permission from the American Physical Society.
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saw in previous chapters, leading to pluripotency [41, 72]. Similar branched configura-

tion spaces have been used to design mechanical logic devices [90] and kinematotropic

mechanisms that can change how many degrees of freedom they can access [91, 92].

Critical points are delicate; even small perturbations of the mechanism geometry

will destroy them. However, by controlling those perturbations, we demonstrate that

the configuration space topology of a mechanism can be controlled. As a result, we

obtain linkages with switchable motion using only a small number of tunable com-

ponents. We demonstrate this extreme switchability in celebrated Kane-Lubensky

(KL) chain [21], a series of rotors joined by springs, which supports the propagation

of a soliton called a “spinner” in which each rotor, in turn, rotates a full 360◦ degrees

[93, 94]. We will apply our design methodology to the KL chain. By replacing one

of the unit cells with a designed mechanism, we show that the propagation of the

spinner soliton can be controllably gated. Because our method relies on topological

programming, the mechanisms are robust to flexibility and fabrication imperfections.

In Sec. 3.1, we review relevant parts of rigidity theory and mechanisms. In Sec.

3.2, we describe mathematical tools that provide a geometrical interpretation to crit-

ical points. This interpretation will provide the basis of our design methodology,

which we will illustrate with an example containing five bars. Finally, in Sec. 3.3,

we will use our formalism to explicitly design a mechanism to gate the KL chain.

Importantly, the operation of the resulting gate is robust with respect to small per-

turbations. Finally, we conclude with a brief discussion highlighting new directions

enabled by this work.

3.1 Critical Points in Mechanisms

3.1.1 Mechanism Rigidity

In this section, we review the basic mathematical description of mechanisms.

Though we focus on linkages, which are constructed entirely from free-rotating joints

75



and inextensible bars, the formalism can be generalized to mechanisms with other

holonomic constraints. We define a linkage as a collection of V vertices in d di-

mensions joined by E rigid bars. The configuration of a linkage can then always be

represented by a point, u, in the space of vertex positions, which we will denote as

M, and has dimension M = V d. We assume there are E bars in the linkage and

denote the length of the αth bar, ℓα(u). The configuration space of the linkage can

then be represented by the family of equations,

ℓ2α(u) = L2
α (3.1)

where Lα is the target length of the αth bar. Note that Eq. (3.1) is written using the

square of ℓα(u) so that it is can be an analytic function everywhere. By replacing ℓα(u)

with a more general class of functions in Eq. (3.1), we can also describe mechanisms

with more complex components beyond rigid bars.

Rather than analyzing the configuration space for specific values of Lα, we will

instead analyze the entire family of configuration spaces that can occur with a fixed

network topology by changing the Lα. Between Kempe’s universality theorem and

the potential arbitrariness of ℓα(u), however, it is indeed difficult to say a great deal

more about the configuration space with any kind of generality. Therefore, we assume

that ℓ2(u) is an analytic function of u and that E ≤ V d. With these assumptions,

the Jacobian matrix, whose components are

Jαi(u) =
∂ℓ2α(u)

∂ui
, (3.2)

provides critical information about the mechanism. Naively, one would expect the

configuration space of the mechanism to be D = M − E (for M > E). Indeed,

the inverse function theorem implies that the configuration space is a smooth D

dimensional manifold in any open set of M in which the Jacobian matrix is full rank.
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At such a configuration u, the tangent space coincides with the right null space of

Jαi(u), ∑
i

Jαi(u)δui = 0. (3.3)

The solutions δui of Eq. (3.3) are called zero modes.

Any point uC at which the Jacobian fails to be full rank, on the other hand, we

call a critical point, and the corresponding edge lengths ℓ2α(uC) we call a critical value.

Critical points are characterized by self stresses, σα, which are elements of the left

null space of Jαi(uC), ∑
α

σαJαi(uC) = 0. (3.4)

Because of their relation to critical points, we will see that self stresses play an

important role in the topology of the configuration space.

Sard’s theorem ensures that critical values (but not necessarily critical points) are

a set of measure zero. In that sense, most choices of edge lengths lead to a config-

uration space that is a smooth D dimensional manifold. Consequently, any change

in the configuration space’s topology that occurs as the Lα change must happen at

a critical point. Thus, these critical points also govern the overall topology of the

configuration space of a mechanism.

In the next section, we proceed to analyze the geometry of the configuration space

at and near such critical points.

3.1.2 Shape of the configuration space at critical points

To understand the shape of the configuration space, we expand ℓ2α(u + δu) for

small deformations, δu having components δui, around the critical point, obtaining

0 =
∑
i

Jαiδui +
1

2

∑
ij

∂2ℓ2α(uC)

∂ui∂uj
δuiδuj +O(δu3). (3.5)
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It is common at this stage to write a formal series expansion, δu = δu(1)+δu(2)+ · · · ,

and substitute it into Eq. (3.5). One finds δu(1) is a zero mode of the Jacobian

satisfying [88]

1

2

∑
α

∑
ij

σ(n)
α

∂2ℓ2α(uC)

∂ui∂uj
δu

(1)
i δu

(1)
j = 0, (3.6)

where {σ(1)
α , σ

(2)
α , · · · } is a basis for the space of self stresses at uC .

To proceed, we make further assumptions. The most important of these is that Eq.

(3.6) completely characterizes the local geometry of the critical point. It is well-known

that if no solution to Eq. (3.6) exists then the linkage is rigid, but the converse does

not necessarily hold. There are mechanisms whose rigidity is only visible at higher

order, as well as mechanisms that are rigid at order larger than two but, nevertheless,

are mobile [87]. Experience suggests that these examples are rarer than the better

behaved examples we consider here, but we are unaware of any results quantifying

their rarity or even a simple means to determine when Eq. (3.6) is sufficient to

describe the geometry of the critical point accurately. For the scope of this paper, it

will prove sufficient to assume we can safely truncate our expansion of δu at second

order and check, post hoc, that the results produced by our design procedure satisfy

our assumptions.

We will make three other assumptions as well:

1 All critical points, uC, lying on a configuration space of constant Lα are iso-

lated. There are linkages for which this fails and for which the entire config-

uration space lies along a sequence of critical points (see, for example, [95]).

Note, however, that there are also mechanisms with large D which do satisfy

this assumption [41, 96, 97]. In this paper, we will ultimately focus on example

mechanisms with only a single degree of freedom, so this will not prove a par-

ticularly strong assumption, but in this section we allow D to be general and

only specialize to D = 1 subsequently.
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2 All critical points have exactly one self stress. This assumption is certainly not

always true. It fails, for example, in flat origami mechanisms [41]. Generally,

however, we will see that, qualitatively, critical points with several self stresses

appear to require more fine-tuning. This assumption implies that there will be

D + 1 zero modes at each critical point by the rank-nullity theorem applied to

the Jacobian matrix at uC .

3 The matrix

∑
α

σα
∂2ℓ2α(uC)

∂ui∂uj

has nonzero eigenvalues when restricted to the zero modes at uC . This assump-

tion allows us to simplify the characterization of the critical points. Notice that

without assumption 2, this characterization would be more difficult because

the Eq. (3.6) would yield a system of quadratic equations rather than a single

equation.

While all of these assumptions will play a role in our analysis, one could relax some

of them at the expense of complicating the design procedure. Additionally, they

may not be mutually exclusive from our assumption zero that Eq. 3.6 completely

characterizes the local geometry of the critical point. Our examples will satisfy them,

however, and we leave it for future work to understand which are truly required and

which are conveniences.

Suppose we choose a basis for the zero modes at uC , {ζ1, · · · , ζD+1}, writing

δu
(1)
i =

∑
n cnζn,i. Then Eq. (3.6) becomes

∑
nm

Qnmcncm = 0 (3.7)
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where Qnm is a symmetric matrix given by

Qnm =
∑
ij

∑
α

ζn,iζm,jσ
(1)
α ∂2ℓ2α(uC)/∂ui∂uj. (3.8)

Under our assumptions, there are just two possibilities. If Qnm is either positive- or

negative-definite, the linkage is rigid: there is no solution to Eq. (3.7) other than

cn = 0. If Qnm has a combination of positive and negative eigenvalues, however,

the geometry of the configuration space at uC is that of a cone. This is precisely

what happens in single-vertex flat origami [1, 41] (Fig. 3.1). We call such a point

uC a branch point, though this space of possible zero modes is sometimes called a

kinematic tangent cone [98].

Type +

Type -

Branch Point

Figure 3.1. Schematic of how a configuration space with a branch point split into
one of two types of smooth, disconnected configuration spaces. The choice of sign is
arbitrary.
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3.1.3 Shape of the configuration space near critical points

We next ask what happens to the configuration space of a mechanism when the

lengths are deformed from their critical values, Lα = L
(c)
α + δLα. We assume we

have a mechanism with E edges and V vertices in d dimensions with dV > E. We

further suppose that the configuration of the mechanism is at a critical point, uC ,

with corresponding critical values (L
(c)
α )2. Let u = uC + δu and correspondingly

Lα = L
(c)
α + δLα, and expand the squared lengths to quadratic order, using Eq. (3.1),

2L(c)
α δLα + δL2

α =
∑
i

∂ℓ2α(uC)

∂ui
δui (3.9)

+
∑
ij

1

2

∂2ℓ2α(uC)

∂ui∂uj
δuiδuj

To conclude recapping our assumptions, we assume that Eq. (3.9) completely char-

acterizes the critical point, and that there is one self stress at uC , with components

σα, and two zero modes, with components ζ1,i and ζ2,i.

It will prove convenient to express Eq. (3.9) using an orthonormal basis in the

space of square lengths, {σα, e(1)α , · · · e(E−1)
α }. We similarly write δui in an orthonormal

basis {ζ1,i, ζ2,i, η1,i, · · · , ηE−1,i},

δui = c1ζ1,i + c2ζ2,i +
E−1∑
I=1

aIηI,i. (3.10)

We first contract Eq. (3.9) with σα, we obtain an equation that can be expressed

as (
cT aT

) Q B

BT M


 c

a

 = ∆̃, (3.11)

where the components of the matrices are given by

∆̃ =
∑
α

σα
(
2L(c)

α δLα + δL2
α

)
, (3.12)
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Qnm =
1

2

∑
αij

ζn,iζm,jσα
∂2ℓ2α
∂ui∂uj

, (3.13)

Mnm =
1

2

∑
αij

ηn,iηm,jσα
∂2ℓ2α
∂ui∂uj

, (3.14)

and

Bnm =
1

2

∑
αij

ζn,iηm,jσα
∂2ℓ2α
∂ui∂uj

. (3.15)

We also assume that aI are the components of the vector a and that c1 and c2 are

the components of a two-dimensional vector c. Finally, we complete the square in

Eq. (3.11) to obtain

(
c+Q−1Ba

)T Q
(
c+Q−1Ba

)
= ∆̃− aTBTQ−1Ba. (3.16)

Note that Q−1 exists because all of the eigenvalues of Q are nonzero by assumption.

Already, Eq. (3.11) is in the form of a conic section whose form depends on the

eigenvalues of Q. What remains is to show that a depends only on the length changes

(and not c) to lowest order and, ultimately, to find an expression to determine it.

To do this, we project Eq. (3.9) onto the remaining basis vectors, e
(n)
α , in the

space of square lengths. We obtain

∑
m

∑
i

∑
α

e(n)α

∂ℓ2α(uC)

∂ui
ηm,iam +

1

2

∑
ijα

e(n)α

∂2ℓ2α(uC)

∂ui∂uj
δuiδuj = (3.17)

∑
α

e(n)α

(
2L(c)

α δLα + δL2
α

)

There are E − 1 equations in Eq. (3.17) and dV − E + 1 zero modes at the critical

point, the space spanned by δu⊥i is dV −(dV −E+1) = E−1 dimensional. The matrix

appearing in Eq. (3.17) is, consequently, square. Since we have already removed zero
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modes and self stresses, it is also invertible. We define a new matrix M such that its

inverse M−1 is given by the components,

M−1
nm =

∑
i

∑
α

e(n)α

∂ℓ2α(uC)

∂ui
ηm,i. (3.18)

This then allows us to solve Eq. (3.17) in powers of both δLα and c. To first order

in both, we obtain

an ≈
∑
m

Mnm

∑
α

2e(m)
α L(c)

α δLα +O(cδL, c2, δL2). (3.19)

We can now put together the results by defining

δc = −Q−1Ba (3.20)

and

∆ = ∆̃− δcQδc (3.21)

to obtain

(δc− δc)T Q (δc− δc) = ∆ (3.22)

where ∆ and δc depend linearly on the changes in lengths to lowest order. Therefore,

small perturbations of the length are seen to produce trajectories that lie on a 2D

conic section with a perturbed center.

While this is a rather intricate derivation, we could have obtained the correct

answer up to order δu ∼ δL1/2 more simply by assuming O(a) ∼ O(c). We have

found the full form of Eq. (3.22) to be more useful in perturbing larger linkages,

however, as it better captures the case that changes in the bar lengths perturb but

do not completely eliminate critical points in the configuration space of a linkage.
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Putting all of these pieces together and rewriting for clarity, our final result is

∑
nm

Qnm(cn − δcn)(cm − δcm) = ∆, (3.23)

where the deformation is along the zero modes at uC ,
∑

n cnζn,i as before, and δcn

and ∆ are quantities whose value depends linearly on the length changes, δLα, to

lowest order.

We first consider what happens when ∆ = 0. In that case, when δcn = 0, Eq.

(3.23) recovers the results from the previous section: there is either a rigid point or

a branch point at cn = 0 corresponding to the critical point uC . When δcn ̸= 0,

however, the critical point itself moves by ≈
∑

n δcnζn,i.

When ∆ ̸= 0 and Q has only positive eigenvalues (the critical point is second

order rigid), we have two possibilities: (1) ∆ > 0 implies the solution to Eq. (3.23) is

an ellipsoid in D+1 dimensions (it is almost rigid [99]), and (2) ∆ < 0 implies there is

no solution to Eq. (3.23). The opposite occurs if Qnm has only negative eigenvalues.

Finally, we consider the case of a branch point, for which Qnm has eigenvalues of

opposite sign. To develop intuition, it is useful to consider the special case of a branch

point when D = 1. Then Qnm is a 2×2 matrix with two eigenvalues of opposite sign.

The solutions to Eq. (3.23) take the form of two hyperbolas in the plane spanned by

the zero modes at uC whose precise configuration depends on the sign of ∆ (Fig. 3.1

for characteristic examples for both signs of ∆). For D > 1, branch points also break

up into smooth surfaces but do so, presumably, in a more complex way that depends

on the signature of Qnm (see Ref. [1] for an example in origami).

As an illustrative example, we turn to the well-studied four-bar linkage shown

in Fig. 3.2a. The four-bar linkage is constructed from two rotors of length L1 and

L3 pinned at one end and joined at the other by a bar of length L2. The system

configuration can be parameterized as a point in four dimensions with coordinates

(x1, y1, x2, y2), and the configuration space is one dimensional. When L1 = L2 = L3 =
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a, there are three branch points each having a single self stress and two zero modes.

The configuration space is shown in Fig. 3.2b in terms of the two rotor angles θ1

and θ2. By slightly increasing the length of L2 > a, the branch points all split into

a pair of hyperbolas oriented opposite each other in the quadrants spanned by the

configuration space when L2 = a. On the other hand, L2 < a results in the branch

point splitting into a pair of hyperbolas in the other pair of quadrants. As a result of

switching the orientation of the hyperbolas, the configuration space goes from having

a single component for L2 > a to two disconnected components when L2 < a.

Figure 3.2. (a) Schematic of the planar, four-bar linkage with variables defined. (b)
Projection of the configuration space of the two rotor mechanism with L1 = L2 =
L3 = a projected into (θ1, θ2) plane (black). This choice of lengths has three branch-
like critical points. Deforming the length of L2 results in a smooth configuration space
with either one (red) or two (blue) components. The arrows indicate the direction of
the tangent form ti(u) from Eq. (3.36).

3.2 Controlling configuration space topology

We noted earlier that the topology of the configuration space cannot change with-

out passing through an intermediate critical point. If it could, this would contradict

the notion that the configuration space is smooth when the Jacobian Jαi is full rank.

This fact and the analysis of Sec. 3.1 suggests a method for controlling the topology
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of the configuration space: (1) find a set of lengths Lα for which the configuration

space has many branch points, and (2) perturb the lengths, Lα → Lα + δLα, such

that the branch points split into smooth hyperbolas in the desired configuration. For

the four bar linkage in Fig. 3.2b, for example, if we could control how each of the

three branch points split independently, we would have complete control over how

the configuration space winds around the torus defined by the angles (θ1, θ2) as well

as the number of components in the configuration space.

3.2.1 Properties of the tangent form

Before moving on to linkages, first we will introduce a new formalism that we

call the tangent form. It takes a set of constraints as a function of the relevant

coordinates of the system and finds the tangent to the constraints, allowing us in

the case of mechanisms to use the bar lengths as constraints rather than specific

values. We will go into more detail on using this formalism for mechanisms in the

next section, but for now we will introduce it generally.

For a set of N constraints f1(u), · · · , fN(u) where u are the relevant coordinates

of the system, the tangent form is defined as

ti1···iD(u) =
∑
j1···jN

ϵi1···iDj1···jN ∂f1(u)

∂uj1
· · · ∂fN(u)

∂ujN
, (3.24)

where ϵi1···iDj1···jN is the antisymmetric Levi-Civita tensor. Next we compute some

simple properties of the tangent form.

A. The tangent form is divergence free. This can be seen from the following

calculation,
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∂ti1···iD(u)

∂ui1
=

∑
j1···jN

ϵi1···iDj1···jN ∂2f1(u)

∂ui1∂uj1
· · · ∂fN(u)

∂ujN
(3.25)

· · · +
∑
j1···jN

ϵi1···iDj1···jN ∂f1(u)

∂uj1
· · · ∂

∂ui1

∂fN(u)

∂ujN

= 0

where each term is zero due to the antisymmetry of the Levi-Civita tensor and

the symmetry of partial derivatives.

B. For one degree of freedom mechanisms, the tangent form is a vector

tangent to the configuration space away from critical points. First, we

note that ∑
i1

∂fα
∂ui1

ti1···iD(u(s)) = 0 (3.26)

which implies that ∂fα
∂ui
ti(u(s)) = 0. Now suppose that u(s) traces the configu-

ration space in a region where ti1···iD(u(s)) is nonzero. Then

∑
i

∂fα(u(s))

∂ui

∂ui(s)

∂s
= 0. (3.27)

Hence the configuration space is perpendicular to all of the ∂fα(u)/∂ui but

ti(u) is also perpendicular to all of them. Hence, they must be parallel. The

more general case for mechanisms with more than one degree of freedom is more

subtle but can also be computed.

C. The tangent form is zero at u if and only if u is a critical point.

Ultimately, this is a consequence of the fact that the components of ti1···iD(u)

are the E × E minors of the Jacobian of ℓ2(u). Nevertheless, we demonstrate

it here for completeness. There are E functions

{
∂f1(u)

∂ui
, · · · , ∂fE(u)

∂ui

}
. (3.28)
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Since the zero modes are defined by the nonzero solutions, δui of

∑
i

∂fα(u)

∂ui
δui = 0 (3.29)

the zero modes are in the orthogonal complement of the span of the vectors

∂fα(u)/∂ui. At a critical point, there must be additional zero modes and so

the ∂fα(u)/∂ui span a lower dimensional space and can no longer be linearly

independent. Without loss of generality, we can take it to be α = 1 so

∂f1(u)

∂ui
=
∑
β>1

cα
∂fβ(u)

∂ui
. (3.30)

Substituting this into the definition of ti1···iD(u) and using Eq. (3.26), we im-

mediately obtain ti1···iD(u) = 0.

Similarly, if ti1···iD(u) = 0 then the ∂fα(u)/∂ui cannot all be linearly indepen-

dent. One way to do see this is to choose D vectors vn orthogonal to the

∂fα(u)/∂ui for all α as well as to each other. Then

v1,i1 · · · vD,iDti1···iD(u) = det



vT
1

...

vT
D

∇f1(u)T
...

∇fE(u)T


= 0, (3.31)

where ∇ is the gradient in u and T denotes the transpose. Since the vn are

orthogonal to the other vectors one of the ∇fα(u) must be linearly dependent

on the rest of them. We immediately obtain that there is at least one additional

linear independent zero mode.
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D. Self stresses are orthogonal to the critical value set. The critical set is

defined as the set of points uC such that ti1···iD(uC) = 0. The critical value set

is the image of the critical set under the map fα(uC). Suppose that uC(s) is

a one-parameter path of points in a smooth portion of the critical set. Then

consider its image Fα(s),

fα(uC(s)) = Fα(s). (3.32)

If the derivative ∂Fα(s)/∂s is nonzero then it is tangent to the critical value

set. Therefore,

∂Fα(s)

∂s
=
∑
i

∂fα(uC(s))

∂ui

∂uC,i(s)

∂s
. (3.33)

If σα is a self stress then
∑

α σα∂fα/∂uI = 0. Therefore we obtain

∑
α

σα
∂Fα(s)

∂s
= 0. (3.34)

Since this is true for any path in the critical value set, it follows that all self

stresses are orthogonal to the critical value set.

Though the converse of this is not true – some vectors normal to the critical

value set may not be self stresses – if the critical value set has codimension one

then there can be only one self stress and the normal vector of the critical value

set necessarily corresponds to that self stress.

E. Orientation The tangent form ti1···iD(u) carries additional useful geometri-

cal information about the mechanism at regular (non-critical) configurations.

When D = 0, t(u) is a scalar whose sign was used to compute a topological

index in periodic mechanisms [94]. Beyond this, it endows the configuration

space with a natural orientation in any dimension. At a regular point on the

configuration space of a mechanism, x, ti1···iD(x)dx
i1 ∧ · · · ∧ dxiD is a differen-
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tial form which provides a local orientation: for any basis of tangent vectors

{ζ1,j, · · · , ζD,j},

sgn
∑
i1···iD

ζ1,i1 · · · ζD,iDti1···iD(u) = ±1 (3.35)

However, note that this local orientation is only defined up to an overall sign,

since we can always take one of the constraint functions to have the opposite

sign.

Though we do not make a great deal of use of it in this paper, it is worth noting

that if one is able to find two regions in which ti1···iD(u) has opposite signs, there

must be a boundary between those regions for which ti1···iD(u) vanishes. That is, in

principle we can use the tangent form to verify the existence of critical configurations.

3.2.2 The geometry of the critical configuration set

Now we can apply this to linkages. Since we are interested in understanding how

to choose edge lengths, Lα, to control the topology of the configuration space of a

linkage, we will consider all possible mechanisms that have the same connectivity

but arbitrary values of Lα. Adapting our tangent form to this set of constraints and

notation, we arrive at

ti1···iD(u) =
∑
j1···jE

ϵi1···iDj1···jE
∂ℓ21(u)

∂uj1
· · · ∂ℓ

2
E(u)

∂ujE
. (3.36)

Per item C in Sec. 3.2.1, ti1···iD(u) = 0 if and only if u is a critical point. An

alternative explanation for this is because the components of ti1···iD are the E × E

minors of the Jacobian matrix. When these all vanish the Jacobian matrix has lower

rank. This is of note in the case of linkages because the Jacobian is traditionally used

to find critical points in mechanisms. Thus, Eq. (3.36) identifies all possible critical

points in mechanisms sharing the same connectivity. Versions of Eq. (3.36) have been

studied to identify singularities in robot manipulators [100–104].
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The tangent form allows us to define the critical configuration set as the locus of

points for which

ti1···iD(u) = 0. (3.37)

In many practical cases, and all of the cases we consider in this paper, it is possible

to solve Eq. (3.37) analytically. Note however, that the solutions to Eq. (3.37) only

provide the configurations where the Jacobian of the mechanism is not full rank.

Therefore, some of the solutions may not satisfy all of our assumptions from Sec.

3.1.2. We conjecture that our assumptions are valid on all but a set of measure zero

of the critical configuration set but are not aware of or able to produce a proof of

this.

To help understand the geometry of the critical configuration set, we return to our

previous example, the planar, four-bar linkage from Fig. 3.2a. In this example, D = 1

but M = 4 since the mechanism configurations are specified by points (x1, y1, x2, y2).

If the two pinned vertices are located at (0, 0) and (a, 0) and we restrict Lα > 0 (so no

bars have zero length), this critical set is described by the two-dimensional manifold

of configurations in which all vertices are co-linear, y1 = y2 = 0.

For one degree of freedom mechanisms (D = 1), Eq. (3.36) provides another way

of understanding how the configuration space topology changes with changing lengths

near a critical point uC . In that case, ti(u) is a vector field everywhere tangent to

the zero modes of the mechanism, which follows from the simple fact that it is always

orthogonal to the constraints (Sec. 3.2.1 item B). Thus ti(u) can be thought of as

a local vector field whose integral curves trace out curves of constant Lα. That is,

when ti(u) ̸= 0, curves of constant Lα can be parameterized by the solutions

dui(s)

ds
= ti[u(s)]. (3.38)

We show this in Fig. 3.2b using arrows pointing along ti projected onto the rotor

angles. Because ti(u) is divergence-free (Sec. 3.2.1 item A), each branch point has
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two arrows pointing in and two arrows pointing out. Note that ti(u) provides a

way to think about the mechanism configuration space as a dynamical system. This

dynamical system should not be confused with the motions of the physical mechanism,

however, which can move either parallel or antiparallel to ti(u) equally well. This is

also distinct from the dynamical system approach obtained for a periodic (or nearly

periodic) mechanism as an iterated map [105, 106].

Eq. (3.38) also provides an intuitive way to understand the hyperbolas formed

by the configuration space near branch points that arise from Eq (3.23). We project

ti(u) near uC onto the plane spanned by the two zero modes, ζ1 and ζ2. Since ti(u) is

tangent to the configuration spaces, we expect the trajectories approach this plane as

they approach uC . After projection, we obtain a 2D vector field whose components

are,

Tn(c1, c2) =
∑
i

ζn,iti(uC + c1ζ1 + c2ζ2). (3.39)

The integral curves of Tn then trace the projection of the configuration space onto

the plane spanned by the zero modes near the branch point.

In this projection, the constant Lα trajectories are quite limited in how they can

appear. We know that Tn(0, 0) = 0, but because we assume branch points are isolated,

the projected tangent vector Tn(c1, c2) ̸= 0 elsewhere. Now suppose that the critical

point is a branch point. The projection of the configuration space on the plane of

zero modes will have the form of a hyperbolic fixed point, with a stable and unstable

manifold associated with the configuration space branches that solve Eq. (3.7) (Fig.

3.1). Thus, we would generically expect the trajectories near the branch point to

appear hyperbolic when projected onto the plane of zero modes. Though we do not

work with second order rigid points here, these considerations also limit what the

trajectories do near such rigid points [99].
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Figure 3.3. (a) The critical value set for the four bar linkage, plotted in terms
of (L1, L2, L3) in units of a. The points c-e show the locations of the configuration
spaces in (c-e). (b) shows a different view of the surface with a cutout on the L1 = 0
plane showing the shape of one of the enclosed volumes. There is one critical point
in the configuration space along any smooth portion of the set (e). Self intersecting
lines indicate choices with two critical points (d) and the triply self intersection point
at (L1, L2, L3) = (a, a, a) (c) is the unique choice with three critical points. (c-e)
The configuration spaces corresponding to the points in (a), showing how to split
different branch points. (f) shows the volumes labeled with their branch point types,
corresponding to the standard engineering classifications.
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3.2.3 The geometry of the critical value set

For any point uC in the critical configuration set, ℓ2α(uC) gives its corresponding

critical value: the set of squared bar lengths that would be required for the system

to be in configuration uC . We will call the image of the critical configuration set

in the space of squared lengths the critical value set. We again illustrate with the

four-bar linkage: the set of critical values is a self-intersecting surface (L2
1, L

2
2, L

2
3) =

(x21, (x2 − x1)
2, (a − x2)

2). In Fig. 3.3, we show the critical value set in terms of

(L1, L2, L3) rather than the squared lengths to make the surface slightly more compact

and easier to understand visually. Note that we have included additional leaves on

either the L1 = 0, L2 = 0, or L3 = 0 plane which happen to contain only rigid critical

points; this is a natural consequence of the fact that any mechanism with two pinned

vertices and one edge having zero length must always be rigid.

Were we to choose the Lα to lie anywhere along the portion of the critical value

set in Fig. 3.3, the resulting linkage would have one or more critical points. It is

also apparent that Fig. 3.3 self intersects. At such a self-intersection, there will be

multiple critical configurations, uC , corresponding to the same choices of edge lengths,

Lα. Thus, if we choose the Lα along a line of self-intersection, there are two branch

points (Fig. 3.3d). If we choose Lα along a smooth portion of the critical value set,

there is only one critical point (Fig. 3.3e). Interestingly, Fig. 3.3 shows that at

(L1, L2, L3) = (a, a, a) three individual sheets self intersect. Therefore we expect that

that choice of Lα is the unique place where three branch points coincide (Fig 3.3c).

An animation demonstrating the branch splitting for the 4-bar linkage is included in

the Supplementary Material of Ref. [83].

The critical value set contains more information than just the location of critical

values. If the critical value set is locally a smooth manifold, the self-stresses at such a

critical point are always normal to the critical values (see Sec. 3.2.1 item D). Though

the converse is not generally true – normals need not also be self stresses – if the

94



critical value set is a manifold of codimension one it must necessarily coincide with

the single self stress at that point and there can be no other self stresses. We also

see that splitting a branch point amounts to choosing δLα transverse to the critical

value set. On one side of the surface in Fig. 3.3, a branch point splits into one pair of

smooth branches; on the other side it splits into the opposite pair. This endows the

calculation of how branch points split under small perturbations of the lengths with

a concise geometrical meaning.

With this understanding of the critical value set, we can classify the distinct con-

figuration spaces of the four-bar linkage in terms of the 23 = 8 individual volumes

enclosed by the surface in Fig. 3.3. For completeness, we note that these volumes

correspond to standard results for the four-bar linkage found in the engineering liter-

ature, which can be classified by the sign of three functions [107]

τ1 = a− L1 + L2 − L3

τ2 = a− L1 − L2 + L3

τ3 = L2 + L3 − a− L1

(3.40)

derived from limits on the angles θ1 and θ2. When one of the τi are equal to zero, the

configuration space contains the corresponding critical point from Fig. 3.2b. Thus,the

critical value set in Fig. 3.3 agrees with the surfaces computed in Ref. [108, 109].

The regions are labeled in Fig. 3f.

3.2.4 Three rotor system

Finally, in this section we will use these considerations to describe a design pro-

cedure for configuration space topology. To be concrete, it is helpful to consider a

specific example, the three-rotor linkage in Fig. 3.4a. The three rotor linkage has

three pinned joints attached to three bars of length r1, r2, and r3 (the rotors) and

whose opposite ends are joined by bars of length L1 and L2. Therefore, u is a six
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component vector and the five bars provide constraints, ℓ2α(u) = L2
α, that limit the

configuration space to a single degree of freedom generically.

Since the mechanism has five bars, it is difficult to visualize the critical set and

critical value set. Nevertheless, we can still gain insight by restricting ourselves to the

cross-section ofM for which r1 = r2 = r3 = a. We plot the cross section of the critical

value set with the (L1, L2) plane in Fig. 3.4b. While this is a cross-section, the open

regions in Fig. 3.4b still correspond to structures with different configuration space

topologies, with the transitions from one distinct region to another through the critical

value set occurring through a branch point. However, it is still a cross section of a

higher dimensional space and care must be taken when interpreting the intersections

of the critical value set. Choosing L1 = L2 = a leads to a configuration space with

twelve interconnected branch points, though it appears that only two lines meet at

L1 = L2 = a in Fig. 3.4b. The proliferation of branch points in this example can

be understood from the fact that this linkage contains two pairs of four-bar linkages.

Choosing all bars to have length a, therefore, maximizes the branch points of each

individual sub-mechanism.

To identify these branch points, we solve ti(u) = 0 subject to the length constraints

ℓ2α(u) = L2
α using Mathematica (Wolfram). At each critical point, we then solve Eq.

(3.7) to obtain the tangents to the configuration space. The trajectories in Fig.

3.4c are obtained by first stepping along one of the obtained tangent vectors, then

stepping along the configuration space in the direction indicated by ti(u) with a step

size proportional to its magnitude. The step size is adjusted to maintain the edge

lengths to less than one percent strain. Finally, the integration for each segment is

terminated when the magnitude of ti(u) falls below a critical threshold, indicating that

the integration has reached a point close to the next critical point. Once terminated,

we minimize
∑

i t
2
i with respect to the configuration to verify that the integration has
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found the next branch point. The directions of integration inherited from ti(u) are

indicated by the arrows in Fig. 3.4c.

Note, however, that the branch points shown in Fig. 3.4c are not all independent.

Projecting the configuration space onto the θ1-θ2 plane must give the configuration

space of the equivalent four-bar linkage found by ignoring the third rotor. In con-

trast, removing the first rotor is equivalent to the projection onto the θ3-θ2 plane.

Consequently, any branch points that overlap in one of these two projections must,

after a deformation, still be identical in projection and such overlapping branches

appear or disappear together. From Fig. 3.4, this implies that branch points are

paired {(1, 2), (3, 5), (4, 6), (7, 8), (9, 11), (10, 12)}.

Figure 3.4. (a) Schematic of the planar, three rotor linkage with variables defined.
(b) A cross-section of the critical value set for r1 = r2 = r3 = a. (c) The 3D
configuration space of the three rotor linkage with r1 = r2 = r3 = L13 = L23 = a,
corresponding to the red (gray) point in (b), contains twelve individual critical points.
Arrows indicate the orientation of each configuration space segment.
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We finally consider how to “program” the configuration space by adjusting the

lengths of r1, L1 and L2 away from their critical values. For each critical point, we

plot the domain over which ∆ > 0 in Fig 3.5 as a table for each branch point. We

next choose lengths according to the red (light gray) dot in Fig. 3.5a, which increases

r1 at constant L1 and L2. The resulting configuration space is shown as the red (light

gray) curve in Fig. 3.5b. Note that the red (light gray) point was chosen so that

the configuration space is smooth but passes near the branch points. If the red (light

gray) curve has the topology we want already, we can stop now. If we instead wanted

to switch the sign of the branch point pair (4, 6) to obtain a particular configuration

space topology. From Fig. 3.5a we see that the three lengths (r1, L1, L2) distinguish

this pair of branch points from the rest. Inspection of Fig. 3.5a suggests an additional

change in L1 would switch the way only those two branch points split. The result

of this perturbation is the blue (dark gray) curve in Fig. 3.5b. Note that Fig. 3.5b

shows that, since each branch point has one self stress, the hyperbolas approach the

plane spanned by the two zero modes as expected.

If we limit ourselves to perturbing only the bar lengths (r1, L1, L2), Fig. 3.5a

shows even more redundancy in how the branch points split than expected from our

previous analysis that branch points split in pairs. That is, just three control lengths

are not sufficient to obtain full control over the way the configuration space splits

at the branch points. While it would be difficult to plot Fig. 3.5 using all five bar

lengths, there seems to be no mathematical obstacle to generalizing the analysis to

distinguish all six pairs of branch points independently.

3.3 Gating the Kane-Lubensky Chain

We finally apply our design methodology to design a mechanism that gates the

propagation of a soliton in the Kane-Lubensky (KL) chain [21]. The KL chain is a

topologically polarized lattice of rotors that has a zero mode on either the left edge
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Figure 3.5. A schematic of programming the three rotor system. (a) A map showing
how changing the length of r1, L1, and L2 leads to different ways to split the branch
points from Fig. 3.4. The shaded and unshaded regions correspond to the two ways
for the branch points to split. The red (light gray) dot, corresponding to a change in
length r1 = 1.05a, leads to the red (light gray) curve in (b). In order to change the
topology of the configuration space by changing how branch points 4 and 6 split, an
additional change to L1 = 0.9a can be effected, shown by the blue (dark gray) dot.
The new configuration space is shown in (b) as a blue (dark gray) curve.
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or the right edge, depending on the choice of bar lengths. It was later discovered

that the KL chain actually supported two distinct families of propagating solitons,

the “flipper” and the “spinner” [93], that allowed a continuous pathway between the

left and right edge modes. The spinner soliton, however, is topologically protected

by the shape of the configuration space [93, 94]. In this section, we modify a single

unit cell of a spinner-supporting KL chain with rotor length r = 3a/2 and ℓ = 3a/2

by adding an additional two bars and one pinned vertex (Fig. 3.6a).

In the spinner phase of the KL chain, a full cycle consists of the soliton traveling

back and forth across the chain once, and the KL chain returning to its initial con-

figuration. After one full cycle, each rotor in the KL chain has rotated by 2π, with

each rotor rotating by π each time the soliton passes. Here, we will show that these

additional components can act as a gate by opening a gap in the full 2π rotation of

the KL chain rotors, thereby obstructing the passage of the soliton.

In addition to the length of the two additional bars, L1 and L2, we also allow the

location of the pinned vertex to be set an arbitrary distance D from the KL chain.

In order to allow for different positions of the third pinned vertex, we augment u to

include the y coordinate of the 3rd vertex but also augment the constraint functions

to pin that vertex’s y position. Thus, we use a constraint map

fα(u) =



ℓ21(u)

...

ℓ2E(u)

D2(u)


, (3.41)

where D(u) is the function that determines the distance between pinned vertex 3 and

2. Thus, the generalized constraints fα(u) is a smooth function whose solution allows

us to pin vertex 3 by setting the length D in Fig. 3.6a to an arbitrary value.
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Using this generalized formulation, we can compute a cross section of the critical

value set with r = ℓ = 3a/2 and L1 = 2a (Fig. 3.6b). Fig. 3.6b shows that there are

six distinct regions separated by critical points. The labels on each region correspond

to the sign of τ1, τ2, and τ3 from Eq. 3.40 with respect to the four-bar linkage between

vertices two and three. For concreteness, we choose L2 = 2a and D = 5a/2, on the

boundary between the blue (+,+,-) and red (+,+,+) regions, as the initial lengths

for our gate, resulting in a configuration space with two critical points (Fig. 3.6d).

When D < 5a/2, the system is in the red (light gray) regime and when D > 5a/2

it is in the blue (dark gray) regime. This choice determines whether the KL chain

rotors wind around fully or not. Note that the projection of the configuration space

in the θ1-θ2 plane (Fig. 5d) never changes shape, but that the change in how the

branch points split into hyperbolas determines whether the full range of angles is

accessible to the system or not. To verify that the red (light gray) and blue (dark

gray) regimes correspond to ungated and gated behavior of the KL chain device, we

use the mechanisms package in Mathematica (Wolfram) to calculate the infinitesimal

motions of the linkage and animate the those motions. As shown in Fig. 3.7, changing

D controls whether or not the soliton can complete a full cycle along the KL chain.

To test our design, we constructed the gated KL chain in Fig. 3.6a numerically

and constructed a single unit cell and gate from LEGO™ pieces. The design of the

LEGO gate was chosen to be compatible with the LEGO realization of a KL chain

shown in [93]. When testing different examples, we pushed on the various bars and

rotors in the device to move it through all possible configurations. We tracked how

the rotors 1 and 2 moved to determine if the gate was preventing a soliton from

propagating. Fig. 3.7 shows a comparison between the simulated and LEGO chains

with both D larger and smaller than 5a/2. Movies of both chains in the gated and

Availabe on https://github.com/cdsantan/mechanisms
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Figure 3.6. (a) A Kane-Lubensky chain with a gating mechanism attached. The
gating state is controlled by the length D; the red (light gray) bar and the blue (dark
gray) bar correspond to an ungated and gated state, respectively. (b) A cross-section
of the critical set with r = ℓ = 3a/2 and L1 = 2a. There is a critical point at L2 = 2a
and D = 5a/2. (c) At the critical point, changing the position of the third rotor or
the lengths of two beams can switch the type of branch split (gray and transparent
regions). The red (light gray) point corresponds to branch splitting such that the
mechanism is ungated, while the blue (dark gray) point demonstrates that changing
D can switch to a gated configuration. (d) The configuration space at and near
the critical point as a function of the three rotor angles, and the projection of that
configuration space onto the θ1-θ2 plane. The gap in the blue (dark gray) projection
shows that the full range of angles is not accessible in that configuration, and thus
the chain is gated.
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ungated states are provided in the Supplementary Material of Ref[83]. In the case of

an ungated chain, the soliton propagates from one end of the chain to the other (and

back); for a gated chain the soliton propagates up to the location of the gate but is

reflected.

Interestingly, the size of the gap in the projection of the blue (dark gray), gated

configuration space in Fig. 3.6d is important for determining how the soliton is

reflected from the gate. For very small gaps, which occurs when D is close to its

critical value, the soliton can, temporarily, pass the gate but is, ultimately, prevented

from completing an entire cycle. For larger gaps, when D is farther from its critical

value, the soliton appears to reflect from the gate. From Fig. 3.6c, the same effect

can be achieved by changing the size of L2 instead of D, since the plane dividing the

gray and transparent regions, which correspond to the two ways to split the branch,

is slightly angled in that direction. Movies of both simulated and LEGO chains that

switch between the gated and ungated states by changing L2 are also provided in the

Supplementary Material of Ref [83].

Our analysis shows that the presence of a gap in the (θ1, θ2) plane blocks soliton

propagation. In the example of Fig. 3.6a, changing the length D moves the device

from from the gated (blue, (+,+,-)) region to the ungated (red, (+,+,+)) region of Fig.

3.6b. However, this is not the only pair of regions that produces a functioning gate.

Indeed, the regions indicated in Fig. 3.6b as (+, +, +) (red) and (-, -, +) (yellow)

are ungated with respect to propagation of the soliton, whereas the remaining regions

are gated. Numerical experiments further show that if we had chosen L1 to change

length as well, we would have found even more regions of both gated and ungated

behavior as we extended Fig. 3.6b. It becomes clear that there is a great deal of

flexibility when choosing D, L1, and L2 to produce the desired dynamics of the final

KL chain and gate system.
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Figure 3.7. Top row (red): Ungated device made from LEGOs with the corre-
sponding simulation. This device can continue rotating and return back to its initial
position, as indicated by the arrow. Bottom row (blue): Gated device made from
LEGOs with the corresponding simulation. This device gets stuck in the configura-
tion shown in the last frame and is forced to reverse direction in order to continue
moving.

3.4 Discussion

In this paper, we have described a procedure to design the topology of the config-

uration space of mechanical linkage. The idea rests on the ability to identify critical

points and, especially, branch points – singular configurations of a linkage in which

several pathways meet. By analyzing the shape of the configuration space near these

branch points, we are able to design perturbations to the lengths and positions of a

fixed set of vertices that change the shape of the topology of the configuration space

in well-defined ways. As a demonstration, we used our techniques to design a gate for

the propagation of the spinner soliton in a Kane-Lubensky chain. While we applied

our approach to linkages with fixed edge length, there is no reason they would not

also apply more generally to other systems with holonomic constraints.

Because the design procedure works by controlling configuration space topology,

the resulting mechanisms should be quite robust to fabrication errors and the toler-
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ance of the joints, so long as one chooses lengths Lα sufficiently far from the critical

value set.

It would be interesting to extend this work in a few further directions. First, when

bars are no longer rigid but elastic, there arises the possibility of a snap through

transition between the different hyperbolas on either side of a branch point. Indeed,

tuning various branches close to or farther from a branch point could be used to

tune the ease of initiating a snap through transition. This could potentially lead to

mechanical structures and mechanical metamaterials whose mechanical response can

be reprogrammed in situ.

A second interesting extension would be to consider mechanisms built from re-

sponsive materials that are sensitive to external stimuli. In that case, the dynamic

increase or decrease in the lengths of bars could be used to drive the pathway of a

mechanism in an environmentally dependent manner. This could also be affected if

the positions of certain pinned vertices could be made to depend on the external envi-

ronment or the state of a second input mechanism. This would enable the realization

of simple mechanical logic that is robust to some damage because it relies only on

the topology of a configuration space [110, 111].

Finally, we note that our design principle exploits the fact that the configuration

space topology can only change at critical points – configurations where the Jacobian

of the constraints fails to be full rank. Our approach is somewhat reminiscent of Morse

theory, in which the extrema of a scalar function can be related to the topology of the

space on which that function is defined [112]. Morse theory has been used to study

the configuration spaces of spherical (and other) linkages [96, 97], but we leave it to

future work to make this connection more precise.
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CHAPTER 4

CONCLUSIONS AND OUTLOOK

In this dissertation we have provided additional tools for our self-actuating, shape-

changing, programmable materials design toolbox. We focused on origami-inspired

materials in the first two chapters before moving on to linkages in the last chapter.

The tools we presented are only steps in the realization of these materials but can

also give us an understanding of why problems arise in design and more generally of

the underlying physics across types of materials.

In Chapter 1, we extended existing models of origami-like materials to encompass

more than origami with rigid faces and folds that start from a flat sheet of material.

We started with adding Gaussian curvature to single vertices and saw that this results

in the highly branched configurations spaces characteristic of origami either splitting

or merging at the flat state for positive and negative Gaussian curvature, respectively.

Next, we expanded the spring model for origami to include elastic components, in the

form of both stretching and bending of edges and faces. We saw that the energy

landscapes for these origami then consist of deep trenches in place of the branches

and observed how changing the programmed angles between branches creates and

annihilates minimia near the flat state. Since experimental realizations have physical

restrictions on how they can be designed and programmed, these created minima play

an important role in both understanding why misfolding occurs and how to prevent

it.

After simulating elastic origami folding, we were able to show that the affine

deformations actually help origami fold correctly, rather than preventing folding to
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the target configuration. This can be understood as the origami being able to stretch

or bend to pull itself out of one of the deep branch trenches and into another. We

had already discussed that the splitting of branches by positive Gaussian curvature

could be utilized as a tool to prevent misfolding, but this additional perspective on

elastic origami suggests that the joining of branches via negative Gaussian curvature

may also be beneficial. By further joining the branches it may be easier for the

origami to travel between branches in order to find the global minima. Considering

that Gaussian curvature can be induced at an origami vertex by either lengthening or

shortening the equilibrium lengths of the vertex’s adjoining folds and that this is itself

an affine deformation, a more careful study of the interplay of these two phenomena

would be a direction for future work.

In Chapter 2 we moved on to two seemingly diverging problems: origami that is

forced via torques on the faces rather than the folds and minimal forcing sets. For

the face-torqued origami, we developed a matrix equation for converting the torques

to forces on the vertices and analyzed this matrix and how to use it to design these

origami. Along the way, however, we saw a new way to account for isometries in

non-triangular origami faces and the possibility of bending them, which can be tied

in to the face bending allowed in the elastic origami of Chapter 1. For minimal forcing

sets, we presented an algorithm for finding an upper bound on the minimal forcing

set for arbitrary origami which we term a maximal minimal forcing set. By finding a

condition for an arbitrary vertex, that all but two folds need to be assigned for any

vertex, and converting the origami to a graph, we were able to reduce the problem

to that of finding a 2-subgraph across the origami. When conducting simulations to

verify that our generated forcing sets truly forced the origami, we realized that this

problem can also be connected to the conclusion we reached for elastic origami. If we

know a forcing set, then assigning only those folds and setting the remaining folds

to be weak allows the weak folds to do whatever is required to reach the target fold
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configuration. Our simulation results for minimally programmed origami suggest that

this may be another tool to prevent misfolding.

Taking Chapters 1 and 2 altogether, we have a full toolbox for designing a given

origami structure. The exact order in which to apply the various tools depends to

some extent on the physical realization of the origami. Almost every implementation

has some form of limitation, whether it’s the precision with which target angles can

be programmed to not being able to set a fold to zero to not having independent

methods for setting the target fold angle and fold stiffnesses. We will try to address

some of these limitations while outlining a method for designing a robust origami. To

start, the repeated energy minimization method used in both chapters gives us a way

to check the number of possible minima and their relative basin of attraction sizes

for a set of target angles, which in turn gives a way to estimate the robustness of the

system. If either many minima are seen or the basin of attraction appears small for

the desired configuration target, then further engineering is required. If stiffening or

weakening faces is possible, we can then repeat this exploration of possible minima

with attainable values of face fold stiffnesses, compare the relative number of minima

and their basin sizes, and choose the version with the fewest number of minima and

largest basin size. If the system can have zero fold angle folds, then we can find

the maximal minimal forcing set and test if programming only these folds results

increases robustness. If the system can’t be programmed directly to the desired

target angles then we can probe how different possible cases near the target angles

affect the robustness. Regardless, using some to all of these cases can guide us to the

best choice of parameters for a given origami.

Turning back to linkages, in Chapter 3 explored how to design a linkage’s global,

qualitative motions rather than their exact motions. We presented a new formalism

for understanding and visualizing constraints by focusing instead on the tangents

to these constraints. This allowed us to calculate the entire critical value surfaces,
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or those points where the qualitative motion of a linkage changes, i.e. from a rigid

structure to one with critical points. This new topological perspective on critical

points opens up an entirely new set of techniques to understand how changes in bar

lengths change the motion. While we stuck to linkages for the scope of this thesis, the

tangent formalism can be generalized to any constraint equations. The critical value

surfaces, then, can be understood as a topological description of bifurcations. Much,

much more work can (and needs to) be done to fully understand this interplay.
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APPENDIX

MATHEMATICA CODE AND DOCUMENTATION

This appendix contains the code and light documentation for the Mathematica

functions developed as tools for the projects within this thesis. All of the functions

utilize the mechanisms package, which can (hopefully, still) be found on GitHub

at https://github.com/cdsantan/mechanisms. The version used for each set of

functions is noted at the start of each appendix section. The package introduces

functions for generating mechanisms and origami, which are treated by Mathematica

as a collection of Cell objects. We will refer to the entire set of Cell objects that

describe a mechanism as a mechanism object throughout this appendix.

A.1 Code for Chapter 2

The Mathematica code in this section was written using version 0.92 of the

mechanisms package.

A.1.1 Code for Face-Forced Origami

This section contains the functions for finding the face-vertex connectivity matrix,

which relates the torques on the faces of an origami in the flat state to vertical forces on

the vertices, and for identifying forces on the vertices that would bend non-triangular

faces.

A.1.1.1 faceCoord[]

First, we need to be able to find the coordinate system where each face has a

coordinate system with its origin at the face’s center of mass, found using the built-in
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Mathematica function RegionCentroid[]. Figs. A.1 and A.2 show two version of the

code. Respectively, they take an origami object and a list of faces or just the origami

object and return the coordinate system in the form (((x1,1, y1,1), (x1,2, y1,2), · · · ), · · · )

where (xi,j, yi,j) are the x− y coordinates of the jth vertex from the center of the ith

face. We leave the form example intentionally vague to show that the faces can have

any number of edges and the first and second face are not necessarily connected at a

vertex.

Figure A.1. Mathematica function for finding the face coordinates given a mecha-
nism and a set of faces.

Figure A.2. Mathematica function for finding the face coordinates given only a
mechanism.
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A.1.1.2 connectivityMatrix[]

Now, we can use faceCoord[] to find the face-vertex connectivity matrix C,

which can be used to relate the torques on the face of an origami, τ⃗ , to the forces

on the edges, f⃗ , with the relationship τ⃗ = Cf⃗ , as explained in more depth in Sec

2.1.1. To do so, we use the geometry of the origami embedded in the face data for an

origami mechanism to construct the matrix. The function to do so can be seen in Fig.

A.3. It takes a mechanism object and returns the matrix. From here, the built-in

Mathematica function PseudoInverse[] will return the Moore-Penrose inverse and

can be used for further calculations for the origami.

Figure A.3. Mathematica function for finding the face-vertex connectivity matrix
of Sec. 2.1.1

A.1.1.3 bendingForces[]

Finally, we can also use faceCoord[] to find forces that would bend non-triangular

faces as explained in detail in 2.1.2. We can also use these forces to compute a

projection operator, which acting on a force vector will project it to one that does

not bend any faces. This is done using PB = IV −MB(M
T
BMB)

−1MT
B , although note

that in the Mathematica function the transposes are swapped because Mathematica

treats vectors as rows rather than columns. Fig. A.4 shows this function, which takes
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a mechanism object and returns the forces as vectors and the projection matrix as a

matrix.

Figure A.4. Mathematica function for finding vertical forces that result in non-
tringular faces bending.

A.1.2 Code for Finding Maximal Minimum Forcing Sets and Simulations

This section contains the functions used to find the maximal minimal forcing sets

and run the simulations in Sec 2.2.

A.1.2.1 maxMinForcingSet[]

This subsection covers the function for finding the maximal minimum forcing

set. The function takes an origami object and returns the set of unassigned folds.

We start by removing the original boundary vertices of the origami, separating the

edges that originally attached to these vertices and giving these edges new ending

vertices. The code for this can be seen in Fig. A.5. Next, we expand the internal

vertices by removing the original vertices and attaching new vertices to the ends of

the edges that originally connected at the old vertex. We then add d − 2 additional

vertices, where d is the original degree of the vertex. Then we add in the edges to

create a bipartite graph with the added vertices and original edges. We then use the
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Figure A.5. Part of the Mathematica function for finding the maximal minimal
forcing set. This portion

built-in Mathematica function FindIndependentEdgeSet[] which finds a maximum

matching on a given graph using a blossom algorithm. These steps can be seen in Fig.

A.6. For the final step, we need to return the found matching to the original vertex

Figure A.6. Part of the Mathematica function for finding the maximal minimal
forcing set. This portion

numbering of the origami. We do this by reversing the original steps and deleting the

duplicate edges generated. The code for this process can be seen in Fig. A.7

A.1.2.2 programmableAngles[]

Before we can move on to the simulation functions, we need to be able to identify

target angles on a branch. To do so, we will generate a set of highly perturbed vertex

positions with a distribution width of the smallest fold. After minimizing the energy
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Figure A.7. Part of the Mathematica function for finding the maximal minimal
forcing set. This portion

of the origami with initial positions from this distribution, we filter the options for

those that have at least one angle above a chosen threshold value. The code for this

function can be seen in Fig. A.8.

Figure A.8. Mathematica function to find possible programmable angles for an
origami.

A.1.2.3 minProgrammedOri[]

This function takes an origami, a set of angles, and fold stiffnesses for the assigned

and unassigned folds and returns an origami object that has the folds from the maxi-

mal minimal forcing set programmed to the relevant angles from the set of angles and

the rest of the folds programmed to fold to a zero angle. The code for this function

can be seen in Fig. A.9.
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Figure A.9. Mathematica function to generate origami programmed only with the
maximal minimum forcing set.

A.1.2.4 repeatMinimizeOrigami[]

To check the validity of our minimal forcing sets, we then want to check for other

minima in the energy of the origami generated by the last function. To do so, we write

a function that takes an origami object and a number of minimizations and returns

the minimized energies of that many origami. The function generates a distribution

of origami perturbed out of the flat state with a width of 20% of the smallest bar

length, and uses that distribution as the intial states for the energy minimizations.

This function can be seen in Fig. A.10. This version of a repeated minimization is

similar to that written for Chapter 1, but uses the conjugate gradient method. Since

we are using only one degree of freedom origami for these simulations, this method is

sufficient and not overly computationally taxing. Additionally, it better mimics how

an origami would fold from the flat state than other methods, such as quasi-Newton

methods which can move more freely between origami branches.
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Figure A.10. Mathematica function to repeatedly minimize an origami structure
based on the conjugate gradient method.

A.1.2.5 foldDist[]

To compare the folded structures to the target angles, we write a function that

averages over the differences between the two angles. This code can be seen in Fig.

A.11

Figure A.11. Mathematica function to find the average difference between the fold
angles of an origami and a target set of folds angles.
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differential-geometry operators for triangulated 2-manifolds. In Visualization
and mathematics III, pages 35–57. Springer, 2003.

[60] Robert Connelly. The rigidity of certain cabled frameworks and the second order
rigidity of arbitrarily triangulated convex surfaces. Advances in Mathematics,
37:272–299, 1980.

[61] TC Lubensky, CL Kane, Xiaoming Mao, Anton Souslov, and Kai Sun. Phonons
and elasticity in critically coordinated lattices. Reports on Progress in Physics,
78(7):073901, 2015.

123

https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201903006
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201903006
https://www.nature.com/articles/s41467-018-06720-1
https://www.nature.com/articles/s41467-018-06720-1
http://arxiv.org/abs/1812.01160


[62] Michael Kapovich and John J Millson. Hodge theory and the art of paper
folding. Publications of the Research Institute for Mathematical Sciences, 33
(1):1–31, 1997.

[63] Ileana Streinu and Walter Whiteley. Single-vertex origami and spherical expan-
sive motions. In Japanese Conference on Discrete and Computational Geometry,
pages 161–173. Springer, 2004.

[64] Scott Waitukaitis and Martin van Hecke. Origami building blocks: Generic and
special four-vertices. Physical Review E, 93(2):023003, 2016.

[65] Scott Waitukaitis, Peter Dieleman, and Martin van Hecke. Non-Euclidean
Origami. pages 1–8, 2019. URL http://arxiv.org/abs/1909.13674.

[66] Robert J Lang. Tesselatica, 2019. URL https://langorigami.com/article/

tessellatica/.

[67] Samuel Randlett. The Flapping Bird. Magic, INC, January 1969. ISBN
B000LXQVWC.

[68] Amanda Ghassaei, Erik D Demaine, and Neil Gershenfeld. Fast, interactive
origami simulation using gpu computation. Origami, 7:1151–1166, 2018.

[69] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathe-
matics of computation, 35(151):773–782, 1980.

[70] Addison Liu, Mykell Johnson, and Cynthia Sung. Increasing Reliability of Self-
Folding of the Origami Hypar. Journal of Mechanisms and Robotics, 14(6), 04
2022. ISSN 1942-4302. doi: 10.1115/1.4054310. URL https://doi.org/10.

1115/1.4054310. 060904.

[71] Charlotte Py, Paul Reverdy, Lionel Doppler, José Bico, Benôıt Roman,
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