
A STUDY ON API SECURITY PENTESTING

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Hadi Asemi

June 2023

© 2023

Hadi Asemi

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: A Study on API Security Pentesting

AUTHOR: Hadi Asemi

DATE SUBMITTED: June 2023

COMMITTEE CHAIR: Dongfeng Fang, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Bruce Edward DeBruhl, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Devkishen Sisodia Ph.D.

Professor of Computer Science

iii

ABSTRACT

A Study on API Security Pentesting

Hadi Asemi

Application Programming Interfaces (APIs) are essential in the digital realm as the

bridge enabling seamless communication and collaboration between diverse software

applications. Their significance lies in simplifying the integration of different sys-

tems, allowing them to work together effortlessly and share data. APIs are used in

various applications, for example, healthcare, banks, authentication, etc. Ensuring

the security of APIs is critical to ensure data security, privacy, and more. There-

fore, the security of APIs is not only urgent but mandatory for pentesting APIs at

every stage of development and to catch vulnerabilities early. The primary purpose

of this research is to provide guidelines to help apply existing tools for reconnais-

sance and authentication pentesting. To achieve this goal, we first introduce the

basics of API and OWASP’s Top 10 API security vulnerabilities. Secondly, we pro-

pose deployable scripts developed for Ubuntu Debian Systems to install pentesting

tools automatically. These scripts allow future students to participate in API secu-

rity courses and conduct API security pentesting. API security pentesting, regarding

reconnaissance and authentication, is discussed based on the configured system. For

reconnaissance, passive and active approaches are introduced with different tools

for authentication, including password-based authentication brute-forcing, one-time

password (OTP) brute-forcing, and JSON web token brute force.

iv

ACKNOWLEDGMENTS

I extend my deepest gratitude to my parents, whose unwavering support and love

have been the bedrock of my journey. Their encouragement and sacrifices have fueled

my aspirations, and I am profoundly thankful for the sacrifices they’ve made to ensure

my education. Their constant belief in my potential has been a guiding light, and I

am forever grateful for their immeasurable contributions to my academic and personal

growth.

I would also like to express my sincere appreciation to my esteemed professor Dr.

Dongfeng Fang, whose guidance and mentorship have been invaluable throughout this

academic endeavor. Her expertise, dedication, and encouragement have shaped my

intellectual development and enriched my learning experience. I am grateful for the

time and effort she invested in imparting knowledge, challenging my perspectives, and

fostering an environment of intellectual curiosity. Her influence has left an indelible

mark on my academic journey, and I am indebted to her for her unwavering support.

In addition, I want to thank my committee Dr. Brue DeBruhl, and Dr. Devkishen

Sisodia for their support, expertise, and constructive feedback. Their dedication has

played a pivotal role in shaping the outcome of my research.

Finally, I would like to thank friends and classmates whose steadfast support, en-

couragement, and motivation have served as the cornerstones of my academic jour-

ney. Your kindness and faith in my abilities have been a driving force, propelling me

through both challenges and triumphs.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

1.1 Basics of API . 1

1.1.1 Different Types of API Protocols 2

1.1.1.1 REST . 2

1.1.1.2 SOAP . 3

1.1.1.3 GraphQL . 4

1.1.2 Popular Applications in API 4

1.1.2.1 E-commerce . 4

1.1.2.2 Banking System . 5

1.1.2.3 Epic Electronic Health Record (EHR) 5

1.1.2.4 Stripe . 6

1.2 Security and Privacy of API . 6

1.2.1 Confidentiality . 6

1.2.2 Integrity . 8

1.2.3 Availability . 9

1.3 Breaches . 10

1.3.1 Coinbase . 11

1.3.2 US Postal Service (USPS) . 11

1.3.3 Peloton’s Leaky API . 12

vi

1.3.4 Venmo . 12

1.3.5 Instagram . 13

1.3.6 Bumble . 13

1.3.7 T-Mobile . 14

1.3.8 OPTUS . 14

1.4 Motivation . 14

1.5 Contribution . 15

2 OWASP Top 10 API Security Vulnerabilities 17

2.1 API I: Broken Object Level Authorization (BOLA) 18

2.2 API II: Broken User Authentication 19

2.3 API III: Excessive Data Exposure . 20

2.4 API IV: Lack of Resources & Rate Limiting 21

2.5 API V: Broken Function Level Authorization (BFLA) 23

2.6 API VI: Mass Assignment . 24

2.7 API VII: Security Misconfiguration 26

2.8 API VIII: Injection . 27

2.9 API IX: Imporper Assets Management 29

2.10 API X: Insufficient Logging & Monitoring 29

2.11 Comparision of OWASP API Top 10 2019-2023 30

2.12 Ethical Statement . 31

2.12.1 Practical Hacking Practices: 32

3 API System and Vulnerability Environment Setup 34

3.1 Tools . 34

3.1.1 Burpsuite . 34

3.1.2 Ffuf . 35

vii

3.1.3 Wfuzz . 35

3.1.4 FireFox Plugins . 36

3.1.5 Zaproxy . 37

3.1.6 Jwt tool . 37

3.1.7 Postman . 38

3.1.8 Amass . 39

3.1.9 Burp Suite vs Zaproxy . 40

3.1.10 Ffuf vs Wfuzz . 41

3.1.11 Rustscan vs Nmap . 43

3.2 Automatic Install Script . 45

3.2.1 Ansible . 45

3.2.2 Jinja . 48

3.2.3 Configure Foxyproxy . 50

3.2.4 Burp Suite Extentions . 51

3.2.5 Limitation of Script . 52

4 API Security Tools Testing: Reconnaisance and Authentication 54

4.1 API Reconnaissance . 54

4.1.1 Passive . 55

4.1.1.1 Google Dorking . 56

4.1.1.2 Git Dorking . 57

4.1.1.3 Wayback Machine: 61

4.1.1.4 Shodan: . 64

4.1.1.5 Amass: . 65

4.1.2 Active . 69

4.1.2.1 Port Scanning . 70

viii

4.1.2.2 Burp Suite . 72

4.1.3 Gobuster . 73

4.2 Authentication . 74

4.2.1 Password-based Authentication Brute-Force Attack 75

4.2.1.1 Wfuzz . 76

4.2.1.2 Ffuf . 77

4.2.2 One Time Password (OTP) Brute-Force Attack 78

4.2.3 JSON Web Tokens (JWT) . 81

4.2.3.1 Attacking JWT . 84

5 Conclusion & Future Work . 88

5.1 Conclusion . 88

5.2 Future Work . 89

BIBLIOGRAPHY . 91

ix

LIST OF TABLES

Table Page

1.1.1.1 Comparison table SOAP vs REST API 3

3.1.10.1ComparisonFfuf and Wfuzz . 41

3.1.11.1Rustscan vs Nmap . 44

4.1.0.1 Reconnaissance Approaches . 55

4.1.1.1 Google Dorking Queries [1] . 57

4.1.1.2 Git Dork keys . 59

4.1.1.3 Oam-tools default flags [2] . 67

4.1.1.4 Oam subs flags [2] . 68

4.1.1.5 The oam viz flag for showing network graph 69

4.1.2.1 Nmap flags and use cases . 70

x

LIST OF FIGURES

Figure Page

1.1.0.1 Communication between devices and backend with the help of API 2

2.11.0.1OWASP Top 10 API 2019 vs. 2023 [1] 31

3.1.8.1 Under the hood of Amass database [3] 40

3.1.10.1Wfuzz time performance . 42

3.1.10.2FFuf time performance . 43

3.2.1.1 Ansible folder tree structure . 46

3.2.2.1 Choose the right terminal font . 49

3.2.2.2 Ubuntu desktop after configuration 50

3.2.3.1 Foxyproxy Configuration . 50

3.2.4.1 Burp Suite Authorize Plugin . 51

3.2.4.2 Setup Jython . 52

3.2.5.1 Golang installation . 53

4.1.1.1 NASA GIT-OAUTH pushed to GitHub 58

4.1.1.2 Github-dorks usage . 60

4.1.1.3 Wayback Machine for owasp.org . 63

4.1.1.4 Search Shodan for ”content-type: application/json” 64

4.1.1.5 Amass intel subcommand . 65

4.1.1.6 OWASP root domain with using Amasss 65

4.1.2.1 Nmap for crapi.apisec.ai . 71

4.1.2.2 Rustscan help page . 72

xi

4.1.2.3 Burp Suite intercept creating account 73

4.2.1.1 Crack the user password and get 200 response 76

4.2.1.2 Post request intercepted by Bursp Suite 77

4.2.1.3 Crack the user password and get 200 responses 79

4.2.2.1 CrAPI OTP password reset . 79

4.2.2.2 OTP Burp Suite intercept . 80

4.2.2.3 Brute-force OTP . 81

4.2.3.1 JWT authentication between server and client 83

4.2.3.2 Authentication with website and get token with Burp Suite 84

4.2.3.3 jwt tool JWT token analysis . 85

4.2.3.4 Crack Attack . 87

4.2.3.5 Using jwt.io to generate token . 87

xii

jwt.io

Chapter 1

INTRODUCTION

1.1 Basics of API

API stands for Application Programming Interface. It is a set of rules, protocols,

and tools for building software applications that allow different software systems to

communicate with each other [5].

It is a way that software applications talk to each other and exchange data. These are

three different types of API communication: a web API (which uses the HTTP/HTTPS

protocol to send and receive data), a database API (which allows the software to ac-

cess and manipulate data in a database), or a hardware API (which enables software

to communicate with hardware devices). APIs are widely used for many applications,

such as the weather app or your stock app on your phone, which communicates with

the server to give you the most updated information.

When working with APIs, it’s essential to consider both the client and server as-

pects [6]. The client is the application that runs on each device and sends the request,

while the backend responds to that request. As you can see in the diagram in 1.1.0.1.

The device sends a request, and the backend server gets the information from the

databases and sends back the data.

1

Figure 1.1.0.1: Communication between devices and backend with the help
of API

1.1.1 Different Types of API Protocols

To utilize APIs proficiently, developers need to follow a shared set of guidelines or

protocols while initiating API requests [5]. In this section, I will be discussing the

three types of API protocols available.

1.1.1.1 REST

Representational State Transfer, commonly known as REST, is a design approach

that facilitates communication between a client and server. This design can be im-

plemented in multiple ways, allowing users to access databases. By requesting the

appropriate header, users can obtain the information they require [14]. The infor-

mation obtained through HTTP can be in different formats, such as JSON, HTML,

XML, or plain text. The REST API adheres to the CRUD functions: create, read,

update, and delete. By utilizing a stateless REST API, you can significantly enhance

the performance and scalability of your system. The beauty of this approach is that

it eliminates the need for the server to keep track of the client’s state or previous

messages. This results in unparalleled reliability, lightning-fast performance, and

seamless scalability that can be effortlessly managed, updated, and reused without

2

adversely impacting the system’s overall functionality. With a stateless architecture,

you can build a rock-solid and highly adaptable system that can easily accommodate

changing needs and requirements over time [13].

1.1.1.2 SOAP

Simple Object Access Protocol (SOAP) is a technology widely used for communication

between operating systems using HTTP and XML [15]. It stands for Simple Object

Access Protocol and is known for its extensibility, neutrality, and independence. With

SOAP, developers can easily maintain accounts and searches using any programming

language they prefer. In table 1.1.1.1 you can see difference between SOAP and REST

API.

Table 1.1.1.1: Comparison table SOAP vs REST API

Aspect SOAP API REST API

Standards
Has specific

standards and protocols.

Does not have official standards due to its architectural style.

Functionality Limited to HTTP and XML. Utilizes uniform resource locator (URL) and HTTP.

Business Logic
Relies on service

interfaces like @WebService.

Utilizes URL interfaces (/WeatherService).

Bandwidth Usage
Requires more

bandwidth due to XML payload.

Uses less bandwidth.

Description Language Uses Web Services Description Language. Uses Web Application Description Language.

Error Handling
Uses specific standards,

which can lead to miscommunication and errors.

More flexible but even a tiny error could corrupt the API.

Implementation Ease Requires adherence to specific standards. Easier to implement using specific programming languages.

Rules and Standardization Must follow particular rules for standardization. Doesn’t require as many

3

1.1.1.3 GraphQL

Facebook created GraphQL, a query language that enables the creation of client

applications using an intuitive and flexible syntax [16]. GraphQL is a data query

language that allows users to request specific data sets tailored to their needs. This

contrasts REST APIs, which typically return a fixed data set. GraphQL’s flexibility

makes it a good choice for mobile apps, as it can reduce the amount of data that

needs to be transferred over the network. Another advantage of GraphQL is that it

can scale to handle more requests and data. GraphQL uses a single URL for fetching

and mutating data, making it easier to maintain than REST APIs, which require

multiple endpoints. GraphQL is a powerful and flexible data query language that can

improve APIs’ performance, scalability, and simplicity.

1.1.2 Popular Applications in API

Many applications rely on APIs to facilitate front and back-end communication. In

this section, I will discuss a few examples.

1.1.2.1 E-commerce

E-commerce refers to buying and selling goods, products, or services over the Inter-

net. Excellent examples are Amazon, Best Buy, and Shopify. APIs play a vital role in

e-commerce by enabling integration with payment gateways for secure transactions,

shipping, and logistics services for accurate tracking and inventory management, order

management systems for streamlined processing, CRM systems for personalized cus-

tomer experiences, social media platforms for marketing and engagement, review and

rating systems for transparency, analytics platforms for data-driven decision-making,

4

and more. These APIs allow e-commerce platforms to seamlessly connect with var-

ious services, enhance functionality, and provide a seamless shopping experience for

customers while optimizing backend operations.

1.1.2.2 Banking System

APIs have revolutionized the banking system in how users communicate with the

server to perform transactions, deposit checks, check balances, and authenticate their

identity. This integration has made banking more accessible, convenient, and faster.

In addition, with the power of APIs, users can now enjoy the luxury of banking from

their mobile applications, eliminating the need to visit the bank physically. As a

result, using the API is both time-saving and a more cost-effective solution for banks

in the long run.

1.1.2.3 Epic Electronic Health Record (EHR)

The Epic electronic health record (EHR) software from Epic Systems Corporation

uses APIs to provide seamless integration and interoperability across the medical

and healthcare system. To facilitate the real-time sharing of patient information

and improve care coordination, APIs are used to share data with external systems,

including laboratory information systems, radiology systems, and pharmacy systems

[20]. Patients may access their health information and communicate with healthcare

professionals. APIs assist clinical decision support tools, integrate telemedicine and

remote monitoring platforms, enable data analytics and reporting, and make it easier

for third parties to interface with internal systems. They also allow interoperability

with external systems like health information exchanges. APIs are used by Epic and

other medical and health systems to facilitate data sharing, teamwork, and better

5

patient care. As a result, the security of this application is in high priority because if

doctors can not access patients’ records, it can be caused put the life of the patients

in danger.

1.1.2.4 Stripe

Stripe, a famous payment processing company, uses APIs to enable businesses to

take online payments securely. APIs handle the basic payment processing operations,

allowing businesses to incorporate Stripe’s payment gateway into their websites or

applications. This integration will enable clients to pay via various methods, while

APIs assure the secure transmission and authorization of transactions.

1.2 Security and Privacy of API

To ensure that our API is secure, we must consider three essential pillars of security:

confidentiality, integrity, and availability, commonly called CIA. In this section, I will

go over more, expanding on how these affect API systems.

1.2.1 Confidentiality

Protecting sensitive data from unauthorized access, modification, or disclosure is

known as confidentiality. It is essential to consider factors such as insufficient au-

thentication and authorization, lack of encryption, insecure storage of sensitive data,

inadequate access controls, inadequate logging monitoring, API misconfiguration, and

insecure third-party integration to ensure confidentiality.

6

1. Insufficient authentication and authorization: To maintain security, we

must implement rigorous authentication and authorization protocols that only

restrict access to authorized users. As an added measure, we must incorporate

a second-factor authentication (2FA) system to enhance security and make it

more difficult for unauthorized individuals to access the system.

2. Lack of encryption: It is essential to use encryption such as SSL/TLS. En-

cryptions prevent attackers from intercepting the network and accessing the

data being transmitted. An attacker could easily sniff the packet without en-

cryption and access a user’s credentials in plain text.

3. Insecure storage of sensitive data: APIs frequently handle private user

data, such as login credentials, date of birth, and even social security numbers.

To avoid data breaches and ensure confidentiality, this data must be protected.

One efficient strategy is to ensure secure user data storage by putting strong

encryption measures in place for servers and databases that handle such data.

By adding a layer of security through encryption, these systems increase security

and make it far more difficult for unauthorized individuals to access and utilize

sensitive user data. Optimizing encryption may improve overall security posture

and lower data breach danger.

4. Inadequate access controls: Establishing appropriate access restrictions for

different users or applications is essential. Without adequately configuring these

controls, unauthorized individuals may gain visibility into sensitive information,

leading to potential data breaches or privacy violations. By implementing ro-

bust authentication and authorization mechanisms, API providers can ensure

that only authorized entities can access sensitive data. Additionally, employ-

ing role-based access control and implementing fine-grained permission settings

7

can further enhance the security posture of the API, limiting access to specific

resources based on the user’s role and privileges.

5. Inadequate logging and monitoring: Strong logging and monitoring sys-

tems should be in place for APIs to identify and react to unauthorized access

or suspicious activity attempts. Finding possible vulnerabilities or detecting

breaches of confidentiality might be difficult without effective recording and

monitoring.

1.2.2 Integrity

Ensuring data accuracy, completeness, and consistency throughout an application is

known as integrity. Breaches in API integrity can result in unauthorized modifica-

tions, tampering, or data corruption, which can have severe consequences for systems,

applications, and users relying on the API. A study by Mendoza et al. (2018) found

that many mobile apps tidy up user input within the app, but if this differs from the

server, it can pose significant security risks [17]. In addition, hackers can manipulate

the data by identifying the API endpoint, enabling them to purchase items without

payment. This underscores the importance of maintaining data integrity. In this sec-

tion, I will be discussing various vulnerabilities that have the potential to compromise

the integrity of APIs.

1. Lack of input validation and sanitization: To guard against numerous

security concerns, it is essential to incorporate strong input validation and sani-

tization procedures while designing an API. Input validation’s main objective is

to make sure that user-provided data adheres to the desired format and fulfills

the relevant requirements. On the other hand, sanitization entails removing any

potentially hazardous or undesired material by filtering and cleaning user in-

8

put. By validating and sanitizating the input we can metigate SQL injectection,

prevent cross-site scritpting (XSS), etc.

2. Broken session management: Handling sessions securely when using APIs

that require session management mechanisms is vital. For example, to pre-

vent session hijacking or fixation attacks, session tokens should be adequately

generated, stored securely, and invalidated after logout or a certain period of

inactivity.

3. Lack of versioning and backward compatibility: Changes to API struc-

tures or behaviors without proper versioning and backward compatibility can

break client integrations and cause integrity issues. For example, we patch the

older version’s vulnerabilities in the newer one, but the other version is still

available. In that case, the attacker can still use the older version to attack our

API. Therefore, implement versioning strategies and communicate changes ef-

fectively to ensure smooth transitions and avoid unintended data modifications.

1.2.3 Availability

Authorized users must have uninterrupted access to the application, known as avail-

ability. This is because any disruptions caused by attackers can lead to service

outages, performance issues, or denial of service. This section covers some of the

vulnerabilities that can happen regarding availability.

1. DDoS attacks: Distributed Denial of Service (DDoS) attacks try to overload

the API infrastructure by sending many fake requests, which can disrupt the

service. To reduce the impact of these attacks, it’s vital to use DDoS protection

methods like rate limiting, traffic filtering, and load balancing. In addition,

9

using services like Content Delivery Networks (CDNs) can also help by dis-

tributing traffic and absorbing volumetric attacks.

2. Resource exhaustion: The overuse of system resources like CPU, memory, or

storage can result from improper management of APIs, making them subject to

attacks. Adopting measures like input validation, rate limitation, and resource

monitoring is critical to prevent this. Placing reasonable restrictions on request

numbers, response times, and other resource utilization criteria is also advised

to guarantee equitable distribution and stop misuse.

By focusing on confidentiality, integrity, and availability (CIA), we can create a secure

API that can withstand any attempts of hacking or unauthorized access. It is crucial

to prioritize security and testing, even if it means taking a little extra time to deliver

the product. In the long run, it will save a lot of time and money that could be lost

due to a security breach. So, let’s prioritize security while developing applications to

protect ourselves and our users from any potential harm.

1.3 Breaches

Data breaches have become an all-too-common occurrence in today’s digital age,

with businesses big and small falling prey to cybercriminals. This especially worries

smaller companies, as they often need more resources to combat such attacks. The

root cause of these security breaches is often the pressure to meet deadlines and

launch products quickly, leading to insufficient testing of applications. In many cases,

API development is divided into two groups: the engineering team, which may lack

security expertise, and the security team, which may lack API knowledge [19]. To

prevent such incidents, developers must prioritize secure coding and ensure that APIs

are configured securely. By implementing these measures, businesses can protect

10

themselves from potential security threats and safeguard their customers’ sensitive

information. It’s imperative to prioritize security in today’s world, where technology

plays a vital role. This section will discuss the recent security breaches in the past

few years.

1.3.1 Coinbase

On February 11th, 2022, the Twitter account reported that they had discovered a

potential vulnerability that could have significant market implications for Coinbase.

Specifically, it was found that the Retail Brokerage API endpoint was missing a logic

validation check, which allowed users to submit trades to a specific order book using

a mismatched source account. In this vulnerability, users can scrape the API calls,

manipulate four critical parameters in the API call, and sell the crypto they did

not own to the user [7]. This vulnerability is Broken Object Level Authorization

(BOLA), mentioned in the OWASP top 10 API vulnerability. This issue highlights

the importance of implementing thorough security measures to protect against threats

and vulnerabilities.

1.3.2 US Postal Service (USPS)

The US Postal Service (USPS) had a flaw in its Informed Visibility program that

could have exposed the personal data of around 60 million users. Security expert

Brian Krebs discovered that the USPS API allowed users to request changes to other

accounts without checks to prevent unauthorized access. While passwords were not

exposed, spammers and phishing attackers could have exploited the vulnerability by

building up mass-targeted spam [8]. In addition, the API allowed users to convert

accounts into Informed Visibility business accounts and vice versa, which could have

11

created issues for the USPS’s largest customers. This is another Broken Object Level

Authorization.

1.3.3 Peloton’s Leaky API

A security flaw was discovered, which allowed unauthorized access to the private ac-

count information of ride users. The open-source API permitted requests for user

data without any authentication. This exposed four million user accounts, including

those marked as private, such as Joe Biden’s. Despite the severity of the situa-

tion, the company failed to respond for 90 days [9]. However, the vulnerability was

eventually resolved by incorporating authentication measures. These security flaws

include two OWASP top 10 such as Broken Object Level Authorization and Broken

Authentication.

1.3.4 Venmo

Venmo is a popular app for sending and receiving money, with a live feed of trans-

actions being made by strangers displayed on the home page. A hacker discovered

that the data for this feed was accessible through a public API endpoint, meaning

that anyone could make a GET request to see the latest 20 transactions made on

the app by anyone around the world, even outside the app, with no authorization

required. The hacker scraped this data and found that they could download 115,000

transactions daily, leading them to question the ease with which they could amass

an extensive collection of people’s financial activity. The hacker discovered that the

public data is not as innocuous as it might seem. It can reveal information such as

which app is used for business on Venmo, which can be useful for nefarious purposes

such as phishing for Apple ID credentials [10]. These vulnerabilities broked the three

12

OWASP top 10 API security, such as Broken Authentication, Broken Object Level

Authorization, and Unrestricted Resource Consumption.

1.3.5 Instagram

It’s been reported that Instagram recently experienced a security breach that allowed

hackers to access the personal information of high-profile users. The hackers exploited

the Application Programming Interface (API) bug to steal email addresses and phone

numbers. A 6-digit code is required to reset accounts, which the hackers could guess

using the API. While the guesses were limited to 200 per IP, researchers discovered

that by rotating through 5,000 IPs, the hackers could take over any account they

wanted [11]. The security breach was caused by two vulnerabilities in the API -

Broken Object Level Authorization and Broken Authentication. This is a concerning

issue that Instagram needs to address as soon as possible.

1.3.6 Bumble

It has come to light that there was a significant breach in the security of a specific

API, which allowed unauthorized access to the details of a staggering 95 million user

accounts. Even more concerning is that incrementing the IDs led to scrapping the

entire database. This breach also enabled the exact location of users to be calculated

through triangulation. Another issue that arose was that paid features could be

enabled without the proper privileges. As a result of these vulnerabilities, there were

multiple instances of Broken Object Level Authorization, Broken Authentication,

and Broken Function Level Authorization. This is a severe problem that needs to be

addressed immediately.

13

1.3.7 T-Mobile

Recently, a security breach occurred on January 5th, where an attacker gained access

to 37 million customer accounts on postpaid and prepaid plans due to a weak API.

Without any authentication, the attacker could get users’ data. T-Mobile has stated

that only certain personal information such as names, billing addresses, emails, phone

numbers, and dates of birth was exposed [18].

1.3.8 OPTUS

An Australian telecommunications company, Optus, was targeted by a cyber attacker

who successfully obtained and collected 9.8 million user details [12]. Alongside this

breach, the attacker also issued a ransom demand of $1 million. The compromised

data consisted of driver’s licenses, Medicare IDs, names, phone numbers, and email

addresses. This security breach occurred due to the absence of authentication pro-

tocols on API endpoints and the company’s failure to enforce restrictions on data

resource usage.

1.4 Motivation

Application Programming Interfaces (API) are growing in various areas like IoT,

websites, medical data, and banking. As a result, it is essential to ensure that the

resources remain confidential, integral, and available. It is also crucial to understand

that security by design for API implementation. Unfortunately, many API develops

lack knowledge of security and privacy. Moreover, pentesting is not well applied

before the APIs are used. One common API vulnerability is broken object-level

authorization (BOLA), which controls users’ access to resources. Exposures can occur

14

when users can access other users due to authorization flaws. For instance, the UPS

hacks were due to BOLA, where users could authenticate with the server and pivot

to other users’ accounts.

1.5 Contribution

The significance of my thesis research is multifaceted, encompassing several key con-

tributions:

1. Comparative Analysis: I conduct a comprehensive comparative analysis be-

tween OWASP’s top 10 API security concerns in 2019 and the latest trends

2023. This examination sheds light on the evolving landscape of API security

vulnerabilities, providing valuable insights for the cybersecurity community.

2. Tool Assessment and Demonstration: I identify and evaluate a range of

open-source tools designed for the penetration testing of APIs. Notably, I

demonstrate the practical usage of these tools, offering a hands-on approach

to understanding their capabilities and utility in securing APIs.

3. Automated Configuration with Ansible: I developed a sophisticated An-

sible script as part of my research. This script empowers users to effortlessly

configure Ubuntu operating systems, equipping them with the full suite of pen-

etration testing tools showcased in my study. This automation streamlines the

setup process, saving time and effort for security practitioners.

4. Scalable Deployment: I design a deployment strategy that enables the seam-

less rollout of the configured environment to multiple servers. This infrastruc-

ture flexibility paves the way for future scalability and allows professors to

facilitate API pentesting classes for students easily.

15

5. Addressing Critical API Security Challenges: My comprehensive re-

search rigorously addresses two paramount facets of API security: reconnais-

sance and authentication. In a meticulous exploration of passive reconnais-

sance, I adeptly deploy a diverse array of powerful tools, including Gooogle

Dorking, Git Dorking, Wayback Machine, Shodan, Amass, and TruffleHog. For

active reconnaissance, I delve into the intricacies of Nmap, Rustscan, Burp

Suite, Zaproxy, and Gobuster. Authentically illuminating the realm of authen-

tication, my study encompasses password-brute forcing with Wfuzz Ffuf, OTP

brute force methods, and a meticulous examination of JWT attacks utilizing

Jwt tool for penetrating tests. By focusing on reconnaissance and authenti-

cation, I provide actionable insights and solutions to bolster the protection of

APIs, addressing vulnerabilities at their root.

In the following chapters, my thesis embarks on an extensive exploration of API

security, aiming to provide a comprehensive and impactful contribution to the field.

In Chapter 2, I meticulously examine the evolving landscape of API security, focusing

on OWASP’s Top 10 API security vulnerabilities, elucidating the differences between

the 2019 and 2023 editions. Chapter 3 introduces and explains a suite of penetration

testing tools designed explicitly for APIs while culminating in unveiling an Ansible

script simplifying Ubuntu 22.04 configuration for penetration testing. Chapter 4

delves even more profound, offering an in-depth analysis of each tool’s flags and

parameters, empowering practitioners with practical insights. Chapter 5 charts a

visionary course for future research in API security, and finally, Chapter 6 synthesizes

the thesis’s findings, insights, and contributions, providing a profound conclusion that

underscores the research’s significance and impact in the realm of API security.

16

Chapter 2

OWASP TOP 10 API SECURITY VULNERABILITIES

This chapter examines the top ten API security issues identified by the OWASP (Open

Web Application Security Project). The Open Online Application Security Project

(OWASP) is a well-known organization that gives significant insights and assistance

on online application security. The OWASP top ten API security vulnerabilities

emphasize the most severe dangers connected with APIs and provide mitigation ad-

vice [24].

Our comprehensive examination will delve into the intricacies of each of the OWASP

top ten API security issues, unraveling subjects such as faltering authentication and

session management, inappropriate authorization, sensitive data exposure, and the

absence of robust resource and rate limits, among others. Emphasizing the critical

role of authentication, we highlight any misconfiguration in this aspect could provide

attackers unauthorized access to restricted resources. Equipping developers and secu-

rity experts with knowledge about these issues empowers them to proactively identify

and address potential security vulnerabilities in their API implementations.

In addition, we will compare the 2019 and 2023 versions of the OWASP top 10 API se-

curity issues. This comparison will illuminate any new patterns or threats in the API

security landscape. It will provide vital insights into how the security landscape has

developed, allowing firms to keep current on best practices and security procedures.

17

2.1 API I: Broken Object Level Authorization (BOLA)

Object-level authorization is a vital access control strategy frequently employed at

the code level to guarantee users only access authorized objects [24]. This security

measure is crucial in protecting API endpoints from unauthorized access and is widely

recognized as an industry best practice.

The object-level authorization ensures users have the appropriate privileges to ac-

cess specific resources or objects within an application or system. By enforcing strict

controls at the code level, organizations can prevent unauthorized users from manip-

ulating identifiers or parameters to gain access to sensitive data belonging to other

users.

One of the most prevalent security vulnerabilities in the API landscape is the ex-

ploitation of object-level authorization flaws. This occurs when an attacker success-

fully manipulates the identification mechanisms or parameters used in API calls to

retrieve or modify data that should be inaccessible.

To illustrate this vulnerability, let’s consider a scenario where two users, A and B, are

part of an online platform. User A, through a flaw in the object-level authorization

implementation, manages to manipulate an ID parameter in an API request. Con-

sequently, the API mistakenly grants access to user B’s private data, which should

have been restricted to user B exclusively. This breach of object-level authoriza-

tion can have severe consequences, ranging from unauthorized disclosure of sensitive

information to unauthorized modifications or data deletion.

Developers and security practitioners must implement robust access control mecha-

nisms to mitigate the risks associated with object-level authorization vulnerabilities.

This includes carefully validating and sanitizing input parameters, utilizing proper

18

authentication and authorization frameworks, and regularly auditing and reviewing

the security of APIs to identify and address any potential weaknesses.

2.2 API II: Broken User Authentication

Ensuring robust security involves safeguarding authentication endpoints. Equally

vital is the treatment of ”Forgot password / reset password” processes, which should

be handled with the same diligence as primary authentication mechanisms. The

vulnerability arises if malicious actors exploit credential stuffing, leveraging stolen

credentials from external databases to gain unauthorized access.

Furthermore, fortifying the API against brute-force attacks is imperative by imple-

menting countermeasures such as captchas or account lockout mechanisms. Strength-

ening the initial line of defense, stringent password policies should be enforced by

default during account creation.

Continuing the defense, a meticulous approach entails thorough token validation,

encompassing validation of token integrity and expiration dates. To uphold confiden-

tiality, passwords must never be stored in plain text, devoid of encryption, weakly

hashed, or reliant on feeble encryption keys. The API can effectively thwart potential

threats by adhering to these comprehensive security measures.

A great guideline provided by OWASP Cheat sheet would help with authentication

setup and the correct way of authentication.

19

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

2.3 API III: Excessive Data Exposure

Exposing sensitive data by mistake is a big concern in software design. Despite our

efforts to hide this data on the user’s device, clever attackers can still find ways to

get it. They might spy on or capture the data sent between the user and the server.

This can lead to them accessing critical information they shouldn’t have access to.

Imagine an online store where someone who wants to cause trouble could add a

harmless comment to an online chat. When the server replies, it might accidentally

give away essential details meant to stay private. This situation exposes valuable

information to the wrong person, which is a big problem.

To solve this, we need to be diligent in our efforts. Relying only on hiding data on

the user’s device isn’t enough. The real solution is to make sure the server doesn’t

share any secret information in the first place. We do this by creating strict rules for

the server to follow so it only shares pertinent user data with users.

Additionally, we need to be mindful about how we handle data. Using simple methods

that change data into a particular format, like to json() or to string(), can accidentally

provide more information than we want. Instead, we create specific methods that only

give the exact information we intend to share.

Another good idea is to have a special security check. This check looks at the data

before it’s given to the user. It makes sure everything is okay and follows the rules

we set. This way, even if something sneaky gets past the first defenses, this check can

catch it and keep the data safe.

Ultimately, keeping sensitive data safe is a mix of different techniques. It’s not only

about hiding it on the user’s side, it’s about ensuring the server shares only what

20

needs to be shared, being careful with how we change data, and having a final check

to ensure everything is secure.

2.4 API IV: Lack of Resources & Rate Limiting

In API functionality, a crucial factor often disregarded pertains to the reasonable

allocation of essential resources. These resources include network bandwidth, CPU

processing capability, memory allotment, and storage capacity. The user input nature

and the intricate business logic inherent in various API endpoints directly influence

how these resources are parceled out.

However, a notable aspect to consider in this resource allocation is the competition

among multiple API clients competing for the same pool of resources. This com-

petitive scenario introduces complexity, necessitating prudent resource distribution

among many incoming requests.

APIs are vulnerable when the necessary protective measures are not enforced. Lack

of rate limiting during authentication can make an API susceptible to brute force

attacks, allowing unauthorized access to resources. Proper boundaries play a crucial

role in API security. Excess, rigid, or lenient boundaries can make an API more

vulnerable. It is essential to configure boundaries optimally to avoid security breaches.

Certain critical thresholds also come into play in this context.

1. Execution Timeouts: The designated timeframe for the execution of a specific

API request. The absence of this constraint or setting it at an overly liberal

level can result in resource bottlenecks and potential misuse.

21

2. Max Allocable Memory: The upper ceiling on the memory amount that can be

assigned to a solitary API request. Inadequate allocation may lead to memory

overflows or inefficient resource utilization.

3. Number of File Descriptors: A cap on the count of concurrently open files by

the API. Inordinate file openings can strain system resources.

4. Number of Processes: An API can generate the utmost quantity of processes.

Unchecked process generation might trigger resource depletion.

5. Request Payload Size: The scale of data permissible in a single API request.

Outsize payloads can congest the network and hamper efficiency.

6. Number of Requests per Client/Resource: A restriction on the volume of re-

quests a particular client or resource can initiate within a specified span. Insuf-

ficient rate limiting can lead to overwhelming the API.

7. Number of Records per Page: The quantum of records the API can provide

in response to a sole request. This could lead to ineffectual data retrieval and

heightened resource consumption without suitable control.

Mitigating these vulnerabilities mandates a comprehensive strategy involving resource

management and prudent rate limiting. Using a Docker streamlines the control of

memory, CPU, restart frequency, file descriptors, and processes while enhancing API

management by enforcing limitations on client calls within set timeframes and no-

tifying clients when exceeded, sharing limit counts and reset times. Additionally, it

bolsters the API’s security with thorough server-side validation, especially for pa-

rameters influencing response record quantity. Strengthen data integrity by imposing

strict limits on incoming elements and payloads, encompassing maximum data size,

string length, and array size.

22

2.5 API V: Broken Function Level Authorization (BFLA)

Broken Function Level Authorization (BFLA) is a critical security vulnerability out-

lined in the OWASP (Open Web Application Security Project) Top Ten list. It refers

to an application allowing users to perform functions or actions they are not autho-

rized to access based on their privilege level. In the context of APIs (Application

Programming Interfaces), BFLA vulnerabilities can lead to severe security breaches

and unauthorized access to sensitive resources or operations.

In the case of API IV, the primary concern revolves around improper enforcement

of authorization rules for various CRUD (Create, Read, Update, Delete) operations.

Let’s delve into the specific vulnerabilities that can happen based on CRUD:

1. Create Operation Vulnerability: Imagine a scenario where a regular user can

create new users or tasks, even though these actions should only be allowed for

administrators. This vulnerability could allow an attacker to flood the system

with unauthorized accounts or tasks, potentially leading to resource exhaustion

or manipulation of user data.

2. Update Operation Vulnerability: Similarly, if the application allows a user to

update any user’s information or tasks, regardless of their role, this can lead to

unauthorized modifications. An attacker could alter crucial account details or

task attributes, disrupting the system’s integrity and leading to user confusion.

3. Delete Operation Vulnerability: Allowing non-admin users to delete other users

or tasks can have serious consequences. An attacker could perform malicious

deletions, causing data loss and service disruption and potentially rendering the

application unusable for legitimate users.

23

Measures to mitigate broken function level authorization include:

1. The default approach should prohibit all access, necessitating explicit permis-

sions for each role to access individual functions.

2. Evaluate your API endpoints for vulnerabilities related to function-level access

control while considering the application’s operational rules and hierarchical

groups.

3. Ensure that all administrative controllers are derived from an abstract adminis-

trative controller. This parent controller should include checks for authorization

based on the user’s group or role.

4. Confirm that administrative tasks within standard controllers incorporate au-

thorization validations that rely on the user’s group and role.

2.6 API VI: Mass Assignment

Mass Assignment vulnerabilities arise when an unauthorized actor gains the ability

to overwrite properties of objects they are not supposed to modify. A specific set of

conditions must align for this to occur: an API should possess endpoints that accept

user input, these requests must hold the capability to modify concealed values, and

the API ought to lack security measures that would typically thwart user input from

tampering with data structures.

A classic illustration of a mass assignment scenario is demonstrated when an intruder

successfully includes parameters during the user registration to elevate their account

privileges from a primary user to an administrator. The user registration solicita-

tion typically encompasses attributes like username, email address, and password.

24

However, a malicious entity could intercede with this request and introduce extra pa-

rameters such as ”isadmin”: ”true” as you can see in 7. Should the underlying data

structure contain a corresponding attribute and the API provider neglects to sanitize

the infiltrator’s input, an avenue potentially opens for the intruder to register their

administrative account.

The other example of this would be ”admin”:”1”, ”admin”:”true”.

1 {

2 "name": "MassAssingment",

3 "email": "jack@email.com",

4 "isadmin": "true",

5 "password": "pasword123"

6 }

7

8

Listing 2.6.0.1: json Post request

The application is also used to PUT requests to change the user name and age. The

GET response includes the credit balance property, which the attacker can replay to

change the credit balance [24].

1

2 Legitimate PUT /api/v1/users/me

3 {"user_name":"inons","age":24}

4 Response GET /api/v1/users/me

5 {"user_name":"inons","age":24,"credit_balance":10}

6 Attacker replay that with PUT

7 {"user_name":"attacker","age":60,"credit_balance":99999}

8

25

To prevent this, we can minimize reliance on functions that automatically connect

client input to internal code variables or objects. Selectively permit updates to specific

properties by whitelisting them and employ system tools to block client access to

unauthorized properties. When relevant, precisely outline and reinforce frameworks

for input data structures.

2.7 API VII: Security Misconfiguration

Security misconfiguration arises when adequate security reinforcement is absent across

any segment of the app’s structure or if cloud service permissions are wrongly config-

ured.

The most recent security fixes are not in place, or the systems remains outdated.

Unneeded functionalities are activated (such as specific HTTP methods). With the

absence of Transport Layer Security (TLS). Clients aren’t given security directives

(like Security Headers). Lack of proper setup or presence of incorrect Cross-Origin

Resource Sharing (CORS) policy. Error messages reveal stack traces, or sensitive

details are disclosed.

An example would be when the attacker could gain access to the server’s root and

check the bash history of a server. As a result, the attacker could see the commands

run by the DevOps team. In addition, the attacker could find the new endpoint for

the API server [24].

1

2 $ curl -X GET ’https://api.server/endpoint/’ -H ’authorization: Basic

↪→ Zm9vOmJhcg==’

3

26

To avoid these vulnerabilities, we need to establish a repeatable reinforcement pro-

cedure facilitating the swift and straightforward deployment of a securely fortified

context. In addition, conduct regular evaluations and updates of settings across the

entire API structure, encompassing orchestration files, API constituents, and cloud

service permissions (e.g., S3 bucket). Introduce a protected communication conduit

for all API interactions, enabling access to static resources like images. Employ an

automated mechanism to consistently gauge the efficacy of configurations and param-

eters in all scenarios. Furthermore, if applicable, formulate and enforce comprehensive

API response schemas, incorporating error responses, to prevent transmitting sensi-

tive data to potential attackers. Ensure API access is confined solely to designated

HTTP verbs, while other HTTP verbs should remain inactive (e.g., HEAD). APIs

anticipating interaction from browser-based clients (e.g., WebApp frontend) should

institute a sound Cross-Origin Resource Sharing (CORS) policy [24].

2.8 API VIII: Injection

The surreptitious insertion of unauthorized data into an API, commonly called an

API injection attack, encompasses a range of techniques malicious actors use to ma-

nipulate the input fields of an API, aiming to compromise the system’s integrity, gain

unauthorized access, or extract sensitive data. This attack capitalizes on vulnera-

bilities within the API’s design or implementation, allowing attackers to introduce

malicious commands, queries, or code fragments. The result can lead to harmful con-

sequences, such as unintended system behaviors, data leaks, or even complete system

compromise.

API injection attacks come in various forms, each exploiting specific weaknesses in

the targeted API:

27

1. SQL Injection: Attackers inject malicious SQL queries into API input fields,

exploiting inadequately sanitized inputs to manipulate databases, retrieve sen-

sitive data, or even modify data within the database.

2. Command Injection: Malicious commands are inserted into API inputs, often

targeting operating system commands. This can lead to unauthorized execution

of commands on the server, enabling attackers to gain control over the system.

3. XML Injection: Attackers insert malicious XML content into API input fields,

potentially causing XML parsers to behave unintendedly, leading to information

disclosure or system disruption.

4. XPath Injection: This type of attack targets APIs that use XPath expressions

for querying XML data. Attackers manipulate input to gain unauthorized access

to data or modify queries.

5. LDAP Injection: Exploiting APIs that interact with LDAP (Lightweight Direc-

tory Access Protocol) systems, attackers insert malicious input to manipulate

LDAP queries and potentially access sensitive directory information.

6. NoSQL Injection: Similar to SQL injection, this attack targets NoSQL databases

by injecting malicious queries that exploit weak input validation, potentially

leading to unauthorized data access or manipulation.

Robust input validation, output encoding, and thorough input parameter sanitization

are essential to mitigate the risk of API injection attacks. Employing parameterized

queries, utilizing security libraries, and adhering to secure coding practices are crucial

steps to fortify APIs against these insidious threats. Regular security audits, continu-

ous monitoring, and staying informed about emerging attack vectors are fundamental

to maintaining a robust defense against evolving API injection techniques.

28

2.9 API IX: Imporper Assets Management

This issue happens if the previous version of the API is still running and unpatched

and does not have any plan on retiring the older API. The attacker will go to the older

version to access the information which is supposed to not be able to be accessed.

This issue can be seen when the developer fixes the rate limit for authentication, but

attackers were able to downgrade and brute force the authentication. Also, if they

integrated the services’ inventory, their first or third company is outdated or missing,

making the API vulnerable.

We must ensure that documentation is only available to authorized users to prevent

improper asset management. In addition, steer clear of employing operational data in

non-operational API deployments. If circumstances require it, ensure that these end-

points receive identical security measures as those designated for production. Also,

use external safeguarding techniques like API security firewalls for all publicly acces-

sible iterations of your APIs, not exclusively for the existing live edition.

2.10 API X: Insufficient Logging & Monitoring

Insufficient logging & monitoring happen when the server does not produce any logs,

logging is not set correctly, or logging messages do not include enough details. In

addition, the logs are not continuously monitored. Another important thing that

needs to be considered is if the server does not check for integrity which could cause

API VIII vulnerabilities. An example of this would be administrative APIs that were

leaked on a public repository, and the repository owner was notified, but it took 48

hrs to respond. As a result, data was leaked, and because of sufficient logging, the

company cannot assess what data was leaked to the attackers.

29

To overcome this issue, we must log all failed attempts, denied access, and input

validation errors. Log management needs to be formatted correctly so that log man-

agement can consume the logs and should include enough details to identify mali-

cious actors. In addition, implement a Security Information and Event Management

(SIEM) framework to centralize and oversee logs from every facet of the API stack

and hosting environments.

2.11 Comparision of OWASP API Top 10 2019-2023

At the highest level, as illustrated in Figure 2.11.0.1, two risks that were previously

present have been removed, three have remained the same, four have been updated,

and five new ones have emerged in 2023. The two formerly present risks, which

were injection attacks and insufficient logging and monitoring, persist but are now

categorized outside of the API top 10, as the growing use of APIs has pushed them

beyond it. These two risks have been colored in red in Figure 2.11.0.1. Injection

attacks are still a possibility, but the implementation of better firewalls and other

mitigation techniques has reduced their risk. Three risks, namely Broken Object

Level Authorization (BOLA), Broken Function Level Authorization (BAFLA), and

Security Misconfiguration, remain unchanged. In Figure 2.11.0.1, the yellow color

indicates that four risks were simply renamed. The five new risks, colored in blue, are

Server Side Request Forgery (SSRF), Unsafe Consumption of APIs, Broken Object

Property Level Authorization (BOPLA), Unrestricted Resource Consumption, and

Unrestricted Access to Sensitive Business Flows.

30

Figure 2.11.0.1: OWASP Top 10 API 2019 vs. 2023 [1]

2.12 Ethical Statement

Engaging in ethical hacking, alternatively termed penetration testing or adopting

a white-hat hacking approach, entails examining computer systems, networks, or

web applications to uncover security vulnerabilities susceptible to exploitation by

nefarious hackers [41]. If you’re interested in the field of ethical hacking, here are

some guidelines to consider:

1. Legal and Authorized Access: Before any engagement with any system or

network, we need explicit from the system’s owner. In addition, it needs to be

considered to work within the boundaries specified by the organizations.

2. Safeguarding Sensitivity and Compliance: Before and during ethical hack-

ing endeavors, assess the sensitivity or confidentiality of the information at

hand [41]. This is crucial to avoid any infringement of legal statutes, guidelines,

or regulations when dealing with sensitive personal, financial, or proprietary

data.

3. Communication: Maintain communication with the organization’s stakehold-

ers. Be clear about progress and findings.

31

4. Informed Consent: It is necessary to make sure the stakeholders have an

understanding of the risk regarding penetration testing.

5. Disclosure of Information: Don’t disclose the client information with any

other parties. Make sure of the security of your client.

6. Documentation: It is important to document all the findings in detail and

report them to the companies so they can follow your guidelines to secure their

system.

2.12.1 Practical Hacking Practices:

Different resources can be used for ethical hacking practices, such as [42]:

• PortSwigger Web Security Academy

• Hack The Box

• PentesterLab

• VulnHub

• TryHackMe

• Google Gruyere

• Juice Shop

• WebGoat

The information provided here, including discussions on penetration testing and se-

curity tools, is strictly for educational purposes. Any actions taken based on this

information are the sole responsibility of the individual. It is crucial to adhere to

legal and ethical standards when engaging in activities related to penetration testing

or cybersecurity exploration. Unauthorized access to computer systems is illegal, and

individuals are strongly advised to obtain proper authorization before conducting any

security testing. This serves as a reminder to act responsibly, ethically, and within

32

the bounds of the law, promoting the use of knowledge for positive contributions to

the field of cybersecurity.

33

Chapter 3

API SYSTEM AND VULNERABILITY ENVIRONMENT SETUP

In pentesting, the most crucial step is setting up the required tools. This chapter will

cover the essential tools for learning API pentesting for reconnaissance and authen-

tication. I will conclude with the script I created, which can make life much easier

and sets up your system with only one command. The operating system I built and

tested this script with is Ubuntu 22.04.

3.1 Tools

In this section, I will provide a brief description of each pentesting tool for reconnais-

sance and authentication.

3.1.1 Burpsuite

Burp Suite is a highly regarded and widely embraced tool for testing web applica-

tion security. It has gained significant popularity among ethical hackers due to its

robust capabilities. By utilizing Burp Suite, ethical hackers can effectively detect

vulnerabilities and possible security concerns in web applications. The suite encom-

passes various integrated tools, such as a proxy server, web spider, scanner, intruder,

repeater, and sequencer, which work harmoniously to conduct a comprehensive se-

curity assessment. This powerful tool enables ethical hackers to simulate attacks,

intercept and modify web traffic, analyze application behavior, and uncover potential

vulnerabilities. Its adaptability and customizable features make it an essential asset

34

for evaluating the security strength of web applications. As a result, ethical hackers

can identify weaknesses and provide valuable recommendations to enhance security

without revealing the origin of their written content. In addition, this application has

two versions: the community edition and the pro version. All my explanations about

Burp Suite in the next chapter are done in the community edition.

3.1.2 Ffuf

Fuzz Faster you Fool (FFuf) is a web fuzzing tool widely used to identify hidden paths,

directories, and files in web applications through brute-forcing and fuzzing techniques.

It is built in the Go language, and its primary advantages include speed and efficiency

compared to other tools. FFuf is capable of high-speed scanning and can process a

large number of requests in a short time, making it ideal for ethical hackers to explore

target applications for potential vulnerabilities that malicious actors could exploit.

The tool also offers flexibility and customization, enabling ethical hackers to define

their wordlists or use predefined ones to fuzz various aspects of a web application,

such as URLs, parameters, or headers. This allows them to tailor their fuzzing efforts

to the specific target, increasing the chances of identifying vulnerabilities. Moreover,

FFuf supports various output formats, making it easier for ethical hackers to analyze

and interpret the results.

3.1.3 Wfuzz

Wfuzz is a powerful tool that enhances web application assessments by seamlessly

replacing the ”FUZZ” keyword with customizable payloads [22]. These payloads con-

sist of valuable data, enabling the injection of inputs into various aspects of an HTTP

request, including parameters, authentication, forms, directories/files, and headers.

35

Wfuzz surpasses being a web content scanner as it excels in identifying and exploiting

web application vulnerabilities. Its modular design fosters plugin development, while

its language interface empowers users to conduct comprehensive manual and semi-

automatic tests. This approach ensures a deep understanding of actions and context

without relying solely on a web application scanner like Burp Suite.

3.1.4 FireFox Plugins

For our pentesting, there are a couple of plugins required for Firefox.

1. Foxyproxy

To manage traffic routing to different ports, we use a Foxyproxy plugin. This

is particularly useful when intercepting traffic using Burp Suite or conducting

passive API reconnaissance through Postman.

2. uBlock-origin

uBlock Origin is a highly efficient content blocker that provides a comprehensive

solution to undesired ad content. By default, it effectively blocks ads, track-

ers, coin miners, popups, and more through a range of pre-enabled filter lists,

including EasyList, EasyPrivacy, Peter Lowe’s Ad server list, and the Online

Malicious URL Blocklist. Furthermore, uBlock-origin offers a wide selection of

additional filter lists like EasyList Cookie, Fanboy Annoyances, and AdGuard

Annoyances, among others, for users to customize their browsing experience.

Notably, it empowers users to block JavaScript selectively or globally, create

personalized rules to override filter list entries, and access numerous advanced

features. The best part is that uBlock Origin is free, open source, and operates

under the public GPLv3 license, embodying a collaborative effort by users, for

users [23].

36

3. Wappalyzer

The Wappalyzer extension is a helpful web browser extension that identifies

the technologies used by a website. It can detect the content management sys-

tem (CMS), web frameworks, programming languages, analytic tools, and other

components that comprise a website’s stack. This tool is useful for reconnais-

sance as it allows us to analyze the technologies used by the target website.

Ethical hackers can leverage this information to conduct exploit research and

identify vulnerabilities or exploits associated with those technologies. It can also

be used to craft targeted attacks on the website. Knowing about the website’s

technologies can help us choose the right tool for pen-testing.

3.1.5 Zaproxy

ZAP (Zed Attack Proxy) is an open-source web application security testing tool

widely used to identify web application vulnerabilities. Ethical hackers and security

professionals use ZAP for penetration testing, automated scanning, and vulnerability

management. It helps simulate attacks, discover security weaknesses, and automate

scans to detect common vulnerabilities. ZAP also assists in managing and tracking

discovered vulnerabilities, raising security awareness among developers, and integrat-

ing security testing into the software development lifecycle. With its API security

testing capabilities and extensibility, ZAP provides a versatile toolset for enhancing

web application security.

3.1.6 Jwt tool

Jwt tool is a comprehensive solution, providing various features to enhance security

and mitigate potential vulnerabilities. Among its capabilities, it can check the valid-

37

ity of a token, ensuring the authenticity and integrity of the information it carries.

It also identifies known exploits, including the alg=none signature-bypass vulnera-

bility, RS/HS256 public critical mismatch vulnerability, key injection vulnerability,

blank password vulnerability, and null signature vulnerability. Its ability to scan for

misconfigurations and weaknesses acts as a proactive safeguard, preventing potential

security breaches. Additionally, the tool employs fuzzing techniques to provoke unex-

pected behaviors by manipulating claim values. It also enables testing secret/essential

files, public keys, and JWKS keys for validity. Furthermore, it can identify weak keys

through a high-speed dictionary attack, reinforcing the overall security posture.

Moreover, it offers the option to forge a new token header and payload content,

creating a unique signature using the key or employing alternative attack methods.

Timestamp tampering is another feature available, allowing for the examination and

manipulation of timestamp data. The tool also facilitates RSA and ECDSA key gen-

eration and reconstruction, leveraging JWKS files. These are just some of the func-

tionalities the logo embodies, and many more features remain to be discovered [25].

3.1.7 Postman

Postman is a widely utilized collaboration platform developers use to design, test, and

document APIs (Application Programming Interfaces). Its intuitive interface enables

seamless transmission of HTTP requests, API management, and response analysis.

Ethical hackers leverage the capabilities of Postman to conduct comprehensive se-

curity assessments on APIs. By engaging in API penetration testing, they employ

diverse request types (e.g., GET, POST, PUT, DELETE) to target API endpoints.

Through meticulous scrutiny of API responses and their intricate composition, these

professionals adeptly uncover potential vulnerabilities. They methodically scrutinize

common security pitfalls, such as cross-site scripting (XSS), cross-site request forgery

38

(CSRF), and deficiencies in communication encryption. Moreover, Postman empow-

ers ethical hackers with automated test script functionality, request collections, and

the ability to manage environment variables. These features greatly enhance effi-

ciency, enabling streamlined testing processes, time-saving endeavors, and effortless

sharing of test cases among team members. Importantly, Postman boasts compre-

hensive support for various protocols and authentication mechanisms, rendering it

an ideal tool for scrutinizing diverse API landscapes encompassing RESTful APIs,

GraphQL, SOAP, and more.

3.1.8 Amass

Amass is an open-source tool that excels in network mapping and uncovering potential

vulnerabilities. It uses various techniques like active reconnaissance and external asset

discovery to collect extensive data. Amass is equipped with internal machinery and

seamlessly integrates with external services, enhancing its efficiency and effectiveness.

This tool finds DNS, HTTP, and SSL/TLS data. It also works with APIs like the

SecurityTrails API to expand its capabilities. Additionally, Amass taps into web

archiving engines to uncover hidden online data. In addition, the framework saves

the findings and metadata in a database (SQLite and PostgreSQL), which is updated

and queried across the sessions. This database is in a graph-like structure. Figure

3.1.8.1 the assets show details about the findings, and the rows are connected to the

assets table. Furthermore, all the data is time-stamped when created and last seen.

39

Figure 3.1.8.1: Under the hood of Amass database [3]

In network discovery, Amass stands out as a powerful and discreet tool, evading AI

detection while delivering exceptional results.

3.1.9 Burp Suite vs Zaproxy

The Burp Suit provides both automated and semi-automated processes; however, the

new update of Zaproxy gives us the capability to use the YAML file. As a result,

Zaproxy will provide us with the capability of operating in container technologies

such as Kubernetes and implementing CI/CD pipelines [44] [43]. In addition, when

looking at the efficiency, product documentation, and community support of Burp

Suite vs Zaproxy, it was discovered that both Burp Suite and Zaproxy have active

support from online forums and other support functions. Likewise, both Burp Suite

and Zaproxy come with well-documented manuals and product documentation. The

one area where we see a difference is while both use a GUI interface, Zaproxy also

includes a Command Line Interface (CLI) [47].

Furthermore, Burp Suite has more tools for vulnerability detection than ZAP. Burp

Suite also comes with the essential tools needed for initiation, with the capability

for add-ons if needed. Zaproxy, however, requires additional add-ons that must be

installed first. These mandatory add-ons are necessary for proper functionality [48].

40

Alternatively, The Burp Suite has higher accuracy and fewer false positives than

Zaproxy [43]. Zaproxy is excellent for finding vulnerabilities, but it has limitations in

the scope of its scans. Lastly, Burp Suite is costly if you use the professional version;

it costs $449 a year [49], but Zaproxy is free.

3.1.10 Ffuf vs Wfuzz

Table 3.1.10.1 compares three tools used in our pentesting. There are several tools

available for content discovery, but the most commonly used ones for detecting vulner-

abilities are Gobuster, Ffuf, and Wfuzz. Although these tools share the same purpose

of finding directories, subdomains, and pentesting authentication, each of them has

unique capabilities. Here is a comparison of the features of these three tools, which

are widely used in the domain of vulnerability detection.

Table 3.1.10.1: ComparisonFfuf and Wfuzz

Feature Ffuf Wfuzz

Language Golang Python

Protocols Primarily designed for HTTP Supports multiple protocols (HTTP, FTP, etc.)

Purpose Web content and directory fuzzing Web application fuzzing

Performance Optimized for speed and efficiency Flexible and slower

Customization Offers customization but streamlined Highly customizable with various options

Wordlist Support Efficient handling of large wordlists Extensive payload generation capabilities

Ease of Use Designed for simplicity Powerful but may have a steeper learning curve

The first difference is the language used; while Ffuf is written in Golang, Wfuzz

is based on Python [46]. The benefit of using Python over Golang is the ease of

41

installation for most users who may not be familiar with Golang. When it comes to

fuzzing, the fuzzing speed is faster in the tools that use the Goland language, as the

threading in Golang is much faster than the threading speed used in Python. The

reason for this is due to Python only allows one thread to execute at a time and is

helpful for I/O-bound tasks. However, Golang has an advantage because it supports

concurrent programming using goroutines and channels. These goroutines allow both

I/O-bound and CPU-bound tasks. In one article reviewed (cite) that focuses on the

two fuzzing tools, Ffuz and Wfuzz, the author compared the two based on execution

time, memory requirements, CPU utilization, and vulnerabilities identified. In this

study, it was found that Wfuzz was the leading in every metric except for the memory

footprint. However, in the conduction of this experiment, threading was not used.

Based on our experiment in figure 3.1.10.1,3.1.10.2, we identified that this experiment

can not be correct because Ffuf is faster because of the power of Golang. In Figure

3.1.10.2, the sys time plus user time indicates that the CPU time is more efficient

than Wfuzz as seen in figure 3.1.10.1.

Figure 3.1.10.1: Wfuzz time performance

42

Figure 3.1.10.2: FFuf time performance

3.1.11 Rustscan vs Nmap

When Rustscan is used in conjunction with Nmap, it enhances the performance by

asynchronously conducting port scans [45]. The Rustscan programming language,

Rust, facilitates the execution of numerous tasks concurrently using a minimal number

of operating system threads. While Rustscan uses Rust, Nmap executes in C language

as seen in table 3.1.11.1. Rustscan provides caching, which can drastically reduce

scanning time on the extensive network [45]. On its own, Nmap speed is powerful

43

but often perceived as being slower 3.1.11.1. The reason is Nmap uses detection

evasion of firewalls and intrusion detection systems (IDS). However, Nmap uses flags

to speed up scans with the -sS, and -T flags. The -sS can be performed quickly with

the capability to scan thousands of ports per second. This is known as the stealthy

scan method. The -T provides a range of speed capabilities from very slow using the

flag -T0, to highly aggressive using the flag -T5.

Being faster, as in the case of Rustscan, doesn’t necessarily mean better. Newer

firewalls can easily detect fast scans and block IPs scanning the network. Therefore,

we can limit detection by firewalls and IDS devices using Nmap and slower scanning

methods.

Table 3.1.11.1: Rustscan vs Nmap

Feature RustScan Nmap

Language Rust C

Speed Fast and efficient but noisy Powerful but may be perceived as slower

Scanning Techniques Simple and fast, focused on speed Versatile with a wide range of techniques

Ease of Use User-friendly command-line interface Extensive options, can be more complex

Community Support Growing community Large and active community, extensive resources

Flexibility Basic scans, quick reconnaissance Comprehensive feature set, suitable for various scenarios

In addition, Rustscan doesn’t use more than one thread and doesn’t call more than

one Nmap instance at a time [50]. Rustscan provides scans for both host and IP

asynchronously. The benefit of this is a significant boost to the performance compared

to scanners that only scan hosts synchronously. The purpose of Rustscan is for port

scanning, and it does not support other features like Nmap. Nmap supports various

tasks, such as OS detection, service version detection, and vulnerability scanning.

Rustscan gives an option by using ”–” to run flags provided for Nmap. Rustscan can

44

have 65000 ports in 3 seconds; however, it’s essential to remember that this will be

noisy for all intrusion detection and prevention [50].

3.2 Automatic Install Script

To streamline the installation process, the initial step is to download the Ubuntu ISO

image from https://ubuntu.com/download/desktop. Once the download is complete,

there are two available installation options. We can utilize virtual machines like

VMware or Virtualbox or install it as a dual-boot system. After installation of the

Ubuntu operating system, open the terminal and run the command below:

1 sudo apt-get install git ansible

2

We need git to clone the API-lab GitHub repository, and Ansible to configure our

system automatically. The script provided requires Ansible. The next step is to run

the following command to clone the repository.

1 git clone git@github.com:Hadiasemi/API-lab-Setup.git

2

3.2.1 Ansible

Ansible is a free and open-source tool written in Python. Ansible can configure

systems, deploy software, and orchestrate advanced workflows to support deployment,

system updates, and more [26].

The primary goal of Ansible is simplicity and ease of use. In addition, it has essen-

tial consideration of security and reliability. For deployment, it uses OpenSSH for

transport and human-readable language to configure [26].

45

https://ubuntu.com/download/desktop

In this project, the purpose of using Ansible is users do not need to configure ev-

erything manually. Another critical thing to remember is we can use this script to

deploy to multiple servers so professors can implement this in their classrooms. This

will be an excellent opportunity for future developers to have the skills to develop

API applications securely.

The configuration of the ansible-playbook (set of instructions we need to configure

for deployment) is in YAML format, and files end with .yml. The directory structure

looks like the figure 3.2.1.1. The local.yml is the main YAMAL file, which includes

all the playbooks for our setup we want to run as tasks.

Figure 3.2.1.1: Ansible folder tree structure

46

In local.yml, we set up all the hosts we want to run this script on. Here, we used

a local host. However, we can have a separate file in Ansible to define all host IPs.

In this way, we can deploy our configuration to multiple servers. As we can see in

3.2.1.1, these are all the hosts we define in our hosts’ file and give root permission

to run our config as a sudo user. Vars is the variable that we predefined that we

use later in our code. Tasks are the steps in which we want our project to configure

our system. In my local.yml, instead of all configurations in the same place, I used

include, which refers to the task folder, as you can see in 3.2.1.1. The file consists of

the configuration, images, .tmux.conf, .zshrc, and other configurations.

1

2 ---

3 - hosts: all

4 become: true

5 vars:

6 created_username: api

7

8 tasks:

9 - name: Install curl

10 apt:

11 name: curl

12 state: latest

13 update_cache: true

14

Listing 3.2.1.1: Sample example of Ansible playbook

As you can see in the files folder, some files end in j2, which stands for Jinja. Ansible

uses Jinja to set up its configuration.

47

3.2.2 Jinja

Jinja is an Ansible and Python template engine for generating dynamic content like

HTML, JSON, and text-based formats. It separates templates containing static text

and template expressions enclosed in , allowing data to be inserted or logic to be pro-

cessed when rendered. With variables, filters, and control structures, Jinja efficiently

combines data and templates, promoting a maintainable code. Commonly employed

in web frameworks like Flask and Django, Jinja facilitates tasks such as generating

web pages with personalized content or crafting configuration files and emails. Its

security features include automatic content escaping and guarding against potential

vulnerabilities.

After going to API-lab-Setup, we must run the following command in the terminal

to set up our system.

1 ansible-playbook local.yml -K

2

The -K prompts us to provide a sudo password because some configurations require

sudo access to be installed on our system. Another configuration that can be set

up in our ansible-playbook commands is providing the tags we want to run without

running the whole configuration. For example, we can run

1 ansible-playbook local.yml -K --tags "setup"

2

By running the setup, we only install the based configuration, which includes installation-

based setup, without installing any cyber security tools. In addition, we can provide

multiple tags like ”setup, burp.” This installs setup configuration and installs Burp

Suite. After installation, we must go to the terminal, right click, and choose the

48

preferences options. In the opened window from the menu tab, select the text and

hit the checkmark on Custom font. Next, choose the MesloLGS NF from the font

options so that our prompt resembles the figure 3.2.2.1.

Figure 3.2.2.1: Choose the right terminal font

After completing the setup of your system, your desktop should look like figure 3.2.2.2.

49

Figure 3.2.2.2: Ubuntu desktop after configuration

3.2.3 Configure Foxyproxy

To set up Foxyproxy, open Firefox and click on the plugin as per 3.2.3.1a, select

”options” to open the plugin, click on the ”Add” button to configure your proxy

settings. Set up your proxy as shown in figure 3.2.3.1b and save the changes.

(a) Foxyproxy plugin (b) Foxyproxy configuration set up

Figure 3.2.3.1: Foxyproxy Configuration

For both Postman and Burp Suite, the proxy IP is 127.0.0.1. In addition, the port

for Postman is 5555, and the Burp Suite is 8080. After configuration, it should have

two proxies in the menu.

50

3.2.4 Burp Suite Extentions

After opening the Burp Suite and accepting the configuration, go to the extensions

tab and click on BApp Store. Click on the search bar and look for Authorize. Figure

3.2.4.1 indicates that we need Jyton to use this library.

Figure 3.2.4.1: Burp Suite Authorize Plugin

Click on the ”Download Jython” to open the Jython website. Please download the

standalone version of this library. Then, from the menu, choose ”Extension settings”.

In the Python environment, click on select file and choose the directory downloaded

file. An example of this configuration is in the figure 3.2.4.2.

51

Figure 3.2.4.2: Setup Jython

Close the menu, return to the App, and search the Authorize app again. The down-

load option should be available. Click download; it is crucial to install the Param

Miner extension. This extension is designed to identify hidden and unlinked parame-

ters and is particularly useful in detecting vulnerabilities related to web cache poison-

ing. The extension is equipped with sophisticated differential logic inherited from the

Backslash Powered Scanner, along with a binary search method, which enables it to

speculate on up to 65,000 parameter names in a single request. The extension draws

these parameter names from a carefully curated internal wordlist, which is further

supplemented with words harvested from all relevant incoming traffic.

3.2.5 Limitation of Script

This script was built to run on Ubuntu 22.04. The script is mainly constructed to

get the application from a repository or website. One of the caveats that cause issues

is the version of Golang installation in golang.yml in the tasks folder is hard coded,

which in figure 3.2.5.1 indicates that we use version 1.21. If any dependencies that

52

later require the higher version, it must manually be changed to the version required

for the update.

Figure 3.2.5.1: Golang installation

Another limitation after running the script, the user will need to go to Firefox to

configure the FoxyProxy plugin manually.

Additionally, you have to go to Burp Suite to download the plugins.

53

Chapter 4

API SECURITY TOOLS TESTING: RECONNAISANCE AND

AUTHENTICATION

In this chapter, we will delve into an exploration of open-source tools designed for API

security, specifically focusing on reconnaissance and authentication aspects. Within

the realm of reconnaissance, we introduce both passive and active methodologies.

Authentication is scrutinized, encompassing discussions on password-based authenti-

cation attacks, OTP authentication attacks, and JWT token attacks.

To facilitate practical testing in a controlled environment, the crapi.apisec.ai [51]

serves as the designated platform for evaluating the tools under consideration. It is

important to note that CrAPI is a deliberately vulnerable system expressly authorized

for penetration testing purposes.

4.1 API Reconnaissance

Reconnaissance constitutes the initial phase of ethical hacking, encompassing the sys-

tematic acquisition of information about the target system [37]. This data compilation

extends from details concerning network infrastructure to particulars about employee

contacts. The overarching objective of the reconnaissance phase is to discern and

catalog a comprehensive array of potential attack vectors.

This section, as delineated in table 4.1.0.1, comprehensively addresses both passive

and active reconnaissance methodologies. Passive reconnaissance involves a meticu-

lous examination of websites that serve as instrumental tools for information gath-

54

crapi.apisec.ai

ering. If tools are identified on GitHub that automate the process of extracting

information from this website, such tools will be presented in section. In active re-

connisance cover tools for actively gathering information. Table 4.1.0.1 indicated two

types of reconnisance and the material will be covered in this section.

Table 4.1.0.1: Reconnaissance Approaches

Reconnaissance

Passive Approach Active Approach

Google Dorking Port Scanning (Nmap, Rustscan)

Git Dorking (Github-Dorks, TruffleHog, Gitrob) Burp Suite

Wayback Machine (waybackurls) Zaproxy

Shodan Gobuster

Amass

4.1.1 Passive

Passive reconnaissance is obtaining information about targeted computer systems and

networks without actively engaging with them without interruption [21]. It relies on

data that can be publicly accessed through open-source intelligence (OSINT) research

on the target infrastructure to identify vulnerabilities or potential attack vectors [38].

The primary goal of this approach is to collect as much information on competitors,

industry trends, and consumer behavior as possible about the target without direct

interaction [38]. In addition, credentials such as usernames and credentials can help to

be used as authenticated users, which helps to do better in reconnaissance. Versioning

and API documentation can also help understand how to interact with API. If we can

use older APIs, maybe access some information that cannot be accessed through new

patches of vulnerabilities. The following approaches are introduced: Google Dorking,

Git Dorking, Wayback Machine, Shodan, and Amass. In addition, it provides different

tools with respect to each approach if it exists.

55

4.1.1.1 Google Dorking

Google Dorking, alternatively known as Google hacking, denotes the utilization of

specialized Google search techniques to exploit vulnerabilities in websites or to retrieve

information not readily accessible through public search results [39].

Google Dorking is a technique that involves using specific search queries on the Google

website. These queries are listed in Table 4.1.1.1, which displays the most common

Google Dorking queries to use. The essential keywords used in the table are inurl,

intitle, intext, and ext.

When you use the inurl keyword, Google will display URLs that include the keywords

you were searching for. Similarly, intitle and intext will look for keywords in the

title or text of the page, respectively. The ext keyword searches for files with the

specific extensions you provide.

56

Table 4.1.1.1: Google Dorking Queries [1]

Query Expected Results

inurl:”/wp-json/wp/v2/users” Find publicly available Word-

Press API user directories

intitle:”index.of” intext:”api.txt” Finds publicly available API key

files.

inurl:”/api/v1” intext:”index of /” Finds potentially interesting API

directories.

ext:php inurl:”api.php?action=” Finds all sites with a Xe-

nAPI SQL injection vulnerability.

(This query was posted in 2016;

four years later, there are cur-

rently 141,000 results.)

intitle:”index of” api key OR ”api key” OR apiKey -pool It lists potentially exposed API

keys.

inurl:”/swagger-ui/” Discover websites that have ex-

posed their API documentation

through the Swagger UI interface.

inurl:”/api-docs” This can help to find API docu-

mentation

Overall, Google Dorking is a powerful tool that can be used for both good and bad

purposes. Therefore, it is essential to use it responsibly and ethically.

4.1.1.2 Git Dorking

The search functionality within Github represents a robust and valuable tool for

the exploration of repositories in pursuit of sensitive information. The assembly of

Github dorks, or specialized search queries, can potentially expose confidential details,

57

encompassing personal and organizational data, including but not limited to private

keys, credentials, and authentication tokens [27].

Numerous companies have relied on the GitHub repository for their development

needs for several years. Despite having several competitors, GitHub continues to

be the most popular platform for software development. While many developers

upload modifications to GitHub, they may unintentionally push critical information

such as environment variables, token keys, usernames, and passwords during stressful

moments. Figure 4.1.1.1 indicated that if you search for ”nasa.gov credentials” in

GitHub, you will see that one of the software developers, by mistake, pushed the code

to GitHub with the credentials. As a result, malicious actors exploit the possibility

of such occurrences by using Git Dorking to search for sensitive data that may have

been inadvertently included in the source code uploaded to GitHub.

Figure 4.1.1.1: NASA GIT-OAUTH pushed to GitHub

Table 4.1.1.2 demonstrated the common Git Dorking command, which is helpful such

as finding files, finding extensions, finding paths, languages, credentials, etc.

In the following, I will discuss tools that automate the process instead of doing it

manually.

58

Table 4.1.1.2: Git Dork keys
GitHub Dork Info

filename: travis.yml finding files
extension: json finding the extension

like json
path: sites databases password find the path

language: python finding languages
api key
”api key”

authorization bearer
oauth
auth

authentication
client id
password

user password
user pass
passcode

client secret
secret

password hash
OTP

user auth

Finding API keys, To-
kens, and passwords

user:name (user:admin)
org:name (org:google type:users)
in:login (<username>in:login)
in:name (<username>in:name)

fullname:firstname lastname (fullname:<name><surname>)
in:email (data in:email)

Finding usernames

created:<2012–04–05
created:>=2011–06–12

created:2016–02–07 location:iceland
created:2011–04–06..2013–01–14 <user>in:username

Finding information-
specific dates

1. Github-Dorks: [27]

Github-Dorks is a powerful and useful tool that enables us to search for sensitive

data in repositories like private keys, credentials, authentication tokens, etc.

This repository is written in Python [27]. The good part is that users can give

customized GitHub dork files or use the default GitHub-dorks.txt.

59

Figure 4.1.1.2: Github-dorks usage

Figure 4.1.1.2 indicate many functionality in which we can search for the user,

Github repo, provide a Github Dork file, or monitor the user’s private feed and

output the result in the CSV file.

2. TruffleHog: [28]

This tool is excellent for finding leaked credentials in a git repository. This

program was written in Golang [28] and gave multiple ways to install this ap-

plication [28].

With TruffleHog, you could scan a repo for only verified secrets, scan a GitHub

organization for only verified secrets, scan a repo for verified keys, and get JSON

output. Below is examples which we can use for pentesting. The –org specified

the organization we were looking for leakage of credentials.

1 # check for specified repository

2 trufflehog git https://github.com/trufflesecurity/

↪→ test_keys --only-verified

3 # Scan a GitHub Organization

4 trufflehog github --org=trufflesecurity --only-

↪→ verified

5

3. Gitrob: [29]

Gitrob is designed to assist in locating possibly confidential files uploaded to

60

public repositories on GitHub. It works by cloning a user or organization’s

repositories to a depth that can be adjusted and then reviewing their commit

history to identify and highlight files that exhibit characteristics associated with

potentially sensitive data. These results are conveniently displayed via a web

interface, making navigating and analyzing them effortless. This code was de-

veloped with Golang. This library has not been updated in the last five years

and has been archived by the owner on Jan 13, 2023.

4.1.1.3 Wayback Machine:

The Internet Archive Wayback Machine is an Internet-based digital repository with

extensive web pages and multimedia files collected from the web over the last two

decades. It was created by the Internet Archive, a non-profit entity committed to

safeguarding digital content and ensuring its availability to the general public [31].

The Wayback Machine serves as a virtual time-travel tool for the internet. It permits

users to retrieve past iterations of websites and web pages precisely as they were

at distinct moments in history. The Wayback Machine curls the internet and takes

periodic snapshots of web pages.

The benefits of using Wayback Machine are for five reasons [31]:

1. Historical data: The Wayback Machine offers access to past website data,

enabling penetration testers to observe its evolutionary journey. This aids in

detecting alterations that might have introduced fresh security flaws or vulner-

abilities.

2. Comparative Examination: When scrutinizing intricate websites or web

applications, pentesters can utilize the Wayback Machine to compare various

61

website versions across timeframes. This process helps pinpoint modifications

that might have introduced novel security weaknesses.

3. Unearthing Confidential Information: The Wayback Machine can unveil

sensitive data that may have existed on a website previously, such as login

credentials, credit card details, or other private information.

4. Spotting Outdated Software: By delving into the Wayback Machine, out-

dated software or plugins that were once present on a website can be identified.

These antiquated technologies may harbor known vulnerabilities that malicious

actors can exploit.

5. Confirmation of Remediation Efforts: Pentesters can employ the Wayback

Machine to validate whether website owners have effectively addressed previ-

ously identified vulnerabilities. This ensures that security concerns have been

adequately resolved.

The setps required for using Wayback Machine:

1. Go to archive.org/web.

2. Once there, navigate to the homepage, which should have a search bar.

3. In the search bar, enter the website for which you want to gather information.

Figure 4.1.1.3 shows that for owasp.org. The calendar allows us to find the information

between the different periods and the changes that happened to the website.

62

archive.org/web

Figure 4.1.1.3: Wayback Machine for owasp.org

The changes section button shows calender for each year and by clicking on each

squres shows the snapshot of the website content. By clicking on the URLs, we were

find all links for specified website.

Wayback Machine offers exclude your website by emailing info@archive.orge and indi-

cate the URLs, the time period, the period you have control on the website to remove

your information [40].

Waybakurls:

The waybackurls tool can grab all URLs found by Wayback Machine. This was fully

developed by Golang languages. Below is an example of this tool [32].

1

2 $ cat domains.txt | waybackurls > urls.txt

3

Once the command displayed above is entered into the terminal, a urls.txt file will

be returned. The file will include all the domains from which we gather information

and the waybackurls read from the output of the domain.txt

63

4.1.1.4 Shodan:

Shodan is also an excellent tool typically used in reconnaissance. This tool allows the

user to search for key words to find information about different IPs and open ports on

those IPs. Additionally, Shodan can be used to gather information about a particular

API. Shodan has regularly monitored devices accessible to the internet and checked

all the IPv4 address spaces with open ports. For API pentesting, we can search in

the search bar ”content-type: application/json” to only display the APIs that

return JSON or change JSON to XML format to return XML formats. Figure 4.1.1.4,

shows 5,365,719 results based on our search. Also, Shodan enables us to filter from

the left side menu based on countries, organizations, and operating systems to get

more related results to our needs. In addition, to find WordPress API, we can search

for ”wp-json”.

Figure 4.1.1.4: Search Shodan for ”content-type: application/json”

64

4.1.1.5 Amass:

Amass version 4.2 has two subcommands, intel, and enum. The following goes into

detail on each of them.

1. Intel: Intel command is used for collecting open source intelligence on the

organization and allows finding the root domain names associated with the

organization. When you run an Amass intel command, the command provides

a help menu on how to use the intel sub-command (see figure 4.1.1.5). After

the intel command, we could choose the optional flags and specify the domain

we will be pentesting. For example, figure 4.1.1.6 shows that OWASP owned

the blockster.com and modeltime.

Figure 4.1.1.5: Amass intel subcommand

Figure 4.1.1.6: OWASP root domain with using Amasss

65

When using Amass intel for search operations, you have the flexibility to en-

hance its functionality by incorporating additional configuration choices, such

as the ”-active” parameter, which initiates zone transfers and actively scans to

retrieve SSL/TLS certificates for data extraction. It’s crucial to emphasize the

importance of obtaining proper authorization before conducting active searches

on the designated target [2].

In addition, with ”-org” we can look for organizational names that return Au-

tonomous System Network (ASN) IDs assigned to the target.

2. Amass enum enables you to engage in DNS enumeration and mapping of the

target, enabling the identification of an organization’s vulnerable attack surface.

The results of this enumeration are stored in a database displayed in a graph

either in Amass’ default output location (∼/.config/amass) or the designated

output directory using the ”-dir” flag. The same arrangement applies to other

Amass subcommands. Two attacks can be achieved with an enum subcommand:

-passive and -active. The passive method is faster; however, Amass will not

check for DNS information, such as resolving the subdomains. The command

below displays the output of the Amass passive attack on the owasp.org.

1

2 $ amass enum -passive -d owasp.org

3 [...]

4 update-wiki.owasp.org

5 [...]

6 my.owasp.org

7 www.lists.owasp.org

8 www.ocms.owasp.org

9 [...]

10

66

owasp.org

Another option is the active configuration mode. This method will give us

more precise results, and more assets could be discovered because all DNS

enumeration techniques will be enabled.

The command below is active and performs subdomain brute-forcing with the

displayed word list. In addition, this will be validated by Amass default or

the specified resolver. The below command -d specifies the domain, and -w

specifies the wordlist we want to brute-force and saves the output results at

amass results owasp.txt.

1

2 $ amass enum -active -d owasp.org -brute -w ./

↪→ deepmagic.com-top50kprefixes.txt -dir amass4owasp -config /root/amass/

↪→ config.yaml -o amass_results_owasp.txt

3

For the -config, you can specify special configs which are located in our Ansible

script at ”.config/amass/config.yml”.

In addition, we have other tools for Amass, which are installed on our system from

https://github.com/owasp-amass/oam-tools.git. The oam-tool provides four different

tools. Each of these tools includes different flags to run with default and non-default

commands that are common in all of them. Table 4.1.1.3 include the default flags

and the four tools included as oam i2y, oam subs, oam track, and oam viz.

Table 4.1.1.3: Oam-tools default flags [2]

Flag Description Example

-h/-help Show the program usage message oam command -h

-config Path to the YAML configuration file oam command -config config.yaml

-dir Path to the directory containing the graph database oam command -dir PATH -d example.com

-nocolor Disable colorized output oam command -nocolor -d example.com

-silent Disable all output during execution oam command -silent -d example.com

67

https://github.com/owasp-amass/oam-tools.git

1. The oam i2y is for converting legacy ini configuration formats to a new YAML

format. The flag provided for this tool is -ini, which is indicative of the ini file

we want to convert to. The -cf and -df are for config.yml and dastasrc.yml,

which we used for our configuration. Below is an example of this command.

1

2 oam_i2y -ini config.ini -cf ../../config.yaml -df

↪→ datasrc.yaml

3

2. The oam subs is for analyzing collected Amass assets. Oam subs conducts

actions related to the graph database, allowing users to view and control it.

This operation can utilize the SQLite file generated through enumerations or

the remote graph database settings specified in the configuration file [2].

Table 4.1.1.4: Oam subs flags [2]

Flag Description Example

-d Domain names separated by commas (can be used multiple times) oam subs -d example.com

-demo Censor output to make it suitable for demonstrations oam subs -demo -d example.com

-df Path to a file providing root domain names oam subs -df domains.txt

-ip Show the IP addresses for discovered names oam subs -show -ip -d example.com

-ipv4 Show the IPv4 addresses for discovered names oam subs -show -ipv4 -d example.com

-ipv6 Show the IPv6 addresses for discovered names oam subs -show -ipv6 -d example.com

-names Print just discovered names oam subs -names -d example.com

-o Path to the text output file oam subs -names -o out.txt -d example.com

-show Print the results for the enumeration index + domains provided oam subs -show

-src Print data sources for the discovered names oam subs -show -src -d example.com

-summary Print just ASN table summary oam subs -summary -d example.com

3. The oam track command checks the difference between enumerations that in-

clude the same target(s) for monitoring the target surface. The flags for this

tool are -d, where we define the domain, and -df, the path to the file providing

the root domain. Lastly, -since is for excluding all enumerations before a spec-

68

ified date (format: 01/02 15:04:05 2006 MST) [2].

4. The oam viz generates illuminating network graph visualizations that enhance

the organization of collected information. This operation can utilize the SQLite

file generated through enumerations or the remote graph database settings spec-

ified in the configuration file.

The following displays options to display DNS and infrastructure findings in the

form of a network graph:

Table 4.1.1.5: The oam viz flag for showing network graph

Flag Description Example

-d Domain names separated by commas (can be used multiple times) oam viz -d3 -d example.com

-d3 Output a D3.js v4 force simulation HTML file oam viz -d3 -d example.com

-df Path to a file providing root domain names oam viz -d3 -df domains.txt

-dot Generate the DOT output file oam viz -dot -d example.com

-gexf Output to Graph Exchange XML Format (GEXF) oam viz -gexf -d example.com

-o Path to a pre-existing directory that will hold output files oam viz -d3 -o OUTPATH -d example.com

-oA Prefix used for naming all output files oam viz -d3 -oA example -d example.com

4.1.2 Active

In active reconnaissance, the attacker directly interacts with the target and gathers

information for later stages of attacks without disruption or noticeable impact [30].

It’s like softly knocking on a system’s digital doors and windows, discreetly seeking to

understand its vulnerabilities and weaknesses. This subtle approach leaves minimal

traces to avoid raising alarms or suspicions. By employing active reconnaissance

techniques effectively, security professionals can gain valuable insights into a system’s

configuration and potential entry points while maintaining a low profile to ensure

undetected operation.

69

4.1.2.1 Port Scanning

The initial step of each scanning is port scanning, which enables us to gather more

information about the ports in our client server. We do not know what type of

applications are running in the system. I will review the most common open-source

tools as Nmap and Rustscan for port scanning.

1. Nmap

Nmap is widely used for port scanning. It offers a variety of flags to suit different

needs but can be quite disruptive, so be sure to obtain permission before use on

your target. See Table 4.1.2.1 for a breakdown of the various flags, a description

of those flags, and their respective functions.

Table 4.1.2.1: Nmap flags and use cases
Command Description Use Case

nmap target Basic host discovery and open port scanning Discover hosts and identify open ports

nmap -F target Fast scan (top 100 ports) Quickly identify common open ports

nmap -p 1-65535 target Scan all 65,535 ports Thoroughly enumerate open ports

nmap -A target Aggressive scan with OS and service detection Gather detailed information about target

nmap -sV target Service version detection Identify running services and their versions

nmap -O target OS detection Determine the target’s operating system

nmap -T4 target Set timing template (fast) Speed up the scanning process

nmap -T5 target Set timing template (insane) Fastest scan with minimal delay

nmap -sU target UDP scan Identify open UDP ports

nmap -p- target Scan all 65,535 ports (TCP) and common UDP ports Thoroughly enumerate all ports, including UDP

nmap -sn target Ping scan (disable port scan) Check host online status without scanning ports

nmap -Pn target Skip host discovery (assume all hosts are up) Force scan without host discovery

nmap -oA output target Output results to files Save scan results in various formats

nmap –script <script>target Run NSE scripts Execute Nmap Scripting Engine (NSE) scripts

For API pentesting, we need to run the scan twice - once for general detection

and once for all ports. The general method scans for default scripts and services

against a target.

1

70

2 nmap -sC -sV <target address or network> -oA nameOfOutput.txt

3

The -sC flag runs the default script, while -sV checks the service version. The

second scan checks all 65,535 TCP ports. See the command below.

1

2 nmap -p- <target address or network> -oA allports.txt

3

For example, using Nmap, I performed a general detection on the website crapi.

apisces.ai. First, I ran nslookup to obtain the website’s IP address, which we

have permission to conduct pentesting. I ran a general scan, which can be

viewed in figure 4.1.2.1. The scan revealed that the server had open ports for

SSH, HTTP, and other services.

Figure 4.1.2.1: Nmap for crapi.apisec.ai

2. Rustscan

Rustscan is a rapid port scanning tool that uses adaptive learning to improve

over time. This port scanner is high-speed; it can scan 65000 ports in less than

71

crapi.apisces.ai
crapi.apisces.ai

3 seconds. Rustscan now features a scripting engine that supports Python, Lua,

and Shell. Figure 4.1.2.2 indicated the helper page for the Rustscan.

Figure 4.1.2.2: Rustscan help page

Rustscan provides different flags to do port scanning. For example, I ran the

following command. The address can be specified using the -a command, while

Nmap flags can be used after ”–”, such as -sC for the default script and -sV for

service version checking.

1

2 rustscan [FLAGS] [OPTIONS] [-- <command>...]

3 rustscan -a scanme.nmap.org -- -sC -sV

4

When the command -b is used with a specified number, such as -b 10, 10 ports

can be scanned simultaneously with a default timeout of 1000 or 1 second. To

increase the timeout to 5 seconds, the command -T 5000 can be used.

4.1.2.2 Burp Suite

Users can activate FoxyProxy on their browser to intercept communication and switch

to Burp Suite mode. In the Burp Suite, the user must go to the proxy and set the

72

intercept on. After that, they can attempt to authenticate with the web server and

observe how the data is transmitted to the system by seeing it in the Burp Suite.

Figure 4.1.2.3: Burp Suite intercept creating account

Figure 4.1.2.3 shows that the user tried to create a new account crapi.apisec.ai, a

vulnerable server for pentesting. We can see the server is trying to do POST requests

to what endpoints. This information is essential for our pentesting.

4.1.3 Gobuster

Gobuster is a tool with many functions, including directory brute force, which can

reveal available directories on a target. It can also perform DNS subdomain brute-

forcing to discover additional subdomains associated with the target. Additionally,

Gobuster includes a command for detecting S3 buckets and a host option to identify

other subdomains hosted by the system. It can also fuzz for brute-forcing passwords

by modifying the FUZZ keyword. To execute the command, follow this example.

1

73

crapi.apisec.ai

2 gobuster dir -u 127.0.0.1 -w /opt/SecLists/Discover/Web-Content/

↪→ common.txt --threads 10 -delay 1s

3

This command performs directory brute-forcing using the dir argument. The -u

command is used to specify the URL, and the -w argument is for the wordlist. The

number of threads and delay are used to send ten requests per second.

4.2 Authentication

Authentication involves confirming the identity of an entity, ensuring that it gen-

uinely corresponds to its claimed identity [33]. Technology for verification controls

system entry by validating whether the provided credentials align with those stored

in an authorized user database or a data authentication server. Through this, verifi-

cation ensures the security of systems, processes, and overall enterprise information.

Throughout this section, I will be covering three types of pentesting on brute force

password-based authentication, one-time password (OTP) authentication, and JSON

web token, ”JWT” .

The following describes the different types of authentication:

1. Password-based authentication: is a popular method for verifying user iden-

tity. However, it has vulnerabilities that cybercriminals can exploit. Brute-force

and phishing attacks can compromise the system’s security. Additionally, users’

tendency to reuse passwords across multiple platforms can result in unautho-

rized access if a password is leaked.

2. Two-factor (2FA)/multifactor authentication: To provide a higher level

of user authentication security, this method requires users to execute one or

74

more additional verification measures. These could include the usage of a pin

sent to the recipient’s email through a message or using a physical key such as

Yubikey.

3. Biometric authentication: Biometric authentication uses unique personal

characteristics to identify, including fingerprint scanning, facial recognition, iris

recognition, and behavioral biometrics [34].

4. Single sign-on (SSO): In this way, the user has an account trusted by the

identity provider (IdP) and tells the application via cookies or tokens that the

user verified. This reduces the number of credentials a user needs to remember

and strengthens security.

5. Token-based authentication: Token authentication allows individuals to ac-

cess their accounts using a physical device like a smartphone, security key, or

smart card. This approach can be integrated into Multi-Factor Authentication

(MFA) or a password-less login. It permits users to verify their identity once

within a given timeframe, decreasing the necessity for multiple logins [34]. This

method makes it challenging for attackers to gain access to an account because

they need physical access to the token.

4.2.1 Password-based Authentication Brute-Force Attack

This attack is on the authentication API endpoints used for generating targeted

password lists, we can use https://github.com/sc0tfree/mentalist or common User

Password Profiler https://github.com/Mebus/cupp.

75

https://github.com/sc0tfree/mentalist
https://github.com/Mebus/cupp

4.2.1.1 Wfuzz

Wfuzz is a password brute-forcing tool. It searches for the keyword ”FUZZ” in your

command and continues to brute-force until it finds the password. To fuzz, you can

use ”-d” to send post data in the body. If you want to hide responses with a specific

code, use the ”–hc” flag. To set the payload for each FUZZ keyword, use ”-z”. In our

example, we used a file and provided a wordlist.

1

2 wfuzz options -z payload, params url

3 # -d => fuzz the content that is sent in the body of the post

4 # curly => post request body

5 # --hc => hides responses with certain response code

6

7 wfuzz -d ’{"email":"pogba006@example.com", "password": "FUZZ"}’ --hc 405

↪→ -H ’Content-Type:application/json’ -z file,’/home/ranger/Downloads/rockyou

↪→ .txt’ http://100.95.131.79:8888/api/v2/auth

8

Listing 4.2.1.1: Wfuzz

Figure 4.2.1.1 shows how I ran crapi.apisec.ai. The 200 responses indicate that we

achieved cracking the password.

Figure 4.2.1.1: Crack the user password and get 200 response

76

crapi.apisec.ai

4.2.1.2 Ffuf

In the ffuf we need to copy the request with the help of Burpsuite. For example, in

figure 4.2.1.2, you can see the post request intercepted by Burp Suite and the email

and password change with the keywords FUZZ and WFUZZ. We changed the email

and password because when we are brute-forcing the ffuf, look for keywords that have

some FUZZ and then use that for brute-forcing.

Figure 4.2.1.2: Post request intercepted by Bursp Suite

Here’s a guide on using ffuf to brute force basic authentication. We need to specify

the file we copied to the request using Burp Suite in the ”-request” field. The protocol

we use is set in the ”-request-proto” field, which is HTTPS by default but can be

changed to HTTP, like in our example. The ”-mode” field allows us to choose from

multiple methods for brute forcing. By default, ffuf uses clusterbomb, which iterates

through a different payload set for each position [35]. This results in a combination of

sets. Another method is pitchfork, which iterates through a different payload set for

each defined position. The last method is sniper, which places each payload position

in turn [35]. The ”-w” we specify the wordlist and the keyword they need to look for

changes. Last, the ”-mc” to match HTTP status code in our request.

1 # -request File containing the raw http request

77

2 # -request-proto Protocol to use along with raw request (default: https)

3 # -mode Multi-wordlist operation mode. Available modes: clusterbomb,

↪→ pitchfork, sniper (default: clusterbomb)

4 # -w Wordlist file path and (optional) keyword separated by colon. eg.

↪→ ’/path/to/wordlist:KEYWORD’

5 # -c color

6 # -mc Match HTTP status codes, or "all" for everything. (default:

↪→ 200,204,301,302,307,401,403,405,500)

7 ffuf -request ./requirement.txt -request-proto http -mode pitchfork -w

↪→ ./emails.txt:HFUZZ -w ./pass.txt:WFUZZ -c -mc 200

8

9

Listing 4.2.1.2: FFUF similar attack to Wfuzz

Figure 4.2.1.3 indicates how we use ffuf for brute-forcing the password on a CrAPI

vulnerable server. We cracked a couple of users’ emails and passwords to log in to

the server.

4.2.2 One Time Password (OTP) Brute-Force Attack

To ensure secure access to digital services like banks, one-time password authentica-

tion is commonly used. This method generates random strings or numbers the user

must authenticate with each time they log in to their account. However, it can be

vulnerable if the server has no rate limit and can be subjected to brute-force attacks.

For example, in CrAPI, as shown in figure 4.2.2.1.

78

Figure 4.2.1.3: Crack the user password and get 200 responses

Figure 4.2.2.1: CrAPI OTP password reset

79

To retrieve the OTP password request, you can intercept the post request from

Foxyproxy and Burp Suite. Figure 4.2.2.2 displays the results, showing that the

application uses v3 and is not susceptible to our attack. However, if the version

is downgraded to v2, it becomes an endpoint management vulnerability. This will

enable us to use v2 to brute-force and obtain the OTP.

Figure 4.2.2.2: OTP Burp Suite intercept

There are two methods to obtain an OTP pin using Wfuzz or Ffuf. Figure 4.2.2.2

indicates that the endpoints are located in /identity/api/auth/v2/check-otp. To fuzz

the desired location, we use the FUZZ key and create a POST request body with

-d. In Wfuzz, using –hc hides the response 500, which prevents us from receiving too

many 500 responses. Instead, we only received the desired 200 responses. Similarly,

in Ffuf, -mc is used to show only the 200 responses.

1 wfuzz -d ’{"email":"ha@email.com", "otp": "FUZZ", "password": "

↪→ Password123!"}’ --hc 500 -H ’Content-Type:application/json’ -z range

↪→ ,0000-9999 http://localhost:8888/identity/api/auth/v2/check-otp

2

3 ffuf -w 4-digit.txt -u http://localhost:8888/identity/api/auth/v2

↪→ /check-otp -H ’Content-Type:application/json’ -X POST -d ’{"email":"

↪→ ha@email.com", "otp": "FUZZ", "password": "Password123!"}’ -mc 200

80

4

Listing 4.2.2.1: Wfuzz and FFUF OTP

Figure 4.2.2.3 shows that we successfully brute-forced the OTP and used the Wfuzz

command to discover the four-digit PINs.

Figure 4.2.2.3: Brute-force OTP

4.2.3 JSON Web Tokens (JWT)

A JSON Web Token (JWT) serves as an open standard (RFC 7519), outlining a

concise and self-contained method to securely convey information between involved

parties in the form of a JSON object [36]. The credibility of this information is

upheld through digital signatures. JWTs can undergo signing processes, employing

either a secret (via HMAC algorithm) or a public/private key pair through RSA or

ECDSA [36].

Although JWTs provide encryption and secrecy, our focus is on signed tokens. The

signed key ensures the integrity of our information, while encrypted tokens hide it from

other parties. There are two reasons why we use JWTs: for user authorization when

logged in, for including JWT tokens in every request, and for securely transmitting

information.

81

JWT is structured in three parts, separated by dots. These three parts included

header, payload, and signature. The structure will look like:

1 xxxxx.yyyyy.zzzzz

2

Listing 4.2.3.1: JWT token

The header consists of two parts: the type of token, that is, JWT, and the signing

algorithm, which could be HMAC SHA256 or RSA. The example will be:

1 {

2 "alg": "HS256",

3 "type": "JWT"

4 }

5

Listing 4.2.3.2: JWT Header

This is encoded in Bas64Url. The payload is a predefined claim that is not manda-

tory. The registered claims are iss (issuer), exp(expiration), sub(subject),

and aud(audience). Public claims are defined for the using of JWTs but should

consider collisions, and for evidence of that, they should defined in IANA JSON Web

Token Registery [36]. Last, private claims are customer claims for sharing infor-

mation between parties, which is encrypted as Bas64Url. The payload will look like

this:

1 {

2 "sub": "1234567890",

3 "name": "John Doe",

4 "admin": true

5 }

6

82

Listing 4.2.3.3: JWT Payload

To create a signature, we need to use an encoded header, an encoded payload, a

secret key, and the chosen algorithm for the header. For instance, if we want to use

HMAC SHA256, the signature should be generated as follows, according to [36]:

1 HMACSHA256(

2 base64UrlEncode(header) + "." +

3 base64UrlEncode(payload),

4 secret)

5

Listing 4.2.3.4: JWT Signature

In summary, figure 4.2.3.1 indicates that users sent requests that are marked as one,

and the authorization server responded with the token. After that, the user can access

the resources on the server.

Figure 4.2.3.1: JWT authentication between server and client

83

4.2.3.1 Attacking JWT

In our example of CrAPI, you get a token response after logging in to the system.

When intercepting the log-in page with Burp Suite and getting a response, it looks

like the figure 4.2.3.2. As we can see, dots separate the structure token.

Figure 4.2.3.2: Authentication with website and get token with Burp Suite

To get the information about our token, there are two paths you can take. one is the

website jwt.io and the other paths is using the jwt tool. If we use the website in the

encoded section, we provide the token and click on SHARE JWT. As a result, we

get an analysis of each section of the JWT token. On the other hand, we can use the

jwt tool, which is run in the terminal. To analyze our JWT token, we need to run

it as jwt tool jwt token. Figure 4.2.3.3 shows that we got the following results by

running that command. Figure 4.2.3.3 illustrates the payload and the header file.

84

jwt.io

Figure 4.2.3.3: jwt tool JWT token analysis

Jwt tool has a different mode of scanning for common vulnerabilities. With -M we

can choose between:

1. pb = playbook audit

2. er = fuzz existing claims to force errors

3. cc = fuzz common claims

4. at = All Tests!

Below is an example of how to run this for the playbook audit method with specifying

pb.

1 jwt_tool -t http://crapi.apisec.ai/identity/api/v2/user/dashboard -rh "

↪→ Authorization: Bearer Your_JWT_token" -M pb

2

Listing 4.2.3.5: JWT Playbook Audit Attack

Jwt tool provides different exploits against the JWT token. This can be specified

with -X. The set after -X makes the algorithm in the header none and generates new

85

tokens, which we can test to see if API is vulnerable to this token. Below is all the

exploit method available for jwt tool:

1. a = alg:none

2. n = null signature

3. b = blank password accepted in signature

4. s = spoof JWKS (specify JWKS URL with -ju, or set in jwtconf.ini to automate

this attack)

5. k = key confusion (specify public key with -pk)

6. i = inject inline JWKS

The command will look like:

1 jwt_tool <Your_JWT_token> -X <options (a, n, b, s)>

2

Listing 4.2.3.6: JWT exploit

JWT Crack Attack:

This method is used to forcefully guess the secret for the signature by attempting

to sign a new token with various combinations of usernames or email addresses. For

instance, to access the CrAPI signature key, we can use the tool ”crunch” to generate

multiple vital combinations. To generate all the variety of lengths of five, run the

following command.

1 crunch 5 5 -o crAPI.txt

2

Listing 4.2.3.7: Crunch password creates a 5 character combination
password

86

After saving all the combinations in the CrAPI.txt, we can use jwt tool to brute-force

the signed key. Figure 4.2.3.4 shows how to crack with jwt tool. We need to specify

the -C, which indicates we want to use crack attack, and -d for specifying our all-key

combination file.

Figure 4.2.3.4: Crack Attack

Figure 4.2.3.4 shows that the signing key, crapi, was successfully cracked. If we visit

jwt.io, we could use this key to generate a new key and change the associated email

to gain access to the user account, as depicted in Figure 4.2.3.5.

Figure 4.2.3.5: Using jwt.io to generate token

87

jwt.io
jwt.io

Chapter 5

CONCLUSION & FUTURE WORK

5.1 Conclusion

In this thesis, first I introduced the basics of APIs and the various API protocols used

in API communication. Confidentiality, integrity, and availability of API security

are discussed. In the course of this thesis, we found that many vulnerabilities come

from misconfiguration of the authentications. If the developers correctly configure the

system, there’s less chance the system will be vulnerable. Additionally, we delved into

the integral components of API security, highlighting the crucial elements that form

its foundational framework. We emphasized the significance of a triad comprising

confidentiality, integrity, and availability as the three indispensable pillars of API

security. These pillars serve as the bedrock for robust security measures and play a

pivotal role in shaping and fortifying API systems. Most common breaches occur in

large companies and expose them to the risk of data breaches, allowing the attacker

to access personal identifiable information (PII). Additionally, we discussed OWASP

APIs top ten security vulnerabilities and compared the vulnerabilities between 2019

and 2023 to demonstrate the similarities and differences between the years. We

covered deployable scripts that install the required pentesting tools to the Ubuntu

systems and prepares the system for pentesting for reconnaissance and authentication.

The script was written in Ansible, developed by RedHat, enabling the user to deploy

the script for system configuration. This script first installs the necessary packages for

the Ubuntu system and uses the ”includes” function in the local.yml file and all the

scripts included in the tasks folder to install necessary cyber security tools and system

88

configurations, such as background setup, FireFox plugins, terminal setup, Tmux

configuration, terminal prompts, coding editor and Vim configurations. Finally, we

explored API reconnaissance and authentication, diving deeper into the active and

passive approaches to API reconnaissance to fortify API security and authentication

pentesting on brute-force attacks against password-based authentication, one-time

password, and JWT tokens.

5.2 Future Work

Following the conclusion of this study, there’s a multitude of pentesting objectives

yet to be studied. First, to improve the deployment of the Ansible script discussed

in Chapter three, I recommend using a Docker container, which provides a consis-

tent and reproducible environment to run applications and bundles applications and

dependencies into a singular container. Some suitable Docker images like Webtop or

Kasmweb allow you to run the operating system in a web browser. You can then uti-

lize a Dockerfile to configure images and install necessary packages with the Ansible

script. I faced a challenge when I attempted this approach. Two applications, Burp

Suite and Zaproxy, require a graphical user interface for installation, which prevented

the use of Docker due to the lack of a user interface during the compilation of the

Dockerfile. This limitation posed a hurdle I couldn’t overcome in my attempts.

Additionally, it’s worth noting that the OWASP API top ten for 2023 emphasizes a

deeper exploration of GraphQL. My current coverage, however, is limited to REST

API. The industry is presently shifting towards GraphQL as the preferred choice for

API development. Unlike REST APIs, where clients receive a fixed data set in a

predefined structure, GraphQL allows clients to request only the data they need in

89

a specified format. This flexibility is more efficient and can handle faster interaction

between clients and servers.

Furthermore, all the tests were done on a vulnerable environment, CrAPI, which we

know is susceptible to attack. If we have permission to use different companies to

test their system, it will provide us the opportunity to work on real-life experiments.

Time constraints only allowed me to cover three areas under authentication pen-

testing. In the future, it is essential to explore Multi-Factor Authentication (MFA),

Open Authorization, and signal sign-on (SSO) to understand the standards used in

the industry and increase proficiency in authentication pentesting.

90

BIBLIOGRAPHY

[1] C. Ball, “Api penetration testing,” https://www.apisecuniversity.com/,

accessed: July 8, 2023.

[2] Amass OAM, “Amass github,” https://github.com/owasp-amass/oam-tools.git,

2021-07-21.

[3] D. C. . R. V. J. F. U. the Power of OWASP Amass. (2023) Jeff foley. YouTube

video. [Online]. Available:

https://youtu.be/IgxPsv8MXMw?si=WT71Wrmz1A7GhrKL

[4] Cal Poly, “Cal poly github,” http://www.github.com/CalPoly, accessed: July

8, 2023.

[5] Jenny Davidse, “Api fundamentals,”

https://developer.ibm.com/articles/api-fundamentals/, accessed: July 8,

2023.

[6] AWS, “What is an api (application programming interface)?”

https://aws.amazon.com/what-is/api/, accessed: July 8, 2023.

[7] J. Greig, “Coinbase pays out largest bug bounty ever for trading interface

flaw,” https://www.zdnet.com/finance/blockchain/coinbase-pays-out-

largest-bug-bounty-ever-for-trading-interface-flaw/, accessed: July 8, 2023.

[8] L. Tung, “Usps finally fixes website flaw that exposed 60 million users’ data,”

https://www.zdnet.com/article/usps-finally-fixes-website-flaw-that-

exposed-60-million-users-data/, accessed: July 8, 2023.

91

https://www.apisecuniversity.com/
https://github.com/owasp-amass/oam-tools.git
https://youtu.be/IgxPsv8MXMw?si=WT71Wrmz1A7GhrKL
http://www.github.com/CalPoly
https://developer.ibm.com/articles/api-fundamentals/
https://aws.amazon.com/what-is/api/
https://www.zdnet.com/finance/blockchain/coinbase-pays-out-largest-bug-bounty-ever-for-trading-interface-flaw/
https://www.zdnet.com/finance/blockchain/coinbase-pays-out-largest-bug-bounty-ever-for-trading-interface-flaw/
https://www.zdnet.com/article/usps-finally-fixes-website-flaw-that-exposed-60-million-users-data/
https://www.zdnet.com/article/usps-finally-fixes-website-flaw-that-exposed-60-million-users-data/

[9] Z. Whittaker, “Peloton’s leaky api let anyone grab riders’ private account

data,”

https://techcrunch.com/2021/05/05/peloton-bug-account-data-leak/,

accessed: July 8, 2023.

[10] D. Salmon, “I scraped millions of venmo payments. your data is at risk,”

https://www.wired.com/story/i-scraped-millions-of-venmo-payments-your-

data-is-at-risk/, accessed: July 8, 2023.

[11] M. GAJANAN, “Instagram says bug gave hackers data on ’high-profile’ users,”

https://time.com/4922700/instagram-security-breach-verified-users/,

accessed: July 8, 2023.

[12] C. Kanikee, “The optus breach: How bad code keeps happening to good

companies,” https://securityboulevard.com/2022/09/the-optus-breach-

how-bad-code-keeps-happening-to-good-companies/, accessed: July 8,

2023.

[13] Codecademy, “What is rest?”

https://www.codecademy.com/article/what-is-rest, accessed: July 8, 2023.

[14] S. Dinda, “6 types of api architectures and how they work,”

https://www.makeuseof.com/api-architecture-types-how-work/, accessed:

July 8, 2023.

[15] Indeed, “What is soap api? (plus comparison to rest api and benefits),”

https://www.indeed.com/career-advice/career-development/what-is-soap-

api#:∼:text=SOAP%20API%2C%20or%20simple%20object,Extensible%

20Markup%20Language%20(XML)., accessed: July 8, 2023.

[16] Baeldung, “Introduction to graphql,” https://www.baeldung.com/graphql,

accessed: July 8, 2023.

92

https://techcrunch.com/2021/05/05/peloton-bug-account-data-leak/
https://www.wired.com/story/i-scraped-millions-of-venmo-payments-your-data-is-at-risk/
https://www.wired.com/story/i-scraped-millions-of-venmo-payments-your-data-is-at-risk/
https://time.com/4922700/instagram-security-breach-verified-users/
https://securityboulevard.com/2022/09/the-optus-breach-how-bad-code-keeps-happening-to-good-companies/
https://securityboulevard.com/2022/09/the-optus-breach-how-bad-code-keeps-happening-to-good-companies/
https://www.codecademy.com/article/what-is-rest
https://www.makeuseof.com/api-architecture-types-how-work/
https://www.indeed.com/career-advice/career-development/what-is-soap-api#:~:text=SOAP%20API%2C%20or%20simple%20object,Extensible%20Markup%20Language%20(XML).
https://www.indeed.com/career-advice/career-development/what-is-soap-api#:~:text=SOAP%20API%2C%20or%20simple%20object,Extensible%20Markup%20Language%20(XML).
https://www.indeed.com/career-advice/career-development/what-is-soap-api#:~:text=SOAP%20API%2C%20or%20simple%20object,Extensible%20Markup%20Language%20(XML).
https://www.baeldung.com/graphql

[17] A. Mendoza and G. Gu, “Mobile application web api reconnaissance:

Web-to-mobile inconsistencies & vulnerabilities,” in 2018 IEEE Symposium

on Security and Privacy (SP). IEEE, 2018, pp. 756–769.

[18] Bae, “T-mobile hacked to steal data of 37 million accounts in api data breach,”

https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-

steal-data-of-37-million-accounts-in-api-data-breach/#:∼:text=New%

20data%20breach%20impacts%2037,the%20API%20one%20day%20later.,

accessed: July 8, 2023.

[19] T. Keary, “T-mobile data breach shows api security can’t be ignored,”

https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-

cant-be-ignored/, accessed: July 8, 2023.

[20] CMS.gov, “Electronic health records,”

https://www.cms.gov/Medicare/E-Health/EHealthRecords, accessed: July

8, 2023.

[21] R. Sheldon, “passive reconnaissance,”

https://www.techtarget.com/whatis/definition/passive-reconnaissance,

accessed: July 8, 2023.

[22] X. Mendez, “Wfuzz github,” https://github.com/xmendez/wfuzz, accessed:

July 8, 2023.

[23] Mozilla Add-ons, “ublock origin,”

https://addons.mozilla.org/en-CA/firefox/addon/ublock-origin/, accessed:

July 8, 2023.

[24] OWASP.org, “Owasp api security project,”

https://owasp.org/www-project-api-security/, accessed: July 8, 2023.

93

https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/#:~:text=New%20data%20breach%20impacts%2037,the%20API%20one%20day%20later.
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/#:~:text=New%20data%20breach%20impacts%2037,the%20API%20one%20day%20later.
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/#:~:text=New%20data%20breach%20impacts%2037,the%20API%20one%20day%20later.
https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored/
https://venturebeat.com/security/t-mobile-data-breach-shows-api-security-cant-be-ignored/
https://www.cms.gov/Medicare/E-Health/EHealthRecords
https://www.techtarget.com/whatis/definition/passive-reconnaissance
https://github.com/xmendez/wfuzz
https://addons.mozilla.org/en-CA/firefox/addon/ublock-origin/
https://owasp.org/www-project-api-security/

[25] ticarpi, “jwt tool,” https://github.com/ticarpi/jwt tool.

[26] R. Hat, “How ansible works,”

https://www.ansible.com/overview/how-ansible-works.

[27] Techgaun, “Github-dorks,” https://github.com/techgaun/github-dorks.git.

[28] Trufflesecurity, “trufflehog,” https://github.com/trufflesecurity/trufflehog.git.

[29] Michenriksen, “Gitrob,” https://github.com/michenriksen/gitrob.git.

[30] A. H, “Active reconnaissance: Overview, methodology and tools,”

https://securityboulevard.com/2021/07/active-reconnaissance-overview-

methodology-and-tools/, 2021.

[31] Cuncis, “How the internet archive wayback machine can help pentesters find

hidden vulnerabilities,”

https://medium.com/@cuncis/how-the-internet-archive-wayback-machine-

can-help-pentesters-find-hidden-vulnerabilities-2604fe31ba0c, 2023-04-10.

[32] Tomnomnom, “waybackurls github,”

https://github.com/tomnomnom/waybackurls.git.

[33] Mary E. Shacklett, “Authentication,”

https://www.techtarget.com/searchsecurity/definition/authentication.

[34] Kyle Johnson, “Use these 6 user authentication types to secure networks,”

https://www.techtarget.com/searchsecurity/tip/Use-these-6-user-

authentication-types-to-secure-networks.

[35] Portsswigger, “Burp intruder attack types,” https://portswigger.net/burp/

documentation/desktop/tools/intruder/configure-attack/attack-types.

[36] jwt.io, “Introduction to json web tokens,” https://jwt.io/introduction.

94

https://github.com/ticarpi/jwt_tool
https://www.ansible.com/overview/how-ansible-works
https://github.com/techgaun/github-dorks.git
https://github.com/trufflesecurity/trufflehog.git
https://github.com/michenriksen/gitrob.git
https://securityboulevard.com/2021/07/active-reconnaissance-overview-methodology-and-tools/
https://securityboulevard.com/2021/07/active-reconnaissance-overview-methodology-and-tools/
https://medium.com/@cuncis/how-the-internet-archive-wayback-machine-can-help-pentesters-find-hidden-vulnerabilities-2604fe31ba0c
https://medium.com/@cuncis/how-the-internet-archive-wayback-machine-can-help-pentesters-find-hidden-vulnerabilities-2604fe31ba0c
https://github.com/tomnomnom/waybackurls.git
https://www.techtarget.com/searchsecurity/definition/authentication
https://www.techtarget.com/searchsecurity/tip/Use-these-6-user-authentication-types-to-secure-networks
https://www.techtarget.com/searchsecurity/tip/Use-these-6-user-authentication-types-to-secure-networks
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/attack-types
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/attack-types
https://jwt.io/introduction

[37] Cybersecurity Exchange, “Understanding the basics of footprinting and

reconnaissance,” https://www.eccouncil.org/cybersecurity-

exchange/ethical-hacking/basics-footprinting-reconnaissance/.

[38] Ritu Gill, “What is open-source intelligence?”

https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/basics-

footprinting-reconnaissance/.

[39] Baivab Kumar Jena, “What is google dorking? the best google hacker,” https:

//www.simplilearn.com/tutorials/cyber-security-tutorial/google-dorking.

[40] Wayback Machine, “Using the wayback machine,”

https://help.archive.org/help/using-the-wayback-machine/.

[41] Rowena Johansen, “Ethical hacking code of ethics: Security, risk & issues,”

https://panmore.com/ethical-hacking-code-of-ethics-security-risk-issues.

[42] University of Denver, “The complete guide to ethical hacking,”

https://bootcamp.du.edu/blog/the-complete-guide-to-ethical-hacking/.

[43] APIsec, “Burp suite vs. owasp zap - which is better for api security testing?”

https://www.apisec.ai/blog/burp-suite-vs-zap.

[44] Prashant Phatak, “A comprehensive comparison of owasp zap and burp suite

vulnerability assessment tools (part 1),”

https://www.valencynetworks.com/blogs/a-comprehensive-comparison-of-

owasp-zap-and-burp-suite-vulnerability-assessment-tools-part-1/.

[45] Ricahrd, “Why you should use rustscan for port scanning,” https:

//onlineblogzone.com/why-you-should-use-rustscan-for-port-scanning/.

95

https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/basics-footprinting-reconnaissance/
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/basics-footprinting-reconnaissance/
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/basics-footprinting-reconnaissance/
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/basics-footprinting-reconnaissance/
https://www.simplilearn.com/tutorials/cyber-security-tutorial/google-dorking
https://www.simplilearn.com/tutorials/cyber-security-tutorial/google-dorking
https://help.archive.org/help/using-the-wayback-machine/
https://panmore.com/ethical-hacking-code-of-ethics-security-risk-issues
https://bootcamp.du.edu/blog/the-complete-guide-to-ethical-hacking/
https://www.apisec.ai/blog/burp-suite-vs-zap
https://www.valencynetworks.com/blogs/a-comprehensive-comparison-of-owasp-zap-and-burp-suite-vulnerability-assessment-tools-part-1/
https://www.valencynetworks.com/blogs/a-comprehensive-comparison-of-owasp-zap-and-burp-suite-vulnerability-assessment-tools-part-1/
https://onlineblogzone.com/why-you-should-use-rustscan-for-port-scanning/
https://onlineblogzone.com/why-you-should-use-rustscan-for-port-scanning/

[46] V. Aggarwal, D. Kaur, S. Mittal, T. J. S. Prasad, D. Batra, and A. Garg, “A

comparative study of directory fuzzing tools,” in 2023 International

Conference on Circuit Power and Computing Technologies (ICCPCT),

2023, pp. 1368–1374.

[47] R. F. Khalil, “Why johnny still can’t pentest: A comparative analysis of

open-source black-box web vulnerability scanners,” 2018. [Online].

Available: https://api.semanticscholar.org/CorpusID:86510564

[48] Zap, “A quick start guide to building zap,”

https://www.zaproxy.org/docs/developer/quick-start-build/.

[49] Burp Suite, “Burp suite pro,” https://portswigger.net/burp/pro.

[50] Rustscan, “False comparison,” https:

//github.com/RustScan/RustScan/issues/141#issuecomment-671308963.

[51] APISEC, “Crapi,” http://crapi.apisec.ai/.

96

https://api.semanticscholar.org/CorpusID:86510564
https://www.zaproxy.org/docs/developer/quick-start-build/
https://portswigger.net/burp/pro
https://github.com/RustScan/RustScan/issues/141#issuecomment-671308963
https://github.com/RustScan/RustScan/issues/141#issuecomment-671308963
http://crapi.apisec.ai/

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Basics of API
	1.1.1 Different Types of API Protocols
	1.1.1.1 REST
	1.1.1.2 SOAP
	1.1.1.3 GraphQL

	1.1.2 Popular Applications in API
	1.1.2.1 E-commerce
	1.1.2.2 Banking System
	1.1.2.3 Epic Electronic Health Record (EHR)
	1.1.2.4 Stripe

	1.2 Security and Privacy of API
	1.2.1 Confidentiality
	1.2.2 Integrity
	1.2.3 Availability

	1.3 Breaches
	1.3.1 Coinbase
	1.3.2 US Postal Service (USPS)
	1.3.3 Peloton's Leaky API
	1.3.4 Venmo
	1.3.5 Instagram
	1.3.6 Bumble
	1.3.7 T-Mobile
	1.3.8 OPTUS

	1.4 Motivation
	1.5 Contribution

	2 OWASP Top 10 API Security Vulnerabilities
	2.1 API I: Broken Object Level Authorization (BOLA)
	2.2 API II: Broken User Authentication
	2.3 API III: Excessive Data Exposure
	2.4 API IV: Lack of Resources & Rate Limiting
	2.5 API V: Broken Function Level Authorization (BFLA)
	2.6 API VI: Mass Assignment
	2.7 API VII: Security Misconfiguration
	2.8 API VIII: Injection
	2.9 API IX: Imporper Assets Management
	2.10 API X: Insufficient Logging & Monitoring
	2.11 Comparision of OWASP API Top 10 2019-2023
	2.12 Ethical Statement
	2.12.1 Practical Hacking Practices:

	3 API System and Vulnerability Environment Setup
	3.1 Tools
	3.1.1 Burpsuite
	3.1.2 Ffuf
	3.1.3 Wfuzz
	3.1.4 FireFox Plugins
	3.1.5 Zaproxy
	3.1.6 Jwt_tool
	3.1.7 Postman
	3.1.8 Amass
	3.1.9 Burp Suite vs Zaproxy
	3.1.10 Ffuf vs Wfuzz
	3.1.11 Rustscan vs Nmap

	3.2 Automatic Install Script
	3.2.1 Ansible
	3.2.2 Jinja
	3.2.3 Configure Foxyproxy
	3.2.4 Burp Suite Extentions
	3.2.5 Limitation of Script

	4 API Security Tools Testing: Reconnaisance and Authentication
	4.1 API Reconnaissance
	4.1.1 Passive
	4.1.1.1 Google Dorking
	4.1.1.2 Git Dorking
	4.1.1.3 Wayback Machine:
	4.1.1.4 Shodan:
	4.1.1.5 Amass:

	4.1.2 Active
	4.1.2.1 Port Scanning
	4.1.2.2 Burp Suite

	4.1.3 Gobuster

	4.2 Authentication
	4.2.1 Password-based Authentication Brute-Force Attack
	4.2.1.1 Wfuzz
	4.2.1.2 Ffuf

	4.2.2 One Time Password (OTP) Brute-Force Attack
	4.2.3 JSON Web Tokens (JWT)
	4.2.3.1 Attacking JWT

	5 Conclusion & Future Work
	5.1 Conclusion
	5.2 Future Work

	BIBLIOGRAPHY

