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ABSTRACT 

Co-Simulation of Active Magnetic Bearing Rotors  

Using Adams, MSC Apex, and Simulink 

Shea Charkowsky 

 

Apex-Adams-Simulink co-simulation is applied to active magnetic bearing (AMB) 

rotors, demonstrating results unshown in literature, including continuous frequency 

response, and unavailable in known rotor dynamics software, including touchdown 

bearing impact. AMBs levitate rotors without contact, so they involve no friction, 

wear, lubrication, pollution, or shaft speed limits and are thus valuable for large, high-

speed applications. Modeling of such rotors, necessary for safety and performance, 

simultaneously requires flexible body dynamics and advanced control design, but 

simulation programs tend to specialize in only one or the other. The co-simulation 

method combines multiple such programs—MSC Apex (finite element modeling), 

Adams (multibody dynamics), and Simulink (graphical control design) with MATLAB 

(visualization tools)—expanding the design space for AMB rotor modeling beyond 

that of available commercial software. In this work, accuracy of co-simulation to 

theory is validated through a rigid AMB rotor and a hanging disk on a steel wire, and 

new results are shown for a flexible anisotropic rotor and a simplified touchdown 

bearing impact test.  
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Chapter 1 

INTRODUCTION 

 

Active magnetic bearings (AMBs) support a rotor by levitating it in space with 

electromagnets, whose strengths are varied in real time by a microcontroller based 

on sensed rotor position and a suitable control law (Figure 1.1). This setup eliminates 

friction, wear, and lubrication, allows high shaft speeds, produces no pollutants, 

enables operation in extreme environments, and provides active vibration control 

[1], [2]. These benefits and others make AMBs desirable for many rotating machinery 

applications, especially those with high operating speeds. In such cases, since safety 

concerns are significant, AMBs rotors should be simulated prior to experimental 

testing, but the nature of AMBs presents unique challenges to such analysis. 

 

Figure 1.1. An active magnetic bearing (Figure 1.1 of [1]). 
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First, AMB systems are highly nonlinear and unstable, so active control is 

required to suspend the rotor. Basic algorithms such as PID, while useful in some 

cases, are often inadequate for large-scale practical systems [1]. Literature contains 

hundreds of articles on advanced AMB control schemes; various approaches can be 

found in [3], [4], [5], [6]. Second, AMB rotors are often run at very high speeds, 

sometimes exceeding multiple bending frequencies of the shaft [2]. At these speeds, 

flexible shaft behavior is vastly different from rigid behavior, so this flexibility must 

also be modeled to prevent miscalculation of resonance or destabilization by the 

controller [1]. 

Software is scarce that can perform both tasks at once. MADYN 2000 by DELTA 

JS is among the most comprehensive programs in this aspect, modeling flexible rotors 

while offering a variety of control scheme options for AMBs. It also allows the export 

of the flexible rotor as a state space plant that can be implemented in MATLAB [7]. 

However, export of the model as state space matrices makes some areas of analysis 

impossible. For example, AMB rotors often have a set of touchdown bearings, 

mechanical bearings on which the rotor will land in the event of control system 

failure, an important interaction to simulate. This type of contact involves rapid 

transitions between freefall, normal and tangential impulses, and sliding friction, well 

beyond what a single set of state space matrices can accommodate. Treatments of this 

topic reveal its complexity [1]. 

Instead of searching for a single application that can perform all required 

analysis, we turn to general purpose software that specializes in each of its aspects. 
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Two of these programs are Adams by Hexagon and Simulink by MathWorks; the first 

is a physics simulator that can model complex dynamics and interactions, and the 

second is a block diagram programming application useful for advanced control 

design. Like MADYN 2000, Adams can export models for MATLAB, but the Adams 

plant export retains the nonlinear and time-varying interactions of the system, even 

when implemented in a Simulink control scheme. This technique is known as Adams-

Simulink co-simulation, which combines the full dynamics modeling of Adams with 

the full control design space of Simulink. Some examples in use are [8], [9], [10], [11]. 

As for Adams co-simulation of magnetic bearing rotors, literature research by 

the author returned remarkably few results, so few that all of them can be listed: [12], 

[13], [14], [15], [16]. Zhang et al. [12] levitate a non-spinning rotor with PID control. 

Li et al. [13] show stability of a non-spinning rotor under force impulses, with 

nonlinear magnetic forces calculated by ANSYS. Lee et al. [14] show stability of a 

flexible rotor at 0 RPM, 3000 RPM, and 30000 RPM. In the latter two cases, the shaft 

experiences small vibrations synchronous with spin frequency. Rotor flexibility is 

modeled with FEA capabilities of ANSYS, and the magnetic bearings are approximated 

as linear spring-like elements. Liu and Shi [15] also approximate the magnetic 

bearings of their rotor as spring-like elements but obtain their stiffness parameters 

from simulations in Maxwell 3D. They show correction of initial displacement in a 

non-spinning rotor using PID control with self-varying parameters. Finally, Ouyang 

et al. [16] control a spinning rotor with a modal decoupling controller at 20000 RPM, 

25000 RPM, and 30000 RPM, showing displacement correction, disturbance 

rejection, and control of vibration due to mass imbalance. 
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Some rotor dynamics results are notably missing from this list, most arising 

from the fact that these articles do not simulate the rotor over a continuous shaft 

speed range. None show the rotor’s frequency response, which plots vibration 

amplitude and phase with respect to shaft speed. This information makes resonant 

frequencies clear and ensures that the system will remain stable during acceleration 

and deceleration of the rotor. None show information about the shaft’s orbits, the 

shape of their displacement paths, useful for fault identification in practical systems. 

These are two of many performance measures and rotor types that have yet to be 

explored in co-simulation. 

The goals of this work then are the following: 

1. Validate the accuracy of Adams-Simulink co-simulation of AMB rotors. 

2. Show that co-simulation can model AMB rotors in ways that other software 

cannot, making it worth new research. 

3. Expand on literature, performing simulations and analysis that have not 

yet been demonstrated. 

In doing so, we rely heavily on a few resources. Most theoretical derivations 

closely follow the work performed by Schweitzer and Maslen et al. in Magnetic 

Bearings [1]. Virtual models of practical prototypes are inspired by [1], by Genta’s 

Dynamics of Rotating Systems [17], and by the thesis of Naugle [18]. Visualizations are 

inspired by those of Naugle and of Mullen in their theses [18] [19] and related 

publications [20], and code provided by Mullen is used in the creation of some figures. 
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The main body of this work is presented in four chapters: Chapters 2 and 3 

accomplish our first goal, validation of co-simulation, while Chapters 4 and 5 

accomplish the second and third goals, showing new results. In Chapter 2, we study a 

rigid AMB rotor, establishing theory, co-simulating unbalance response, and 

demonstrating a match. In Chapter 3, we validate flexible body dynamics and the 

gyroscopic effect with a spinning disk hanging on a thin wire. In Chapter 4, we co-

simulate an anisotropic flexible AMB rotor, presenting several useful diagrams of its 

unbalance response. In Chapter 5, we perform a simplified touchdown bearing 

interaction, showing that co-simulation can model solid body contact. We conclude 

with Chapter 6, summarizing results and suggesting future work.  
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Chapter 2 

UNBALANCE RESPONSE OF AN AMB-SUPPORTED RIGID ROTOR 

 

In this chapter, a rigid unbalanced rotor is run in an Adams-Simulink co-simulation and 

in a nonlinear pure Simulink model. The resulting frequency responses are practically 

identical and agree with theoretical calculations based on linearized magnetic forces, 

validating co-simulation of rigid AMB rotors. 

 

The control of a rotor by active magnetic bearings (AMBs) is best understood by first 

examining the rigid case, where equations of motion are still tractable and results 

have clear conceptual interpretation. In this chapter, we develop the dynamics of a 

rigid rotor suspended by AMBs, create a pure Simulink theoretical model, and 

demonstrate that an Adams co-simulation produces vanishingly identical results. 

To do so, we will take the following conceptual steps: 

1. Since a rotor is made of metal, it cannot be repelled by an electromagnet, only 

attracted. Because of this, magnets are often arranged in opposed pairs so that 

force can be applied in both directions. 

2. If an opposed pair provides 1D control, two perpendicular pairs provide 2D 

control; this arrangement is the basis of a conventional AMB. 

3. The two ends of a rigid rotor can each be supported radially by an AMB, so two 

AMBs provide 3D control of a full rotor. (Only a thrust bearing, simply another 

opposed pair, is needed to control axial motion.) 
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These three bearings, shown notionally in Figure 2.1, are sufficient to suspend 

a rotor in most applications. In Section 2.1, we examine the 1D problem of suspension 

between an opposed pair of magnets and demonstrate a Simulink example. In Section 

2.2, we apply these concepts to a 2D model of a complete AMB. In Section 2.3, we 

expand to the 3D problem of a rotor suspended by two AMBs, developing open-loop 

equations of motion in state-space form. In Section 2.4, we apply a simple control 

scheme and generate a closed-loop state space. Finally, in Section 2.5, we use the 

closed-loop state space in pure Simulink to validate an Adams co-simulation of the 

same rotor. 

 

Figure 2.1. A conventional AMB rotor, with two radial AMBs (red), one thrust AMB 

(blue), and a driving motor (gray). 

2.1. 1D dynamics: The magnet pair 

The greatest challenge of magnetic levitation is that the force of an electromagnet is 

inherently both nonlinear and unstable. Consider the basic single-pole electromagnet 
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shown in Figure 2.2. Given certain assumptions1 applicable to our case, the force that 

is applies on a metal shaft is given by 

𝑓 = 𝑘
𝑖2

𝑠2
, 

where the magnetic coupling constant in henry-meters (H-m) is 𝑘 =
1

8
𝜇0𝑛

2𝐴, and 𝜇0 

is the magnetic permeability of free space, n is the number of wire coil turns of the 

pole, and 𝐴 is the projected magnet pole area [21] [1]. We see from the expression 

that as the rotor approaches the magnet, the force increases toward the magnet, and 

as the rotor leaves, the force weakens, indicating system instability. Additionally, the 

direction of current does not change the direction of force since both terms are 

squared, making the force attractive only. Furthermore, these quantities are 

nonlinearly related, in this case rendering analytical solutions practically impossible. 

However, these problems can be mitigated. The force directionality issue is 

solved by adding another magnet opposite the first, and if we assume that the gap s 

and current i remain close to some chosen values 𝑠0 and 𝑖0, the dynamics can be 

approximated by a linear relationship. With these, analysis of the two-magnet system 

becomes possible, which we perform next. 

 

 

1 A magnetic loop containing the iron and air gap has a constant cross-section over which magnetic 
flux is uniform and perpendicular; magnetization is negligible; we do not approach saturation flux 
density; air gap is very narrow relative to its area; air gap is approximately planar [1]. 
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Figure 2.2. Force of a single electromagnet. 

2.1.1. Magnet pair setup and equation of motion 

For the reasons described above, the basic functional subunit of most magnetic 

bearing systems is not the single magnet but the opposed magnet pair, shown in 

Figure 2.3a. The upper and lower magnets each apply a force on the rotor, so the net 

vertical force on it, including any external disturbance forces 𝑓𝑑 , is 

𝑓𝑛𝑒𝑡 = 𝑓𝑈 − 𝑓𝐿 + 𝑓𝑑 = 𝑘
𝑖𝑈
2

𝑠𝑈
2 − 𝑘

𝑖𝐿
2

𝑠𝐿
2 + 𝑓𝑑 . 

To obtain an equation of motion (EOM) for this system, we first establish a 

coordinate system where y points upward, and the origin is at the midpoint between 

the magnets. When the rotor’s geometric center is at this location (𝑦 = 0), the air gaps 

are the same size, which we denote the nominal gap, 𝑠0 (Figure 2.3b). 
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(a) (b) 

Figure 2.3. The magnet pair. 

This system as shown has two inputs (𝑖𝑈 and 𝑖𝐿) but only one output (y). This 

is often reduced to single-input-single-output (SISO) by applying current in 

differential driving mode (Figure 2.4). In this setup, a constant bias current 𝑖0 is given 

to both magnets while a variable differential current 𝑖𝑦 is added to the upper magnet 

and subtracted from the lower. Thus, the total current to the upper magnet is 𝑖𝑈 =

𝑖0 + 𝑖𝑦 and that to the lower is 𝑖𝐿 = 𝑖0 − 𝑖𝑦. In this way, if 𝑖𝑦 is increased, the upper 

magnet strengthens and the lower weakens, adding upward net force, and vice versa 

if 𝑖𝑦 is decreased. This yields a SISO system with input 𝑖𝑦 and output y. 

𝑓𝑈 

𝑓𝐿 

𝑓𝑑  

𝑠𝑈 

𝑠𝐿 

𝑠0 

𝑠0 

𝑦 = 0 

+𝑦 

𝑖𝑈 

𝑖𝐿 
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Figure 2.4. Current flow in differential driving mode.  

From this, the EOM quickly follows. Newton’s 2nd Law and the net force expression 

yield 

𝑚�̈� = 𝑓𝑛𝑒𝑡 = 𝑘 (
𝑖𝑈
2

𝑠𝑈
2 −

𝑖𝐿
2

𝑠𝐿
2) + 𝑓𝑑 . 

From the differential current setup, 𝑖𝑈 = 𝑖0 + 𝑖𝑦 and 𝑖𝐿 = 𝑖0 − 𝑖𝑦, and from our 

coordinates, 𝑠𝑈 = 𝑠0 − 𝑦 and 𝑠𝐿 = 𝑠0 + 𝑦, so the EOM is 

𝑚�̈� = 𝑘 (
(𝑖0 + 𝑖𝑦)

2

(𝑠0 − 𝑦)2
−

(𝑖0 − 𝑖𝑦)
2

(𝑠0 + 𝑦)2
) + 𝑓𝑑 . 

This equation relates the input current 𝑖𝑦 to the output y. In this form, the strong 

nonlinearity of the system can be seen. To make analysis and control more 

manageable, we will linearize this equation, as is often done in industry. 

𝑖𝑦 

𝑖0 

𝑖0 + 𝑖𝑦 

𝑖0 − 𝑖𝑦 
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2.1.2. Linearization of net force 

Despite the nonlinearity of this system, it lends itself well to linearization, i.e. 

approximation by a linear relationship. To do this, we can linearize the force applied 

by each magnet. Taylor expanding our original general relationship 𝑓 = 𝑘𝑖2/𝑠2 about 

𝑠 = 𝑠0 (nominal rotor position) and 𝑖 = 𝑖0 (zero differential current), we find that 

𝑓 = 𝑘
𝑖2

𝑠2
≈ 𝑘

𝑖0
2

𝑠0
2 + (𝑖 − 𝑖0)

𝜕

𝜕𝑖
(𝑘

𝑖2

𝑠2
)|

𝑖=𝑖0,𝑠=𝑠0

+ (𝑠 − 𝑠0)
𝜕

𝜕𝑠
(𝑘

𝑖2

𝑠2
)|

𝑖=𝑖0,𝑠=𝑠0

 

= 𝑘
𝑖0
2

𝑠0
2 + (𝑖 − 𝑖0) (2𝑘

𝑖0

𝑠0
2) + (𝑠 − 𝑠0) (−2𝑘

𝑖0
2

𝑠0
3)                

= 𝑘
𝑖0
2

𝑠0
2 + 2𝑘

𝑖0

𝑠0
2 𝑖 − 2𝑘

𝑖0
2

𝑠0
3 𝑠.                                                      

For the upper magnet, we substitute for i and s to find that 𝑓𝑈 = 𝑘
𝑖0
2

𝑠0
2 +

2𝑘
𝑖0

𝑠0
2 (𝑖0 + 𝑖𝑦) − 2𝑘

𝑖0
2

𝑠0
3 (𝑠0 − 𝑦), and for the lower magnet, we have 𝑓𝐿 = 𝑘

𝑖0
2

𝑠0
2 +

2𝑘
𝑖0

𝑠0
2 (𝑖0 − 𝑖𝑦) − 2𝑘

𝑖0
2

𝑠0
3 (𝑠0 + 𝑦), so the linearized net force expression simplifies to 

𝑓𝑛𝑒𝑡 = 𝑓𝑈 − 𝑓𝐿 + 𝑓𝑑                                                                                                   

 = [𝑘
𝑖0
2

𝑠0
2 + 2𝑘

𝑖0

𝑠0
2 (𝑖0 + 𝑖𝑦) − 2𝑘

𝑖0
2

𝑠0
3
(𝑠0 − 𝑦)]

− [𝑘
𝑖0
2

𝑠0
2 + 2𝑘

𝑖0

𝑠0
2 (𝑖0 − 𝑖𝑦) − 2𝑘

𝑖0
2

𝑠0
3
(𝑠0 + 𝑦)] + 𝑓𝑑  

= (4𝑘
𝑖0

𝑠0
2) 𝑖𝑦 − (−4𝑘

𝑖0
2

𝑠0
3) 𝑦 + 𝑓𝑑                                                       

= 𝑘𝑖𝑖𝑦 − 𝑘𝑠𝑦 + 𝑓𝑑 ,                                                                                
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where 𝑘𝑖 =
4𝑘𝑖0

𝑠0
2  is the force-current factor and 𝑘𝑠 = −

4𝑘𝑖0
2

𝑠0
3  is the force-displacement 

factor.2  (Note that 𝑘𝑠 takes a negative value, so if y increases, then −𝑘𝑠𝑦 also increases 

and contributes to upward force.) This new expression yields the linearized EOM 

𝑚�̈� + 𝑘𝑠𝑦 = 𝑘𝑖𝑖𝑦 + 𝑓𝑑 , 

which is much easier to analyze and control. 

2.1.3. PD control with a magnet pair in Simulink 

The linearized EOM enables us to design a controller for suspending a mass in a 

magnet pair. This section provides an example, which will prepare us for full rotor 

control in Section 2.5. Magnetic bearing systems often incorporate current control, 

where current values are the control signal, and a separate electrical control loop 

applies voltage to ensure that the true current values are close to desired; the 

alternative is voltage control, where voltage itself is the control signal. We apply 

current control here and assume that the electrical control loop is fast enough to have 

negligible impact on the system’s response.  

One of the most basic control algorithms is proportional-integral-derivative 

(PID) control, where current is modified such that the system opposes the rotor’s 

position error, time-accumulated position error, and velocity. Mathematically, 

 

2 These factors, defined as the change in net magnetic force per change in current or displacement, take 
on different expressions depending on the magnet arrangement. They will be different in Section 2.2. 
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𝑖𝑦 = −𝑃𝑦 − 𝐼 ∫𝑦 𝑑𝑡 − 𝐷�̇�, 

where P, I, and D are the proportional, integral, and derivative gains respectively, all 

positive scalars. The effect of integral control is to oppose the static load of gravity, so 

we can neglect both and apply proportional-derivative (PD) control, 𝑖𝑦 = −𝑃𝑦 − 𝐷�̇�, 

to a system that has no gravity. Plugging this into the linearized EOM, 

𝑚�̈� + 𝑘𝑠𝑦 = 𝑘𝑖(−𝑃𝑦 − 𝐷�̇�) + 𝑓𝑑 , 

and this rearranges to 

𝑚�̈� + 𝑘𝑖𝐷�̇� + (𝑘𝑠 + 𝑘𝑖𝑃)𝑦 = 𝑓𝑑 . 

The equation can then be written in state-space form: 

[
�̇�
�̈�
] = [

0 1

−
𝑘𝑠 + 𝑘𝑖𝑃

𝑚
−

𝑘𝑖𝐷

𝑚

] [
𝑦
�̇�] + [

0
1

𝑚

]𝑓𝑑 , 

or in abbreviated form, 

�̇� = 𝐀𝐲 + 𝐁fd. 

Response characteristics can be predicted from the root locus of the state 

space, which is a plot in the complex plane depicting the natural vibrations of the 

system according to their frequency (imaginary part) and decay (real part). The roots 

plotted on the root locus are the eigenvalues of the state matrix A. They must all be in 

the left half-plane for system stability, and decay is faster the farther the roots are to 

the left. As for the vertical direction, natural frequency increases with imaginary part 
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magnitude. Since the root locus depends on the PD gains, it can be used to inform the 

selection of P and D values. 

To demonstrate this, we will use an example magnet pair system whose 

parameters are given in Table 2.1. The choice for the bias current 𝑖0 can be arbitrary 

but should be high enough to allow for expected dynamic forces and low enough to 

avoid magnetic saturation and unnecessary power usage. 

Table 2.1. Parameters for magnet pair control example. 

Quantity Value Units 

𝑚 1 kg 

𝑠0 0.0005 m 

𝑛 200 coils 

𝐴 0.001 m2 

𝑖0 0.6247 A 

 

Plotting the eigenvalues of A for 𝑃 =  1500 A/m as D varies from 0 to 6 

A/(m/s) yields the root locus shown in Figure 2.5, colored for clarity. Since there are 

two states, this is a second-order system, with two roots. When 𝐷 = 0, both roots lie 

on the imaginary axis, indicating oscillation with no decay; this makes sense because 

there is no source of damping in this case, so any disturbance will excite steady 

harmonic motion. As D increases from here, the roots have both a real part and 

imaginary part, indicating oscillations with decreasing frequency and increasing 

decay rate. When 𝐷 ≈ 4 A/(m/s), the two roots coincide at the point of critical 

damping, where decay is fastest and oscillation vanishes. As D further increases, there  
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Figure 2.5. Root locus of magnet pair, 𝑃 = 1500, 𝐷 varies from 0 to 6. 

is still no oscillation because the roots have no imaginary part, but since one root is 

closer to the origin, decay is slower than at the point of critical damping. 

We now create a Simulink model representing the magnet pair system, shown 

in Figure 2.6. Progressing from left to right, the model first determines the 

displacement of the shaft, calculates the PD control signal, saturates that signal to the 

bias current magnitude, and adds that as a differential current to the upper and lower 

magnet; the nonlinear magnetic forces are then calculated by MATLAB function 

blocks, disturbances forces are added, and then Newton’s 2nd Law yields the new shaft 

position that is fed back to previous portions of the loop. The responses of an upward 

impulse (50 N for 1 ms) for various D match the predictions from the root locus 

(Figure 2.7), showing respectively steady harmonic motion, damped oscillation, fast 

return with no oscillation, and slower return with no oscillation. 
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Figure 2.6. Magnet pair Simulink model. 

 

Figure 2.7. Magnet pair impulse response, 𝑃 = 1500, 𝐷 = 0, 1, 4, and 10. 

We can also apply a sine sweep disturbance, which is an oscillating external 

force that gradually increases (or decreases) in frequency. This type of disturbance is 

often encountered in rotating machinery, since rotor imbalances cause forces with 
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frequencies matching shaft spin speed, which must be ramped up and down before 

and after operation. If the ramp-up is slow, it also approximates the rotor’s steady 

state response at each frequency encountered. In this example, we will use the 

parameters in Table 2.2 to demonstrate this. To model a rotor-like unbalance 

response, we apply a disturbance force 𝑓𝑑  with linearly increasing frequency and 

magnitude proportional to the square of the frequency. Mathematically, 

𝑓𝑑 = 𝐾𝑑𝜔2 cos(𝜔𝑡), 

where 𝐾𝑑 is constant gain and the disturbance frequency is given by 𝜔(𝑡) = 𝛼𝑡, where 

𝛼 is a constant ramp rate in radians per second per second. In a real rotor, 𝐾𝑑 is equal 

to the product of the equivalent mass imbalance 𝑚𝑢 and its radius 𝑟𝑢 from the center 

of the shaft. 

Table 2.2. Disturbance and control parameters for magnet pair sine sweep test. 

Quantity Value Units 

𝐾𝑑 1 × 10−5 kg-m 

𝛼 1 rad/s2 

𝑃 1500 A/m 

𝐷 0.2 A/(m/s) 

 

The most common visualization of this frequency response is a Bode plot 

(BOH-dee), which displays the amplitude and phase of the response with respect to 

disturbance frequency. At each of the system’s natural frequencies, there tends to be 

a peak in the amplitude plot due to resonance and a 180-degree shift in the phase plot. 
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In this case, the natural frequencies are the imaginary parts of the system’s roots 

(eigenvalues of the state matrix), which solve 

det(𝜆𝐈 − 𝐀) = (𝜆 − 0) (𝜆 +
2𝑘𝑖𝐷

𝑚
) − (

2𝑘𝑠 + 2𝑘𝑖𝑃

𝑚
) (−1) 

    = 𝜆2 +
2𝑘𝑖𝐷

𝑚
𝜆 +

2𝑘𝑠 + 2𝑘𝑖𝑃

𝑚
= 0. 

The quadratic formula yields two 𝜆 whose imaginary parts have magnitude 125.3 

rad/s, or 19.9 Hz. 

The simulation was run, and a Bode plot for vibration in the x-direction was 

created from relative displacement maxima (using MATLAB’s findpeaks function) and 

corresponding shaft angular positions (Figure 2.8). The noise in the phase data is 

caused by discrete points failing to exactly fall on amplitude peaks, which causes 

slight errors in the phase values, and the initial phase drop is caused by peak 

detection of minuscule numerical artifacts. We see that the amplitude peak at 20.3 Hz 

matches well. It is slightly above the theoretical value because the disturbance force 

increases in magnitude with frequency, which would move the peak to the right. The 

phase also behaves as expected, shifting by 180° across the natural frequency.  

These methods applied to a magnet pair are similar to those we will use for a 

complete rigid rotor system. With these concepts and tools established, we can now 

study the full AMB as we progress toward modeling the full rigid rotor. 
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Figure 2.8. Bode plot of magnet pair sine sweep response. 

2.2. 2D dynamics: The eight-pole bearing 

After understanding the magnet pair, the idea of a full AMB quickly follows: A 

conventional AMB is not much more than two perpendicular magnet pairs, which 

control the rotor in the x- and y-directions, as shown notionally in Figure 2.9(a). There 

are two key differences, however. First, in most AMBs, each magnet is made of two 

separated poles, so the entire bearing has eight evenly spaced poles in total (these are 

known as heteropolar AMBs). Second, the pairs tend to be arranged so that their axes 

are 45-degrees from vertical for the convenience of symmetry with gravity, and 

coordinates are also aligned as such for mathematical convenience. The more realistic 

setup can be seen in Figure 2.9(b). 



21 
 

 
 

(a) (b) 
 

 
Figure 2.9. Notional (a) and realistic (b) conventional AMB configurations. 

Since the poles are not perpendicular, the forces caused by the pairs are not 

truly independent; for example, the magnet pair aligned with the x-axis could apply 

some force in the y-direction if the bearing is closer to one pole than the other. 

However, to simplify our analysis, we will neglect this fact and treat the pairs as two 

independent 1D problems. In the y-direction then, we have the setup in Figure 2.10. 

For the upper poles, if we additionally assume that the gap size can be 

approximated as 𝑠0 − 𝑦 like in Section 2.1, we have two forces of magnitude 

|𝑓𝑈,𝑝𝑜𝑙𝑒| = 𝑘
𝑖2

𝑠2
= 𝑘

(𝑖0 + 𝑖𝑦)
2

(𝑠0 − 𝑦)2
. 

𝑥 

𝑦 

𝑥 𝑦 
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Figure 2.10. The four-pole pair, taken as a 1D problem. 

Since each is at an angle 𝛼 from the y-axis, the net vertical force provided by those 

two poles together is  

𝑓𝑈,𝑦 = 2𝑘
(𝑖0 + 𝑖𝑦)

2

(𝑠0 − 𝑦)2
cos 𝛼. 

Similarly, the lower force is given by 

𝑓𝐿,𝑦 = 2𝑘
(𝑖0 − 𝑖𝑦)

2

(𝑠0 + 𝑦)2
cos 𝛼. 

Therefore, the total force in the vertical direction is 

𝑓𝑦 = 2𝑘 (
(𝑖0 + 𝑖𝑦)

2

(𝑠0 − 𝑦)2
−

(𝑖0 − 𝑖𝑦)
2

(𝑠0 + 𝑦)2
) cos 𝛼, 

and likewise in the x-direction, 

𝛼 

𝑠 ≈ 𝑠0 − 𝑦 
 

𝑦 
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𝑓𝑥 = 2𝑘 (
(𝑖0 + 𝑖𝑥)

2

(𝑠0 − 𝑥)2
−

(𝑖0 − 𝑖𝑥)
2

(𝑠0 + 𝑥)2
) cos 𝛼. 

As in the previous section, we would like linear expressions of these forces to 

aid in theoretical predictions. Examining y first, we linearize about 𝑖𝑦 = 0 and 𝑦 = 0. 

To obtain the first-order Taylor expansion, we need the following three quantities: 

𝑓𝑦|
𝑖𝑦=0,𝑦=0

=  2𝑘 (
(𝑖0 + 𝑖𝑦)

2

(𝑠0 − 𝑦)2
−

(𝑖0 − 𝑖𝑦)
2

(𝑠0 + 𝑦)2
) cos 𝛼|

𝑖𝑦=0,𝑦=0

= 0            

𝜕𝑓𝑦

𝜕𝑖𝑦
 |

𝑖𝑦=0,𝑦=0

=  2𝑘 (2
(𝑖0 + 𝑖𝑦)

(𝑠0 − 𝑦)2
− 2

−(𝑖0 − 𝑖𝑦)

(𝑠0 + 𝑦)2
) cos 𝛼|

𝑖𝑦=0,𝑦=0

=
8𝑘𝑖0

𝑠0
2 cos 𝛼 

𝜕𝑓𝑦

𝜕𝑦
 |

𝑖𝑦=0,𝑦=0

=  2𝑘 (−(−2)
(𝑖0 + 𝑖𝑦)

2

(𝑠0 − 𝑦)3
− (−2)

(𝑖0 − 𝑖𝑦)
2

(𝑠0 + 𝑦)3
) cos 𝛼|

𝑖𝑦=0,𝑦=0

=
8𝑘𝑖0

2

𝑠0
3 cos 𝛼 

The linearized form of the AMB force is then 

𝑓𝑦 ≈ 𝑓𝑦|
𝑖𝑦=0,𝑦=0

+ (𝑖𝑦 − 0)
𝜕𝑓𝑦

𝜕𝑖𝑦
 |

𝑖𝑦=0,𝑦=0

+ (𝑦 − 0)
𝜕𝑓𝑦

𝜕𝑦
 |

𝑖𝑦=0,𝑦=0

 

= 0 + 𝑖𝑦 (
8𝑘𝑖0

𝑠0
2 cos 𝛼) + 𝑦 (

8𝑘𝑖0
2

𝑠0
3 cos 𝛼)                                  

= 𝑘𝑖𝑖𝑦 − 𝑘𝑠𝑦                                                                                    

where 𝑘𝑖 =
8𝑘𝑖0

𝑠0
2 cos 𝛼, 𝑘𝑠 = −

8𝑘𝑖0
2

𝑠0
3 cos 𝛼, and 𝛼 = 22.5° for eight evenly spaced poles. 

By symmetry, we have in the x-direction 

𝑓𝑥 = 𝑘𝑖𝑖𝑥 − 𝑘𝑠𝑥. 
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This completes our bearing analysis; we will not simulate a single bearing 

alone, but the above result is sufficient to move forward to the dynamics of the 3D 

rigid rotor. 

2.3. 3D dynamics: The two-bearing rotor 

As we increase complexity to a complete rotor, the concept is like that of any other 

bearing type: Two AMBs support the shaft in space, just as mechanical bearings do. 

With a 3D system now, we must keep track of more variables. The rotor itself can 

translate and tilt in both x and y, so this system now has 4 DOFs (we ignore the fifth, 

axial translation, since it is independent of radial motion and controllable with a 

simple bias pair), and the two bearings have two current inputs each. Thus, we have 

a 4-state system with 4 inputs, not counting disturbances that may be modeled. 

We will begin with general rotor equations of motion from Kra mer [22], show 

that they yield the equations given in Schweitzer and Maslen [1], and then follow 

Schweitzer and Maslen’s analysis to achieve a state space representation of the rotor’s 

open-loop dynamics. 

2.3.1. Force expression in matrix form 

Given bearings A and B, we can first write the four force equations (two directions for 

each bearing) and collect them into the matrix equation 

[
 
 
 
𝑓𝑥𝐴

𝑓𝑥𝐵

𝑓𝑦𝐴

𝑓𝑦𝐵]
 
 
 

= −

[
 
 
 
𝑘𝑠𝐴

𝑘𝑠𝐵

𝑘𝑠𝐴

𝑘𝑠𝐵]
 
 
 

[

𝑥𝐴

𝑥𝐵

𝑦𝐴

𝑦𝐵

] +

[
 
 
 
𝑘𝑖𝐴

𝑘𝑖𝐵

𝑘𝑖𝐴

𝑘𝑖𝐵]
 
 
 

[

𝑖𝑥𝐴

𝑖𝑥𝐵

𝑖𝑦𝐴

𝑖𝑦𝐵

], 
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where the force-current and force-displacement factors are defined above in Section 

2.2. By defining symbols for the above vectors and matrices, we abbreviate this to 

𝐟b = −𝐊s𝐪b + 𝐊i𝐢, 

where 𝐪b is the vector of bearing coordinates of the shaft. This is Equation 8.2 of [1]. 

2.3.2. Open-loop equations of motion 

We can now examine the dynamics of the overall system to eventually substitute the 

force expression. We begin with the general rotor setup shown in Figure 2.11. 

 

Figure 2.11. Rotor layout, coordinates, and nomenclature (Figure 8.1 of [1]). 
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From Kra mer [22], we have the following rotor dynamics equations of motion 

after eliminating mechanical damping (since there is no contact in this system) and 

mechanical stiffness (since the rotor is rigid): 

𝑚�̈�                = 𝑓𝑥  

𝑚�̈�                = 𝑓𝑦   

𝐼𝑥�̈� + 𝐼𝑧Ω�̇� = 𝑇𝑥  

𝐼𝑦�̈� − 𝐼𝑧Ω�̇� = 𝑇𝑦, 

where I is moment of inertia and Ω is shaft speed. Replacing the force and moment 

terms with magnetic bearing forces, from Newton’s 2nd Law we have 𝑓𝑥 = 𝑓𝑥𝐴 + 𝑓𝑥𝐵 

and 𝑓𝑦 = 𝑓𝑦𝐴 + 𝑓𝑦𝐵, and for the moments, we have 

𝑇𝑥𝑖̂ = 𝑎�̂� × 𝑓𝑦𝐴𝑗̂ + 𝑏�̂� × 𝑓𝑦𝐵𝑗̂ = (−𝑎𝑓𝑦𝐴 − 𝑏𝑓𝑦𝐵)𝑖̂ 

𝑇𝑦𝑗̂ = 𝑎�̂� × 𝑓𝑥𝐴𝑖̂ + 𝑏�̂� × 𝑓𝑥𝐵𝑖̂ = (𝑎𝑓𝑥𝐴 + 𝑏𝑓𝑥𝐵)𝑗̂. 

Thus, the equations of motion become 

  𝑚�̈�                =       𝑓𝑥𝐴 +   𝑓𝑥𝐵   

  𝑚�̈�                =       𝑓𝑦𝐴 +    𝑓𝑦𝐵    

𝐼𝑥�̈� + 𝐼𝑧Ω�̇� = −𝑎𝑓𝑦𝐴 − 𝑏𝑓𝑦𝐵 

𝐼𝑦�̈� − 𝐼𝑧Ω�̇� =    𝑎𝑓𝑥𝐴 + 𝑏𝑓𝑥𝐵 . 

To match the equations given in [1], we can multiply the third equation by −1, 

rearrange their order, and consolidate them into the matrix form 
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[

𝐼𝑦 0 0 0

0 𝑚 0 0
0 0 𝐼𝑥 0
0 0 0 𝑚

] [

�̈�
�̈�

−�̈�
�̈�

] + [

0 0 𝐼𝑧Ω 0
0 0 0 0

−𝐼𝑧Ω 0 0 0
0 0 0 0

] [

�̇�
�̇�

−�̇�
�̇�

] = [

𝑎 𝑏 0 0
1 1 0 0
0 0 𝑎 𝑏
0 0 1 1

]

[
 
 
 
𝑓𝑥𝐴

𝑓𝑥𝐵

𝑓𝑦𝐴

𝑓𝑦𝐵]
 
 
 

, 

which we will abbreviate to 

𝐌�̈�c + 𝐆�̇�c = 𝐁𝐟b, 

where 𝐪c is the vector of center of gravity (CG) coordinates of the shaft. This matrix 

equation is Equation 8.1a in [1]. Substituting the force expression from the previous 

section yields 

𝐌�̈�c + 𝐆�̇�c = 𝐁(−𝐊s𝐪b + 𝐊i𝐢). 

Now, we have here the shaft position vectors in both CG and bearing 

coordinates (i.e. the equation includes both 𝐪c and 𝐪b), but we would like to write the 

equation using one system only. We see from Figure 2.11 that, assuming small angles, 

𝐪b = [

𝑥𝐴

𝑥𝐵

𝑦
𝐴

𝑦𝐵

] = [

𝑎 1 0 0
𝑏 1 0 0
0 0 𝑎 1
0 0 𝑏 1

] [

𝛽
𝑥

−𝛼
𝑦

] = 𝐁T𝐪c, 

so we can substitute this for 𝐪b and manipulate to achieve the 2nd-order linear ODE 

𝐌�̈�c + 𝐆�̇�c + 𝐁𝐊s𝐁
T𝐪c = 𝐁𝐊i𝐢. 

We have thus derived Equation 8.6 of [1] from the equations of [22]. 
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2.3.3. Open-loop state space 

We are now prepared to generate a state space representation. Since it will be useful 

to have an expression for the highest derivative of 𝐪, we can rearrange our EOM by 

moving terms and then left-multiplying by the inverse of M, obtaining 

�̈�c  = −𝐌−1𝐆�̇�c − 𝐌−1𝐁𝐊s𝐁
T𝐪c + 𝐌−1𝐁𝐊i𝐢. 

This can be written as the following state equation, where hereafter q represents 𝐪c: 

[
𝐪
�̈�]
̇

= [
𝟎4×4 𝐈4×4

−𝐌−1𝐁𝐊s𝐁
T −𝐌−1𝐆

] [
𝐪
�̇�] + [

𝟎4×4

𝐌−1𝐁𝐊i
] 𝐢. 

The outputs are the measurements from the sensors, which can be determined from 

CG coordinates very similarly to the bearing coordinates. With this, we have a new 

matrix, C: 

𝐪s = [

𝑥𝑠𝑒𝐴

𝑥𝑠𝑒𝐵

𝑦𝑠𝑒𝐴

𝑦𝑠𝑒𝐵

] = [

𝑐 1 0 0
𝑑 1 0 0
0 0 𝑐 1
0 0 𝑑 1

] [

𝛽
𝑥

−𝛼
𝑦

] = 𝐂𝐪. 

Thus, the linear open-loop state space is 

�̇� = 𝐀OL𝐱 + 𝐁OL𝐢 

𝐲 = 𝐂OL𝐱 + 𝐃OL𝐢 

𝐱 = [
𝐪
�̇�]         𝐲 = 𝐪s 

𝐀OL = [
𝟎4×4 𝐈4×4

−𝐌−1𝐁𝐊s𝐁
T −𝐌−1𝐆

]        𝐁OL = [
𝟎4×4

𝐌−1𝐁𝐊i
]       𝐂OL = [𝐂 𝟎4×4]      𝐃OL = [𝟎4×4]. 
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2.3.4. Augmented state space for disturbance forces 

The above state space describes the motion of the system but provides no 

opportunity for external disturbance forces and moments. When simulating, we 

would like to be able to inject forces to model rotor imbalance or other perturbations. 

Mathematically, we desire a state space which models the EOM 

𝐌�̈� + 𝐆�̇� + 𝐁𝐊s𝐁
T𝐪 = 𝐁𝐊i𝐢 + 𝐟d, 

where the disturbances applied at the shaft CG are 

𝐟d =

[
 
 
 

𝑇𝑦,𝑑

𝑓𝑥,𝑑

−𝑇𝑥,𝑑

𝑓𝑦,𝑑 ]
 
 
 

. 

After we left-multiply by the inverse of the mass matrix and rearrange as we did 

before, we find 

�̈� = −𝐌−1𝐆�̇� − 𝐌−1𝐁𝐊s𝐁
T𝐪 + 𝐌−1𝐁𝐊i𝐢 + 𝐌−1𝐟d, 

and the resulting augmented state space is 

�̇� = 𝐀OL𝐱 + 𝐁OL𝐢 + 𝐄OL𝐟d 

𝐲 = 𝐂OL𝐱 + 𝐃OL𝐢                 

where 𝐄OL = [
𝟎4×4

𝐌−1], and the other matrices are the same as before. 
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2.4. Control of the 3D rotor 

Having derived the state space in the previous section, we are ready to apply a control 

algorithm, which changes nothing about the open-loop state space except the values 

or expressions taken by the currents in the vector i. In this section, we will apply the 

simplest control algorithm, decentralized control, in which each bias pair is operated 

by an independent PID controller. We will see that the current vector i will take on a 

simple expression of the other variables of the system, which we can substitute and 

manipulate into a closed-loop state space from which we can predict the system’s 

stability and natural frequencies. 

2.4.1. Closed-loop state space for decentralized PD control 

In decentralized control, all four bias current pairs (two per bearing) are operated by 

independent PID controllers (Figure 2.12). For simplicity, we will assume as before 

that the integral control has accounted for gravity, so we can therefore examine the 

dynamics due to pure PD control. 

Like in the two-magnet example from Section 2.1, a PD control scheme applies 

current given by a linear combination of shaft position and velocity: 

[
 
 
 
𝑖𝑥𝐴

𝑖𝑥𝐵

𝑖𝑦𝐴

𝑖𝑦𝐵]
 
 
 
= −

[
 
 
 
𝑃𝐴 0 0 0
0 𝑃𝐵 0 0
0 0 𝑃𝐴 0
0 0 0 𝑃𝐵]

 
 
 
[

𝑥𝑠𝑒𝐴
𝑥𝑠𝑒𝐵
𝑦

𝑠𝑒𝐴
𝑦

𝑠𝑒𝐵

] −

[
 
 
 
𝐷𝐴 0 0 0
0 𝐷𝐵 0 0
0 0 𝐷𝐴 0
0 0 0 𝐷𝐵]

 
 
 

[
 
 
 
 
�̇�𝑠𝑒𝐴

�̇�𝑠𝑒𝐵

�̇�
𝑠𝑒𝐴

�̇�
𝑠𝑒𝐵]

 
 
 
 

, 

or in abbreviated form, 𝐢 = −𝐏𝐪s − 𝐃�̇�s. 
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Figure 2.12. Decentralized PID control structure (Figure 8.2 of [1]). 

We already know that 𝐪s = 𝐂𝐪. Substituting these into the main EOM yields 

𝐌�̈� + 𝐆�̇� + 𝐁𝐊s𝐁
T𝐪 = 𝐁𝐊i(−𝐏𝐂𝐪 − 𝐃𝐂�̇�), 

which can be rearranged to 

𝐌�̈� + (𝐆 + 𝐃CL)�̇� + (𝐊sS + 𝐊CL)𝐪 = 𝟎4×4, 

𝐊CL = 𝐁𝐊i𝐏𝐂        𝐃CL = 𝐁𝐊i𝐃𝐂        𝐊sS = 𝐁𝐊s𝐁
T. 

Like for the open-loop model, we can construct a closed-loop state space. 

Replacing matrix coefficients, we find the following model, whose 𝐀CL is Equation 

8.12a of [1]: 
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�̇� = 𝐀CL𝐱 

𝐲 = 𝐂CL𝐱 

𝐀CL = [
𝟎4×4 𝐈4×4

−𝐌−1(𝐊sS + 𝐊CL) −𝐌−1(𝐆 + 𝐃CL)
]        𝐂CL = [𝐂 𝟎4×4].  

We can then calculate the eigenvalues of 𝐀CL to predict the system’s response. 

2.5. Unbalance response in pure Simulink and co-simulation 

This section presents an example rigid AMB rotor to which we will apply the above 

analysis. We will create a simulation of the example rotor in Adams-Simulink co-

simulation, use the closed-loop state space to construct a pure theoretical model, and 

then use 𝐀CL to validate the results of both. The methods used here will closely follow 

the simulation example from Section 2.1. 

2.5.1. Setup and theoretical analysis 

The example rotor system is a cylindrical shaft with an offset disk, shown in Figure 

2.13. The rotor’s mass is made larger to yield lower resonant speeds and therefore 

reduce necessary runtime for a rotor ramp up, and the shaft is thickened so that the 

shaft CG is offset from the unbalanced disk and tilting modes will be more visible. A 

material density of 7801 kg/m3, the default density of steel in Adams, defines the 

rotor’s mass, moments of inertia, and CG location. 
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Figure 2.13. Co-simulation rigid rotor dimensions (mm). 

The gains in this example are chosen to keep resonant speeds small, and 

damping is low so that amplitude peaks could be clearly seen; it is of course not good 

practice to allow such resonance in real applications, but we do so here simply to 

verify the model with theory. The quantities 𝑁𝐴 and 𝑁𝐵 are the filter coefficients for 

the PID controllers, and 𝑇𝑑𝑟𝑖𝑣𝑒 is the drive torque used to ramp up the speed of the 

shaft for the simulation. The drive torque is kept small to keep ramp rate relatively 

low; if the shaft speed passes through the natural frequency too quickly, inertial 

effects distort the peak. The resulting system parameters for this example are 

provided in Table 2.3. 

From these values, 𝐀CL and its eigenvalues can be calculated in MATLAB and 

plotted on the complex plane, which yields the root locus in Figure 2.14. All poles have 

negative real part, indicating exponential decay and thus stability. The poles closer to 

the origin have multiplicity 2 and do not change with shaft speed. According to [1], 

these represent modes of parallel motion, which are not affected by the gyroscopic 
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Table 2.3. Rotor and control parameters for pure and co-simulation comparison. 

Quantity Value Units 

𝜌 7801 kg/m3 

𝑚  38.29 kg 

𝐼𝑥 = 𝐼𝑦  1.9334  kg m2  

𝐼𝑧  0.1268  kg m2  

𝑎  -0.3 m 

b 0.6 m 

c -0.33 m 

𝑑 -0.63 m 

𝑠0𝐴 = 𝑠0𝐵  0.0005 m 

𝑛𝐴 = 𝑛𝐵 200 coils 

𝐴𝐴 = 𝐴𝐵 0.002 m2 

𝑖0𝐴 = 𝑖0𝐵 2.7336 A 

𝑃𝐴 = 𝑃𝐵   6.5 × 103  A/m 

𝐷𝐴 = 𝐷𝐵   0.25 A/(m/s) 

𝑁𝐴 = 𝑁𝐵 5000 s−1 

𝑇𝑑𝑟𝑖𝑣𝑒 1.25 N-m 

 

effect and therefore will not change with angular velocity. The other poles begin at 

the middle of the segments where the colors meet and then separate as Ω increases. 

These are the conical modes of the system, since the tilting of the shaft would sweep 

a double cone in space, and these do depend on angular velocity. 
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Figure 2.14. Closed-loop root locus of example rigid rotor as shaft speed varies. 

An even more useful analysis tool in our case is the Campbell diagram, which 

plots natural frequencies 𝜔𝑛 with respect to Ω (Figure 2.15). The imaginary parts of 

the eigenvalues are the natural frequencies of the closed-loop system. When we plot 

these, we see two frequencies that do not change with speed and the remainder that 

separate with increasing speed. On top of these curves, we plot the lines 𝜔𝑛 = ± Ω. 

Where these lines intersect the natural frequency curves are where shaft spin speed 

equals the natural frequency; if there is any unbalance in the rotor, these are the 

operating points at which the system will resonate. These are termed the critical 

speeds of the system. In this case, critical speeds lie near 36 Hz, 90 Hz, and 96 Hz. We 

expect the largest parallel shaft motion at 36 Hz and the largest wobbling of the shaft 

near 90-96 Hz. 
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Figure 2.15. Closed-loop Campbell diagram of example rigid rotor. 

2.5.2. Pure Simulink model 

With theorical predictions complete, we move on to create a pure simulation of the 

rotor’s unbalance response. The general closed-loop feedback architecture shown in 

Figure 2.16 will be used, with the control law and plant constructed according to the 

models that we have developed. The simulated system will be built in Simulink. 

 

Figure 2.16. General closed-loop feedback architecture. 
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2.5.2.1. Control law 

The control law is a PD controller applied to the four differential currents (Figure 

2.17). Since the magnet pairs within a given AMB follow the same control law by 

symmetry, the two control signals can be simultaneously calculated elementwise 

using a Simulink PID block. 

 

Figure 2.17. Control law applied at Bearing A. 

The differential current magnitude must be saturated to that of the bias 

current to prevent a change in current direction in any electromagnet; if such a 

change occurs, the controller will expect the magnet to begin repelling the shaft while 

in fact it still attracts, destabilizing the system. Saturation can be added in the 

“Saturation” tab of the PID block. Additionally, the control signal must be filtered to 

prevent the derivative control from amplifying jumps in the Adams co-simulation 

output; filtering is included in the PID block and governed by the filter coefficient 𝑁. 

2.5.2.2. Nonlinear plant 

In previous sections, we linearized magnetic force to perform theoretical calculations, 

but we need not do so for the simulation itself. To keep the model more realistic, we 

can retain nonlinearity in the plant and directly calculate magnetic forces. Recall from 
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Section 2.2 that the forces applied by each eight-pole AMB can be approximated as 

the following, where x and y here are shaft displacements in local bearing coordinates: 

𝑓𝑦 = 2𝑘 (
(𝑖0 + Δ𝑖𝑦)

2

(𝑠0 − 𝑦)2
−

(𝑖0 − Δ𝑖𝑦)
2

(𝑠0 + 𝑦)2
) cos 𝛼 

𝑓𝑥 = 2𝑘 (
(𝑖0 + Δ𝑖𝑥)

2

(𝑠0 − 𝑥)2
−

(𝑖0 − Δ𝑖𝑥)
2

(𝑠0 + 𝑥)2
) cos 𝛼. 

These can be inserted directly into the force vector, 𝐟b = [𝑓𝑥𝐴 𝑓𝑥𝐵 𝑓𝑦𝐴 𝑓𝑦𝐵]T. 

Since this vector is in bearing coordinates but the plant calculates shaft position in CG 

coordinates (𝐪c), we must use 𝐪b = 𝐁T𝐪c as derived in Section 2.3. With this 

information, 𝐟b can be calculated as a function of the bearing coordinates 𝐪b and 

magnet currents i, and our EOM can be written  

𝐌�̈�c + 𝐆�̇�c = 𝐁𝐟b(𝐪b, 𝐢) + 𝐟d, 

or after algebra, 

�̈�c = −𝐌−1𝐆�̇�c + 𝐌−1𝐁𝐟b(𝐪b, 𝐢) + 𝐌−1𝐟d. 

Implemented in Simulink (Figure 2.18), the nonlinear forces are calculated by 

a MATLAB function block called NLbearingForce, and the above matrix equation is 

calculated in the nonlinearEOM block. The output equation yielding 𝐪s is calculated 

outside of the MATLAB function block since an algebraic loop is formed if the output 

is calculated before integration. Added to this subsystem is another MATLAB function 

block, checkContact, that stops the simulation if the shaft contacts the bearing (i.e. if 
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Figure 2.18. Nonlinear plant Simulink subsystem. 

the displacement magnitude is greater than or equal to 𝑠0), which would cause a 

division by zero in the magnetic force calculation. The initial conditions on the 

integrator blocks are 4x1 vectors of initial velocities and positions, in our case all 

zeros. The inputs to the overall plant are the control signal currents i, the vector of 

disturbance forces and moments 𝐟d, and the shaft spin speed Ω on which the state 

space depends. The latter two are determined by the subsystem shown in Figure 2.19, 

whose input is a constant torque that generates a linearly increasing shaft speed. The 

 

Figure 2.19. Disturbance and shaft speed inputs to plant. 
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disturbanceVector block calculates the forces caused by a mass imbalance at an axial 

location 𝑧𝑢 from the CG, where 𝑧𝑢 is positive if the vector pointing from the CG to the 

unbalance is in the positive z-direction. A mass imbalance on a spinning rotor applies 

a disturbance force of magnitude 𝑚𝑢𝑟𝑢Ω2 in the direction 𝜃 + 𝜙𝑢, where 𝑚𝑢 is the 

mass of the unbalance, 𝑟𝑢 is the eccentricity of the unbalance (i.e. its radius from the 

shaft’s geometric center), 𝜃 is the angular position of the shaft, and 𝜙𝑢 is the angular 

position of the unbalance with respect to the shaft. Its expression in full is the 

following 3 : 

𝑓𝑢 = 𝑓𝑢,𝑥𝑖̂ + 𝑓𝑢,𝑦𝑗̂ = 𝑚𝑢𝑟𝑢Ω2 cos(𝜃 + 𝜙𝑢) 𝑖̂ + 𝑚𝑢𝑟𝑢Ω2 sin(𝜃 + 𝜙𝑢)𝑗̂. 

The moments applied to the shaft CG are then 

𝑇𝑢,𝑥𝑖̂ + 𝑇𝑢,𝑦𝑗̂ = 𝑧𝑢�̂� × (𝑓𝑢,𝑥𝑖̂ + 𝑓𝑢,𝑦𝑗̂) = 𝑧𝑢𝑓𝑢,𝑥𝑗̂ − 𝑧𝑢𝑓𝑢,𝑦𝑖̂, 

so we have 𝑇𝑢,𝑥 = −𝑧𝑢𝑓𝑢,𝑦 and 𝑇𝑢,𝑦 = 𝑧𝑢𝑓𝑢,𝑥. We can then write the code governing the 

input disturbance as shown in Figure 2.20. 

Gravity is neglected in the above calculation, assumed to have been accounted 

for by integral control, but it is important to note that since our coordinate axes are 

rotated, gravity would not point in the negative y-direction if included. 

 
 
 

 

3 This expression only accounts for radial forces due to unbalance, but tangential forces may exist if 
the shaft spin speed changes quickly; we assume here that the speed ramp rate is small enough to 
neglect the latter. 
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function fd_c = disturbanceVector(t,theta,Omega,...        % Inputs 
                                  m,g,mru,zu,phaseu_deg)   % Parameters 
 
% Unbalance forces 
fu_x = mru*Omega^2*cos(theta + phaseu_deg*pi/180); 
fu_y = mru*Omega^2*sin(theta + phaseu_deg*pi/180); 
 
% Forces (N) and moments (N-m) in CG coordinates 
fx = fu_x; 
fy = fu_y; 
Tx = -zu*fu_y; 
Ty = zu*fu_x; 
 
fd_c = [Ty fx -Tx fy].';        % Force vector in CG coordinates 
 
end 

 
 

Figure 2.20. Code for the disturbanceVector MATLAB function block. 

2.5.2.3. Full simulated model 

Together, the control laws and plant are combined into the model given in Figure 

2.21, with subsystems grouped into colored regions. One PID controller for each 

bearing, the nonlinear plant, and the disturbance input to the plant can be seen. The 

visual complexity from multiplexors is superficial; they are present only for proper 

data routing. With this and a MATLAB script that defines all necessary input 

parameters, the pure Simulink model is complete. 

Instead of showing the pure Simulink results now, we will create the Adams 

co-simulation model first and then show the results of both simulations together, 

comparing them with theoretical predictions. 

 



42 
 

 

Figure 2.21. Pure Simulink model of example rigid rotor, with controller (red), 

plant (purple), and disturbance input (cyan). 

2.5.3. Adams co-simulation model 

To complete this chapter, we would like to verify that an Adams co-simulation 

provides the same output as a model built on theory. Only the plant will change in this 

case; the control system and magnetic force calculation will be identical to that of the 

pure Simulink model. 

The Adams model for this example rotor (Figure 2.22) was constructed in the 

student version of Adams View 2022.1 following the general steps below: 

1. Create the main shaft extending from the origin into the positive z-direction. 

2. Create the disk, with a hole to accommodate the shaft. 

3. Attach the disk to the shaft using a fixed joint.   

4. Create markers along the shaft at the bearing and sensor locations. 

5. Attach forces at the bearing locations to be used as net force inputs. 



43 
 

 

Figure 2.22. Adams model for pure and co-simulation comparison. 

6. Attach a torque at the shaft CG marker to be used as motor torque input. 

7. Create state variables, 16 in total: 

a. Four to measure x- and y-displacements of the bearing markers 

b. Four to measure x- and y-displacements of the sensor markers 

c. Two to measure the x- and y-displacement of the disk center 

d. One to measure the angular velocity of the shaft about the origin in the 

z-direction 

e. Four to be used as inputs for the bearing forces from Step 5 

f. One to be used as input for the motor torque from Step 6 

8. Assign the values of the input state variables as the force and torque functions. 

9. Create a cylinder and use it to cut the hole in the disk. This step should be 

performed after Step 7c so that disk displacement is measured with respect to 

its geometric center, not its off-center CG. 
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With the model complete, the Adams plant export for Simulink can be created: 

1. Navigate to the “Plugins” tab, the “Controls” plugin, and “Plant Export.” Fill in 

the appropriate fields of the window (Figure 2.23). Press “OK,” which 

generates several files in the working directory of the Adams model. 

2. One of the generated files is a MATLAB .m file. Run the file, which fills the 

workspace with appropriate variables and paths necessary to run the co-

simulation. 

3. Run the command “adams_sys” in the command window, which opens a 

Simulink window containing an orange block of the Adams plant (Figure 

2.24a). The red blocks will not be used. 

4. Double-click the orange block, then double-click the red “MSC Software” block 

(Figure 2.24b), then navigate to “Simulation Mode” in the window that 

appears, and change it to “continuous” (Figure 2.25). 

 

 

Figure 2.23. Plant export window in Adams. 
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  (a)            (b) 

Figure 2.24. Adams plant block, colored orange (a) and its contents (b). 

 

Figure 2.25. Contents of “MSC Software” block from Figure 2.24b, with 

continuous simulation mode selected. 

The block can now be implemented into the Simulink model. Again, only the 

plant will change, becoming the subsystem in Figure 2.26. In this case, the unbalance 

forces are modeled within the Adams plant, so we no longer need the disturbance 

calculation; only an input torque is necessary. The x- and y-positions of the disk and 
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the shaft spin speed are included as outputs, along with sensor and bearing 

coordinate positions. The full Adams co-simulation model is shown in Figure 2.27. 

 

Figure 2.26. Implementation of the Adams block in Simulink. 

 

Figure 2.27. Adams co-simulation model of the example rigid rotor, with 

controller (red) and plant (purple). 

2.5.4. Comparison of results 

Both the pure Simulink and Adams co-simulation models were run with a simulation 

time of 80 seconds, which with the selected input torque yielded a speed range of 
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roughly 0 to 125 Hz. Figure 2.28 provides a Bode plot of the x-displacement at both 

bearings overlaid. The pure and co-simulation results are practically identical, and 

the peaks seen near 36 Hz and 96 Hz agree well with the predicted critical speeds 

from theoretical analysis. Additionally, the phase at the first resonance is the same at 

both sensor planes, indicating parallel shaft motion, and the phase is separated by 

180° at the second resonance, indicating conical shaft motion or wobbling of the shaft, 

confirming Schweitzer and Maslen’s predictions [1]. 

 

Figure 2.28. Bode plot of pure Simulink and co-simulation unbalance response, 

as measured at both sensor planes in the x-direction. 

These results show that both the dynamics of Adams and AMB control in 

Simulink are accurate to theoretical predictions, validating co-simulation in the rigid 

body case.  
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Chapter 3 

WHIRLING MODES OF A THIN WIRE HANGING ROTOR 

 

This chapter studies a spinning disk hanging on a steel wire, which was an experimental 

setup shown in a DVD accompanying a rotor dynamics textbook [17]. In Adams 

simulation, the disk’s whirl shapes match those of the experiment, and their frequencies 

match theory, demonstrating accurate modeling of flexibly body dynamics and the 

gyroscopic effect. 

 

In the previous chapter, we demonstrated the validity of a rigid rotor co-simulation 

in Adams and Simulink. While this is useful, the rigid assumption is inappropriate 

when spin speeds approach or exceed the shaft’s bending frequencies. In these 

situations, resonance becomes dominated not by the control behavior but by the 

bending of the shaft itself, changing natural frequencies and mode shapes drastically. 

Shaft bending also means that displacement at the AMBs may be different from that 

measured by the sensors due to their difference in axial position. These challenges 

and others make it necessary to know the bending behavior of the entire shaft to 

accurately model the controlled system. Thus, a proper AMB rotor simulation must 

model shaft flexibility, which the Adams co-simulation process can achieve. 

In a DVD accompanying Dynamics of Rotating Systems by Giancarlo Genta [17], 

a disk hanging on a steel wire was used to visually demonstrate the gyroscopic effect 

in a flexible rotor and verify theoretical predictions of natural frequencies (Figure 

3.1). Using a similar setup in Adams, along with FEA modeling in MSC Apex, we 
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demonstrate accurate modeling of flexible rotor dynamics and gyroscopic effect, 

further validating the applicability of the co-simulation process to AMB rotors. 

 

Figure 3.1. Experimental thin wire rotor undergoing gyroscopic motion [17]. 

3.1. Modeling flexible rotors 

The motion of a linear dynamic system can be represented by a sum of its modes, 

which in a mechanical system are the displacement shapes that would result in simple 

harmonic vibration. A system has as many modes as degrees of freedom (DOFs), the 

number of parameters required to completely specify its position, which is also the 

number of equations of motion (EOMs). In the previous chapter, the AMB-supported 
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rigid rotor had 4 EOMs, so it had only 4 DOFs and 4 modes, neglecting mirror 

symmetry. This system of equations was still compact enough to hand-derive. 

A flexible body, on the other hand, can be displaced in infinitely many ways, so 

modeling its displacement requires infinitely many mode shapes, DOFs, and EOMs. 

This is unfeasible, but approximation methods can model flexible response with 

sufficient accuracy. Finite element analysis (FEA) is the most common of these, in 

which a flexible body is represented by many smaller elements of simple properties, 

yielding finite DOFs. For rotor shafts, beam elements are used most often, which are 

space curves that can accommodate shear forces and bending moments at the two 

ends (but not axial forces or torques). The displacement within the element is usually 

interpolated by a cubic polynomial with respect to position along the element’s 

length. In our analysis, we assume that the steel wire acts as a set of Euler-Bernoulli 

beam elements, which do not model shear deformation; this assumption is usually 

appropriate when element length is much larger than the diameter. The alternative 

is Timoshenko beam elements, which do account for shear deformation but whose 

mathematics are more involved. 

Since there are usually multiple DOFs per element, the equation set is still 

large, making analysis difficult. While many theoretical treatments exist, including for 

Euler-Bernoulli beam elements in [1] and Timoshenko beam elements in [18], 

implementation is complicated, time-consuming, and error-prone. Instead of creating 

our own FEA model, our goal in this work is to utilize general-purpose commercial 

software. 
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MSC Apex is one of these, developed by Hexagon AB, the company that created 

Adams. Flexible bodies can be created and turned into finite element models, which 

can be exported in a modal neutral file (MNF) that Adams can import for dynamic 

simulation. While other FEA programs can also export MNF files, Apex is of particular 

interest because both Apex and Adams are Hexagon-owned.4 By using Apex, we can 

incorporate a flexible shaft into the rotor model in Adams. In this thin wire rotor case, 

there are no magnetic bearings and thus no need for co-simulation, so Adams alone 

will be used at the simulation stage. 

3.2. Whirl modes of a single-disk flexible rotor 

Whirl is the lateral oscillation of a spinning rotor, usually excited by rotor imbalance. 

For a spinning rotor on isotropic bearings, mode shapes are circular whirl patterns, 

and for a rotor with a single disk on a massless flexible shaft, there are 4 such modes 

(Figure 3.2). For an overhung rotor, or for a hanging rotor like the one in this 

demonstration, they can be described as follows: 

1. Rapid wobbling of the disk in the direction of shaft rotation—the 2nd forward 

whirling mode 

2. Tire-swing-like motion of moderate speed in the direction of shaft rotation—

the 1st forward whirling mode 

 

4 Hexagon has recently developed Adams Modeler, which combines Adams and Apex into a single 
application. However, some features (e.g. beam elements) are not yet available in Modeler, so we use 
the separate programs in this research, but Modeler may be a more efficient tool in the future. 
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3. Slow tilting of the disk opposite the direction of shaft rotation—the 1st 

backward whirling mode 

4. Buffing-wheel-like motion of moderate speed opposite the direction of shaft 

rotation—the 2nd backward whirling mode. 

1st and 2nd indicate the relative frequency of each mode, 2nd being higher. The video 

of the thin wire rotor shows these modes being manually excited by hand one at a 

time. We would like to show that the whirling mode shapes of a simulated rotor in 

Adams match those of Genta’s apparatus and that the whirling mode frequencies 

match predictions from rotor dynamics theory. If these are true, then we will have 

further evidence that Adams’s flexible body and gyroscopic dynamics are appropriate 

for flexible rotor dynamics simulations. 

 

Figure 3.2. Whirling modes of an overhung or hanging rotor, 2nd and 1st forward 

and 1st and 2nd backward. 
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3.3. Theoretical analysis 

While understanding the full motion of the wire requires FEA, if we are concerned 

only about the disk motion and assume a massless wire, the problem reduces to 4 

DOFs, and if we assume linearity, we can return to Kramer’s equations of motion [22]. 

Neglecting damping but retaining the stiffness terms now, we have  

𝑚�̈�                + 𝑘𝑥𝑥𝑥 + 𝑘𝑥𝛽𝛽 = 𝑓𝑥  

𝑚�̈�                + 𝑘𝑦𝑦𝑦 + 𝑘𝑦𝛼𝛼 = 𝑓𝑦   

𝐼𝑥�̈� + 𝐼𝑧Ω�̇� + 𝑘𝛼𝑦𝑦 + 𝑘𝛼𝛼𝛼 = 𝑇𝑥  

𝐼𝑦�̈� − 𝐼𝑧Ω�̇� + 𝑘𝛽𝑥𝑥 + 𝑘𝛽𝛽𝛽 = 𝑇𝑦. 

Here, 𝛼 and 𝛽 represent the angles of the disk, which are specified by Euler angles 

according to Appendix B, and each stiffness coefficient 𝑘𝑖𝑗  represents the force or 

torque in i that contributes to a unit displacement in j. Unlike in the previous analysis, 

the stiffness terms have been retained to model an approximately linear relationship 

between disk displacement and restoring force. However, the process of developing 

a Campbell diagram from the state representation will be the same as in Section 2.5.1. 

Thus, we only need to determine the values of the stiffness coefficients 𝑘𝑖𝑗 . Now, if the 

system is static, then the derivative terms vanish, and we have 

𝑘𝑥𝑥𝑥 + 𝑘𝑥𝛽𝛽 = 𝑓𝑥   

𝑘𝑦𝑦𝑦 + 𝑘𝑦𝛼𝛼 = 𝑓𝑦  

𝑘𝛼𝑦𝑦 + 𝑘𝛼𝛼𝛼 = 𝑇𝑥  

𝑘𝛽𝑥𝑥 + 𝑘𝛽𝛽𝛽 = 𝑇𝑦. 
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Without the gyroscopic term, the first and last equations are uncoupled from 

the middle two. Let us examine the middle two first, which represent motion in the 

yz-plane. They can be written 

[
𝑓𝑦
𝑇𝑥

] = [
𝑘𝑦𝑦 𝑘𝑦𝛼

𝑘𝛼𝑦 𝑘𝛼𝛼
] [

𝑦
𝛼
]. 

Now, the matrix of k values is a 2x2 stiffness matrix, but we can define a flexibility 

matrix that is the inverse of the stiffness matrix (assuming invertibility), allowing us 

to rewrite the above as the following: 

[
𝑦
𝛼
] = [

𝑐𝑦𝑦 𝑐𝑦𝛼

𝑐𝛼𝑦 𝑐𝛼𝛼
] [

𝑓𝑦
𝑇𝑥

]. 

With this equation, if force and torque on the disk are known at static steady state, 

then its displacements are known. In particular, when 𝑇𝑥 = 0, we see that 𝑐𝑦𝑦 = 𝑦/𝑓𝑦 

and 𝑐𝛼𝑦 = 𝛼/𝑓𝑦, and when 𝑓𝑦 = 0, we see that 𝑐𝑦𝛼 = 𝑦/𝑇𝑥 and 𝑐𝛼𝛼 = 𝛼/𝑇𝑥. Therefore, 

if we apply an 𝑓𝑦 with no torque and measure y and 𝛼, and then do the same with 𝑇𝑥 

and no force, we can easily calculate 𝑐𝑦𝑦 , 𝑐𝑦𝛼, 𝑐𝛼𝑦, and 𝑐𝛼𝛼 and thus the values of 

𝑘𝑦𝑦, 𝑘𝑦𝛼, 𝑘𝛼𝑦, and 𝑘𝛼𝛼 . This process is simplified by Maxwell’s reciprocal theorem, 

which states that 𝑘𝑦𝛼 = 𝑘𝛼𝑦  and equivalently 𝑐𝑦𝛼 = 𝑐𝛼𝑦. 

These k are all in the yz-plane. In the perpendicular xz-plane, we expect the 

magnitudes of 𝑘𝑥𝑥 , 𝑘𝑥𝛽 , 𝑘𝛽𝑥, and 𝑘𝛽𝛽 to be the same, but they may have different signs. 

In Figure 3.3, we see that while positive forces and torques in y and 𝛼 cause positive 

displacements, a positive force in x causes a positive displacement in x but a negative 
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displacement in 𝛽, and a positive torque in 𝛼 causes a positive displacement in 𝛽 but 

a negative displacement in x. Therefore, 

𝑘𝑥𝑥 = 𝑘𝑦𝑦,        𝑘𝛽𝑥 = −𝑘𝛼𝑦,        𝑘𝑥𝛽 = −𝑘𝑦𝛼,        𝑘𝛽𝛽 = 𝑘𝛼𝛼, 

and the EOMs become 

𝑚�̈�                + 𝑘𝑦𝑦𝑥 − 𝑘𝑦𝛼𝛽 = 𝑓𝑥  

𝑚�̈�                + 𝑘𝑦𝑦𝑦 + 𝑘𝑦𝛼𝛼 = 𝑓𝑦   

𝐼𝑥�̈� + 𝐼𝑧Ω�̇� + 𝑘𝛼𝑦𝑦 + 𝑘𝛼𝛼𝛼 = 𝑇𝑥  

𝐼𝑦�̈� − 𝐼𝑧Ω�̇� − 𝑘𝛼𝑦𝑥 + 𝑘𝛼𝛼𝛽 = 𝑇𝑦. 

 

Figure 3.3. Signs of displacements due to forces and torques in yz- and xz-planes. 

Following steps similar to Section 2.3.2, we can write the EOMs in the matrix form 

𝐌�̈� + 𝐆�̇� + 𝐊𝐪 = 𝐟, 

+𝑦 

−𝑧 

𝑥 

+𝛼 

+𝛼 

+𝑦 

+𝑓𝑦 

 

𝑦 

𝑦 

−𝑧 

+𝑇𝑥  
 

𝑥 out of page 

𝑥 out of page 

−𝛽 

+𝑥 

+𝑓𝑥 
 

𝑥 

−𝑧 
𝑦 into page 

𝑦 into page 

+𝑇𝑦 

 

−𝑥 

+𝛽 

−𝑧 
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where 𝐪 = [𝛽 𝑥 −𝛼 𝑦]T are the coordinates of the disk, 𝐟 = [𝑇𝑦 𝑓𝑥 −𝑇𝑦 𝑓𝑦]T 

are the external disturbance forces at the disk CG, M and G are as previously defined 

in Section 2.3.2, and 

𝐊 =

[
 
 
 
 

𝑘𝛼𝛼 −𝑘𝛼𝑦 0 0

−𝑘𝑦𝛼 𝑘𝑦𝑦 0 0

0 0 𝑘𝛼𝛼 −𝑘𝛼𝑦

0 0 −𝑘𝑦𝛼 𝑘𝑦𝑦 ]
 
 
 
 

. 

The state matrix is then 

𝐀 = [
𝟎4×4 𝐈4×4

−𝐌−1𝐊 −𝐌−1𝐆
]. 

Since the matrix G depends on Ω, we can again find the eigenvalues of A with 

respect to Ω and plot the rotor’s Campbell diagram. Thus, if we only measure 

𝑘𝑦𝑦, 𝑘𝑦𝛼, 𝑘𝛼𝑦, and 𝑘𝛼𝛼 , we will have sufficient data to validate the Adams simulation. 

3.4. Model setup in Apex and Adams 

With theory established, we begin the thin wire rotor example. Genta [17] did 

not list all parameters of rotor example in the DVD demonstration, so we will create 

a new similar one. An aluminum disk is attached to the end of a thin, vertical steel 

wire (Figure 3.4, Table 3.1). The mass properties of the wire are unused except for 

density. The disk is treated in theory as a lumped mass with rotational inertia, which 

avoids gravity-induced moments on the disk and simplifies the analysis. 
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Figure 3.4. Thin wire rotor dimensions (mm), with gravity pointing right. 

Table 3.1. Thin wire rotor parameters. 

Quantity Disk Wire Units 

Length/thickness 25 500 mm 

Diameter 7.5 1 mm 

Density 2740 7801 kg/m3 

Mass 0.3026 — kg 

Polar MOI 2.1278 × 10−4 — kg m2 

Diametral MOI 1.2215 × 10−4 — kg m2 

 

To run this simulation, we first create the wire in Apex, run FEA analysis to 

produce its MNF file, use the MNF to create the rotor in Adams, and then simulate the 

rotor to determine its whirl frequencies. After creating the MNF, Apex is no longer 

needed, and all analysis can be performed in Adams alone. 

𝑥 out of page 

𝑦 

500 

25 

−𝑧, 
gravity 

⌀ 1 

⌀ 75 +𝑧 rotation 
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Since the wire is very thin, we use beam elements to model the system and 

assume that axial displacements are negligible. For this test, we use 20 elements each 

of length 25 mm. While Apex models shear deformation in beam elements by default, 

this high length-to-width ratio means that they should act like Euler-Bernoulli 

elements. The full procedure for creating the wire and MNF using Apex is provided in 

Appendix C. The result is Figure 3.5. 

 

Figure 3.5. Thin wire created in Apex. 

In Adams, importing an MNF replaces an existing body with an FEA model 

created in Apex. We first import the wire this way, and then we create the disk and 

fix its CG at the end of the wire. While this does imply interference between the wire 
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and disk, this choice aligns with our lumped mass assumption. A rotational joint is 

attached at the top of the wire to act as the motor axis, and measures are applied so 

that simulation data can eventually be plotted. The procedure for constructing the 

rotor in Adams is provided in Appendix C, and the result is Figure 3.6. This completes 

the thin wire rotor model, which we can now simulate. 

 

Figure 3.6. Thin wire rotor created in Adams. 

3.5. Simulation and results 

Before whirl simulation, it is necessary to determine the elements of the stiffness 

matrix by applying forces and torques and measuring displacement at static 

equilibrium. First, a constant test force 𝑓𝑦 is applied horizontally at the disk center of 
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mass, and to prevent indefinite oscillation, a force proportional to the disk’s velocity 

is subtracted from 𝑓𝑦 so that the disk position will settle quickly. In Adams, the 

function expression is 0.1 – 2*VY(DISK.cm), where VY measures linear velocity. The 

resultant displacements are shown in Figure 3.7. Since 𝑓𝑦 = 0.1 N gives 𝑦 = 0.0162 m 

and 𝛼 = 0.0452 rad, we know that 𝑐𝑦𝑦 = 0.162 and 𝑐𝛼𝑦 = 0.452. By Maxwell’s 

reciprocal theorem, 𝑐𝑦𝛼 = 0.452 also. 

Next, we apply a torque 𝑇𝑥 on the disk given by 0.01 – 0.05*WX(DISK.cm), 

where WX measures angular velocity; we also retain the force term –VY(DISK.cm) to 

damp out translation. The angular displacement due to this is shown in Figure 3.8, 

and since the value is 0.161 rad and the torque is 0.01 N, we know that 𝑐𝛼𝛼 = 16.1. 

Inverting the flexibility matrix then yields 

[
𝑘𝑦𝑦 𝑘𝑦𝛼

𝑘𝛼𝑦 𝑘𝛼𝛼
] = [

6.698 −0.188
−0.188 0.0674

], 

which are the stiffness values needed for the theoretical Campbell diagram. 

Each simulation test is run with a desired initial angular velocity and a set of 

impulse forces and torques designed to excite a particular mode, and then the 

resulting whirl frequency is measured and plotted on the theoretical Campbell 

diagram. During initial testing of simulation accuracy, results appeared to converge 

when the simulation time step was 0.001 s or smaller, so a 0.001 s time step was used 

for all simulations. 
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(a) 

 

 
(b) 

Figure 3.7. Lateral (a) and angular (b) displacements resulting from a 0.1 N 

constant force. 

 

Figure 3.8. Angular displacement resulting from a 0.01 N-m constant torque. 

To walk through an example of this process, consider the test performed for 

the 2nd backward mode (buffer wheel motion) at an initial velocity of 1000 RPM. In 

the video, the demonstrator grabbed the spinning wire by hand and gently moved it 

— Disk angle, 𝛼 

— Disk position, 𝑦 

— Disk angle, 𝛼 
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in a circular motion until the mode could be clearly seen. We imitate this by applying 

a force at a shaft node close to but above the disk, having an impulse along one 

horizontal axis followed by one along the other. The timing and magnitude of the 

impulses are refined by trial-and-error, informed in part by the predicted whirl 

frequency and post-simulation displacement measurements. Eventually, a suitable 

set of force inputs in Adams is found to be 

Force in y-direction: STEP(time, 0.1, 0, 0.5, 0.1) – STEP(time, 0.5, 0, 0.9, 0.1) 

Force in x-direction: STEP(time, 0.5, 0, 0.9, 0.1) – STEP(time, 0.9, 0, 1.3, 0.1), 

where STEP(time, t0, h0, t1, h1) is an approximated step function from h0 (force in 

N) at t0 (time in s) to h1 at time t1. Inputs with respect to time are given in Figure 3.9. 

With this input, the mode shape was stable and matched the whirl type; consecutive 

snapshots of this rotor simulation over one whirl cycle are shown in Figure 3.10. 

 

Figure 3.9. Impulses on the wire to excite 2nd backward mode at 1000 RPM. 
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Figure 3.10. 2nd backward whirl motion over one cycle, four snapshots. 

Having found the mode, we plot the displacement of the disk with respect to 

time in the simulation post-processor and determine whirl frequency from the period 

of the harmonic motion (Figure 3.11). In this example, since the most stable and 

visible displacements are the lateral motions, we plot and measure from those; other 

whirling motions, such as the 1st backward mode, are clearer in angular displacement. 

The period of motion averaged over four cycles is 1.28 s, which corresponds to a 

frequency of 0.78 Hz, or 46.8 RPM. This data point can now be plotted on the 

theoretical Campbell diagram. 
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Figure 3.11. Lateral displacement under 2nd backward whirl at 1000 RPM. 

This process is performed for several combinations of shaft speed and mode 

types, yielding Figure 3.12. The Campbell diagram does not distinguish whirl 

direction, so the curves that truly correspond with measured data have been 

highlighted. Other methods involving complex representations of disk position, such 

as that given in [17], yield only the highlighted curves. 

 

Figure 3.12. Campbell diagram with measured whirl frequencies from simulation. 

- - Disk position, x 
— Disk position, 𝑦 
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We see a close match between the theoretical whirl frequencies and those 

measured in Adams. The largest difference is the overestimation of the 2nd forward 

mode at zero shaft spin, which can be explained by the fact that our theory neglects 

wire inertia but Adams does not. The backward modes (those below the horizontal 

axis) have no measurements at some locations because those modes have very 

similar behavior to the corresponding forward mode, and the 2nd forward mode is 

only measured at no spin because that vibration is otherwise almost undetectable in 

practical applications [17]. 

These results show that flexible body dynamics and the gyroscopic effect are 

modeled as expected in Adams for rotating machinery applications.5 This analysis and 

the previous chapter enable us to simulate more complex systems with confidence in 

the accuracy of results.  

 

5 Some may wonder whether the thin wire rotor test is sufficient to draw this conclusion for shafts of 
higher material stiffness, or EI value. From Genta’s analysis [17], the 2x2 matrix K of this rotor is the 
sum of wire elasticity 𝐾𝑠ℎ𝑎𝑓𝑡  (which depends on EI) and stiffening due to gravity 𝐾𝑔𝑟𝑎𝑣  (which does 

not). In this example, 𝐾𝑠ℎ𝑎𝑓𝑡  is relatively small, but for larger diameters, 𝐾𝑠ℎ𝑎𝑓𝑡  will have a larger 

contribution, and for horizontal shafts, there is simply no 𝐾𝑔𝑟𝑎𝑣  term and 𝐾 = 𝐾𝑠ℎ𝑎𝑓𝑡 . However, K still 

has the same form in all cases, so we expect similar whirl behavior, even if frequencies are different 
and shapes harder to detect. 
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Chapter 4 

VISUALIZATIONS OF A FLEXIBLE ANISOTROPIC AMB ROTOR 

 

A flexible anisotropic rotor on AMBs is run, a first for Adams co-simulation. 

Visualizations of the rotor’s unbalance response, programmatically generated during 

the simulation, include a Bode diagram, 2D and 3D orbit plots, and a full spectrum 

cascade plot, none of which have been shown in a co-simulated model. 

 

Up to this point, our concern has been to validate the co-simulation process without 

access to experimental data. We did so by deriving theoretical models and 

simulations and showing that they matched, demonstrating proper modeling of rigid 

and flexible body dynamics, nonlinear magnetic forces, control algorithm 

implementation, and the gyroscopic effect. Now that these have been shown, we can 

free ourselves to explore the capabilities of Adams co-simulation through examples 

that are beyond our scope to numerically validate, namely a flexible anisotropic rotor 

on AMBs. 

In Section 4.1, we investigate the theory of anisotropic rotors, i.e. those whose 

parameters vary along different radial directions and whose whirl behavior is 

different from that of isotropic rotors. In Section 4.2, we describe the rotor setup used 

as the example for this chapter, which has AMB control gains that are different in the 

x- and y-directions, forming an anisotropic system. In Section 4.3, the rotor is 

simulated, showing elliptical orbits (whirl shapes) both forward and backward with 
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respect to shaft spin direction. Various 2D and 3D plots are programmatically 

generated for this example, including shaft orbit plots and full spectrum plots. 

This chapter presents several results demonstrated nowhere in literature 

among articles using Adams co-simulation to model magnetic bearing rotors, to the 

best of the author’s research. In particular, no literature shows: 

1. The use of Apex to model a flexible shaft. 

2. Rotor response at more than a single shaft speed at a time. This work 

demonstrates response over a continuous range of speeds. 

3. Frequency response. A ramp test enables us to generate the rotor’s Bode plot. 

4. Anisotropic rotor behavior. We show the response of a rotor whose parameters 

differ by radial direction, yielding both forward and backward whirl. 

5. Shaft orbits. We use MATLAB to plot orbit shapes in both 2D and 3D. 

6. Full spectrum plots. No other article shows whirl decomposition into its 

forward and backward frequencies. 

7. Cascade plots. We show a 3D plot of whirl spectra with respect to shaft speed. 

 

4.1. Anisotropic rotor theory 

Until now, we have dealt entirely with isotropic rotors, which have radial symmetry. 

When parameters along some radial axes differ, such as when the support structure 

has different stiffness vertically and horizontally, the rotor is anisotropic. In this case, 

new whirl patterns and natural frequencies emerge, calling for new analysis and 

visualization tools. 



68 
 

4.1.1. Orbit concepts 

The shape of a shaft’s whirl path is called its orbit. An isotropic rotor always has a 

circular orbit, but an anisotropic single-disk rotor can have circular, elliptical, or 

straight-line orbits. In addition, anisotropic rotor whirl can be in the direction of shaft 

spin or opposite the direction of shaft spin, respectively known as forward or 

backward whirl (Figure 4.1). Orbit plots include a gap and a dot indicating whirl 

direction. The direction of whirl is such that the rotor hits the gap immediately before 

the dot; this is known as the “blank/bright” sequence, using nomenclature from 

Bently et al. [23]. The dot corresponds with zero angular displacement of the shaft. If 

whirl is synchronous, i.e. at the same rate as the shaft speed, the dot will fall in the 

same spot on the orbit when multiple cycles are plotted; if whirl is nonsynchronous, 

then the dots will appear in multiple locations around the orbit (Figure 4.2). Orbit 

plots will be useful in visualizing the co-simulated anisotropic rotor response at 

various shaft spin speeds. 

 

Figure 4.1. Orbit shapes for a shaft rotating CCW. 

Circular 
forward 

Elliptical 
forward 

Linear 
Elliptical 
backward 

Circular 
backward 
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Figure 4.2. Synchronous and nonsynchronous orbits. 

A perfectly elliptical orbit can be represented by parametric functions 𝑥(𝑡) 

and 𝑦(𝑡), both harmonic motions. Rotor data exists in this form if separate sensors 

measure x- and y-displacements, a common industry practice. Consider the 

displacement curves in Figure 4.3, and let us assume that the shaft rotates 

counterclockwise (CCW) when looking from the positive z-axis to the origin. In 

example (a), the rotor reaches a peak in x close to and before the next peak in y, so 

the shaft must be revolving CCW about the origin, which is forward whirl. In example 

(b), y leads x instead, so whirl is CW, which is backward whirl. In example (c), maxima 

coincide, so whirl is linear; this also occurs when maxima coincide with minima. In 

this way, the phase difference between x- and y-displacement dictates whirl direction. 

As an alternate method of determining whirl direction, it can be shown that 

any elliptical whirl can be decomposed into a sum of two circular whirl motions, one 

forward and one backward. Figure 4.4 shows the whirl decompositions of the whirl 

patterns given in Figure 4.3. We see that the forward whirl component of example (a) 

is larger than the backward component, so the overall whirl is forward, and vice versa 

for example (b). The magnitudes are identical in the linear whirl in example (c). 

Synchronous Nonsynchronous 
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Figure 4.3. Whirl examples with x- and y-displacements (CCW shaft rotation). 

 
              (a)                                                (b)                                                 (c) 

Figure 4.4. Whirl decompositions of the examples in Figure 4.3. 

     (a) 

     (b) 

     (c) 
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4.1.2. Orbit mathematics 

Let us examine the mathematics behind the above results, adapted from Maurice 

Adams [24]. We can express the parametric expressions of position as the following: 

𝑥(𝑡) = 𝑋 cos(𝜔𝑡 + 𝜙𝑥)  

𝑦(𝑡) = 𝑌 sin(𝜔𝑡 + 𝜙𝑦), 

where X and Y are amplitudes, 𝜔 is the whirl frequency, and 𝜙𝑥 and 𝜙𝑦 are phases. 

Rewriting the trig functions as sums of complex exponentials, we have 

𝑥(𝑡) = 𝑋 [
1

2
(𝑒𝑗(𝜔𝑡+𝜙𝑥) + 𝑒−𝑗(𝜔𝑡+𝜙𝑥))] 

𝑦(𝑡) = 𝑌 [−
1

2
𝑗(𝑒𝑗(𝜔𝑡+𝜙𝑥) − 𝑒−𝑗(𝜔𝑡+𝜙𝑥))]. 

A complex position function 𝑟(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) can be formed from the above: 

𝑟(𝑡) = 𝑋 [
1

2
(𝑒𝑗(𝜔𝑡+𝜙𝑥) + 𝑒−𝑗(𝜔𝑡+𝜙𝑥))] + 𝑗𝑌 [−

1

2
𝑗(𝑒𝑗(𝜔𝑡+𝜙𝑥) − 𝑒−𝑗(𝜔𝑡+𝜙𝑥))] 

  = 𝑋 [
1

2
(𝑒𝑗(𝜔𝑡+𝜙𝑥) + 𝑒−𝑗(𝜔𝑡+𝜙𝑥))] + 𝑌 [

1

2
(𝑒𝑗(𝜔𝑡+𝜙𝑥) − 𝑒−𝑗(𝜔𝑡+𝜙𝑥))]. 

We can then perform algebra to collect two terms, one with 𝑒𝑗𝜔𝑡 and the other 𝑒−𝑗𝜔𝑡: 

𝑟(𝑡) =
1

2
(𝑋𝑒𝑗𝜙𝑥 + 𝑌𝑒𝑗𝜙𝑦)𝑒𝑗𝜔𝑡 +

1

2
(𝑋𝑒−𝑗𝜙𝑥 − 𝑌𝑒−𝑗𝜙𝑦)𝑒−𝑗𝜔𝑡. 

This form already shows successful whirl decomposition; the first term is a 

complex constant times the forward circular whirl 𝑒𝑗𝜔𝑡, and the second is another 

constant times the backward circular whirl 𝑒−𝑗𝜔𝑡. However, we will continue with 
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manipulation to obtain clearer parameters. The exponentials can be split into cosines 

and sines according to Euler’s formula and simplified by odd and even identities, 

giving us the following abbreviated expressions: 

  𝑒𝑗𝜙𝑥 = cos𝜙𝑥 + 𝑗 sin𝜙𝑥 = 𝑐𝑥 + 𝑗𝑠𝑥 

  𝑒𝑗𝜙𝑦 = cos𝜙𝑦 + 𝑗 sin𝜙𝑦 = 𝑐𝑦 + 𝑗𝑠𝑦 

𝑒−𝑗𝜙𝑥 = cos𝜙𝑥 − 𝑗 sin𝜙𝑥 = 𝑐𝑥 − 𝑗𝑠𝑥 

 𝑒−𝑗𝜙𝑦 = cos𝜙𝑦 − 𝑗 sin𝜙𝑦 = 𝑐𝑦 − 𝑗𝑠𝑦. 

Substituting and collecting real and imaginary parts, 

𝑟(𝑡) =
1

2
[𝑋(𝑐𝑥 + 𝑗𝑠𝑥) + 𝑌(𝑐𝑦 + 𝑗𝑠𝑦)]𝑒𝑗𝜔𝑡 +

1

2
[𝑋(𝑐𝑥 − 𝑗𝑠𝑥) − 𝑌(𝑐𝑦 − 𝑗𝑠𝑦)]𝑒−𝑗𝜔𝑡, 

             =
1

2
[𝑋𝑐𝑥 + 𝑌𝑐𝑦 + 𝑗(𝑋𝑠𝑥 + 𝑌𝑠𝑦)]𝑒𝑗𝜔𝑡 +

1

2
[𝑋𝑐𝑥 − 𝑌𝑐𝑦 + 𝑗(−𝑋𝑠𝑥 + 𝑌𝑠𝑦)]𝑒−𝑗𝜔𝑡. 

Now, a complex number of the form 𝑎 + 𝑗𝑏 can be rewritten as 𝑅𝑒𝑗𝛽 , where 

𝑅 = √𝑎2 + 𝑏2 and 𝛽 = tan−1(𝑏/𝑎), and the inverse tangent must account for all four 

quadrants. If we do this to the coefficients of the two terms of 𝑟(𝑡), they become 

𝑅𝑒𝑗𝛽𝑒±𝑗𝜔𝑡 = 𝑅𝑒𝑗(±𝜔𝑡+𝛽), which is circular motion of radius R, frequency ±𝜔, and 

phase 𝛽. Performing this here, we see that the whirl decomposition in terms of 

variables from the parametric form is 

𝑟(𝑡) = 𝑅𝑓𝑒
𝑗(𝜔𝑡+𝛽𝑓) + 𝑅𝑏𝑒

𝑗(−𝜔𝑡+𝛽𝑏), 

where constant variables are given by 
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𝑅𝑓 =
1

2
√(𝑋𝑐𝑥 + 𝑌𝑐𝑦)

2
+ (𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
                𝛽𝑓 = tan−1 (

𝑋𝑠𝑥 + 𝑌𝑠𝑦

𝑋𝑐𝑥 + 𝑌𝑐𝑦
)     

𝑅𝑏 =
1

2
√(𝑋𝑐𝑥 − 𝑌𝑐𝑦)

2
+ (−𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
            𝛽𝑏 = tan−1 (

−𝑋𝑠𝑥 + 𝑌𝑠𝑦

𝑋𝑐𝑥 − 𝑌𝑐𝑦
)  

and 𝑐𝑥/𝑦 = cos𝜙𝑥/𝑦 and 𝑠𝑥/𝑦 = sin𝜙𝑥/𝑦. These formulas generated the whirl 

decompositions in Figure 4.4. 

To connect to the previous conceptual analysis, we saw that differences in 

phase and differences in whirl component magnitude both dictate whirl direction. 

These two quantities should therefore be mathematically related. Consider the latter, 

𝑅𝑓 − 𝑅𝑏. We saw from Figure 4.4 that if this quantity is positive then whirl is forward, 

if negative then backward, and if zero then linear. However, since radius is always 

positive, this statement is also true of 𝑅𝑓
2 − 𝑅𝑏

2, a more mathematically convenient 

expression. Let us compute it and simplify: 

𝑅𝑓
2 − 𝑅𝑏

2 = (
1

2
√(𝑋𝑐𝑥 + 𝑌𝑐𝑦)

2
+ (𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
)

2

                                                                    

                    − (
1

2
√(𝑋𝑐𝑥 − 𝑌𝑐𝑦)

2
+ (−𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
)

2

 

                   =
1

4
[(𝑋𝑐𝑥 + 𝑌𝑐𝑦)

2
+ (𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
− (𝑋𝑐𝑥 − 𝑌𝑐𝑦)

2
− (−𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
] 

                   =
1

4
([(𝑋𝑐𝑥 + 𝑌𝑐𝑦)

2
− (𝑋𝑐𝑥 − 𝑌𝑐𝑦)

2
] + [(𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
− (−𝑋𝑠𝑥 + 𝑌𝑠𝑦)

2
]) 

                   =
1

4
([(𝑋𝑐𝑥 + 𝑌𝑐𝑦 + 𝑋𝑐𝑥 − 𝑌𝑐𝑦)(𝑋𝑐𝑥 + 𝑌𝑐𝑦 − 𝑋𝑐𝑥 + 𝑌𝑐𝑦)]

+ [(𝑋𝑠𝑥 + 𝑌𝑠𝑦 − 𝑋𝑠𝑥 + 𝑌𝑠𝑦)(𝑋𝑠𝑥 + 𝑌𝑠𝑦 + 𝑋𝑠𝑥 − 𝑌𝑠𝑦)]) 
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                   =
1

4
[(2𝑋𝑐𝑥)(2𝑌𝑐𝑦) + (2𝑌𝑠𝑦)(2𝑋𝑠𝑥)] 

                   = 𝑋𝑌(cos𝜙𝑥 cos𝜙𝑦 − sin𝜙𝑥 sin𝜙𝑦) 

                   = 𝑋𝑌 cos(𝜙𝑥 − 𝜙𝑦). 

We see then that 𝑅𝑓
2 − 𝑅𝑏

2 = 𝑋𝑌 cos(𝜙𝑥 − 𝜙𝑦). Since amplitudes X and Y are 

always positive, 𝑅𝑓
2 − 𝑅𝑏

2 has the same sign as cos(𝜙𝑥 − 𝜙𝑦), whose sign is in turn 

dictated by 𝜙𝑥 − 𝜙𝑦. Thus, the magnitudes of the whirl components and the x- and y-

phases are in fact mathematically dependent. In the latter case, whirl is forward when 

𝜙𝑥 and 𝜙𝑦 are less than 90° apart, backward when they are more than 90° apart, and 

linear when they are exactly 90° apart. We will see these relationships appear in the 

simulated anisotropic rotor response. 

4.1.3. Dependence of orbit shape on shaft speed 

The type of orbit experienced by an unbalanced anisotropic rotor depends on shaft 

speed. Recall that the type of system we are analyzing will experience an amplitude 

peak at its natural frequency, coinciding with a 180° shift in phase. In this case, there 

will be such a peak in both the x- and y-directions, but since the rotor is anisotropic, 

the peaks will not coincide at the same frequency. In the example Bode plot in Figure 

4.5, this causes the phase between the two directions to separate, eventually 

surpassing a 90° difference after the first peak, remaining in backward whirl for a 

short region, and then returning to forward whirl before the second peak. In other 

cases however, if damping is high or anisotropy is not strong, the phases might not 

separate past 90°, and no backward whirl will be observed. 
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Figure 4.5. Example Bode plot of an anisotropic rotor. 

In a video by Genta [17] (from the same DVD referenced in Chapter 3), a 

practical rotor is run on anisotropic AMBs, showing this type of whirl (Figure 4.6). 

Genta presents a 3D diagram plotting orbit shape with respect to shaft speed, colored 

by whirl direction. From the bottom up, the rotor begins in forward whirl (red), 

reaches a peak in y, enters backward whirl (green), returns to forward whirl, and then 

reaches a peak in x. We expect to see similar behavior in our anisotropic rotor. 

4.2. Rotor setup 

The rotor in this chapter is based loosely off the dimensions of the RK4 rotor kit model 

by Bently Nevada. The rotor that we will use has a main shaft body, two journals for 

AMBs, and a disk between the journals, all steel (Figure 4.7). It is symmetric about its 

midpoint. Magnetic bearing parameters are provided in Table 4.1. 
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Figure 4.6. An experimental anisotropic AMB rotor and 3D orbit plot [17]. 

 

Figure 4.7. Flexible AMB rotor dimensions (mm), symmetric about midline. 

Table 4.1. Flexible AMB rotor parameters. 

Quantity Value Units 

𝜌 7801 kg/m3 

E 2.07 × 105 MPa 

𝜈 0.29 — 

𝑚𝑢 1 g 

𝑟𝑢 0.03 m 

𝑠0 0.0005 m 

𝑘 3.77 × 10−5 H-m 

𝑖0 0.35 A 
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In Apex, the finite element mesh contains nodes at 2 cm, 6 cm, 8 cm, and 10 cm 

from each end of the shaft, and then every 5 cm elsewhere. The MNF export requires 

an upper limit on modes calculated; this is set to 20. In Adams, the disk is a cylinder 

with a hole the diameter of the main shaft. The unbalance mass is a sphere fixed to 

the disk’s interior, with mass specified by user input. AMB force inputs are applied at 

the center of the journals, i.e. at the nodes 8 cm from each end of the shaft. 

For these tests, we will still use decentralized PD control as described in 

Chapter 2, but the Simulink model is modified as follows (Figure 4.8): 

1. The rigid rotor control system was built with the assumption that the bearings 

would be symmetric, but we would like to create anisotropy by applying 

different PD control gains to the axes of a given bearing. To do this, we modify 

the Simulink model, implementing one PD controller for each axis instead of 

one for each bearing. Then we can implement the control parameters provided 

in Table 4.2. 

2. The rigid rotor model had non-collocated sensors, i.e. those not at the same z-

location as the bearings, but in this simulation, we will simplify our analysis by 

assuming that the sensors are collocated with the bearings. This is done by 

feeding the displacement at the bearings 𝐪b into the sensed position 𝐪s in the 

Simulink model. 

3. Due to the nature of flexible rotor simulation, the co-simulation tests are 

computationally intensive and require long run times. To save time in 

simulation, we apply a high initial torque until the rotor reaches a speed 
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somewhat close to the expected first natural frequency and then cut it to a 

much smaller final value to ramp the rotor slowly through frequencies of 

interest. This is accomplished by a MATLAB function block that specifies the 

value of the torque based on the shaft speed, which is fed as an input. In this 

test, the torque was switched from 0.05 N-m to 0.001 N-m after passing 300 

RPM. 

Table 4.2. Control parameters for the anisotropic rotor. 

Control parameter x-direction y-direction 

𝑃𝐴 = 𝑃𝐵 7600 8100 

𝐷𝐴 = 𝐷𝐵 0.05 0.3 

𝑁𝐴 = 𝑁𝐵 1000 1000 

 

 

Figure 4.8. Simulink model for the anisotropic rotor. 

4.3. Results and visualization tools 

A benefit of the co-simulation process is that since the model is run in Simulink, 

results can be seamlessly generated and analyzed in MATLAB script code. This 
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section presents several useful diagrams which have been used to visualize the 

results of this anisotropic rotor test. These diagrams were generated 

programmatically when running the simulation, with user input only to specify 

desired parameters at which to plot. 

4.3.1. Bode plot and rigid rotor Campbell diagram 

We already saw the Bode plot in other sections, but we include one here to provide 

context for subsequent visualizations of shaft response (Figure 4.9). As expected, the 

peaks in the x- and y-directions are not at the same frequency. Examining the 

Campbell diagram for the equivalent rigid rotor (Figure 4.10), we see that the peak in 

x near 500 RPM is due to the control system resonance, since the damping is low in 

that direction and we are still well below the shaft’s bending frequency of about 826 

RPM, which was measured in Adams by attaching spherical (3D pin) joints at the AMB 

locations, providing an impulse at the disk, and measuring the frequency of the 

resulting oscillation. The peak in y is due to the shaft bending. 

When plotting phase, to match the convention that 𝑦(𝑡) is defined in terms of 

sine instead of cosine, we need to shift the y-phase by 90 degrees so that it matches 

that of x for low shaft speeds. We see that in each direction, the phase falls by 180 

degrees at its peak, as expected. However, since the peaks do not coincide, the phase 

in x shifts before the phase in y, causing them to separate beyond 90°. As discussed in 

Section 6, this indicates the presence of backward whirl between roughly 500 RPM 

and 750 RPM. We will see this more clearly in subsequent diagrams. 
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Figure 4.9. Bode plot of anisotropic rotor response. 

 

Figure 4.10. Campbell diagram of equivalent rigid anisotropic rotor. 
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4.3.2. 3D orbit plot 

Our simulation gives us access to the disk’s position at any point in time. If we plot 

this with respect to the current shaft speed, we can obtain a 3D orbit plot like that 

which we saw in Genta’s results. The 3D orbit plot for this rotor is shown in Figure 

4.11. To show the shape of the plot, we color it based on the angle of its slope. The 

peaks in x and y can be clearly seen, and by rotating the figure (not shown here), it is 

easy to identify where the orbit pinches to a straight line. In the view given, these 

locations can be faintly seen close to the peak in x and just before the peak in y. 

 

Figure 4.11. 3D orbit plot of anisotropic rotor response. 
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4.3.3. 2D orbit series 

This 3D orbit plot, while useful, lacks some information. We would not have been able 

to identify whirl direction by this plot alone, nor could we identify the phase of the 

motion. 2D orbit plots provide this information visually. 

Knowing that linear whirl occurs near 500 and 750 RPM, we can plot several 

successive orbits in a series to show how its shape and orientation change across the 

transitions. The two transitions are shown Figure 4.12 and Figure 4.13. These plots 

clearly show whirl direction using the blank/bright visualization, as well as the shape 

of the plot during the transition. 

 

Figure 4.12. Orbits across forward-to-backward transition, 450 to 550 RPM. 

 



83 
 

 

Figure 4.13. Orbits across backward-to-forward transition, 675 to 825 RPM. 

4.3.4. Full spectrum cascade plot 

Another visualization tool employed in industry is the full spectrum plot, which 

visualizes orbit in the frequency domain, displaying underlying circular whirl 

amplitudes with respect to their frequency, both positive (forward) and negative 

(backward). It is analogous to the Fourier series of a single-variable function. The full 

spectrum results from taking the Fourier transform of the complex position data 𝑥 +

 𝑗𝑦, along with some additional processing; mathematical details can be found in 

Mullen [19]. This type of plot quickly visualizes underlying whirl behavior that would 

not be evident in time domain data or in the more common half spectrum plot, which 

is the Fourier transform of an individual displacement direction and contains only 

positive frequencies. This makes the full spectrum plot a powerful tool for fault 

diagnosis and performance improvement [23]. 



84 
 

In this work, a MATLAB function written by Mullen was used to generate full 

spectrum plots given time domain x- and y-displacement data [19]. Full spectrum 

plots for data modeling the examples in Figure 4.3 are given in Figure 4.14. 

 

 

 
 

Figure 4.14. Full spectrum plots of whirl examples from Figure 4.3. 

In each case, the two peaks correspond with the amplitudes of forward and 

backward whirl components shown in Figure 4.4, the forward being a positive 

     (a) 

     (b) 

     (c) 
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frequency and the backward a negative frequency. The peaks of the full spectrum plot 

can therefore quickly indicate whether whirl is forward, backward, or linear overall. 

Performing this at many shaft speeds and plotting them together yields the 

complete cascade plot seen in Figure 4.15. Waviness along the cascade plot’s ridge is 

due to discrete frequency values failing to exactly align with peak values. The 

MATLAB script that selects data segments and calls Mullen’s function also determines 

whirl direction by measuring the peak amplitudes in positive and negative frequency 

and coloring the full spectra accordingly.  We see that backward whirl occurs between 

roughly 500 and 750 RPM, matching our previous data, and the peaks with roughly 

linear whirl also correspond in frequency and amplitude (once their sum is taken). 

 

Figure 4.15. Full spectrum cascade plot of flexible anisotropic rotor response, 

with blue indicating forward whirl and red indicating backward. 
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Since few commercial software programs provide full spectrum plots, co-

simulation shows its benefit here: Because models are run in Simulink, MATLAB 

scripts can programmatically analyze and visualize simulation data, allowing the user 

to produce plots according to their goals without needing to export data after a 

simulation run or be limited to a given program’s visualization tools. While initial 

effort may be required to write the plots’ scripts, doing so yields opportunity and 

control beyond that provided by currently available rotor dynamics programs.  
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Chapter 5 

A BRIEF DEMONSTRATION OF TOUCHDOWN BEARING IMPACT 

 

A dynamic co-simulation of a spinning rotor falling onto its protective touchdown 

bearing is shown in a simplified test, demonstrating solid body contact modeling, which 

current commercial rotor dynamics programs do not feature. 

 

Important in AMB rotor design are touchdown bearings, which provide emergency 

containment of the shaft in the case of AMB failure or excessive whirl. While analysis 

of such systems is beyond the scope of this work, a quick test was performed to show 

that co-simulation can indeed model solid body contact, a feature nonexistent in 

current rotor dynamics software packages, to the author’s knowledge. 

In the model, a rigid cylinder represents a shaft, and a rigid cylindrical tube 

fixed in space models a touchdown bearing. Dimensions are provided in Figure 5.1, 

and the model is shown in Figure 5.2. A planar joint constrains the shaft center axially 

so that it does not fall out of the bearing during the simulation. The contact is created 

in Adams using the “Create a contact” tool under “Forces.”  Contact force parameters 

in Table 5.1 were chosen by trial-and-error to provide a visually interesting and 

intuitive impact response, as opposed to one that is accurate to reality. The shaft was 

given an initial speed of 2000 RPM. 



88 
 

 

Figure 5.1. Dimensions of shaft and touchdown bearing (mm). 

 

 

Figure 5.2. Shaft and touchdown bearing Adams model. 
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Table 5.1. Contact force parameters (*value differs from default). 

Quantity Value 

Normal force Impact 

Stiffness* 1 × 1012 

Force exponent 2.2 

Damping* 200 

Penetration depth 1 × 10−4 

Friction force* Coulomb 

Coulomb friction On 

Static coefficient 0.3 

Dynamic coefficient 0.1 

Stiction transition vel. 0.1 

Friction transition vel. 1.0 

 

The simulation results show the path of the shaft CG as it rebounds several 

times and then begins slipping against the bearing surface (Figure 5.3). The dotted 

circle in the figure represents the clearance radius; when the CG path contacts this 

radius, we know that the shaft is contacting the bearing. Normal impulse forces show 

expected behavior; there is energy loss at each impact, as seen by the gradual 

decrease in bounce height. The model also includes frictional impulses; the rotor 

begins with 2000 RPM CCW rotation, and the first bounce shows an expected rebound 

to the left. Friction continues to be modeled once the shaft path nears rolling with slip, 

since the shaft trajectory along the clearance edge continues to favor the left. 
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Figure 5.3. Simulated path of shaft center, with clearance radius shown. 

This test shows promise for being capable of more realistic touchdown 

bearing simulations. If previous methods are included, a rotor created in Apex with 

FEA modeling could be modeled with both AMB control and impact testing within the 

same simulation environment, or even simultaneously in the same run. Since co-

simulation does not restrict rotor models to state-space matrices, complex 

interactions like this one can be performed with little effort, especially compared to 

the difficult mathematics and programming that would be required to create such a 

simulation from first principles.  
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Chapter 6 

CONCLUSION 

 

The goals of this work were to demonstrate the accuracy and capability of Apex-

Adams-Simulink co-simulation in modeling active magnetic bearing (AMB) rotors. 

This use of general-purpose commercial software combines advanced dynamics 

simulation (Adams) and finite element modeling (Apex) with advanced control 

design (Simulink) integrated seamlessly with visualization tools (MATLAB). No other 

known single piece of commercial software can perform both the dynamics and 

control necessary for some AMB rotor applications, except for hand-derived, 

manually programmed physics models and controllers, which are tedious to 

construct and prone to error. This co-simulation process enables wide-ranging 

modeling and visualization opportunities while relying on established computation 

methods and the convenience of familiar interfaces. 

In this work, we first verified co-simulation’s ability to model rotors. Without 

the resources to experimentally verify simulations, we focused on models that could 

be compared with well-known results from rotor theory. We showed a match for co-

simulated AMB forces and rigid body dynamics in an unbalanced rigid AMB rotor 

(Chapter 2) and for the gyroscopic effect and flexible body dynamics in a spinning 

disk hanging on a steel wire (Chapter 3). The success of these tests allowed us to 

simulate more complex systems, one being a flexible anisotropic AMB rotor, for which 

we demonstrated several visualization tools generated programmatically in MATLAB 

(Chapter 4), and the other being a brief simulation of touchdown bearing impact, 
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showing the modeling of contact and subsequent bouncing and slipping motion 

(Chapter 5). 

Several AMB rotor results have been shown in Adams co-simulation for the 

first time, including data over continuous shaft speed variation, frequency response, 

the use of Apex for finite element modeling, anisotropic rotor response, orbit shapes, 

forward and backward whirl, full spectrum analysis, cascade plots, and solid body 

contact. The combination of theoretical verification with the many new results listed 

above show promise that this method could be used for simulations even more 

complex and realistic than these, some of which are suggested below. 

6.1. Future work 

There are two immediate ways to better establish the work performed here: 

1. Experimental verification. True validation of the software’s capability should 

be based on comparison with practical models, which we did not have the 

resources to achieve. As of the completion of this report, a single magnetic 

bearing designed for a Bently Nevada RK4 rotor kit, originally the work of a 

senior project from California Polytechnic State University San Luis Obispo 

[25], is being updated for experimental testing by an adjacent graduate 

student researcher to the author. However, since this setup still requires 

mechanical contact, further practical design should include a fully suspended 

rotor with two AMBs. 



93 
 

2. Modeling of mechatronics components. This work assumed that appropriate 

control currents could be immediately injected into the AMBs, but real 

systems present several obstacles to this. Inductance of coil windings prevent 

rapid current changes, so a voltage-current control loop is usually a part of the 

control system. There are inevitable time delays in the mechatronics 

components, and sensors and power amplifiers have gains and involve noise. 

A more realistic simulation would include these, which is possible in Simulink. 

Along with these improvements, other rotor models can be studied: 

1. Realistic touchdown bearing simulations. We demonstrated the capability of 

contact modeling in co-simulation, but its accuracy to theory and experiment 

was beyond our scope. Another adjacent graduate student is currently 

pursuing this topic. 

2. Axially asymmetric rotors with multiple or distributed loads. Our anisotropic 

rotor model was symmetric about its midpoint and contained a single heavy 

disk on a relatively light shaft. A more general rotor will be asymmetric, 

include many loads, and have distributed mass along its length, yielding 

responses at a level of complexity better matching those of industrial AMB 

rotors. 

3. Use of practical rotors CAD models. The rotors in this work were made from 

simple cylinders and were easy to construct in Adams and Apex, but both 

applications can import and analyze models from CAD. Doing so could enable 
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even greater accuracy to real systems if components and support structures 

are modeled with true geometry. 

This list is certainly not exhaustive, and as we have seen, it is also far from reaching 

the limits of the co-simulation process. If co-simulation proves itself in the ways that 

we anticipate, it will provide unprecedented modeling capabilities to future AMB 

rotor development. 
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APPENDIX A: LIST OF VARIABLES 

This section defines the subscripts and variables used throughout this work. 

 
Symbol Description 

  

⬚𝐴 ...of bearing A 

⬚𝐵 ...of bearing B 

⬚𝑑  disturbance... 

⬚𝐿 ...of lower magnet 

⬚𝑈 ...of upper magnet 

⬚𝑥 ...in x 
x-component of... 

⬚𝑦 ...in y 
y-component of... 
 

𝟎4×4 4x4 matrix of zeros 

𝑎 signed distance from shaft CG to bearing A 

A magnet pole area 

A state matrix 

𝐀CL state matrix, closed-loop 

𝐀OL state matrix, open-loop 

𝛼 angle from coord. axis to pole 
shaft tilt about x 

b signed distance from shaft CG to bearing B 

B transformation matrix from bearing to CG coordinates 

𝐁OL input matrix, open-loop 

𝛽 shaft tilt about y 
phase of whirl component 

𝛽𝑏 phase of backward whirl component 

𝛽𝑓 phase of forward whirl component 

c signed distance from shaft CG to sensor A 

𝑐𝑖𝑗 flexibility coefficient for displacement in i due to force or torque in j 

𝑐𝑥 shorthand for cos(𝜙𝑥) 

𝑐𝑦 shorthand for cos(𝜙𝑦) 

𝐂CL output matrix of closed-loop state space 

𝐂OL output matrix of open-loop state space 
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𝑑 signed distance from shaft CG to sensor B 

𝐃 feedthrough matrix 

𝐃CL damping matrix of closed-loop state space 

𝐃OL feedthrough matrix of open-loop state space 

𝐸 modulus of elasticity 

𝐄OL disturbance input matrix, open-loop 

𝑓 force 

𝐟b force vector in bearing coordinates 

𝑓𝑑  disturbance force 

𝐟d disturbance force vector (in CG coordinates) 

𝑓𝑛𝑒𝑡 net force 

𝐆 gyroscopic matrix 

𝑖 current 

𝑖0 bias current 

𝑖𝑥 differential current in x 

𝑖𝑦 differential current in y 

𝐼 moment of inertia 
integral control gain 

𝐈4×4 4x4 identity matrix 

𝑗 unit imaginary number 

𝑘 magnetic coupling constant, in henry-meters 

𝐊 stiffness matrix 
𝐊CL stiffness matrix of closed-loop state space 

𝐾𝑑 unbalance gain equivalent to 𝑚𝑢𝑟𝑢 

𝑘𝑖  force-current factor 

𝐊i matrix of force-current factors 

𝑘𝑖𝑗  stiffness coefficient for displacement in i due to force or torque in j 

𝑘𝑠 force-displacement factor 

𝐊s matrix of force-displacement factors 

𝐊sS transformed matrix of force-displacement factors, 𝐁𝐊s𝐁
T 

𝜆 eigenvalue 

𝑚 mass of rotor 

𝑚𝑢 unbalance mass 

𝐌 mass matrix 

𝜇0 vacuum permeability 

𝑛 number of coil turns 

𝑁 filter coefficient 

𝜈 Poisson ratio 
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𝜔 vibration or whirl frequency 

𝜔𝑛 natural frequency 

Ω shaft spin speed 

𝑃 proportional control gain 

𝜙 phase 

𝜙𝑢 angular position of imbalance relative to shaft 

𝐪 shorthand for 𝐪c 

𝐪b position vector in bearing coordinates 

𝐪c position vector in CG coordinates 

𝐪s position vector in sensor coordinates 

𝑟 position in complex representation 𝑥 + 𝑗𝑦 

𝑟𝑢 radial position of unbalance mass 

𝑅 radius of whirl component 

𝑅𝑏 radius of backward whirl component 

𝑅𝑓 radius of forward whirl component 

𝜌 density 

𝑠 air gap size between rotor and magnet 

𝑠0 nominal air gap when rotor is centered 

𝑠𝑥 shorthand for sin 𝜙
𝑥
 

𝑠𝑦 shorthand for sin𝜙𝑦 

𝑇𝑑𝑟𝑖𝑣𝑒 drive torque applied to shaft 

𝑇𝑥 moment in x 

𝑇𝑦 moment in y 

𝜃 angular position of shaft 

𝑥 position in the horizontal radial direction 

𝐱 state vector 

𝑋 amplitude of whirl in x 

𝑥𝑠𝑒 shaft position at sensor in x 

𝑦 position in the vertical radial direction 

𝒚 output vector 
state vector for magnet pair theory and simulation 

𝑌 amplitude of whirl in y 

𝑦𝑠𝑒 shaft position at sensor in y 

𝑧 position in the axial direction 

𝑧𝑢 signed distance from shaft CG to unbalance mass 
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APPENDIX B: EULER ANGLES 

This appendix describes the Euler angles used to measure the disk’s tilt. In short, 𝛼 is the 

first angle of the x-y’-z” (body 1-2-3) sequence, and 𝛽 is the first angle of the y-x’-z” (body 

2-1-3) sequence. Theory and notation are explained below. 

 

Euler angles describe an object’s orientation in 3D space. Three such angles can 

specify its orientation with respect to a global coordinate system. Most often, Euler 

angles are expressed as a sequence of three rotations by which the object’s local 

coordinates are rotated from the global system’s orientation to a desired position. 

In Figure B.1 from [26], a common sequence is shown: the z-x’-z” sequence. 

The global coordinate system is lowercase xyz, while the desired local coordinate 

system is uppercase XYZ. Beginning with XYZ aligning with xyz, the z-x’-z” sequence 

is performed as follows: 

1. z indicates that the first rotation occurs about the global z-axis, so the XYZ 

system is rotated by angle 𝛼 about that axis. The new position of the XYZ 

system is x’y’z’. 

2. x’ indicates that the second rotation occurs about the x’-axis of the current 

x’y’z’ system. After rotating by angle 𝛽, the new position is x”y”z”. 

3. z” indicates that the third rotation occurs about the z”-axis of the current 

x”y”z” system. Rotating by 𝛾 completes the rotation sequence. 
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Figure B.1. The z-x’-z” Euler angle rotation sequence [26]. 

The sequence can be modified by choosing different axes of rotation than these 

for each step. So-called proper Euler angles use the same axis for the first and third 

rotations, but Tait-Bryant angles use one of each. A widely used example of the latter 

is the yaw-pitch-roll convention for aircraft: z-y’-x”. The first rotation about z is the 

aircraft’s heading (yaw), the second rotation about y’ is its elevation (pitch), and the 

final rotation about x” is its bank (roll). Figure B.2 shows this convention. In the 

image, X is the direction of the aircraft’s flight, and Z is upward with respect to the 

aircraft, i.e. the left wing points toward Y. The rotations in order are 𝜓, 𝜃, and 𝜙. 

In rotating machinery, flexibility in the rotor can cause angular deflections, 

which are important to characterize, particularly for disk-like components. The 

convention is to measure the orientation of a rotor disk with respect to a global 

coordinate system where the z-axis is the shaft’s axis of symmetry; a rotation about 

the x-axis is then denoted 𝛼 and that about the y-axis is 𝛽, as seen in Figure B.3 (note 

that these are not the same angles as 𝛼 and 𝛽 in Figure B.1). 
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Figure B.2. The yaw-pitch-roll rotation sequence, z-y’-x” [26]. 

 

Figure B.3. Euler angles 𝛼 and 𝛽 of a rotor disk for a shaft directed along z. 

Based on all this, as an Euler angle equivalent for 𝛼, we use the first angle of the x-y’-

z” sequence, and for 𝛽, we use the first angle of the y-x’-z” sequence. In Adams, these 

are denoted “Body 1-2-3, first rotation” and “Body 2-1-3, first rotation” respectively. 

  

𝑦 

𝑥 

𝑧 

𝛼 (< 0) 

𝛽 (< 0) 
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APPENDIX C: STEPS TO CREATE THIN WIRE ROTOR IN MSC APEX AND ADAMS 

These are the steps used to create the thin wire rotor model in MSC Apex and Adams. 

The process uses Apex first and Adams second. 

 
 
 
Model setup in MSC Apex 
 
Assume single left-click for items without an explicit instruction. 

 
1. Open Apex. 
2. Save model with desired name and directory location. 
3. Geometry Create Tools in the right icon ribbon. 

a. Polyline. 
b. Click on xz- or yz-plane. 
c. Draw a line from the origin to -500 mm along global z-axis by clicking its 

endpoints. It is also possible to edit the dimension of a line immediately 
after it is made or by using the Edit tool in Geometry Create Tools. 

d. Exit tool by pressing the middle mouse button (MMB) or the Close icon 
(red door). 

4. Meshing in the right icon ribbon. 
a. Curve mesh. 
b. Mesh size: 25 mm 
c. Click on the part (the polyline). Nodes should appear along its length. 
d. Exit tool. 

5. Attribution in the right icon ribbon. 
a. Interface. 
b. Click both endpoint nodes to add interfaces (wait for Apex to load after 

placing first interface point). 
c. Exit tool. 

6. Beams in the right icon ribbon. 
a. New. 
b. Solid circle (default selection). 
c. Radius: 0.5 mm. 
d. Close icon to exit the editing of beam profile. 
e. Create Beam Span. 
f. Click on the part to add the beam span. 
g. Exit tool. 

 
 

 
7. Materials in the right icon ribbon. 
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a. Create Material, rename if desired (e.g. “Steel (Adams default)”). 
b. Click the plus sign by Constitutive Model and check Mass. 

i. Elasticity 
1. Elastic modulus: 2.07e11 Pa (specify correct units) 
2. Poisson ratio: 0.29 

ii. Mass 
1. rho: 7801 kg/m^3 

c. Assign Material. 
d. Click on the part. 
e. Exit tool. 

8. In the Model Browser, right-click on the name of the part. 
a. Place in Analysis Scene. 
b. In the ribbon near the bottom center of the screen, change Environment 

Type to Normal Modes. 
9. Generate a Simulation Scenario in the bottom center ribbon. 
10. In the Model Browser, right-click on Output Requests. 

a. Properties. 
b. Navigate to the MNF Export tab. 
c. Check Flex body output. 
d. Browse, then specify desired MNF file location and name. 

11. Right click on Simulation Settings. 
a. Properties. 
b. Upper limit extraction mode number: 20. For this setup, requesting more 

than 30 modes will cause the MNF generation to fail. Note that the first 6 
modes will be rigid body modes. 

12. Run the Analysis Immediately to generate the MNF file. 
 
 

Model setup in Adams, after MNF creation 
 

1. Open Adams. 
2. A window should have appeared that gives an option for New Model or Existing 

Model. If so, click New Model, specify a desired model name and directory 
location, and then click OK. 

a. If not, the application may have opened to a blank workspace labeled “No 
model” in the upper left corner. If this is the case, click the icon in the 
upper ribbon that appears as a sheet of paper with a green plus (Create a 
new model) and give the model a desired name. Then go to File, Save 
database as..., right-click on the field, Browse, and specify a desired file 
name and location. 

3. Settings in the upper ribbon 
a. Units: Change to base SI units for all quantities, including angles to radians 
b. Gravity: Click -Z* (9.80665 m/s2 in the -Z direction) 
c. Icon size: 1e-2 or 2e-2 (optional) 

 
4. In the upper ribbon of tabs, Bodies, Sphere. 
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a. NOTE: This solid will be replaced by the MNF, so its size and type do not 
matter. 

b. Click the origin first, then click anywhere other than the origin. 
c. Rename the part “SHAFT” by changing its name in the Model Browser (the 

left ribbon) under Bodies and then pressing enter, OR by right-clicking on 
the part, clicking the current part name, and clicking Rename. 

5. Right-click on “SHAFT” in the Model Browser. 
a. Make Flexible. 
b. Import. 
c. Right-click on the blank field after “MNF File” in the drop-down menu, 

Browse, select the MNF file to import, OK. 
6. Expand “SHAFT_flex” in the Model Browser.  

a. There should be two “INT_NODE…” markers. Rename the one at the origin 
“TOPNODE,” and rename the other one “BOTTOMNODE.” 

7. Bodies, Cylinder. 
a. Check both Length and Radius.  
b. Length: 2.5 cm 
c. Radius: 3.75 cm 
d. Click BOTTOMNODE, then click any other point directly below (in -Z). 
e. Rename the part “DISK.” 
f. Double-click on DISK (OR right-click on DISK in Model Browser, Modify). 

i. Material Type: aluminum 
8. In the upper ribbon of icons, right-click on the one that appears as a window 

with a gold square and a curved blue arrow. 
a. Click on the Position: Move tool, which has two gold squares with a blue 

arrow above them. 
b. Click the DISK, then the marker DISK.cm, then BOTTOMNODE. This moves 

the disk so that its center of mass is at the BOTTOMNODE. 
9. In upper ribbon of tabs, Connectors, Create a Fixed Joint. 

a. Click SHAFT_flex, DISK, and then BOTTOMNODE. 
10. Connectors, Revolute joint. 

a. In the second drop-down, select Pick geometry feature. 
b. Click SHAFT_flex, the ground (i.e. anywhere in the background), 

TOPNODE, and then any point or vector along the z-axis. This should 
create a cyan hinge icon at the origin with the hinge axis oriented 
vertically. 

11. Double-click on SHAFT_flex. 
a. In the drop-down under Inertia Modeling, select Full Coupling, then OK. 

12. Bodies, Marker (icon is a small set of coordinate axes). 
a. Place the marker at DISK.cm or BOTTOMNODE. 
b. Rename it “DISKPOS.” 
 
 
 
 

13. In the upper ribbon of tabs, Design Exploration, Orientation measure (gyroscope 
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icon). 
a. Leave Measure name as is for now. 
b. Characteristic: Body 1-2-3 
c. Component: First rotation 
d. To Marker: DISKPOS 
e. Leave From Marker blank. 
f. Uncheck Create strip chart. 
g. In the Model Browser, expand Measures and rename this one “phix.” 

14. Repeat the above but with the following changes: 
a. Characteristic: Body 2-1-3 
b. Rename this one “phiy.” 

 
This completes the model setup.  
 
 
Example simulation 
 
To run simulations, the following are example steps that can be performed to obtain 
the output in Figure 3.11, the 2nd backward whirling mode at 1000 RPM shaft speed: 

 
1. In the upper ribbon of tabs, Forces, General force vector. 

a. Click DISK, then ground, then the fourth node from the disk end of the 
wire, the one located at coordinate (0, 0, -0.425) m. 

b. Under Forces in the Model Browser, rename it “Bwd2nd_1000RPM” or as 
desired. 

c. Double-click on the force. 
i. Y Force: STEP(time, 0.1, 0, 0.5, 0.1) – STEP(time, 0.5, 0, 0.9, 0.1) 
ii. X Force: STEP(time, 0.5, 0, 0.9, 0.1) – STEP(time, 0.9, 0, 1.3, 0.1) 
iii. Put 0 for the other four fields. 
iv. The above steps can also be performed with assistance from the 

Function Builder, which can be accessed by the button to the right 
of the field or by a right-click on the field. 

2. Double-click on DISK. 
a. In Category, select Velocity initial conditions. 
b. Angular velocity about Marker; type “TOPNODE.” 
c. Check Z-axis, then type 1000*2*PI/60, which is 1000 RPM in rad/s. 

3. Double-click on SHAFT_flex. 
a. Velocity ICs. 
b. Repeat parts b and c of previous step. 

4. In the upper ribbon of tabs, Simulation, then click the gear icon. 
a. Change the second drop down to Step Size, then type 1e-3. 
b. End time: 10 (in seconds). 
c. Click the green play button to run the simulation. 
d. Note that the stop button pauses the simulation and can be pressed while 

the simulation is running.  
5. When the simulation is over, click Plotting (bottom-right icon with a graph), OR 
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in the upper ribbon of tabs, Results, Post-processor. 
a. Near the bottom, set Source to Objects. 
b. Select body, DISK, CM_Position, both X and Y, and then Add curves. 

6. File, Print. 
a. Select File, right-click on the field, Browse, specify desired name and 

location, OK. 
 

This completes the generation of the model and whirl figure in the report.  
 
 
Activating and deactivating entities 
 
Activating and deactivating entities is also useful, in this case to implement multiple 
sets of forces but only use one at a time. To do so: 
 
1. Right-click on the force in the Model Browser, (De)activate. 

a. Check or uncheck Objects Active, which should also check or uncheck 
Object’s Dependents Active. 

  


