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ABSTRACT 

Experimental Characterization and Computer Vision-Assisted Detection of Pitting Corrosion on 

Stainless Steel Structural Members 

Riley James Muehler 

 

Pitting corrosion is a prevalent form of corrosive damage that can weaken, damage, and initiate 

failure in corrosion-resistant metallic materials. For instance, 304 stainless steel is commonly 

utilized in various structures (e.g., miter gates, heat exchangers, and storage tanks), but is prone 

to failure through pitting corrosion and stress corrosion cracking under mechanical loading, 

regardless of its high corrosion resistance. In this study, to better understand the pitting corrosion 

damage development, controlled corrosion experiments were conducted to generate pits on 304 

stainless steel specimens with and without mechanical loading. The pit development over time 

was characterized using a high-resolution laser scanner. In addition, to achieve scalable and 

automatic assessment of pitting corrosion conditions, two convolutional neural network-based 

computer vision algorithms were adopted and implemented to evaluate the efficacy of networks to 

identify existence of pitting damage. One was a newly trained convolutional neural network (CNN) 

using MATLAB software, while the other one was a retrained version of GoogLeNet. Overall, the 

experimental results showed that time is the dependent variable in predicting pit depth. 

Meanwhile, loading conditions significantly influence pit morphology. Under compression loading, 

pits form with larger surface opening areas, while under tension loading, pits have smaller surface 

opening areas. Deep pits of smaller areas are dangerous for structural members, as they can 

lead to high stress concentrations and early stress corrosion cracking (SCC). Furthermore, while 

the training library was limited and consisted of low-resolution images, the retrained GoogLeNet 

CNN showed promising potential for identifying pitting corrosion based on the evaluation of its 

performance parameters, including the accuracy, loss, recall, precision, and F1-measure. 

 

Keywords: pitting corrosion, computer vision, image processing, damage assessment, stress 

corrosion cracking  
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Chapter 1  

INTRODUCTION 

1.1 Statement of Problem 

Pitting corrosion is a form of localized corrosion that occurs when chemicals or salts create holes 

within metallic materials. Pitting corrosion most commonly occurs in marine environments due to 

the present of chloride ions in salt. This can affect various structures, including miter gates, ships, 

docks, bridges, chemical processing plants, and nuclear plants. The corrosive product can often 

cover the pit opening, making damage difficult to detect. Stainless steels are inherently designed 

to resist normal oxidation due to high concentrations of chromium, which form protective 

passivating oxide layers on the surface of the metal. Pitting corrosion affects stainless steels 

when the passivating layer is cracked by environmental conditions, leading to a buildup of anodic 

behavior in the metal underneath the oxide layer. When exposed to an electrolytic solution, such 

as a solution with high chloride ion (Cl-) concentration, galvanic corrosion will strike at the small 

cracks in the oxide layer leading to the formation of pits, small circular lesions which burrow into 

the steel. Pitting corrosion can also undercut beneath the surface of the steel.  

 

Pits degrade the material properties of metals, leading to detrimental effects on structural 

members. Additionally, pitting can not only increase failure risk within “corrosion resistant steels” 

like stainless steels, but also change the fracture mode, leading to stress corrosion cracks (SCC) 

and premature failure. This phenomenon, which is very detrimental to the integrity of structural 

members, is also difficult to isolate, measure, and reliably characterize. Pitting produces a wide 

range of pit sizes and shapes with propagation happening indiscriminately across the metal 

surface. This lack of reliability in propagation and the magnitude of the range of pitting 

morphologies create many obstacles in relation to reliably analyzing the damage. 

 

Additionally, to our knowledge, there is little to no information on how mechanical loading affects 

the formation of pitting corrosion. Theoretically, tensile stress can potentially lead to pits that are 

deeper with narrower openings, whereas compressive stress can potentially cause the reverse 
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effects, namely, large pits with smaller depths. The correlation between applied loads and their 

effects on pit development is incredibly important in characterizing pitting because load-bearing 

structural members that are susceptible to corrosion can potentially behave differently depending 

on the loading conditions. Therefore, understanding the interaction between pitting corrosion and 

stresses within members is very important for proper detection and prediction of structural 

operation conditions. 

 

1.2 Limitations in Detecting and Predicting Pitting Corrosion 

Currently, there is very limited technology available to evaluate pitting corrosion. Visual 

examination can be performed by a licensed professional following section 7.2 of ASTM G46-21, 

the “Standard Guide for Examination and Evaluation of Pitting Corrosion.” This process can be 

highly time-consuming, difficult if the affected area is hard to access for the examiner, and 

subjective to human error. Visual examination of pitting corrosion classifies each pit by density, 

size, and depth. However, the pit depth can only be accessed for large pits, due to the 

micrometers or depth gages that examiners use to quantify depth. 

 

Automated profilometers are another method for analyzing pitting corrosion that uses laser 

technology to scan for depth. This requires the purchase of a commercial system and proper 

calibration and verification. These tools can range in size and often cannot be taken into the field 

to do scans, meaning that it is not an ideal candidate for non-destructive evaluation of a structure. 

The user of this tool must also not only be trained on the technology, but also know how to 

interpret the results. Visualization of the data can vary between manufacturers and great care 

must be taken to verify the results, especially regarding the deepest pits.  

 

Two other potential evaluation methods outlined by ASTM G46-21 are metal penetration and 

statistical predictor. Metal penetration is used to calculate a pitting factor that compares the 

deepest pits to the average metal penetration. However, this method is subjected to a lot of user 

error in identifying the deepest pits to calculate the pitting factor. This is because the deepest pits 
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may not be immediately apparent to the naked eye, especially when the area of interest is on a 

load-bearing member. The user may also be biased in thinking that the deepest pits have the 

largest openings, which may not be true, depending on the loading conditions. Additionally, 

research has shown that these parameters to be unreliable in predicting performance. Various 

statistical models that the ASTM G46-21 puts forth have been shown to predict maximum pit 

depth once enough information is collected on the structural assets in a given environment, but 

this is highly dependent on collecting local information (which is already a difficult task as outlined 

in this section) and using advanced statistical techniques that many workers on these structures 

will not fully understand (ASTM G46-21). 

 

Eddy currents are another commercial solution to detecting pitting corrosion. However, most 

commercial products developed for subsurface corrosion evaluation are designed for very 

specific applications. While they can be useful in some applications, they are not viable for the 

significant amount of structural assets that are susceptible to pitting corrosion. In addition, 

radiography is also able to detect pitting corrosion, but only small areas can be inspected at once, 

access to both sides of the affected steel is required, and the result does not give depth 

information which is most important in identifying the severity of pitting. On the other hand, 

ultrasound performs slightly better and has relatively good sensitivity for pit identification, but 

reference standards and training are required for accurate results, and the commercial products 

can be expensive. 

 

One final piece of technology that has been used in monitoring internal corrosion is the field 

signature method (FSM), which is a nondestructive testing method that measures potential drop 

across an applied electrical field to determine internal defects. While the application of this 

method is relatively easy, due to the access to the technology and the history behind it, it has 

been proven to have extremely low accuracy in identifying pitting corrosion due to the varying 

depth, size, and position of pitting corrosion that negatively influence nearby electrodes (Gan). 
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These technologies and approaches for detecting or predicting pitting corrosion are very 

inconsistent, subject to user error, have specific applications, or require significant training and 

knowledge to implement in field structures. 

 

1.3 Purpose of Study 

The two main goals of this study are 1) to investigate the formation of pitting corrosion and the 

effects of various stresses on the growth of pitting and 2) to evaluate the efficacy of computer 

vision-based detection and analysis on pitting corrosion. 

 

The experimental generation of pitting corrosion will adapt procedures outlined in ASTM G48-11, 

the “Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and 

Related Alloys by Use of Ferric Chloride Solution.” The standard test method will heat 0.5 M ferric 

chloride solution in a beaker to generate pitting corrosion on AISI 304 stainless steel specimens. 

The results from these specimens will then be compared to similar specimens that undergo a 

four-point bending test at various stresses while experiencing the same corrosive conditions as 

the standard test. The four-point bending test will generate pitted specimens with pure tensile and 

compressive stress in the middle of the steel specimens. The two different stress levels will be 

used to evaluate the potential effects of mechanical loading on pit evolution. 

 

On the other hand, the computer vision-based damage detection technique will investigate the 

efficacy in using machine learning and convolutional neural networks (CNNs) to identify and 

evaluate pitting corrosion from images of structures. Using CNNs to identify and evaluate damage 

is desirable because, once an algorithm is properly trained with a sufficiently large database, the 

technique can be very user friendly. If a CNN can properly identify pitting corrosion, a user will 

only have to input an image taken on-site in the field to the algorithm, which could output whether 

pitting corrosion exists and, if so, what the level of severity is. This requires little knowledge or 

training for field engineers or workers who are trying to evaluate the structural health of their 

assets. There are a few paths to train a CNN but all involve developing a library of results (e.g., 
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pits or no pits) to train the algorithm. The algorithm could be based on an existing neural network, 

such as GoogLeNet, or trained as an entirely new CNN such as by using MATLAB’s Computer 

Vision Toolbox’s built-in CNN trainer. These algorithms can vary in accuracy and can be tested in 

a variety of ways including accuracy, prevision, recall, and an F1 score. The goal is to identify the 

most viable CNN that can identify and eventually quantify pitting corrosion damage with the 

greatest amount of accuracy. 
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Chapter 2 

LITERATURE REVIEW 

This chapter explores the existing literature on pitting corrosion, the current methods for 

evaluating pitting corrosion, and computer vision-based techniques for corrosion identification. 

 

2.1 Pitting Corrosion Background 

Pitting corrosion has been classified by different organizations in numerous ways. The shapes of 

pits are classified by the Association for Materials Protection and Performance (AMPP) as being 

trough pits (narrow, deep, shallow, wide, elliptical, and vertical grain attacks) or sideways pits 

(subsurface, undercutting, and horizontal grain attacks) as shown in Figure 2.1. 

 

 

Figure 2.1: Pitting corrosion types (from AMPP) 

 

This is generally an accepted way of classifying pit shape with trough pits generally being seen as 

worse because the deeper the pit is, the worse the damage and stress is. The “narrow, deep” pit 

is especially concerning because it is very deep and pointed, causing a large stress 

concentration. The formation of pits is considered to have three main steps: passive film 

breakdown, pit propagation, and repassivation (Caines et al.). To be specific, pit formation 

initiates in a steel specimen when the passive film on the stainless-steel breaks down, providing a 

location for pit growth. This becomes further broken by chloride ions in marine environments and 

begins the next step of pitting formation, namely, propagation. Pits propagate and grow when 
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pitting resistance falls below pitting propagation potential. The theory of pit growth is that iron ions 

attract chloride ions from saltwater or chemicals in the environment. This would produce a porous 

film of Fe(OH)2 over the top of the pit which allows more chloride ions to enter the pit while iron 

ions exit the pit. The increased acidity produced by this process will increase the corrosion on the 

walls of the pit and grow the pit further. This stage leads to catastrophic failure of a structural 

asset. On the other hand, some pits can enter the third stage of the process (i.e., repassivation), 

where the passivation layer of the stainless-steel reforms and can therefore resist further loss. 

This is theorized to occur as a result of the corrosive product forming in the pit increasing 

resistance, the surface drying (if that is possible in the system), and the Fe(OH)2  film hindering 

further pit development (Caines et al.). While the chemical process can be monitored in this way, 

there has yet to be an accepted model for predicting pit depth due to environmental factors and 

the lack of experimental data to validate field accounts.  

 

Localized corrosion, such as that seen in pitting corrosion, is largely seen as the most dangerous 

form of corrosion, due to the lack of predictive models, experimental data, or ability to detect and 

address damage (Bhandari et al.). Pitting corrosion has a high propagation rate and is 

widespread across the area that it affects. It is considered highly dangerous in the oil and gas 

industry because the failure of the pipelines can have incredibly severe environmental and safety 

impacts (Li et al.). Damages to this infrastructure has led to large amounts of death and economic 

impacts, as shown in multiple ecological disasters caused by pitting corrosion. Pitting Corrosion 

affects many marine structures, due to the salt content in the waters and the effect of pitting 

corrosion has been a topic of research and concern in these environments. For example, in July 

1988, large quantities of gas condensate, a highly flammable, mixed stream of natural gas liquids, 

leaked on Piper Alpha, an oil platform, causing an explosion and subsequent fires that killed 167 

people (Van Wijk et al.). It is the deadliest accident in the oil and gas industry and was directly 

caused by pitting corrosion. The economic impact of pitting corrosion can have on these 

industries is also very important to note. For example, on the North Sea oil platform in September 

2012, pitting corrosion on the oil valves caused large oil and gas leakage, estimated to be 125 
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barrels and 1600 kg, respectively. Additionally, production was further stopped another 67 days, a 

delay that cost oil and gas companies expected supply and profit (Van Wijk et al.). Other marine 

structures such as miter gates, storage tanks, ships, docks, and buildings can also be greatly 

impacted by pitting corrosion. While the knowledge of pitting corrosion forming on corrosion 

resistant metals has been well documented for many decades, there is still a severe lack of 

knowledge about pit depth and measurement, pitting rate, how pits progress with time, and how 

loading affects pit formation. Many researchers who review the current knowledge on pitting 

corrosion conclude that a deeper knowledge on pitting corrosion formation, its effects, and how it 

can be evaluated is essential in reducing material and economic loss and improving operating 

safety on large scale infrastructure (Melchers). This knowledge is essential in the continuous 

monitoring of structural health in offshore and marine structures, especially as the sector expands 

further with proposals of more infrastructure such as offshore wind projects for sustainable energy 

generation. 

 

Most of the existing research focuses on pitting corrosion inhibiting the strength capacity of 

structural members such as plates. The conclusions of many of these studies on the effects 

pitting corrosion has on the buckling strength of plates, focus on the fact that more pitting 

corrosion area and depth decrease the total strength capacity and how to repair structures to 

resist the capacity reduction such as by adding doubler plates to corroded regions (Sidharth). In 

one study, the ultimate strength of the plates in the study were evaluated using finite element 

modeling software (Sidharth). The finite element analyses that were used in this study did not 

have experimental data to verify the modeling of the pit formation and instead focused on volume 

and thickness loss of the specimen at various levels to predict the impact. Additionally, the study 

focused on the fact that pitting corrosion impacts important structural assets but failed to identify 

the effect that loading has on pitting corrosion formation or how to better evaluate the negative 

impacts that pitting corrosion has on strength capacity. Another study focused on the effect of 

tensile load on pitting development indicated that stress application deepened the total pit depth 

(Pedram et al.). However, their study did not consider the differences between compression and 
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tension on pit formation. Stress corrosion cracking (SCC) is a phenomenon that occurs when a 

corrosive environment is combined with tensile stress. SCC can quickly lead to catastrophic 

failure of a structural system. One prominent example is an aircraft crash that occurred in the 

Netherlands that was caused by engine failure after SCC initiated on the pins of a lever arm in the 

compressor variable vane system (Kolkman et al.). This was caused by the salt-filled environment 

of Western Europe and is a good case study for the effect that SCC can have on marine 

structures and the importance in studying pitting corrosion formation under stresses. Therefore, 

more experimental research on the formation of pitting corrosion is required to properly evaluate 

and model pitting corrosion in infrastructure. 

 

2.2 Corrosion Damage Detection and Monitoring 

There is very limited technology available to evaluate pitting corrosion. Many of the most 

prominent pitting corrosion evaluation techniques are outlined in ASTM G46-21 (ASTM G46-21). 

The main method is through visual examination which can be performed by a licensed 

professional following section 7.2 of ASTM G46-21. However, this process heavily favors larger, 

visible pits, and can be difficult if the asset is not easily accessible. Recently, remotely operated 

vehicles (ROVs) have been used to remotely investigate structural members with pitting corrosion 

to aid in visual inspection and increase worker safety (Caines et al.). However, this method 

prevents depth from being properly investigated because there is no existing method to 

determine true severity or depth from images at this time. The high-resolution images gained from 

these ROV images could be utilized in and with a database to assess pitting corrosion severity 

via use of a CNN, if that technology is deemed feasible and trained on a large enough dataset to 

process the ROV obtained images. Figure 2.2 shows guidelines for visually examining pitting 

corrosion, classifying each pit by density, size, and depth via the scale shown. 
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Figure 2.2: Standard rating chart for pitting corrosion from the ASTM G46-21 (2021) 

 

Automated profilometers can also be used to analyze pitting corrosion that uses laser technology 

to scan the surface for defects such as pitting depth. This requires a commercial system and 

special care in proper calibration and verification of the results. Additionally, many of the 

commercial products cannot be used to analyze in-situ structures and instead specimens must be 

removed or cut off the main structure to analyze them with this method. The user must also be 

trained on the technology and know how to interpret the results which, depending on the cost of 

the product, can take large amounts of knowledge and experience. Visualization of the data can 

vary between manufacturers and interpretation of the results is very important for the accuracy of 

this method. Figure 2.3 shows visual results from a Keyence 3D Optical Profilometer in analyzing 

an experimentally generated AISI 304 stainless steel sample experiencing pitting corrosion. While 

these results are visually intuitive and provide large amounts of data on the surface morphology 

of the specimen, this product can cost more than $90,000 and cannot be used on in-situ large-

scale structures. 
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Figure 2.3: Keyence 3D Profilometer results on AISI 304 stainless steel specimen experiencing 

experimentally induced pitting corrosion 

 

Another evaluation technique outlined in ASTM G46-21 is metal penetration. Metal penetration 

focuses on calculating a pitting factor that compares the deepest pit depth (found by performing 

metal penetration on the fifteen largest pits) to the average metal penetration (ASTM G46-21). 

This requires users to visually determine the deepest pits which introduces bias in that the 

deepest pits may not be the largest pits that are visible. This also introduces human error and 

subjective measurements introducing further bias. This is especially true in load carrying 

members where pit formation differs depending on the stress that a member is undergoing. A 

study analyzing pitting corrosion in magnesium alloys also found this metric to be unreliable in 

predicting the performance of a given specimen (Van Gaalen et al.). The framework used by the 

researchers calculated a large range of geometric features of pitted specimens and it found that 

several parameters that ASTM G46-21 deems important in predicting damage due to pitting 

corrosion, such as the number of pits and the pitting factor, have little correlation in predicting 
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structural performance. The lack of correlation between pitting factor and mechanical 

performance makes the metal penetration procedure outlines in ASTM G46-21 largely useless in 

field evaluation of pitting corrosion severity. There are similar issues in the statistical evaluation 

methods put forth by ASTM G46-21. These statistical theories can be useful in predicting results 

in any given environment after collecting local information including material properties, 

environmental conditions, exposed surface area, and water composition (ASTM G46-21). 

However, this is a lot of data to collect, and once it is collected, it requires extensive knowledge of 

statistics to apply properly and interpret the results. Sites that are affected by pitting corrosion 

also may not have the technology to collect all the required information and it may induce a large 

economic burden on the organization experiencing the damage. 

 

Other commercial solutions to pitting corrosion evaluation are eddy currents, radiography, and 

ultrasound. Eddy currents show promise in pitting corrosion identification due to their accuracy 

and sensitivity. Eddy currents are magnetic fields that are created by an electric current. The 

probe generating the eddy current is placed close to the region of interest and the magnetic field 

induces eddy currents in the specimen. Wherever eddy currents are disturbed, a defect signal is 

read by measuring the impedance variation. One example of a commercial product specifically 

made for subsurface corrosion evaluation is the OmniScan MX Flaw Detector. This is designed to 

analyze damage specifically in stainless steel pipes and can do so with fast response times and a 

user-friendly interface to see what it is monitoring (“Using Eddy Current Array…”). While this is 

very useful in applications involving pipes, this is not a viable solution for the much larger 

quantities of specimens that cannot be analyzed with this product. Other eddy current solutions 

are available, but most require submergence or special procedures in analyzing the damage that 

are not as quick or accurate as the technology present in the OmniScan MX Flaw Detector. 

 

Radiography can provide local, high-resolution images of pits on a specimen. These images are 

obtained by passing an x-ray or gamma ray beam through a specimen. A portion of the x-ray 

pattern is absorbed or scattered by the internal structure of the region of interest and the 
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remaining pattern is transmitted to a detector for image processing (Zscherpel et al.). This 

process inherently involves radiation, and is becoming increasingly banned, due to the harm it 

can create for workers’ safety who are continually exposed to the radiation. Additionally, 

calibration of this machine is typically based off machined defects with simple, easily definable 

shapes. This may not be the case for pitting corrosion, and therefore, there may be unreliable 

interpretation of inspection results. Additionally, radiography and eddy currents were found to fail 

to detect small pits with depths less than 70 µm or 2.76 thou (Hou et al.). 

 

Ultrasound can also be used in subsurface damage evaluation. In this method, high frequency 

waves are passed through a section of interest and the time it takes for an ultrasonic pulse to 

return to the detector can be used to map the internal structure of a specimen. The accuracy in 

using ultrasounds to map defects largely depends on the user’s experience with the technology 

and the surface features over which the sound waves are being applied. For example, liquid 

loading on a structure, coatings, and welds can largely affect accuracy of this method. However, 

the effect that these factors have on the ultrasound’s accuracy also largely depends on the 

frequency of the waves, which are selected by the user. Researchers have shown the large 

variation in performance of ultrasound when under a variety of environmental conditions and 

wave frequency. They also concluded that, due to the large effects that area, sharp defects, 

surface conditions, and liquid loading can have on the accuracy, that multiple inspection methods 

within ultrasound should be used to verify the results from one another (Khalili and Cawley). The 

large variability in the results obtained using ultrasound and the experience that the user must 

have to select the correct inspection methods for the environmental conditions of interest makes 

this method very time consuming and variable in the accuracy of the results.  

 

Another technology that is not mentioned in ASTM G46-21 that has been extensively used in 

monitoring internal corrosion is the field signature method (FSM), which is a nondestructive 

testing method that measures potential drop across an applied electrical field to determine 

internal defects. Like eddy currents, FSN works by measuring the potential drop but rather than 
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the magnetic field being induced by a probe, a resistance network of electrodes is directly applied 

to and around a section of the specimen. This makes access to all sides of the asset an essential 

component in using this method. This type of technology has been used for decades in analyzing 

corrosion within pipe systems. While the application of this method is relatively easy due to easy 

access to the technology, the relatively low cost, and the large amount of industry history behind 

it, it has been proven to have extremely low accuracy in identifying pitting corrosion due to the 

varying depth, size, and position of pitting corrosion that negatively influence nearby electrodes 

(Gan et al.). 

 

2.3 Computer Vision Techniques 

A CNN is a multi-level neural network that has three main components: convolutional layers, 

pooling layers, and fully connected layers.  

 

Figure 2.4: Generic CNN architecture 

 

CNNs are trained on a data library that separates input data into classes to perform training 

procedure on. The convolutional layers are designed to find patterns across input data and 

images by applying convolutional filters. Convolution is a mathematical operation on two functions 

that produces a third function that expresses how the shape of one is modified by the other. In 

image analysis, the two functions that are undergoing convolution are the input image and the 

filters or kernels within the CNN architecture. These filters result in a variety of feature extractions 

from the image such as edge detection of objects (López-Monroy and García-Salinas). Common 
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filters are applied specifically to reduce noise, detect edges, sharpen, or blur objects in images. 

For general CNN architectures, many filters are applied to increase the robustness of the CNN of 

extracting features from images when the input is not necessarily known or consistent. 

Convolutional padding is also typically added before convolution occurs to avoid losing data along 

the edges of the input data before the filters are applied. This is most commonly zeroes along any 

boundary data (López-Monroy and García-Salinas). 

 

After the convolutional layer comes a pooling layer. The pooling layer is meant to reduce the data 

size which decreases the strain on system resources in both the training process and the usage 

of the CNN. The pooling layer combines large amounts of data into one value which can be 

calculated in a variety of ways depending on the architecture of the CNN. The most common 

procedures are to take the highest value of the data (referred to as max pooling), taking the 

average of the data (average pooling), the median value, or the L2 norm (López-Monroy and 

García-Salinas). It is most common for pooling to be performed in a square window. Figure 2.5 

shows an example of 2×2 max pooling for a portion of data in a 4×4 grid. 

 

 

Figure 2.5: 2×2 max pooling example for a 4×4 data grid. In image analysis, each colored region 

is a portion of the total image. 
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Finally, a fully connected layer consisting of multiple nonlinear activation functions is applied to 

combine and weigh the features extracted from the convolutional layers (Huang et al.). The 

activation function is most commonly a rectified linear unit or ReLU, which is useful in deep 

learning training, due to its vanishing gradient and a constant derivative (López-Monroy and 

García-Salinas). The ReLU function also preserves information on relative intensities of features 

through multiple feature detection layers, which is useful when performing multiple convolutional 

layers as in a CNN deep learning architecture (Nair and Hinton). These three steps can then be 

repeated as many times as desired to train the CNN. As more layers are added, accuracy often 

increases in image classification, but the CNN can also become overfit to the training data and 

have a hard time classifying new data (Huang et al.). Overfitting can be mitigated by incorporating 

training augmentations, such as randomly translating the image or reflecting it about an axis 

during the training process.  

 

Implementing CNN for damage detection is becoming increasingly common as the abilities of 

artificial intelligence continues to grow. One study on corrosion detection using computer vision 

and deep learning found great accuracy in training a CNN to classify materials as either being 

rusted or not rusted (Matthaiou). The model achieved a performance accuracy of 94% on 

laboratory test data sets. The study also concluded that there was a loss of accuracy when 

analyzing practical pictures that included rusted specimens with lots of noise in the background, 

such as other elements in a building structure but that deep learning architectures performed 

better over traditional machine learning techniques. CNNs also showed promise in inspecting 

cracks in reinforced concrete structures and show high adaptability for CNNs in damage detection 

(Santos et al.). Another study, which used CNN-based damage detection to assess damage on 

steel wire rope from laboratory tests, found that CNN models achieved much higher accuracy 

when compared to traditional conventional machine learning methods (Huang et al.). The 

researchers’ conclusions were that while it was highly accurate in identifying the surface damage 

generated in experimental specimens, in practical settings it may be more difficult to assess the 
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damage if it is not visible on the surface. The feature detection that occurs in the convolutional 

layer is very useful in automatically identifying surface morphology and physical damage features 

and applying them to new images. To apply the CNN in a practical setting rather than on lab 

tested specimens, a larger library of real-world damaged specimens would need to be included in 

the training library, and then a similar level of accuracy could likely be achieved. 

 

When assessing the efficacy of CNNs is important to assess for bias, efficiency, and accuracy. 

Accuracy is routinely calculated for all CNNs as a base measure of their ability to assess the data 

that they are trained to identify. This means that accuracy is a measure of how often the CNN is 

correct overall at assessing the data in identifying both true positive and true negative 

classifications and can be quantified using Equation 2.1 shown below, where TP, FP, FN, and TN 

refer to true positive, false positive, false negative, and true negative, respectively. These 

statistical parameters can be further visualized in Figure 2.5.  

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 Equation 2.1 

 

Apart from accuracy, two of the most used metrics for classification are precision and recall. 

Precision can show how accurate the model is in predicting the “positive” outcome in a binary 

choice (Kulkarni). For example, in the case of pitting corrosion, this would refer to the accuracy of 

the model in predicting that a pit exists for the “Pit” class and the predicting that a pit does not 

exist for the “No Pit” class. This is evaluated by comparing the number of true positive 

identifications (relative to the class in question) to the total number of positive classifications, 

including false positives, as shown in Equation 2.2. It takes into consideration Type I errors 

(Figure 2.6) by including false positive classifications in the calculation. 

  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 Equation 2.2 

 



  
 

18 
 

Recall is a measure of the strength of the model to predict positive outcomes. This means that 

the number of times that the model correctly identifies true positive classifications (i.e. when a pit 

exists in the case of the “Pit” class and that a pit does not exist for the “No Pit” class) is compared 

to the total classifications that are actually positive as shown in Equation 2.3 (Kulkarni). This 

considers Type 2 errors (Figure 2.6) in looking at false negative classifications in the calculation 

of recall. 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 Equation 2.3 

 

Figure 2.6 visualizes the statistical parameters in the context of pitting corrosion that are used in 

the calculations for accuracy, precision, and recall, defined using Equations 2.1, 2.2, and 2.3, 

respectively. It also notes the meanings behind Type I and Type II errors that are included in 

precision and recall measurements to better quantify the accuracy of the CNN model. 

 

 

Figure 2.6: Visualization of statistical parameters used in CNN evaluation 
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Furthermore, the F-measure or F-value is another statistical parameter that is used to evaluate 

the tradeoffs between correctness and ability to classify in a large range of conditions by 

calculating a weighted harmonic mean between precision and recall. The most common value 

that is calculated within F-measure category is known as the F1-measure, which can be 

calculated using Equation 2.4.  

 

 𝐹 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 Equation 2.4 

 

The F1-measure helps quantify and compare the efficacy of the CNN as a whole by combining 

the values of precision and recall with one single parameter (F1).  
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Chapter 3 

METHODS 

This chapter discusses the experimental methods for producing pitting corrosion and the 

framework behind the computer vision-based damage detection. 3/16” thick, AISI 304 stainless 

steel is used in both the corrosion experiment and the load-coupled corrosion test setup. This is 

used to replicate the most widely used structural stainless steels that face pitting corrosion. Mild 

steel such as A36 (which has common structural applications) is not used because it does not 

form pitting corrosion and instead forms general corrosion in these conditions as shown in Figure 

3.1. Ferric (III) chloride at 0.5 M and at a temperature of 50°C is used in both procedures outlined 

in sections 3.1 and 3.2.  

Figure 3.1: A36 steel experiencing general corrosion after undergoing corrosion experiment 

procedures outlined in section 3.1.2 

 

All experimental specimens will be analyzed by using a Micro Vu Vertex 312UC equipped with an 

LSM4-2 laser distance scanner. Specifically, the LSM4-2 attachment will be used to scan the 

center 1”×1” square region of the damage for both the standard specimens and the load-coupled 

specimens. The resolution of the laser scan is 4 microns or 1.57E-4 inches along one direction 

and an average of 0.03 microns or 1.181E-6 inches along the other. 
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3.1 Corrosion Experiment Procedure 

The following procedure serves as the standard procedure for generating pitting corrosion without 

load applied. 

 

3.1.1 Corrosion Experiment Materials 

 AISI 304 Stainless Steel from Metals Depot (2”×2.5”×3/16”) 

 Iron (III) Chloride from Sigma-Aldrich 

 Deionized (DI) Water 

 Hot Plate / Stir Plate 

 500 mL Beaker 

 Sandpaper 

 Sodium Bicarbonate 

 Glass Thermometer 

 pH Test Strips 

 

3.1.2 Corrosion Experiment Procedure 

1. Fill a 500 mL glass beaker (pre-washed with DI water) with 200 mL of DI water. 

2. Zero a digital scale with a plastic weighing dish and measure out 16.22 g of powdered, 

anhydrous ferric chloride on a scale using weighing paper. 

3. Add the ferric chloride to the 200 mL of DI water and place the beaker on a stir plate with 

a magnetic stir bar and begin stirring. 

4. Once all the powder is dissolved, place the solution and beaker on a hotplate set to 50°C. 

Check the temperature with a glass thermometer. 

5. Use sandpaper to sand an AISI 304 steel specimen and wash thoroughly with DI water. 

6. Place the specimen in the solution after it reaches the appropriate temperature and set a 

timer for the desired timeframe. 

7. Once the desired timeframe is reached, remove and wash the specimen thoroughly with 

DI water and air dry for at least a day.  
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8. Follow all recommended safety procedures for disposing of the remaining ferric chloride 

solution by neutralizing the solution with sodium bicarbonate and using pH test strips to 

ensure the solution has a pH of 7 before disposing. 

9. Once the sample is air dried, and the solution is neutralized, wash the beaker and 

thermometer with DI water, and analyze the specimen. 

 

3.2 Load-Coupled Corrosion Test Setup 

The following sections outline the setup and procedure for the load-coupled corrosion test setup. 

The setup follows a four-point bending test where there is pure moment along the middle 6” of the 

steel specimen. This allows analysis on how the rate, shape, and depth of pitting corrosion is 

affected by both compression and tension on the member. 

 

3.2.1 Load-Coupled Corrosion Test Materials 

 AISI 304 Stainless Steel from Metals Depot (2”×13.5”×3/16”) 

 Iron (III) Chloride from Sigma-Aldrich 

 27-Gallon Tough Storage Tote 

 3.5-Gallon High Density Polyethylene Container 

 Sous-Vide Immersion Circulators (×2) 

 ½” ∅ PVC Pipe 

 Epoxy 

 Dead Load (concrete, bricks, and acrylic containers filled with sand) 

 Deionized (DI) Water 

 Stir Plate 

 500 mL Beaker 

 Sandpaper 

 Sodium Bicarbonate 

 Glass Thermometer 

 pH Test Strips 
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3.2.2 Load-Coupled Corrosion Test Physical Setup 

The physical setup of the internal polyethylene container follows the schematic shown in Figure 

3.2, with the steel spanning 12” between supports and the load having supports 6” apart over the 

middle of the specimen. The polyethylene container is placed in an external tote with supports 

epoxied near the edges of the tank for the sous-vides to attach to. This allows the bottom of the 

sous-vides to be properly submerged. Figure 3.3 shows the setup without ferric chloride solution 

in the internal container, water in the external container, the sous-vides, or dead load on top of 

the steel specimen for clarity. Figure 3.4 shows the two dead load setups that are used in this 

procedure including a concrete cylinder with a brick epoxied to it with supports that span 6” 

(weighing 31.73 lb) and an acrylic container filled with sand (weighing 9.52 lb) with a brick 

epoxied to it with supports that span 6”. Figure 3.5 shows the final setup while a specimen is 

undergoing the procedure outlined in section 3.2.3. 

 

 

Figure 3.2: Schematic of internal container for the load-coupled corrosion test 
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Figure 3.3: Physical setup of the load-coupled corrosion experiment showing the sous-vide 

supports and internal polyethylene container 

 

Figure 3.4: Concrete dead load, 31.73 lb (left) and acrylic sand container dead load, 9.52 lb (right) 
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Figure 3.5: Final test setup while it is undergoing the load-coupled corrosion test procedure 

 

3.2.3 Load-Coupled Corrosion Test Procedure 

1. Place the 3.5-gallon high density polyethylene container in the 27-gallon tough storage 

tote and place the chosen weight that will be used to load the specimen into the container 

to weigh it down. 

2. Fill the external tote with water to form a water bath for the internal container, ensuring 

the water level is between 2 and 4 inches below the top of the internal container. 

3. Place the two sous-vides on opposite corners of the tank on the PVC supports as shown 

in Figure 3.5, plug into two different extension cords, and ensure the extension cords 

cannot fall into the water bath. 

a. The sous-vide’s power buttons will turn red when activated, hold the power 

button down for 3 seconds to turn them on. 

b. Hold set until the temperature range flashes, use the + button to set the sous-

vide temperature to 90°C. 
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c. Press the power button once to start the sous-vide. When activated, the 

temperature of the water bath should be displayed and increase over time. 

i. If E03 appears on the sous-vide, the water level is too low, lower the 

sous-vide deeper into the water or fill the level higher. 

ii. If E04 appears, remove the sous-vide from the water and check the 

propeller at the bottom. If the black bottom cover cap is on, remove it. If 

an object is obstructing it, remove it. 

4. Prepare 3300 mL of 0.5M ferric chloride solution. This requires 265 g of ferric chloride 

and can be made in parts using the 500 mL beaker and by following steps 1-3 outlined in 

section 3.1.2. 

5. Add the ferric chloride solution to the internal container and wait until it reaches 50°C. 

Reduce the temperature of the sous-vides to 70°C and adjust as needed to keep the 

temperature of the ferric chloride solution at 50°C. 

6. Use sandpaper to sand an AISI 304 steel specimen and wash thoroughly with DI water. 

7. Place the steel centered between the supports as shown in Figure 3.3 and place a dead 

load with two supports spaced 6” apart from one another, such as those shown in Figure 

3.4, over the center of the specimen. 

8. Once the desired timeframe is reached, remove and wash the specimen thoroughly with 

DI water and air dry for at least a day.  

9. Follow all recommended safety procedures for disposing of the remaining ferric chloride 

solution by neutralizing the solution with sodium bicarbonate and using pH test strips to 

ensure the solution has a pH of 7 before disposing. 

10. Once the sample is air dried, and the solution is neutralized, wash the beaker and 

thermometer with DI water, and analyze the specimen. 

 

3.3 Computer Vision-Based Damage Detection Framework 

This section will outline the framework computer vision-based damage detection using MATLAB’s 

maximally stable external region (MSER) algorithm and convolutional neural networks. 
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3.3.1 MSER Damage Detection 

MATLAB’s MSER algorithm in the computer vision toolbox is used to identify local regions within 

an input image. This can be useful for object or feature detection within an image such as in 

identifying text on a sign, or in the case of pitting corrosion, pits on a steel specimen. The MSER 

algorithm analyzes the pixel intensity of regions while comparing the regions to stability criterion 

(“DetectMSERFeatures”). This is accomplished by continually checking the variation of a region 

under different intensity threshold values. When a larger area is analyzed, it will include the 

previous area if the variation is small enough to be considered as one region. Once the intensity 

variation greatly differs, such as the existence of a dark pit region on a lighter steel surface, the 

region boundary is formed. Once calculated, the detected regions are then evaluated based upon 

their eccentricity. Regions with too high of an eccentricity (i.e., region that resembles a line rather 

than an ellipse) are removed. In addition, by using the built-in MATLAB region property function, 

the centroids of the isolated pits can be calculated. This algorithm can be used to evaluate 

laboratory samples as well as field images, due to the high image contrast associated with shape 

and depth loss caused by pitting corrosion. 

 

3.3.2 CNN Damage Detection 

CNNs are trained by first developing an image library. Based on experimental samples, the 

training image library was established by partitioning a high-resolution image to smaller images 

comprising of 31-by-31-pixel sub-images. In this study, seven high-resolution 443-by-340-pixel 

images of regions on steel specimens that were corroded through pitting corrosion experiments 

were partitioned into 31-by-31-pixel sub-images for the purposes of training and testing of CNNs. 

The partitioning was necessary due to the limited number of specimens and to generate a library 

large enough to test the efficacy of the CNNs. These partitioned images were then manually 

labeled into two identification classes (i.e., pits and no pits). The training library has a total of 

1,093 images with 740 images containing pits and 353 images without pits. If the library increases 

in size, the number of classes could be increased to four, namely, high severity pits, medium 

severity pits, low severity pits, and no pits, for identifying the severity of pitting corrosion. The 
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training algorithm would not need to be changed except for the library it is trained on. After the 

classes are established, either by manual inspection or using algorithms, such as MSER, to set 

thresholds and automatically sort the images, the library was then imported into the CNN 

algorithm, where it was then separated further into a training set and a validation set for each 

class. 70% of the images within a class are used for training and 30% are used for validation.  

 

The algorithm also includes image augmentations to limit the CNN from memorizing the training 

set, forcing it to look for features instead. One of these augmentation procedures involves 

randomly reflecting the images horizontally and vertically. Another involves randomly translating 

the image up to 30 pixels vertically or horizontally. The MATLAB computer vision toolbox then 

uses the training and validation sets to train the CNN. In the field, this same algorithm could be 

used by changing the library to include field and laboratory specimens that both do and do not 

exhibit pitting corrosion, so that an input image could inform the inspectors whether pit damage is 

present and the severity of the pitting.  

 

The MATLAB computer-vision CNN trainer includes three 3×3 kernel convolutional layers 

separated by three 2×2 max pooling layers (with associated ReLU layers) as shown in Figure 3.6. 

The results of these filters are then passed into the fully connected layer, which connects every 

input node to every output node by multiplying the input by a weight matrix and then adding a 

bias vector. This allows the CNN to interpret the results of the training data and subsequent input 

images and creates the neural network.  
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Figure 3.6: MATLAB-based CNN computer vision workflow 

 

Another method of implementing CNNs is retraining a pre-trained CNN to identify new features. 

One particularly robust CNN used in image recognition is GoogLeNet, which is trained on over a 

million images and takes a 224-by-224-pixel image as an input, and then outputs a label for the 

object in the image, together with the probability for each of the object category.  

 

GoogLeNet is different than other CNNs because it uses an inception module that is based on 

1×1, 3×3, 5×5 convolutional filters, and 3×3 max pooling in parallel at the input and stacks them 

at the output to generate the final decision. The theory is that differently sized filters can handle 

objects at different scales better than traditional algorithms, and therefore, will be more accurate 

in a variety of cases. GoogLeNet is unique in that it calculates a multinomial probability of the 

classes to aid users in understanding the output and verifying the results. Standard GoogLeNet 

outputs are shown in Figure 3.7. 
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 Figure 3.7: Standard output of GoogLeNet (from “Classify Image Using GoogLeNet”) 

 

To retrain GoogLeNet in this study, all layers are maintained the same except for the last three. 

The last three layers contain information on how to combine the features that the network extracts 

into class probabilities and labels. The last three layers are replaced by the following three: 

1. Fully Connected Layer (fc) – connects every input node to every output node by multiplying 

the input by a weight matrix and then adding a bias vector 

2. Softmax Layer – Predicts a multinomial probability distribution 

3. Classification Output Layer – Outputs the classification for each image (i.e. pit or no pit or 

high severity pits, medium severity pits, low severity pits, and no pits) 

 

Figure 3.8 shows a simplified block model of the GoogLeNet architecture, where the last three 

layers mentioned above are added in this study marked in orange color. In the convolution and 

max pool steps, S stands for stride which is the number of pixels shifts over the input. For 

example, if the stride value is two, the filters are moved by two pixels each step. 
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Figure 3.8: Simplified block diagram of GoogLeNet architecture with last three layers replaced by 

user for retraining 

 

If there are only two classes (pit or no pit), the softmax layer is unnecessary since the 

classification is binary and not multinomial. The same image library as the MATLAB-based CNN 

can also be used to train GoogLeNet, but the images will have to be resized to 224-by-224-pixel 

images before passing them into the algorithm for training. This means that the resolution will be 

lower for the images in the GoogLeNet library, as they are expanded from 31-by-31-pixels to 

keep the same size library. Both the MATLAB-based CNN and the retrained GoogLeNet CNN 

was trained on the library in six epochs with a learning rate of 0.0003. This was selected because 

the size of the library is relatively small and this will prevent overfitting to the training data, 

something that would occur at large epochs. 
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Chapter 4 

RESULTS 

This chapter analyzes the results of the corrosion experiment and the load-coupled corrosion test 

procedures. It also evaluates the capabilities of computer vision-based damage identification for 

pitting corrosion, focusing on two different CNNs, namely MATLAB-based CNN and retrained 

GoogLeNet, trained as per section 3.3. 

 

4.1 Pitting Corrosion Development  

Both corrosion procedures consistently generated pitting corrosion on the AISI 304 stainless steel 

specimens. Each specimen was analyzed using a Python-based algorithm to calculate the area 

and max depth of each individual pit on the specimen, where a pit was defined as containing at 

least eight points that were below the surface level. Table 4.1 shows the results of the deepest pit 

present in each sample separated by time and load case. Each case includes results of two 

specimens that are averaged together. When analyzing the effect of corrosion time on pit growth, 

the pit depth consistently increased with time as expected, as shown in Figure 4.1. 

Table 4.1: Experimental Results of the Deepest Pits 

Time 
(hr) 

Load Case Load Type Max Depth (in) 
Surface Opening Area of 

Deepest Pit (in2) 
Ratios of Deepest 

Pit Depth/Area 

1 

Corrosion Only N/A -0.0121 2.39E-05 507.7 

1.219 ksi 
Compression -0.0122 6.22E-05 196.9 

Tension -0.0121 1.40E-06 8676.1 

4.061 ksi 
Compression -0.0123 4.59E-05 268.9 

Tension -0.0117 1.59E-05 734.0 

2 

Corrosion Only N/A -0.0169 9.46E-05 178.9 

1.219 ksi 
Compression -0.0157 2.86E-05 549.6 

Tension -0.0149 5.80E-06 2568.1 

4.061 ksi 
Compression -0.0159 3.02E-04 52.5 

Tension -0.0149 3.48E-05 429.6 

3 

Corrosion Only N/A -0.0204 2.31E-05 885.1 

1.219 ksi 
Compression -0.0206 7.99E-05 257.8 

Tension -0.0193 6.62E-06 2919.4 

4.061 ksi 
Compression -0.0216 3.09E-04 69.8 

Tension -0.0193 6.65E-05 290.1 
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Figure 4.1: Max pit depth (in) versus time (hr) 
 

To be specific, after an hour, all samples have a maximum pit depth of approximately -0.012 

inches. As the corrosion time increases, pit depth increases by approximately 0.004 inches per 

hour. This means that the initial pitting growth rate is significantly faster than the relatively 

consistent growth rate that follows. The observed trend is consistent with what has been reported 

in existing literature on pitting growth rate (Pedram et al.). When considering time, Figure 4.2 

shows no correlation with the surface opening area for the deepest pits when considering the 

same load case. This means that while time of corrosion may have some limited impact surface 

opening, there are many other factors that control surface opening area such as loading, 

localized material properties, or corrosion product preventing further corrosion. 
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Figure 4.2: Surface opening area of deepest pit (in2) versus time (hr) 

 

Table 4.2 shows the experimental results for the top 50 deepest pits on each sample. From this 

data, two outliers are removed: 1) the average surface opening area for one of the two, two-hour 

4.061 ksi compression specimens is excluded because it has abnormally high average surface 

area compared to the other 4.061 ksi compression specimens and 2) the average depth for one 

of the two, three-hour 1.219 ksi tension specimens because it has abnormally low average depth. 

The average depth of the excluded three-hour 1.219 ksi tension specimens is lower due to the 

low number of pits, only having 69 pits which makes the average include small pits that are just 

forming. 
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Table 4.2: Experimental Results of the 50 Deepest Pits 

Sample  Top 50 Deepest Pits 

Time 
(hr) 

Load 
Case 

Load Type 
Total # 
of Pits 

Average 
Depth (in) 

Standard 
Deviation 

(in) 

Average 
Surface 
Opening 
Area (in2) 

Standard 
Deviation 

(in2) 

Ratios of Top 
50 Deepest 

Pits 
Depth/Area 

1 

Corrosion 
Only 

N/A 221 -0.0087 0.0014 5.13E-05 1.27E-05 169.76 

1.219 ksi 
Compression 299 -0.0113 0.0003 4.44E-05 2.65E-05 254.09 

Tension 146 -0.0092 0.0012 6.60E-06 7.35E-06 1393.46 

4.061 ksi 
Compression 361 -0.0112 0.0003 5.61E-05 2.12E-05 199.55 

Tension 280 -0.0105 0.0005 1.25E-05 9.40E-06 834.74 

2 

Corrosion 
Only 

N/A 266 -0.0129 0.0014 4.65E-05 3.30E-05 277.09 

1.219 ksi 
Compression 370 -0.0138 0.0011 3.91E-05 2.94E-05 353.93 

Tension 382 -0.0124 0.0011 1.69E-05 1.30E-05 737.30 

4.061 ksi 
Compression 169 -0.0135 0.0013 2.07E-04 1.52E-04 65.23 

Tension 182 -0.0127 0.0013 1.31E-05 1.00E-05 968.73 

3 

Corrosion 
Only 

N/A 272 -0.0179 0.0011 4.29E-05 3.65E-05 416.93 

1.219 ksi 
Compression 317 -0.0181 0.0014 8.50E-05 4.68E-05 213.43 

Tension 146 -0.0115 0.0038 5.40E-06 6.83E-06 2124.06 

4.061 ksi 
Compression 297 -0.0162 0.0019 9.56E-05 6.92E-05 169.79 

Tension 183 -0.0148 0.0026 2.72E-05 2.50E-05 544.32 

 

 

The total number of pits varies between specimens under the same loading condition across time 

periods. The only exception to this is specimens subjected only to corrosion (without loading), 

which have an increased number of pits under longer corrosion time. Therefore, corrosion time 

does not necessarily influence the number of pits. On the other hand, when considering the 

average depth of the top 50 deepest pits, there is still a consistent trend of the average depth 

increasing over time. Figure 4.3 shows that the only exception is the three-hour 1.219 ksi, tension 

specimen which has abnormally low depth. Since this specimen has a low number of pits, the 

average depth is abnormally low due to the average including shallow pits that just begin forming. 
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Figure 4.3: Average pit depth (in) versus time (hr) 

 

Based on the average area for the deepest 50 pits, corrosion time is found to have limited effects 

on the surface opening area. Figure 4.4 shows that the data is scattered and does not follow a 

trend between time periods. Additionally, the standard deviation of area is very large, especially 

when compared to the consistently low standard deviation of the pit depth values. This shows that 

the pit surface opening area is variable across all specimens, and therefore, is not associated 

with time. Therefore, time only has a large effect on the pit depths of specimens with this being 

most consistent in the maximum pit depth in any specimen. Since total depth is the biggest 

indicator of damage and stress to a system, time is one of the most important indicators for 

potential damage that a structural system experiencing pitting corrosion is facing. 
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Figure 4.4: Average surface opening area of 50 deepest pits (in2) versus time (hr) 
 

4.2 Effects of Mechanical Loading on Corrosion Development  

Mechanical loading has large effects on corrosion development by significantly changing the 

morphologies of the pits. The depth of the specimens is nearly the same between tension and 

compression with the tension specimens having slightly less pit depth than their compression 

counterparts. This is the case for both the deepest pits and the average depth of the 50 deepest 

pits as shown in Figures 4.1 and 4.3. The average depth of the tension members is significantly 

lower than the compression side due to the lower total number of pits as mentioned in section 

4.1. Compression increases the total number of pits present in the specimen in most of the 

specimens, consistently having a large number of pits across all time periods. However, the pit 

depths are still relatively similar, especially when considering the deepest pits in each specimen.  
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The most important morphological change is in the surface opening areas of the pits in each 

specimen. In both the surface opening area of the deepest pits and the average surface opening 

area of the 50 deepest pits, the tension members have significantly smaller areas than their 

compression counterparts. This is more evident in the depth-to-area ratios summarized in Tables 

4.1 and 4.2, where, in every time period, the tension specimens have a higher depth-to-area ratio 

by at least two times, often exceeding them by a much larger margin with an average 

exceedance of 6.6 times. The much larger depth-to-area ratios in the tension specimens is very 

dangerous in a real structure, since there could be a much higher stress concentration in the pits 

when compared to their compression counterparts that have a much larger area. The high stress 

concentration could likely initiate early SCC and quickly lead to structural failures. Additionally, 

due to the much smaller opening size, the pitting damage could be much harder to detect 

visually.  

 

Figure 4.5 shows color contour plots of three specimens that underwent corrosion for three hours. 

This includes the tension and compression sides of a specimen under a stress of 4.061 ksi and a 

corrosion only specimen under no loading. Although the tension, compression, and corrosion only 

specimens had similar numbers of pits (183, 297, and 272 pits, respectively), the pits on the 

compression side (Figure 4.5b) were very visible due to their large surface opening areas. 

Figures 4.5d-4.5i show zoomed-in views of the morphologies of representative individual pits, 

which demonstrate that pits generated under tensile stress were as deep, but more localized. The 

pit chosen for the tension members is one with a larger surface opening area given that it is 

visible on the 2D contour plot unlike most of the pits for the tension specimen. However, the 

difference in surface opening area is still shown in this case with the much narrower pit of the 

tension side being shown in 4.5g compared to the more rounded pit formed under compression 

shown in 4.5h. The pit generated without any load applied has an area that falls between the 

load-coupled results shown in 4.5i. 
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Figure 4.5: Color contour plots of 1x1 in2 central regions on the a) tension side b) compression 

side and c) corrosion only section of a steel specimen subjected to 3-hr corrosion experiment 

(load-coupled with stress of 4.061 ksi for a) and b) and no applied load for c)). d), e), and f) 

Zoomed-in views of individual pits highlighted in a), b), and c) respectively. g), h) and i) 

Visualization of 3D morphologies of pits shown in d), e), and f) respectively. 

 

Similarly, Figure 4.6 shows color contour plots of three specimens under the same three load 

cases that underwent corrosion for one hour. Again, the tension, compression, and corrosion only 

specimens had similar numbers of pits (280, 361, and 221 pits, respectively), the pits on the 

compression side (Figure 4.6b) were very visible due to their large surface opening areas 

compared to those of the other two load cases. Furthermore, Figures 4.6d-4.6i show zoomed-in 

views of the morphologies of representative individual pits, which again demonstrate that pits 

generated under tensile stress were as deep, but more localized. The difference in surface 

opening area is evident in the much narrower pit of the tension loading being shown in 4.6g 

compared to the more rounded pit formed under compression shown in 4.6h. Therefore, while 

compression loading generates pits with larger surface opening areas, tension generates pits with 
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a more narrow, deep morphology that area more dangerous in the high stress concentration and 

the potential to generate SCC. Furthermore, this difference in morphology also occurs early in the 

corrosion process with the same surface opening area trends seen in both the 3-hr and 1-hr 

specimens. 

 

 

Figure 4.6 Color contour plots of 1x1 in2 central regions on the a) tension side b) compression 

side and c) corrosion only section of a steel specimen subjected to 1-hr corrosion experiment 

(load-coupled with stress of 4.061 ksi for a) and b) and no applied load for c)). d), e), and f) 

Zoomed-in views of individual pits highlighted in a), b), and c) respectively. g), h) and i) 

Visualization of 3D morphologies of pits shown in d), e), and f) respectively. 

 

4.3 Computer Vision-Based Damage Identification 

This section analyzes the results of computer vision-based damage detection using MATLAB-

based maximally stable external region (MSER) algorithm and convolutional neural networks. 
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4.3.1 MSER-Based Damage Detection 

Using MSER algorithm for detecting pitting damage and determining damage properties was 

highly effective, due to the high level of contrast between the pits and the undamaged stainless 

steel. Figure 4.7 shows the MSER results on and the corresponding central calculations. These 

results can be used to analyze pit surface opening area, number of pits, and determine the 

coordinates of pits. It also can help in automatically determining pitted areas in developing the 

training library for the CNNs. 

 

 

Figure 4.7: MSER feature detection and corresponding resulting centroid 

 

4.3.2 CNN-Based Damage Detection 

Both the MATLAB-based CNN and the GoogLeNet CNN were trained as per section 3.3 and 

evaluated in terms of several performance metrics, including accuracy, recall, precision, F1-

measure, and loss. The MATLAB-based CNN obtained a final validation accuracy of 84.45% with 

the training progress shown in Figure 4.8 and an example output for the validation images shown 

in Figure 4.9. The sixth epoch training began approaching 100% accuracy. This indicates that 

further training using the current dataset would likely lead to overfitting to this specific training 

library, instead of learning the features of pitting corrosion. With a larger image library, this would 

happen at a later epoch and the CNN could be trained for a larger number of iterations and 

improve accuracy. Therefore, the CNN algorithm can be further trained with a larger image library 

that includes images of both laboratory specimens and structures in the field, allowing the 

algorithm to learn more image features, achieve higher accuracy, and ultimately become 

sufficiently robust to detect pitting damage in the field. 
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Figure 4.8: Accuracy plot during training with blue line showing the smoothed training accuracy 

and black line showing validation accuracy at the end of each iteration for MATLAB-based CNN 

 

 

Figure 4.9: Examples of validation outputs of the trained MATLAB-based CNN algorithm 

 

Loss is another important performance metric when evaluating how well the CNN is modeling the 

dataset. It measures the differences between the CNN’s predicted classifications and the actual 

classifications of the training data. During training, loss is used to calculate gradients that update 

the weights of various features that the CNN is trained on to better optimize how well the CNN 

models the data over increasing iterations. Figure 4.10 shows the training loss quickly decreasing 

to zero by epoch 6 (orange line), concurrently with the increase of the accuracy to 100%. 

However, the validation loss (black line) exhibits significant fluctuation and is much higher than 

the training loss, indicating that the CNN is not modeling the data set well. The final loss is 0.38 

which is relatively high for a fully trained neural network, meaning that the training time would 

have to be increased to better train the CNN to the given library. However, since the accuracy 

plateaued at 100%, this would lead to overfitting making this the best achievable results for this 

algorithm with this library size and resolution. 
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Figure 4.10: Loss plot during training with orange line showing the smoothed loss values and the 

black line showing the validation loss at the end of each iteration for MATLAB-based CNN 

 

The average recall, precision, and F1-measure values for this CNN are 0.831, 0.821, and 0.825, 

respectively. As defined in Equations 2.2 to 2.4, these parameters illustrate the ratios of correct 

identifications to various combinations of all classifications performed. The higher values they are 

(i.e., closer to 1), the better classification performance is indicated. Generally, values above 0.8 

are considered good and values above 0.9 are considered excellent. Figure 4.11 shows these 

parameters for the “Pit” and “No Pit” classes. Notably, the “No Pit” class has significantly lower 

values for all three parameters, likely due to the low-resolution of the images from partitioning. 

The low-resolution from the small partitioning causes the CNN to mistake surface defects or 

image artifacts for pits. Additionally, the “Pit” class has more images to train from, giving the 

algorithm a stronger ability to identify images from the “Pit” class than images from the “No Pit” 

class. 
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Figure 4.11: Recall, precision, and F1-measure values for trained MATLAB-based CNN 

 

In the case of the "No Pit" class, a recall of 0.792 indicates that out of all the actual images 

belonging to the "No Pit" class, 79.2% were correctly identified as "No Pit" by the CNN, while the 

remaining 20.8% were false negatives. This means that an image was incorrectly classified as 

having pits when it belonged to the “No Pit” class. While a false negative for the “No Pit” class is 

not as detrimental as missing the damage to assessing structural conditions, this error might 

cause unnecessary maintenance, structural downtime, and economic loss. Meanwhile, precision 

for the “No Pit” class, means that out of all the instances predicted as "No Pit," 74.3% were 

actually a part of the "No Pit" class, while the remaining 25.7% were false positives. False 

positive for the “No Pit” class means that an image was incorrectly classified as "No Pit" when it 

belonged to the "Pit" class. This error is very problematic in the case of identifying pitting 

corrosion because it means that pitting is falsely classified as being undamaged, which would 

hinder early intervention to the damage that may propagate into more severe damage and even 

cause structural failures. The F1-measure provides an overall performance assessment using a 

harmonic mean between recall and precision. An F1-measure of 0.767 is low, indicating poor 

performance for the “No Pit” class.  
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Meanwhile, for the “Pit” class, the errors are reversed. For recall, 0.869 indicates that 

approximately 86.9% were correctly identified as "Pit" by the CNN. The remaining 13.1% 

represent false negatives, which are instances that belong to the "Pit" class but were incorrectly 

classified as "no pit" by the CNN. This error is more problematic in this case since, like precision 

in the “No Pit” class, it is failing to identify the damage and is classifying it as undamaged. In this 

case, a precision of 0.898 means that approximately 89.8% of images classified as “pits” are 

correct with the remaining 10.2% representing false positives, where they are classified as 

containing pits but belong to the "No Pit" class. Considering both recall and precision in the F1-

measure, the “Pit” class has a value of 0.883 indicating a better performance in identifying the 

“Pit” class, likely attributable to the larger library size.  

 

On the other hand, the retrained GoogLeNet CNN obtained a final validation accuracy of 87.2% 

as depicted in Figure 4.12. A sample output for the validation images is shown in Figure 4.13 

which lists the confidence and the classification made by the CNN. Notably, the sixth epoch 

training is still fluctuating meaning that the CNN could continue to be trained without overfitting at 

this point. 

 

 

Figure 4.12: Accuracy plot during training with blue line showing the smoothed training accuracy 

and black line showing validation accuracy at the end of each iteration for GoogLeNet CNN 
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Figure 4.13: Examples of validation outputs of the retrained GoogLeNet CNN algorithm 

 

Figure 4.14 depicts the loss plot during training for the GoogLeNet CNN. The loss shows a steady 

decrease in both the training and the validation loss. Additionally, the validation loss and the 

training loss are very close together and at relatively low values throughout all epochs. The final 

loss is at 0.36 which is only slightly lower than the MATLAB-based CNN. However, since 

GoogLeNet has more training potential, the loss will continue to decrease over time whereas the 

MATLAB-based CNN is at the end of its training potential for this library size. This suggests that 

GoogLeNet has the capacity to reach a loss value below 0.2, which is generally considered 

indicative of a well-trained model for this variable. 

 

 

Figure 4.14: Loss plot during training with orange line showing the smoothed loss values and the 

black line showing the validation loss at the end of each iteration for GoogLeNet CNN 

 

The average recall, precision, and F1-measure values for the retrained GoogLeNet CNN are 

0.881, 0.85, and 0.861, respectively. Figure 4.15 shows these parameters for the “Pit” and “No 

Pit” classes. Similar to the MATLAB-based CNN, the "No Pit" class exhibits notably lower 

precision and F1-measure values, while demonstrating higher recall when compared to the “Pit” 

class. 
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Figure 4.15: Recall, precision, and F1-measure values for retrained GoogLeNet CNN 

 

Recall, precision, and F1-measure represent the same characteristics for the GoogLeNet CNN as 

they do for the MATLAB-based CNN. Therefore, the problematic error in the “No Pit” class is 

precision which still has a low value of 0.751. Although this is slight improvement over the 

MATLAB-based CNN, it is still very low for a fully trained CNN. This error can be mitigated by 

expanding the “No Pit” class library. However, recall and F1-Measure are significantly improved 

over the MATLAB-based CNN, meaning the GoogLeNet is performing better for the “No Pit” 

class.  

 

However, for the “Pit” class, the problematic error was in recall. GoogLeNet performs marginally 

worse at a value of 0.856 versus 0.869. However, the precision and F1-measure values show 

marginal improvements. Although there are still problematic errors in the GoogLeNet CNN, it is 

overall performing better than the MATLAB-based CNN. Furthermore, GoogLeNet is at an 

advantage because it still has training potential, even before increasing the library size. 
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Both CNN algorithms can be further trained with a larger image library that includes images of 

both laboratory specimens and structures in the field, which will allow the algorithm to learn more 

image features, achieve higher accuracy, and ultimately become sufficiently robust to detect 

pitting damage in the field. However, GoogLeNet shows the most promise due to its higher 

training potential, even with this limited library. Additionally, it exhibits higher average accuracy, 

recall, precision, and F1-measure values for the same number of epochs trained on the same 

library. Furthermore, GoogLeNet has built in features for multinomial classifications, allowing for 

future expansion beyond the current binary decision of “pit” versus “no pit”. This flexibility 

increases its future potential for accommodating a larger range of classification tasks and makes 

it an ideal candidate for pitting corrosion identification in field applications. 
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Chapter 5 

CONCLUSIONS 

This study successfully developed two experimental techniques for generating pitting corrosion in 

steel specimens, namely an accelerated corrosion experiment and a load-coupled corrosion 

procedure. These resulting specimens were evaluated using a high-resolution laser scanner, 

which were then evaluated using customized Python-based codes to characterize the depth and 

surface opening area of each individual pit in a specimen. Additionally, algorithms were 

developed to train CNNs for pitting corrosion identification. The training processes involved using 

MATLAB’s built-in deep learning trainer, as well as the retraining of an existing network, 

GoogLeNet. The CNN performance was evaluated using various metrics, including accuracy, 

loss, recall, precision, and F1-measure to give a comprehensive assessment on the efficacy of 

the CNNs to identify pitting corrosion. 

 

Both corrosion procedures generated consistent pitting damage on AISI 304 stainless steel 

specimens. The results showed that time has the greatest influence on pitting depth. Meanwhile, 

the applied stress in the steel had the greatest influence on the pit morphology. Specifically, pits 

formed under tensile stress exhibited a significantly smaller surface opening area than pits 

formed under compression stress. This is important because the smaller surface opening area 

leads to a larger stress concentration in the narrower pit. This can lead to early SCC which is 

highly detrimental to structural health and additionally can make the damage harder to detect. 

However, since most structural members experience bending stress, the significantly larger 

compression pits would be much easier to detect and, knowing that the specimen is under 

bending, it can be predicted that there are similar pit depths on the tension side of the member, 

even if the pits are hardly visible. This means that structural members under compression can 

serve as an early indicator that pitting damage is occurring. This difference in pitting morphology 

under loading has previously been unknown and will be important in understanding the damage 

in field applications depending on what kind of loading a structure is experiencing.  
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Furthermore, the CNN tests were shown promising for pitting corrosion detection. Despite being 

trained on a highly limited, low-resolution library of images, both CNN algorithms had high 

accuracy. The retrained GoogLeNet CNN had higher accuracy at 87.2% than the MATLAB-based 

CNN, which had an accuracy of 84.45%. Notably, GoogLeNet also had greater potential for 

training even on the current library size without encountering overfitting. The loss metric showed 

that, while there is room for improvement before it is used in the field, it is trending downwards 

towards an acceptable value. The consistency in the validation loss indicates that the CNN 

effectively models the dataset and is expected to continue improving with additional iterations. In 

addition, GoogLeNet performed better when considering recall, precision, and F1-measure 

parameters. However, both CNNs possessed the most impactful errors (errors that classify an 

image as being “No Pit” when pits exist, or false negative) at similar quantities and would need to 

be further mitigated with a larger image library. Mitigating these errors requires a larger library to 

enhance differentiation of pits from surface defects. Expanding the image library with higher-

resolution images that span a larger area of the specimen will increase the accuracy, recall, 

precision, and F1-measure and lead to a CNN that can better identify pitting corrosion. 

 

Future work for the corrosion experiment should include testing a wider range of stress levels and 

time periods. Additionally, temperature could be an important factor in the pit morphology and 

was an environmental variable kept constant in these methods. The pitted specimens should be 

tested and further loaded until rupture. This would determine how pitting affects the load capacity 

of the specimens. Most studies agree that depth is the most dangerous damage aspect of pitting 

corrosion. Therefore, conducting these tests could validate this claim and establish a potential 

correlation between corrosion time and ultimate load reduction. 

 

Future work for the CNNs includes expanding the library with higher-resolution images and a 

much larger quantity of images. With more images, the current images could be partitioned into 

larger sections, enabling a more accurate analysis. Additionally, the classes used in classification 

can be changed to four, namely, high severity pits, medium severity pits, low severity pits, and no 
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pits. This would give the user a more nuanced understanding about the damage over just the 

knowledge that pitting exists. For this to be possible, the load on a structure would also need to 

be known since the visible pitting on the surface opening area is directly correlated to load 

application. 
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