
267

Resource-Aware Soundness for Big-Step Semantics

RICCARDO BIANCHINI, University of Genoa, Italy

FRANCESCO DAGNINO, University of Genoa, Italy

PAOLA GIANNINI, University of Eastern Piedmont, Italy

ELENA ZUCCA, University of Genoa, Italy

We extend the semantics and type system of a lambda calculus equipped with common constructs to be

resource-aware. That is, reduction is instrumented to keep track of the usage of resources, and the type system

guarantees, besides standard soundness, that for well-typed programs there is a computation where no needed

resource gets exhausted. The resource-aware extension is parametric on an arbitrary grade algebra, and does

not require ad-hoc changes to the underlying language. To this end, the semantics needs to be formalized in

big-step style; as a consequence, expressing and proving (resource-aware) soundness is challenging, and is

achieved by applying recent techniques based on coinductive reasoning.

CCS Concepts: • Theory of computation→ Program analysis; Type structures.

Additional Key Words and Phrases: Graded modal types, generalized inference systems

ACM Reference Format:

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. 2023. Resource-Aware Soundness

for Big-Step Semantics. Proc. ACM Program. Lang. 7, OOPSLA2, Article 267 (October 2023), 29 pages. https:

//doi.org/10.1145/3622843

1 INTRODUCTION

An increasing interest has been devoted in recent research to resource-awareness, that is, to formal
techniques for reasoning about the usage of resources in computations, where di�erent kinds of
usage are modeled as grades. For instance, taking grades of shape A ::= 0 | 1 | l , meaning either not
used, or used once1, or used in an unrestricted way, we can distinguish the functions _x .5, _x .x, and
_x .x + x, by assigning the grade 0, 1, and l , respectively, to their parameter. A similar example is
counting; that is, grades are natural numbers with either bounded or exact usage; however, grades
can equally well model non-quantitative information, e.g., the fact that the parameter of a function
is used with a given privacy level. In the di�erent proposals in the literature, grades have a similar
algebraic structure, basically a semiring specifying sum +, multiplication ·, and 0 and 1 constants,
and some kind of order relation. Here, we will assume a variant of this notion called grade algebra.

Whereas most literature has been devoted to resource-aware type systems, where grades are used
as annotations of types2 [Atkey 2018; Brunel et al. 2014; Dal Lago and Gavazzo 2022; Gaboardi et al.
2016; Ghica and Smith 2014; Orchard et al. 2019; Petricek et al. 2014], a few works have considered
resource-aware semantics as well [Bianchini et al. 2023b; Choudhury et al. 2021], where evaluation

1In the �avour either “exactly” or “at most” once.
2Such annotated types are also called graded modal types.

Authors’ addresses: Riccardo Bianchini, riccardo.bianchini@edu.unige.it, University of Genoa, , Italy; Francesco Dagnino,

francesco.dagnino@dibris.unige.it, University of Genoa, , Italy; Paola Giannini, paola.giannini@uniupo.it, University of

Eastern Piedmont, , Italy; Elena Zucca, elena.zucca@unige.it, University of Genoa, , Italy.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART267

https://doi.org/10.1145/3622843

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0003-0491-7652
HTTPS://ORCID.ORG/0000-0003-3599-3535
HTTPS://ORCID.ORG/0000-0003-2239-9529
HTTPS://ORCID.ORG/0000-0002-6833-6470
https://doi.org/10.1145/3622843
https://doi.org/10.1145/3622843
https://orcid.org/0000-0003-0491-7652
https://orcid.org/0000-0003-3599-3535
https://orcid.org/0000-0003-2239-9529
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.1145/3622843
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622843&domain=pdf&date_stamp=2023-10-16

267:2 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

takes place in an enviroment of available resources, each one with an associated grade modeling its
current amount. Since both the semantics and the type system are graded, we can formally state
resource-aware soundness, meaning that well-typed programs can neither get stuck due to standard
typing errors, nor due to resource exhaustion.
The aim of this paper is to design resource-aware semantics and a type system, and formulate

and prove resource-aware soundness, in as much as possible a light, abstract and general way,
without requiring ad-hoc changes to the underlying language. We detail below how this is achieved,
pointing out novelties with respect to previous work.

Keeping original syntax. In the literature on graded type systems, the production of types has
shape T ::= . . . | TA , that is, grade decorations can be arbitrarily nested. Correspondingly, the
syntax includes an explicit box construct, which transforms a term of type T into a term of type
TA , through a promotion rule which multiplies the context by A , and a corresponding unboxing
mechanism. Here, we take a much lighter approach, where the syntax of terms is not a�ected,
in adherence to the “no ad-hoc changes” principle mentioned above. The production for types is
T ::= gA , with g non-graded type, i.e., all types are (once) graded. Since there is no boxing/unboxing,
there is no explicit promotion rule, but di�erent grades can be assigned to an expression, assuming
di�erent contexts. To our knowledge, such an approach with no boxing/unboxing has only been
previously adopted in [Bianchini et al. 2023b], where, however, a Java-like language was considered,
hence with a much simpler type system, nominal and with no functional types.

Paradigmatic underlying language. We add resource-awareness on top of an extended lambda
calculus, intended to be representative of typical language features. Most literature on graded type
systems considers similar lambda calculi; however, besides the fact that we do not add ad-hoc
syntax, as discussed above, another distinguishing novelty of our work is that we include in the
calculus two important constructs which are only marginally considered in the literature. First, we
provide an in-depth investigation of resource consumption in recursive functions. Roughly, the
declaration of a function adds to the environment a resource which needs to be graded so as to
cover the possibile recursive calls; correspondingly, a function which is recursive needs to be typed
with an “in�nite” grade. Secondly, our graded type system smoothly includes equi-recursive types,
a feature never handled, to our knowledge, in previous work on grades, and which, di�erently from
iso-recursive presentations, once again permits no syntax overhead.

Natural extension of the standard semantics. Since the reduction relation itself is graded3, in
small-step semantics subterms need to be annotated [Bianchini et al. 2023b; Choudhury et al. 2021]
to ensure that their reduction happens at each step with the same grade. The novel idea in this
paper is to de�ne the resource-aware semantics, instead, in big-step style, so that no annotations
are needed, again keeping the underlying language una�ected. A consequence of this choice is that
proving and even expressing (resource-aware) soundness of the type system becomes challenging,
since in big-step semantics non-terminating and stuck computations are indistinguishable [Cousot
and Cousot 1992; Leroy and Grall 2009]. To solve this problem, the big-step judgment is extended
to model divergence explicitly, and is de�ned by a generalized inference system [Ancona et al. 2017a;
Dagnino 2019], where rules are interpreted in an essentially coinductive, rather than inductive, way,
in the sense that in�nite proof trees are allowed, in a controlled way. We note that our proof of
resource-aware soundness is a signi�cant application of these innovative techniques.

Parametricity. The resource-aware semantics and type system are parametric on an arbitrary
grade algebra. Such independence from the speci�c nature of grades is common to most, but not

3To express that its �nal result will be a value to be used with a given grade.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:3

all, approaches. In particular, compared to [Bianchini et al. 2023b] whose type system, like ours,
supports no box/unbox constructs, an important novelty is that here we extend this approach to
a more general de�nition of grade algebra, including non-a�ne instances as well, for instance,
natural numbers with exact counting. It is worthwhile to note that, when the underlying algebra is
non-a�ne, some language constructs may turn out to be ill-typed, since resources are not consumed
in an exact way, as we will discuss in Section 6.
The “no ad-hoc changes” principle is achieved in two respects. First, the syntax is una�ected.

This is very important from a language design point of view, meaning that it would be possible in
principle to add resource-awareness to an arbitrary language, along the lines shown here:

• without requiring the programmer to learn new non-trivial constructs (e.g., box/unbox could
be hard for a Java programmer)

• ensuring backward compatibility, since old code will still work, by only embedding plain
types into graded types. This is always possibile; for instance, with grades A ::= 0 | 1 | l ,
non-graded code can simply be seen as l-graded.

Moreover, the semantics does not need annotations of subterms. This is a more technical feature,
unimportant for the standard programmer, but allowing a cleaner and simpler way to analyse the
behaviour of programs, notably reasoning directly on source code.

In a nutshell, we illustrate how to equip an arbitrary language with resource-awareness, keeping
syntax una�ected, and proving resource-aware soundness. Most previous works on graded type
systems do not consider resource-aware soundness, and require constructs for explicit promotion
(box/unbox); [Choudhury et al. 2021] introduces resource-aware semantics and soundness, but still
has box/unbox, and does not include recursion/non-termination and recursive types; [Bianchini
et al. 2023b] has resource-aware semantics and soundness and keeps syntax una�ected, but, taking
a Java-like language, does not deal with higher-order functions and only has nominal types. The
calculus in our paper includes recursion, higher-order functions, and recursive types, hence can be
taken as a powerful enough example to illustrate how to add resource-awareness.

After formally de�ning grade algebras in Section 2, in Section 3 and Section 4 we present resource-
aware reduction, and type system, respectively. In Section 5 we prove resource-aware soundness.
We provide examples and discussions in Section 6. Section 7 surveys related work, summarizes the
contributions, and outlines future work. Proofs of lemmas can be found in Appendix A.

2 ALGEBRAIC PRELIMINARIES: A TAXONOMY OF GRADE ALGEBRAS

In this section we introduce the algebraic structures we will use throughout the paper. At the
core of our work there are grades, namely, annotations in terms and types expressing how or how
much resources can be used during the computation. As we will see, we need some operations
and relations to properly combine and compare grades in the resource-aware semantics and type
system, hence we assume grades to form an algebraic structure called grade algebra de�ned below.
Such a structure is a slight variant of others in literature [Abel and Bernardy 2020; Atkey 2018;
Brunel et al. 2014; Choudhury et al. 2021; Gaboardi et al. 2016; Ghica and Smith 2014; McBride
2016; Orchard et al. 2019; Wood and Atkey 2022], which are all instances of ordered semirings.

De�nition 2.1 (Ordered Semiring). An ordered semiring is a tuple R = ⟨|R|, ⪯, +, ·, 0, 1⟩ such that:

• ⟨|R|, ⪯⟩ is a partially ordered set;
• ⟨|R|, +, 0⟩ is a commutative monoid;
• ⟨|R|, ·, 1⟩ is a monoid;

and the following axioms are satis�ed:

• A ·(B + C) = A ·B + A ·C and (B + C)·A = B ·A + C ·A , for all A, B, C ∈ |R|;

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:4 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

• A ·0 = 0 and 0·A = 0, for all A ∈ |R|;
• if A ⪯ A ′ and B ⪯ B′ then A + B ⪯ A ′ + B′ and A ·B ⪯ A ′·B′, for all A, A ′B, B′ ∈ |R|;

Essentially, an ordered semiring is a semiring with a partial order on its carrier which makes
addition and multiplication monotonic with respect to it. Roughly, addition and multiplication
(which is not necessarily commutative) provide parallel and sequential composition of usages,
1 models the unitary or default usage and 0 models no use. Finally, the partial order models
overapproximation in the resource usage, which allows for �exibility, for instance we can have
di�erent usage in the branches of an if-then-else construct.
In an ordered semiring there can be elements A ⪯ 0, which, however, make no sense in our

context, since 0 models no use. Hence, in a grade algebra we forbid such grades.

De�nition 2.2 (Grade Algebra). An ordered semiring R = ⟨|R|, ⪯, +, ·, 0, 1⟩ is a grade algebra if
A ⪯ 0 implies A = 0, for all A ∈ |R|.

This property is not technically needed, but motivated by modelling reasons and to simplify
some de�nitions. Moreover, it can be forced in any ordered semiring, just noting that the set
�⪯0 = {A ∈ |R| | A ⪯ 0} is a two-sided ideal and so the quotient semiring R/�⪯0 is well-de�ned and
is a grade algebra. We now give some examples of grade algebras adapted from the literature.

Example 2.3. (1) The simplest way of measuring resource usage is by counting, as can be done
using natural numbers with their usual operations. We consider two grade algebras over
natural numbers: one for bounded usage Nat≤ = ⟨N, ≤, +, ·, 0, 1⟩ taking the natural ordering
and another for exact usage Nat= = ⟨N,=, +, ·, 0, 1⟩ taking equality as order, thus basically
forbidding approximations of resource usage.

(2) The linearity grade algebra ⟨{0, 1,∞}, ≤, +, ·, 0, 1⟩} is obtained fromNat= above by identifying
all natural numbers strictly greater than 1 and taking as order 0 ≤ ∞ and 1 ≤ ∞; the a�nity

grade algebra only di�ers for the order, which is 0 ≤ 1 ≤ ∞.
(3) In the trivial grade algebra Triv the carrier is a singleton set |Triv| = {∞}, the partial order is

the equality, addition and multiplication are de�ned in the trivial way and 0Triv = 1Triv = ∞.
(4) The grade algebra of extended non-negative real numbers is the tupleR∞

≥0=⟨[0,∞], ≤, +, ·, 0, 1⟩,
where usual order and operations are extended to ∞ in the expected way.

(5) A distributive lattice L = ⟨|L|, ≤,∨,∧,⊥,⊤⟩, where ≤ is the order, ∨ and ∧ the join and
meet, and ⊥ and ⊤ the bottom and top element, respectively, is a grade algebra. Such
grade algebras do not carry a quantitative information, as the addition is idempotent, but
rather express how/in which mode a resource can be used. They are called informational by
[Abel and Bernardy 2020].

(6) Given grade algebras R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩ and S = ⟨|S |, ⪯S, +S, ·S, 0S, 1S⟩, the product
R×S = ⟨{(A, B) | A ∈ |R| ∧ B ∈ |S |}, ⪯, +, ·, (0R, 0S), (1R, 1S)⟩, where operations are the pairwise
application of the operations for R and S, is a grade algebra.

(7) Given a grade algebra R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩, set R
∞
= ⟨|R| + {∞}, ⪯, +, ·, 0R, 1R⟩ where ⪯

extends ⪯R by adding A ⪯ ∞ for all A ∈ |R∞ | and + and · extend +R and ·R by A +∞ = ∞+A = ∞,
for all A ∈ |R∞ |, and A ·∞ = ∞·A = ∞, for all A ∈ |R∞ | with A ≠ 0R, and 0R·∞ = ∞·0R = 0R.
Then, R∞ is a grade algebra, where∞ models unrestricted usage.

(8) Given R as above, set |Int(R) | = {⟨A, B⟩ ∈ |R| × |R| | A ⪯R B}, the set of intervals be-
tween two points in |R|, with ⟨A, B⟩ ⪯ ⟨A ′, B′⟩ i� A ′ ⪯R A and B ⪯R B′. Then, Int(R) =

⟨|Int(R) |, ⪯, +, ·, ⟨0R, 0R⟩, ⟨1R, 1R⟩⟩ is a grade algebra, with + and · de�ned pointwise.

We say that a grade algebra is trivial if it is isomorphic to Triv, that is, it contains a single point.
It is easy to see that a grade algebra is trivial i� 1 ⪯ 0, as this implies A ⪯ 0, hence A = 0, for all
A ∈ |R|, by the axioms of ordered semiring and De�nition 2.2.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:5

Remark 2.4. In a grade algebra R, grades A ∈ |R| satisfying 0 ⪯ A play a special role: they represent
usages that can be discarded, since they can be reduced to 0 through the approximation order. For
instance, in the linearity grade algebra of Example 2.3(2), the element∞ can be discarded, while
the element 1 cannot. A grade algebra is said a�ne if 0 ⪯ A holds for all A ∈ |R|. Note that this
condition is equivalent to requiring just 0 ⪯ 1 again thanks to the axioms of ordered semiring.
Instances of a�ne grade algebras from Example 2.3 are bounded usage (Item 1) and distributive
lattices (Item 5), while exact usage (Item 1) and linearity (Item 2) are not a�ne.

A grade algebra is still a quite wild structure, notably there are weird phenomena due to the
interaction of addition and multiplication with zero. In particular, we can get 0 by summing or
multiplying non-zero grades, that is, there are relevant usages that when combined elide each other.

De�nition 2.5. Let R = ⟨|R|, ⪯, +, ·, 0, 1⟩ be a grade algebra. We say that

• R is integral if A ·B = 0 implies A = 0 or B = 0, for all A, B ∈ |R|;
• R is reduced if A + B = 0 implies A = B = 0, for all A, B ∈ |R|.

All grade algebras in Example 2.3 are reduced, provided that the parameters are reduced as well.
Similarly, they are all integral except Items 5 and 6. Indeed, in the former there can be elements
di�erent from ⊥ whose meet is ⊥ (e.g., disjoint subsets in the powerset lattice), while in the latter
there are “spurious” pairs ⟨A, 0⟩ and ⟨0, B⟩ whose product is ⟨0, 0⟩ even if both A ≠ 0 and B ≠ 0.
Fortunately, there is an easy construction making a grade algebra both reduced and integral.

De�nition 2.6. Set R = ⟨|R|, ⪯, +, ·, 0, 1⟩ an ordered semiring.We denote by R0 the ordered semiring
⟨|R| + {0̂}, ⪯, +, ·, 0̂, 1⟩ where we add a new point 0̂ and extend order and operations as follows:

0̂ ⪯ A i� 0 ⪯ A ,
A + 0̂ = 0̂ + A = A ,
A ·0̂ = 0̂·A = 0̂, for all A ∈ |R| + {0̂}.

It is easy to check that the following proposition holds.

Proposition 2.7. If R = ⟨|R|, ⪯, +, ·, 0, 1⟩ is a grade algebra, then R0 is a reduced and integral grade
algebra.

Applying this construction to Items 5 and 6 we get reduced and integral grade algebras. However,
for the latter the result is not yet satisfactory. Indeed, the resulting grade algebra still has spurious
elements which are di�cult to interpret. Thus we consider the following re�ned construction.

Example 2.8. Let R and S be non-trivial, reduced and integral grade algebras. The smash product

of R and S is R? S = ⟨|R? S |, ⪯, +, ·, 0̂, ⟨1R, 1S⟩⟩, where |R? S | = | (R× S)0 | \ (|R| × {0S} ∪ {0R} × |S |),
⪯, + and · are the restrictions of the order and operations of (R × S)0, as in De�nition 2.6, to the
subset |R ? S |, and 0̂ is the zero of (R × S)0. It is easy to see R ? S is a non-trivial, reduced and
integral grade algebra.

In the rest of the paper we will assume an integral grade algebra R = ⟨|R|, ⪯, +, ·, 0, 1⟩. Requiring
R to be integral allows some simpli�cations, in particular, this ensures that multiplying non-zero
grades we cannot get 0, as useful, e.g., in Lemma 4.2(2).

3 RESOURCE-AWARE SEMANTICS

We de�ne, for a standard functional calculus, an instrumented semantics which keeps track of
resource usage, hence, in particular, it gets stuck if some needed resource is insu�cient.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:6 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

e ::= x | rec f ._x .e | e1e2 | expression
| unit | match e1 with unit → e2
| ⟨A e1, e2 ⟩B | match e1 with ⟨x, y⟩ → e2 |
| inlA e | inrA e | match e with inl x1 → e1 or inr x2 → e2 |

v ::= rec f ._x .e | unit | ⟨Av1, v2 ⟩B | inlAv | inrAv value
d ::= x1 : (A1, v1), . . . , x= : (A=, v=) environment

Fig. 1. Syntax

Surface syntax. The (surface) syntax is given in Fig. 1. We assume variables x, y, f , . . . , where
the last will be used for variables denoting functions. The constructs are pretty standard: the
unit constant, pairs, left and right injections, and three variants of match construct playing as
destructors of units, pairs, and injections, respectively. Instead of standard lambda expressions
and a fix operator for recursion, we have a unique construct rec f ._x .e, meaning a function with
parameter x and body e which can recursively call itself through the variable f . Standard lambda
expressions can be recovered as those where f does not occur free in e, that is, when the function is
non-recursive, and we will use the abbreviation _x .e for such expressions. The motivation for such
unique construct is that in the resource-aware semantics there is no immediate parallel substitution
as in standard rules for application and fix, but occurrences of free variables are replaced one at
a time, when needed, by their value stored in an environment. Thus, application of a (possibly
recursive) function can be nicely modeled by generalizing what expected for a non-recursive one,
that is, it leads to the evaluation of the body in an environment where both f and x are added as
resources, as formalized in rule (app) in Fig. 5.
The pair and injection constructors are decorated with a grade for each subterm, intuitively

meaning “how many copies” are contained in the compound term. For instance, taking as grades
the natural numbers as in Example 2.3(1), a pair of shape ⟨2e1, e2 ⟩2 contains “two copies” of each
component. In the resource-aware semantics, this is re�ected by the fact that, to evaluate (one copy
of) such pair, we need to obtain 2 copies of the results of e1 and e2; correspondingly, when matching
such result with a pair of variables, both are made available in the environment with grade 2.
We will sometimes use, rather than match e1 with unit → e2, the alternative syntax e1;e2,

emphasising that there is a sequential evaluation of the two subterms.

Resource-aware semantics by examples. The resource-aware semantics is de�ned on con�gurations,
that is, pairs e |d where d is an environment keeping track of the existing resources, parametrically
on a given grade algebra. More precisely, as shown in Fig. 1, the environment is a �nite map
associating to each resource (variable), besides its value, a grade modeling its allowed usage.
The judgment has shape e |d ⇒A v|d

′, meaning that the con�guration e |d produces a value v
and a �nal environment d ′. The reduction relation is graded, that is, indexed by a grade A , meaning
that the resulting value can be used (at most) A times, or, in more general (non-quantitative) terms,
(at most) in A mode. The grade of a variable in the environment decreases, each time the variable is
used, of the amount speci�ed in the reduction grade4. Of course, this can only happen if the current
grade of the variable can be reduced of such an amount. Otherwise, evaluation is stuck; formally,
since the reduction relation is big-step, no judgment can be derived.
The choice of big-step style is motivated since small-step style, as in [Bianchini et al. 2023b],

needs a syntax where all operators have a grade annotation for each subterm, to ensure that all

4More precisely, the reduction grade acts as a lower bound for this amount, see comment to rule (var).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:7

(var)

p|d ⇒ v|p : (0, v)

. . .
(pair)

⟨u, u⟩ |d′ ⇒ ⟨u, u⟩ |d′

(match-p)

match p with ⟨x, y⟩ → ⟨u, u⟩ |d ⇒ ⟨u, u⟩ |d′

d = p : (1, v) with v = ⟨v1, v2 ⟩
d′ = p : (0, v), x : (1, v1), y : (1, v2)
d′′ = p : (0, v), x : (0, v1), y : (1, v2)

(var)

p|d ⇒ v|p : (0, v)

(var)

x|d′ ⇒ v1 |d
′′

(var)

x|d′′ ⇒???

(pair)

⟨x, x⟩ |d′ ⇒???

(match-p)

match p with ⟨x, y⟩ → ⟨x, x⟩ |d ⇒???

Fig. 2. Examples of resource-aware evaluation (counting usages)

reduction steps have the same grade. Here, instead, as shown above, only operators which model
“data containers” (pair and injection constructors) are decorated with grades for their components.

The instrumented semantics will be formally de�ned on a �ne-grained version of expressions.
However, in order to focus on the key ideas of resource-aware evaluation, �rst we illustrate its
expected behaviour on some simple examples in the surface syntax.

Example 3.1. Let us consider the following expressions:

• e1 = match p with ⟨x, y⟩ → ⟨unit, unit⟩
• e2 = match p with ⟨x, y⟩ → ⟨x, unit⟩
• e3 = match p with ⟨x, y⟩ → ⟨x, y⟩
• e4 = match p with ⟨x, y⟩ → ⟨x, x⟩

to be evaluated in the environment d = p : (1, v) with v = ⟨v1, v2⟩ . Assume, �rst, that grades are
natural numbers, see Example 2.3(1). In order to lighten the notation, 1 annotations are considered
default, hence omitted. Moreover, in �gures we abbreviate unit by u. In the �rst proof tree in
Fig. 2 we show the evaluation of e1. The resource p is consumed, and its available amount (1) is
“transferred” to both the resources x and y, which are added in the environment5, and not consumed.

The evaluation of e2 is similar, apart that the resource x is consumed as well, and the evaluation
of e3 consumes all resources. Finally, the evaluation of e4 is stuck, that is, no proof tree can be
constructed: indeed, when the second occurrence of x is found, the resource is exhausted, as shown
in the second (incomplete) proof tree in Fig. 2. A result could be obtained, instead, if the original
grade of p was greater than 1 (e.g., 2), since in this case x (and y) would be added with grade 2, or,
alternatively, if the value associated to p in the environment was, e.g., v = ⟨2v1, v2⟩ .

In the example above, grades model how many times resources are used. Assume now a grade
algebra where grades model a non-quantitative knowledge, that is, track possible modes in which
a resource can be used. A very simple example are privacy levels 0 ⪯ private ⪯ public. Sum is
the join, meaning that we obtain a privacy level which is less restrictive than both: for instance, a
variable which is used as public in a subterm, and as private in another, is overall used as public.
Multiplication is themeet, meaning that we obtain a privacy level which is more restrictive than both.
Note that exactly the same structure could be used to model, e.g., modi�ers readonly and mutable

in an imperative setting, rather than privacy levels. Moreover, the structure can be generalized by
adding a 0 element to any distributive lattice as in Example 2.3(5).

Example 3.2. In Example 3.1, writing priv and pub (default, omitted in the annotations) for short,
we have, e.g., for d = p : (pub, v) with v = ⟨privv1, v2⟩ , that the evaluation in mode pub of e1 is
analogous to that in Fig. 2; however, the evaluation in mode pub of e2, e3, and e4 is stuck, since it

5Modulo renaming, omitted here for simplicity.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:8 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

p|d ⇒ v|p:(pub, v)

x|d′ ⇒???

⟨x, u⟩ |d′ ⇒???

match p with ⟨x, y⟩ → ⟨x, u⟩ |d ⇒???

d = p : (pub, v) with v = ⟨privv1, v2 ⟩
d′ = p : (pub, v), x : (priv, v1), y : (pub, v2)

p|d ⇒ v|p:(pub, v)

x|d′ ⇒priv v1 |d
′ y|d′ ⇒priv v2 |d

′

⟨x, y⟩ |d′ ⇒priv ⟨v1, v2 ⟩ |d
′

match p with ⟨x, y⟩ → ⟨x, y⟩ |d ⇒priv ⟨v1, v2 ⟩ |d
′

Fig. 3. Examples of resource-aware evaluation (privacy levels)

v ::= x | rec f ._x .e | unit | ⟨Av1, v2 ⟩B | inlAv | inrAv value expression
e ::= return v | let x = e1 in e2 | v1v2 (possibly diverging) expression

| match v with unit → e

| match v with ⟨x, y⟩ → e

| match v with inl x1 → e1 or inr x2 → e2

c ::= e |d con�guration

Fig. 4. Fine-grained syntax

needs to use the resource x, which gets a grade priv = priv·pub, hence cannot be used in mode pub
since pub ̸⪯ priv, as we show in the �rst (incomplete) proof tree for e2 in Fig. 3. On the other hand,
evaluation in mode priv can be safely performed; indeed, resource p can be used in mode priv since
priv ⪯ pub, as shown in the second proof tree in Fig. 3.

Formal de�nition of resource-aware semantics. As anticipated, rules de�ning the instrumented
semantics are given on a �ne-grained version of the language. This long-standing approach [Levy
et al. 2003] is used to clearly separate e�ect-free from e�ectful expressions (computations), and
to make the evaluation strategy, relevant for the latter, explicit through the sequencing construct
(let-in), rather than �xed a-priori. In our calculus, the computational e�ect is divergence, so the
e�ectful expressions will be called possibly diverging, whereas those e�ect-free will be called value

expressions6. Note that, as customary, possibly diverging expressions are de�ned on top of value
expressions, whereas the converse does not hold; such strati�cation will allow modularity in the
technical development, as will be detailed in the following.
The �ne-grained syntax is shown in Fig. 4. As said above, there are two distinct syntactic

categories of values and possibly diverging expressions. For simplicity we use the samemetavariable
e of the surface syntax for the latter, though the de�ning production is changed. This is justi�ed by
the well-known fact that expressions of the surface language can be encoded in the �ne-grained
syntax, by using the let-in construct, and the injection of value expressions into expressions
made explicit by the return keyword.

The resource-aware semantics is formally de�ned in Fig. 5. Corresponding to the two syntactic
categories, such semantics is expressed by two distinct judgments, v |d ⇒A v|d

′ in the top section,

6They are often called just “values” in literature, though, as already noted in [Levy et al. 2003], they are not values in the

operational sense, that is, results of the evaluation; here we keep the two notions distinct. Values turn out to be value

expressions with no free variables, except that under a lambda.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:9

(var)
x |d, x : (B, v) ⇒A v|d, x : (B′, v)

A ⪯ A ′

A ′ + B′ ⪯ B
(fun)

rec f ._x .e |d ⇒A rec f ._x .e |d

(unit)
unit|d ⇒A unit|d

(pair)
v1 |d ⇒A ·A1 v1 |d1 v2 |d1 ⇒A ·A2 v2 |d2

⟨A1v1, v2 ⟩A2 |d ⇒A ⟨A1v1, v2 ⟩A2 |d2

(inl)
v |d ⇒A ·B v|d

′

inlBv |d ⇒A inl
B
v|d ′

(inl)
v |d ⇒A ·B v|d

′

inrBv |d ⇒A inr
B
v|d ′

(ret)
v |d ⇒B v|d

′

return v |d ⇒A v|d ′
A ⪯ B ≠ 0 (let)

e1 |d ⇒B v|d
′′

e2 [x
′/x] |d ′′, x′ : (B, v) ⇒A v

′ |d ′

let x = e1 in e2 |d ⇒A v
′ |d ′

x′ fresh

(app)

v1 |d ⇒B rec f ._x .e |d1 v2 |d1 ⇒C v2 |d2
e[f ′/f] [x′/x] |d2, f

′
: (B2, rec f ._x .e), x

′
: (C, v2) ⇒A v|d

′

v1v2 |d ⇒A v|d ′

B1 + B2 ⪯ B

B1 ≠ 0

f ′, x′ fresh

(match-u)
v |d ⇒B unit|d

′′ e |d ′′ ⇒A v|d
′

match v with unit → e |d ⇒A v|d
B ≠ 0

(match-p)

v |d ⇒B ⟨
A1v1, v2 ⟩A2 |d ′′

e[x′/x] [y′/y] |d ′′, x′ : (B ·A1, v1), y
′
: (B ·A2, v2) ⇒A v|d

′

match v with ⟨x, y⟩ → e |d ⇒A v|d ′
B ≠ 0

x′, y′ fresh

(match-l)

v |d ⇒C inl
B
v|d ′′

e1 [y/x1] |d
′′, y : (C ·B, v) ⇒A v

′ |d ′

match v with inl x1 → e1 or inr x2 → e2 |d ⇒A v
′ |d ′

C ≠ 0

y fresh

(match-r)

v |d ⇒C inr
B
v|d ′′

e2 [y/x1] |d
′′, y : (C ·B, v) ⇒A v

′ |d ′

match v with inl x1 → e1 or inr x2 → e2 |d ⇒A v
′ |d ′

C ≠ 0

y fresh

Fig. 5. Resource-aware semantics

and c ⇒A v|d in the bottom section, with the latter de�ned on top of the former. Hence, the
metarules in Fig. 5 can be equivalently seen as

• a unique inference system de�ning the union of the two judgments
• an inference system in the top section, de�ning v |d ⇒A v|d

′, and an inference system in the
bottom section, de�ning c ⇒A v|d , where the previous judgment acts as a side condition.

For simplicity, we use the same notation for the two judgments, and in the bottom section of Fig. 5
we write both judgments as premises, taking the �rst view. However, the second view will be useful
later to allow a modular technical development.

Rules for value expressions just replace variables by values; such reduction cannot diverge, but
is resource-consuming, hence can get stuck.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:10 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

In particular, in (var), which is the key rule where resources are consumed, a variable is replaced
by its associated value, and its grade B decreases to B′, burning an amount A ′ of resource which
has to be at least the reduction grade. The side condition A ′ + B′ ⪯ B ensures that the initial grade
allows to consume the A ′ amount, leaving a residual grade B′. Note that the consumed amount is
not required to be exactly A , that is, there is no constraint that the semantics should not “waste*
resources. Hence, reduction is largely non-deterministic; it will be the responsibility of the type
system to ensure that there is at least one reduction which does not get stuck.
The other rules for value expressions propagate rule (var) to subterms which are variables. In

rules for “data containers” (pair), (in-l), and (in-r), the components are evaluated with the evaluation
grade of the compound value expression, multiplied by that of the component.

Whereas evaluation of value expressions may have grade 0, when they are actually used, that is,
are subterms of possibly diverging expressions, they should be evaluated with a non-zero grade, as
required by a side condition in the corresponding rules in the bottom section of Fig. 5.

In rule (ret), the evaluation grade of the value expression should be enough to cover the current
evaluation grade. In rule (let), expressions e1 and e2 are evaluated sequentially, the latter in an
environment where the local variable x has been added as available resource, modulo renaming
with a fresh variable to avoid clashes, with the value and grade obtained by the evaluation of e1.

In rule (app), an application v1v2 is evaluated by �rst consuming the resources needed to obtain
a value from v1 and v2, with the former expected to be a (possibly recursive) function. Then, the
function body is evaluated in an environment where the function name and the parameter have
been added as available resources, modulo renaming with fresh variables. The function should
be produced in a “number of copies”, that is, with a grade B , enough to cover both all the future
recursive calls (B2) and the current use (B1); in particular, for a non-recursive call, B2 could be 0.
Instead, the current use should be non-zero since we are actually using the function.

Note that B1 is arbitrary, and could not be replaced by a sound default grade: notably, 1 would not
work for grade algebras where there are grades between 0 and 1, as happens, e.g., for privacy levels.

Note also that, in this rule as in others, there is no required relation between the reduction grades
of some premises (in this case, B and C) and that of the consequence, here A . Of course, depending on
the choice of such grades, reduction could either proceed or get stuck due to resource exhaustion;
the role of the type system is exactly to show that there is a choice which prevents the latter case.

Rules for match constructs, namely (match-u), (match-p), (match-l), and (match-r), all follow the
same pattern. The resources needed to obtain a value from the value expression to be matched are
consumed, and then the continuation is evaluated. In rule (match-u), there is no value-passing from
the matching expression to the continuation, hence their evaluation grades are independent. In
rule (match-p), instead, the continuation is evaluated in an environment where the two variables in
the pattern have been added as available resources, again modulo renaming. The values associated
to the two variables are that of the corresponding component of the expression to be matched,
whereas the grades are the evaluation grade of such expression, multiplied by the grade of the
component. Rules (match-l) and (match-r) are analogous.

Besides the standard typing errors, evaluation graded A can get stuck (formally, no judgment can
be derived) when rule (var) cannot be applied since the side conditions do not hold. Informally, some
resource (variable) is exhausted, that is, can no longer be replaced by its value. Also note that the
instrumented reduction is non-deterministic, due to rule (var). That is, when a resource is needed,
it can be consumed in di�erent ways; hence, soundness of the type system will be soundness-may,
meaning that there exists a computation which does not get stuck.
We end this section by illustrating resource consumption in a non-terminating computation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:11

(var)

y | (A0,B0,1)⇒u | (A1,B0,1)

(var)

f | (A1,B0,1)⇒B0
div | (A1,0,1)

(var)

x | (A1,0,1)⇒u | (A1,0,0)

. . .
(app)

y;f x | (A1,B1,1)⇒???

(app)

f x | (A1,B0,1)⇒???

(match-u)

y;f x | (A0,B0,1)⇒???

Fig. 6. Example of resource-aware evaluation: consumption/divergency

Example 3.3. Consider the function div = rec f ._x .y;f x, which clearly diverges on any argument,
by using in�nitely many times the external resource y. In Fig. 6 we show the (incomplete) proof tree
for the evaluation of an application y;f x, in an environment where f denotes the function div, and
y and x denote unit. For simplicity, as in previous examples, we omit 1 grades, and renaming of
variables; moreover, we abbreviate by (A,B,C) the environment y : (A, unit), f : (B, div), x : (C, unit).

In this way, we can focus on the key feature the (tentative) proof tree shows: the body of div is
evaluated in�nitely many times, in a sequence of environments, starting from the root, where the
grades of the external resource y, assuming that each time it is consumed by 1, are as follows:

A0 = A1 + 1 A1 = A2 + 1 . . . A: = A:+1 + 1 . . .

In the case of the resource f , at each recursive call, the function must be produced with a grade
which is the sum of its current usage (assumed again to be 1) and the grade which will be associated
to (a fresh copy of) f in the environment, to evaluate the body. As a consequence, we also get:

B0 = B1 + 1 B1 = B2 + 1 . . . B: = B:+1 + 1 . . .

Let us now see what happens depending on the underlying grade algebra, considering y (an
analogous reasoning applies to f). Taking the grade algebra of natural numbers of Example 2.3(1),
it is easy to see that the above sequence of constraints can be equivalently expressed as:

A1 = A0 − 1 A2 = A1 − 1 . . . A:+1 = A: − 1 . . .

Thus, in a �nite number of steps, the grade of y in the environment becomes 0, hence the proof
tree cannot be continued since we can no longer extract the associated value by rule (var). In other
words, the computation is stuck due to resource consumption.

Assume now to take, instead, natural numbers extended with∞, as de�ned in Example 2.3(7).
In this case, if we start with A0 = ∞, intuitively meaning that y can be used in�nitely many times,
evaluation can proceed forever by taking A: = ∞ for all : . The same happens if we take a non-
quantitative grade algebra, e.g., that of privacy levels; we can have A: = public for all : . However,
interpreting the rules in Fig. 5 in the standard inductive way, the semantics we get does not formalize
such non-terminating evaluation, since we only consider judgments with a �nite proof tree. We
will see in Section 5 how to extend the semantics to model non-terminating computations as well.

4 RESOURCE-AWARE TYPE SYSTEM

Types, de�ned in Fig. 7, are those expected for the constructs in the syntax: functional, Unit, (tensor)
product, sum, and (equi-)recursive types, obtained by interpreting the productions coinductively,
so that in�nite7 terms are allowed. However, they are graded, that is, decorated with a grade, and
the type subterms are graded. Moreover, accordingly with the fact that functions are possibly
recursive, arrows in functional types are decorated with a grade as well, called recursion grade in
the following, expressing the recursive usage of the function; thus, functional types decorated with
0 are non-recursive.

7More precisely, regular terms, that is, those with �nitely many distinct subterms.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:12 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

g, f ::= T →B S | Unit | T ⊗ S | T + S non-graded type
T , S ::= gA graded type
Γ,Δ ::= x1 :A1 g1, . . . , x= :A= g= (type-and-coe�ect) context

Fig. 7. Types and (type-and-coe�ect) contexts

In (type-and-coe�ect) contexts, also de�ned in Fig. 7, order is immaterial and x8 ≠ x9 for 8 ≠ 9 ;
hence, they represent maps from variables to pairs consisting of a grade (called coe�ect when
used in this position), and a (non-graded) type. Equivalently, a type-and-coe�ect context can be
seen as a pair consisting of the standard type context x1 : g1 . . . , x= : g= , and the coe�ect context
x1 : A1, . . . , x= : A= . We write dom(Γ) for {x1, . . . , x=}.
We de�ne the following operations on contexts:

• a partial order ⪯

∅ ⪯ ∅

x :B T , Γ ⪯ x :A T ,Δ if B ⪯ A and Γ ⪯ Δ

Γ ⪯ x :A T ,Δ if x ∉ dom(Γ) and Γ ⪯ Δ and 0 ⪯ A

• a sum +

∅ + Γ = Γ

(x :B T , Γ) + (x :A T ,Δ) = x :B+A T , (Γ + Δ)

(x :B T , Γ) + Δ = x :B T , (Γ + Δ) if x ∉ dom(Δ)

• a scalar multiplication ·

B ·∅ = ∅ B ·(x :A T , Γ) = x :B ·A T , (B ·Γ)

These operations on type-and-coe�ect contexts are obtained by lifting the corresponding operations
on coe�ect contexts, which are the pointwise extension of those on coe�ects (grades), to handle
types as well. In this step, the addition becomes partial since a variable in the domain of both
contexts is required to have the same type.
In Fig. 8, we give the typing rules, which are parameterized on the underlying grade algebra.

As for instrumented reduction, the resource-aware type system is formalized by two judgments,
Γ ⊢ v : T and Γ ⊢ e : T , for values and possibly diverging expressions, respectively. However,
di�erently from reduction, the two judgments are mutually recursive, due to rule (t-fun), hence
the metarules in Fig. 8 de�ne a unique judgment which is their union. We only comment the most
signi�cant points. In rule (t-sub-v) and (t-sub), the context can be made more general, and the
grade of the type more speci�c. This means that, on one hand, variables can get less constraining
coe�ects. For instance, assuming a�nity coe�ects as in Example 2.3(2), an expression which can
be typechecked assuming to use a given variable at most once (coe�ect 1) can be typechecked as
well with no constraints (coe�ect l). On the other hand, an expression can get a more constraining
grade. For instance, an expression of grade l can be used where a grade 1 is required.
If we take A = 1, then rule (t-var) is the standard rule for variable in coe�ect systems, where

the coe�ect context is the map where the given variable is used once, and no other variable is
used. Here, more generally, the variable can get an arbitrary grade A , provided that the context is
multiplied by A . The same “local promotion” can be applied in the following rules in the top section.
In rule (t-fun), a (possibly recursive) function can get a graded functional type, provided that

its body can get the result type in the context enriched by assigning the functional type to the
function name, and the parameter type to the parameter. As mentioned, we expect the recursion

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:13

(t-sub-v)
Γ ⊢ v : gA

Δ ⊢ v : gB
B ⪯ A

Γ ⪯ Δ
(t-var)

x :A g ⊢ x : gA

(t-fun)
Γ, f :B g1

A1 →B g2
A2 , x :A1 g1 ⊢ e : g2

A2

A ·Γ ⊢ rec f ._x .e : (g1A1 →B g2A2)
A (t-unit)

∅ ⊢ unit : UnitA

(t-pair)
Γ1 ⊢ v1 : g1

A1 Γ2 ⊢ v2 : g2
A2

A ·(Γ1 + Γ2) ⊢ ⟨A1v1, v2 ⟩A2 : (g1A1 ⊗ g2A2)
A

(t-inl)
Γ ⊢ v : gA1

1

A ·Γ ⊢ inlA1v : (gA1
1
+ gA2

2
)
A (t-inr)

Γ ⊢ v : gA2
2

A ·Γ ⊢ inrA2v : (gA1
1
+ gA2

2
)
A

(t-sub)
Γ ⊢ e : gA

Δ ⊢ e : gB
B ⪯ A

Γ ⪯ Δ
(t-ret)

Γ ⊢ v : gA

Γ ⊢ return v : gA
A ≠ 0

(t-let)
Γ1 ⊢ e1 : g1

A1 Γ2, x :A1 g1 ⊢ e2 : g2
A2

Γ1 + Γ2 ⊢ let x = e1 in e2 : g2A2
(t-app)

Γ1 ⊢ v1 : (g1
A1 →B g2

A2) (A+A ·B) Γ2 ⊢ v2 : g1
A ·A1

Γ1 + Γ2 ⊢ v1v2 : g2A ·A2
A ≠ 0

(t-match-u)
Γ1 ⊢ v : UnitA Γ2 ⊢ e : T

Γ1 + Γ2 ⊢ match v with unit → e : T
A ≠ 0

(t-match-p)
Γ1 ⊢ v : (gA1

1
⊗ gA2

2
)
A

Γ2, x :A ·A1 g, y :A ·A2 g2 ⊢ e : T

Γ1 + Γ2 ⊢ match v with ⟨x, y⟩ → e : T
A ≠ 0

(t-match-in)
Γ1 ⊢ v : (gA1

1
+ gA2

2
)
A

Γ2, x :A ·A1 g1 ⊢ e1 : T Γ2, x :A ·A2 g2 ⊢ e2 : T

Γ1 + Γ2 ⊢ match v with inl x → e1 or inr x → e2 : T
A ≠ 0

Fig. 8. Typing rules

grade B to be 0 for a non-recursive function; for a recursive function, we expect B to be an “in�nite”
grade, in a sense which will be clari�ed in Example 4.1 below.
In the rules in the bottom section, when a value expression is used as subterm of a possibly

diverging expression, its grade is required to be non-zero, since it is evaluated in the computation,
hence its resource consumption should be taken into account.

In rule (t-app), the function should be produced with a grade which is the sum of that required for
the current usage (A) and that corresponding to the recursive calls: the latter are the grade required
for a single usage multiplied by the recursion grade (B). For a non-recursive function (B = 0), the
rule turns out to be as expected for a usual application.

Example 4.1. As an example of type derivation, we consider the function div = rec f ._x .y;f x

introduced in Example 3.3. In Fig. 9, we show a (parametric) proof tree deriving for div a type of
the shape (UnitA1 →B Unit

A2) , in a context providing the external resource y. Consider, �rst of all,
the condition that the recursion grade B should satisfy, that is (A + A ·B) ⪯ B , for some A ≠ 0, meaning
that it should be enough to cover the recursive call in the body and all the further recursive calls.8.
Assuming the grade algebra of natural numbers of Example 2.3(1), there is no grade B satisfying

8Note that A is arbitrary, since there is no sound default grade, and only required to be non-zero since the function

is actually used.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:14 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

(t-var)

y :A ′ U ⊢ y : UA
′

(t-var)

f :A+A ·B g ⊢ f : gA+A ·B
(t-var)

x :A ·A1 U ⊢ x : UA ·A1

A ≠ 0 (t-app)

f :A+A ·B g, x :A ·A1 U ⊢ f x : UA ·A2

A ′ ≠ 0 (t-match-u)

y :A ′ U, f :A+A ·B g, x :A ·A1 U ⊢ y;f x : UA ·A2

(A + A ·B) ⪯ B A ·A1 ⪯ A1 A2 ⪯ A ·A2 (t-sub)

y :A ′ U, f :B g, x :A1 U ⊢ y;f x : UA2

(t-fun) g = UA1 →B U
A2

y :A ′ U ⊢ rec f ._x .y;f x : g

Fig. 9. Example of type derivation: recursive function

this condition. In other words, the type system correctly rejects the function since its application
would get stuck due to resource consumption, as illustrated in Example 3.3. On the other hand, for,
e.g., B = ∞, with natural numbers extended as in Example 2.3(7), (A + A ·B) ⪯ B would hold for any
A ≠ 0, hence the function would be well-typed. Moreover, there would be no constraints on the
parameter and return type, since the conditions A ·A1 ⪯ A1 and A2 ⪯ A ·A2 would be always sati�ed
taking A = 1. Assuming the grade algebra of privacy levels introduced before Example 3.2, where
1 = public, for B = public the condition is satis�ed analogously, again with no constraints on A1
and A2. For B = private, instead, it only holds for A = private, hence the condition A2 ⪯ A ·A2 prevents
the return type of the function to be public, accordingly with the intuition that a function used in
private mode cannot return a public result. In such cases, the type system correctly accepts the
function since its application to a value never gets stuck. Finally note that, to type an application of
the function, e.g., to derive that div u has type UA2 , div should get grade 1 + B , hence the grade of the
external resource y should be (1 + B)·A ′, that is, it should be usable in�nitely many times as well.

A similar reasoning applies in general; namely, for recursive calls in a function’s body we get a
condition of shape (A + A ·B) ⪯ B , with A ≠ 0, forcing the grade B of the function to be “in�nite”. This
happens regardless the recursive function is actually always diverging, as in the example above,
or terminating on some/all arguments. On the other hand, in the latter case the resource-aware
semantics terminates, as expected, provided that the initial amount of resources is enough to cover
the (�nite number of) recursive calls. This is perfectly reasonable, the type system being a static
overapproximation of the evaluation. We will show an example of this terminating resource-aware
evaluation in Section 6 (Fig. 15).

The following lemmas show that the promotion rule, usually explicitly stated in graded type
systems, is admissible in our system (Lemma 4.2), and also a converse holds for value expressions
(Lemma 4.3). Note that we can promote an expression only using a non-zero grade, to ensure that
non-zero constraints on grades in typing rules for expressions are preserved.9 These lemmas also
show that we can assign to a value expression any grade provided that the context is appropriately
adjusted: by demotion we can always derive 1 (taking A = 1) and then by promotion any grade.

Lemma 4.2 (Promotion).

(1) If Γ ⊢ v : gA then B ·Γ ⊢ v : gB ·A

(2) If Γ ⊢ e : gA and B ≠ 0, then B ·Γ ⊢ e : gB ·A .

Lemma 4.3 (Demotion). If Γ ⊢ v : gB ·A then B ·Γ′ ⪯ Γ and Γ
′ ⊢ v : gA , for some Γ′ .

In Fig. 10 we give the typing rules for environments and con�gurations. In such rules, Γ is the
context whose domain is that of the environment, and each variable has as coe�ect its grade in the
environment, and as type that of its value. The side conditions use the relation ⪯• de�ned as follows:

9Without assuming the grade algebra to be integral, we would need to use grades which are not zero-divisors.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:15

(t-env)
Γ8 ⊢ v8 : g8

1 ∀8 ∈ 1..=

Γ ⊢ d ⊲ A1·Γ1 + . . . + A= ·Γ=

d = x1 : (A1, v1), . . . , x= : (A=, v=)
Γ = x1 :A1 g1, . . . , x= :A= g=
(A1·Γ1 + . . . + A= ·Γ=) ⪯• Γ

(t-vconf)
Δ ⊢ v : T Γ ⊢ d ⊲ Γ̂

Γ ⊢ v |d : T
Γ̂ + Δ ⪯• Γ (t-conf)

Δ ⊢ e : T Γ ⊢ d ⊲ Γ̂

Γ ⊢ e |d : T
Γ̂ + Δ ⪯• Γ

Fig. 10. Typing rules for environments and configurations

Δ ⪯Θ Γ if Δ + Θ ⪯ Γ

Δ ⪯• Γ if Δ ⪯Θ Γ for some Θ

In rule (t-env), the side condition requires coe�ects (grades) of variables in the environment to
be enough to cover their uses in all the corresponding values; in rules (t-vconf) and (t-conf) to
be enough to cover their uses in the expression as well. In the relation Δ ⪯Θ Γ, the context Θ,
called residual context in the following, is needed since variables in the environment may have an
arbitrary grade, whereas, in the relation Δ ⪯ Γ, grades of variables in Γ should overapproximate
those in Δ. For instance, taking the linearity grade algebra of Example 2.3(2), Γ could not add
linear variables which are unused in both the expression and the codomain of the environment. In
other words, the residual context allows resources to be, in a sense, “wasted”, accordingly with the
instrumented semantics, where there is no check that available resources are fully consumed. This
could be re�ned at the price of a more involved semantics.

5 TYPE SOUNDNESS

In this section, we prove our main result: soundness of the type system with respect to the resource-
aware big-step semantics. That is, for well-typed expressions there is a computation which is not
stuck for any reason, including resource consumption. Note that this is a may �avour of soundness
[Dagnino 2022; Dagnino et al. 2020; De Nicola and Hennessy 1984], which is the only one we can
prove in this context, because resource consumption is non-deterministic, thus one can always get
stuck consuming more resources than needed. We analyse separately type soundness for value and
possibly diverging expressions.

Type soundness for value expressions. Since reduction of value expressions cannot diverge, type
soundness means that, if well-typed, then they reduce to a value, as stated below.

Theorem 5.1 (Soundness for value expressions). If Γ ⊢ v |d : gA , then ⊢ v |d ⇒A v|d ′

for some v, d ′.

We derive this theorem as a corollary of the following lemma, stating that, if a value expression
and environment are well-typed with a given residual context, then they reduce to a value and
environment which are well-typed with the same residual context.

Lemma 5.2 (Progress/Type preservation for value expressions). If Δ ⊢ v : gA and Γ ⊢ d ⊲ Γ̂

with Γ̂ + Δ ⪯Θ Γ then v |d ⇒A v|d
′ and Δ′ ⊢ v : gA and Γ

′ ⊢ d ′ ⊲ Γ̂′ with Γ̂
′ + Δ

′ ⪯Θ Γ
′.

The proof of this result is by induction on the structure of values, relying on standard lemmas.
Note that, even though reduction of value expressions just performs substitution, in a resource-
aware semantics this is a signi�cant event, since it implies consuming some amount of resources.
The lemma above states that no resource exhaustion can happen, playing the role of progress plus
type preservation (subject reduction) in small-step semantics. However, rather than saying that
reduction cannot get stuck, since it is non-diverging we can simply say that there is a �nal result.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:16 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

r ::= v|d | ∞ result

(ret)
v |d ⇒B v|d

′

return v |d ⇒A v|d′
A ⪯ B ≠ 0 (let-div1)

e1 |d ⇒B ∞

let x = e1 in e2 |d ⇒A ∞

(let/let-div2)

e1 |d ⇒B v|d
′′

e2 [x
′/x] |d′′, x′ : (B, v) ⇒A r

let x = e1 in e2 |d ⇒A r
x′ fresh

(app/app-div)

v1 |d ⇒B rec f ._x .e |d1 v2 |d1 ⇒C v2 |d2
e[x′/x] [f ′/f] |d2, x

′
: (C, v2), f

′
: (B2, rec f ._x .e) ⇒A r

v1v2 |d ⇒A r

x′, f ′ fresh

B1 + B2 ⪯ B

B1 ≠ 0

(match-p/match-p-div)

v |d ⇒B ⟨A1v1, v2 ⟩A2 |d′′

e[x′/x] [y′/y] |d′′, x′ : (B ·A1, v1), y
′
: (B ·A2, v2) ⇒A r

match v with ⟨x, y⟩ → e |d ⇒A r
x′, y′ fresh

(match-l/match-l-div)
v |d ⇒B inl

A
v|d′′ e1 [y/x1] |d

′′, y : (B ·A, v) ⇒C r

match v with inl x1 → e1 or inr x2 → e2 |d ⇒C r
y fresh

(match-r/match-r-div)
v |d ⇒B inr

A
v|d′′ e2 [y/x2] |d

′, y : (B ·A, v) ⇒C r

match v with inl x1 → e1 or inr x2 → e2 |d ⇒C r
y fresh

(match-u/match-u-div)
v |d ⇒A unit|d′′ e |d′′ ⇒C r

match v with unit → e |d ⇒C r
x′ fresh (co-div)

e |d ⇒A ∞

Fig. 11. Adding divergence

Adding divergence. For possibly diverging expressions, instead, the big-step semantics de�ned in
Fig. 5 su�ers from the long-known drawback [Cousot and Cousot 1992; Leroy and Grall 2009] that
non-terminating and stuck computations are indistinguishable, since in both cases no �nite proof
tree of a judgment can be constructed. This is an issue for our aim: to prove that for a well-typed
expression there is a resource-aware evaluation which does not get stuck, that is, either produces
a value or diverges. To solve this problem, we extend the big-step semantics to explicitly model
diverging computations, proceeding as follows:

• the judgment for value expressions remains de�ned as in the top section of Fig. 5
• the shape of the judgment for possibly diverging expressions is generalized to c ⇒A r, where
the result r is either a pair consisting of a value and a �nal environment, or divergence (∞);

• this judgment is de�ned through a generalized inference system, shown in Fig. 11, consisting
of the rules from (ret) to (match-u/match-u-div), and the corule (co-div) (di�erences with
respect to the previous semantics in the bottom section of Fig. 5 are emphasized in grey10).

The key point here is that, in generalized inference systems, rules are interpreted in an essentially

coinductive, rather than inductive, way. For details on generalized inference systems we refer to
[Ancona et al. 2017a; Dagnino 2019]; here, for the reader’s convenience, we provide a self-contained
presentation, instantiating general de�nitions on our speci�c case.

10Recall that, since the evaluation judgment is strati�ed, premises involving the judgment for value expressions can be

equivalently considered as side conditions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:17

(var)

y | (∞,∞,1)⇒u | (∞,∞,1)

(var)

f | (∞,∞,1)⇒∞div | (∞,0,1)
(var)

x | (∞,0,1)⇒u | (∞,0,0)

. . .
(match-u-div)

y;f x | (∞,∞,1)⇒∞
(app-div)

f x | (∞,∞,1)⇒∞
(match-u-div)

y;f x | (∞,∞,1)⇒∞

Fig. 12. Example of resource-aware evaluation: divergency with no consumption

Rules in Fig. 11 handle divergence propagation. Notably, for each rule in the bottom section of
Fig. 5, we add a divergence propagation rule for each of the possibly diverging premises. The only
rule with two possibly diverging premises is (let). Hence, divergence propagation for an expression
let x = e1 in e2 is obtained by two (meta)rules: (let-div1) when e1 diverges, and (let-div2) when
e1 converges and e2 diverges; in Fig. 11, for brevity, this metarule is merged with (let), using the
metavariable r. All the other rules have only one possibly diverging premise, so one divergence
propagation rule is added and merged with the original metarule, analogously to (let-div2).
In generalized inference systems, in�nite proof trees are allowed. Hence, judgments c ⇒A ∞

can be derived, as desired, even though there is no axiom introducing them, thus distinguishing
diverging computations (in�nite proof tree) from stuck computations (no proof tree). However,
a purely coinductive interpretation would allow the derivation of spurious judgements [Ancona
et al. 2017b; Cousot and Cousot 1992; Leroy and Grall 2009]. To address this issue, generalized
inference systems may include corules, written with a thick line, only (co-div) in our case, which
re�ne the coinductive interpretation, �ltering out some (undesired) in�nite derivations. Intuitively,
the meaning of (co-div) is to allow in�nite derivations only for divergence (see Example 5.4 below).
Formally, we have the following de�nition instantiated from [Ancona et al. 2017a; Dagnino 2019].

De�nition 5.3. A judgment c ⇒A r is derivable in the generalized inference system in Fig. 11,
written ⊢∞ c ⇒A r, if it has an in�nite proof tree constructed using the rules where, moreover,
each node has a �nite proof tree constructed using the rules plus the corule.

Example 5.4. Let us consider again the expression y;f x of Example 3.3. Now, its non-terminating
evaluation in the environment y : (∞, unit), f : (∞, div), x : (1, unit), abbreviated (∞,∞,1) using
the previous convention, is formalized by the in�nite proof tree in Fig. 12, where instantiations
of (meta)rules (match-u) and (app) have been replaced by those of the corresponding divergence
propagation rule. It is immediate to see that each node in such in�nite proof tree has a �nite proof
tree constructed using the rules plus the corule: the only nodes which have no �nite proof tree
constructed using the rules are those in the in�nite path, of shape either y;f x | (∞,∞,1) ⇒ ∞ or
f x | (∞,∞,1) ⇒ ∞, and such judgments are directly derivable by the corule. On the other hand,
in�nite proof trees obtained by using (match-u) and (app)would derive y;f x | (∞,∞,1) ⇒ v| (∞,∞,1)
for any v. However, such judgments have no �nite proof tree using also the corule, which allows
only to introduce divergence, since there is no rule deriving a value with divergence as a premise.

The transformation from the inductive big-step semantics in Fig. 5 to that handling divergence
in Fig. 11 is an instance of a general construction, taking as input an arbitrary big-step semantics,
fully formalized, and proved to be correct, in [Dagnino 2022]. In particular, the construction is
conservative, that is, the semantics of converging computations is not a�ected, as stated in the
following result, which is an instance of Theorem 6.3 in [Dagnino 2022].

De�nition 5.5. Let ⊢ c ⇒A v|d denote that the judgment can be derived by the rules in the bottom
section of Fig. 5, interpreted inductively.

Theorem 5.6 (Conservativity). ⊢∞ c ⇒A v|d
′ if and only if ⊢ c ⇒A v|d

′.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:18 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

Note that to achieve this result corules are essential since, as observed in Example 5.4, a purely
coinductive interpretation allows for in�nite proof trees deriving values.

Type soundness for possibly diverging expressions. The de�nition of the semantics by the gener-
alized inference system in Fig. 11 allows a very simple and clean formulation of type soundness:
well-typed con�gurations always reduce to a result (which can be possibly divergence). Formally:

Theorem 5.7 (Soundness). If Γ ⊢ c : gA , then ⊢∞ c ⇒A r for some r.

We describe now the structure of the proof, which is interesting in itself; indeed, the semantics
being big-step, there is no consolidated proof technique as the long-time known progress plus
subject reduction for the small-step case [Wright and Felleisen 1994].
The proof is driven by coinductive reasoning on the semantic rules, following a schema �rstly

adopted in [Ancona et al. 2017b], as detailed below. First of all, to the aim of such proof, it is
convenient to turn to the following equivalent formulation of type soundness, stating that well-
typed con�gurations which do not converge necessarily diverge.

Theorem 5.8 (Completeness-∞). If Γ ⊢ c : gA , and there is no v|d s.t. ⊢∞ c ⇒A v|d , then ⊢∞c⇒A∞.

Indeed, with this formulation soundness of the type system can be seen as completeness of the
set of judgements c ⇒A ∞ which are derivable with respect to the set of pairs (c, A) such that c is
well-typed with grade A , and does not converge. The standard technique to prove completeness
of a coinductive de�nition with respect to a speci�cation (is the coinduction principle, that is,
by showing that (is consistent with respect to the coinductive de�nition. This means that each
element of (should be the consequence of a rule whose premises are in (as well. In our case, since
the de�nition of ⊢∞ c ⇒A ∞ is not purely coinductive, but re�ned by the corule, completeness
needs to be proved by the bounded coinduction principle [Ancona et al. 2017a; Dagnino 2019], a
generalization of the coinduction principle. Namely, besides proving that (is consistent, we have to
prove that (is bounded, that is, each element of (can be derived by the inference system consisting
of the rules and the corules, in our case, only (co-div), interpreted inductively.
The proof of Theorem 5.8 modularly relies on two results. The former (Theorem 5.9) is the

instantiation of a general result proved in [Ancona et al. 2017b] (Theorem 3.3) by bounded coinduc-
tion. For the reader’s convenience, to illustrate the proof technique in a self-contained way, we
report here statement and proof for our speci�c case. Namely, Theorem 5.9 states completeness of
diverging con�gurations with respect to any family of con�gurations which satis�es the progress-∞
property. The latter (Theorem 5.10) is the progress-∞ property for our type system.

Theorem 5.9 (Progress-∞ ⇒Completeness-∞). For each grade A , letCA be a set of con�gurations,

and set C∞
A = {c ∈ CA | � v|d such that ⊢ c ⇒A v|d}. If the following condition holds:11

(progress-∞) c ∈ C∞
A implies that c⇒A∞ is the consequence of a rule where, for all premises

of shape c′ ⇒B ∞, c′ ∈ C∞
B , and, for all premises of shape c′ ⇒B r, with r ≠ ∞, ⊢ c′ ⇒B r.

then c ∈ C∞
A implies ⊢∞ c ⇒A ∞.

Proof. We set (= {c ⇒A ∞ | c ∈ C∞
A } ∪ {c ⇒A r | r ≠ ∞, ⊢ c ⇒A r}, and prove that, for each

c ⇒A r ∈ (, we have ⊢∞ c ⇒A r, by bounded coinduction. We have to prove two conditions.

(1) (is consistent, that is, each c ⇒A r in (is the consequence of a rule whose premises are in (

as well. We reason by cases:

11Keep in mind that c ⇒A r denotes just the judgment (a triple), whereas ⊢ c ⇒A r and ⊢∞ c ⇒A r denote derivability of

the judgment (De�nition 5.5 and De�nition 5.3, respectively).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:19

• For each c ⇒A ∞ ∈ (, by the (progress-∞) hypothesis it is the consequence of a rule where,
for all premises of shape c′ ⇒B ∞, c′ ∈ C∞

B , hence c′ ⇒B ∞ ∈ (, and, for all premises of
shape c′ ⇒B r, with r ≠ ∞, ⊢ c′ ⇒B r, hence c

′ ⇒B r ∈ (as well.
• For each c ⇒A v|d ∈ (, we have ⊢ c ⇒A v|d , hence this judgment is the consequence
of a rule in Fig. 5 where for each premise, necessarily of shape c′ ⇒A ′ v

′ |d ′, we have
⊢ c′ ⇒A ′ v

′ |d ′, hence c′ ⇒A ′ v
′ |d ′ ∈ (.

(2) (is bounded, that is, each c ⇒A r in (can be inductively derived (has a �nite proof tree)
using the rules and the corule in Fig. 11. This is trivial, since, for r = ∞, the judgment can be
directly derived by (co-div), and, for r ≠ ∞, since ⊢ c ⇒A r, this holds by de�nition.

□

Thanks to the theorem above, to prove type soundness (formulated as in Theorem 5.8) it is
enough to prove the progress-∞ property for well-typed con�gurations which do not converge.
The name is chosen to suggest the analogous of progress in small-step semantics, meaning that, for
a non-converging well-typed con�guration, the construction of a proof tree can never get stuck.
Set WTA = {c | Γ ⊢ c : gA for some Γ, g}, and, accordingly with the notation in Theorem 5.9,

WT∞
A = {c | c ∈ WTA and � v|d such that ⊢∞ c ⇒A v|d}.

Theorem 5.10 (Progress-∞). If c ∈ WT∞
A , then c ⇒A ∞ is the consequence of a rule where, for all

premises of shape c′ ⇒B ∞, c′ ∈ WT∞
B , and, for all premises of shape c′ ⇒B r, with r ≠ ∞, ⊢ c′ ⇒B r.

We derive this theorem as a corollary of the next lemma, which needs the following notations:

• We use the metavariable d̃ for environments where grades have been erased, hence they are
maps from variables into values.

• We write erase(d) for the environment obtained from d by erasing grades.
• The reduction relation ⇒ over pairs v |d̃ and e |d̃ is de�ned by the metarules in Fig. 5 where
we remove side conditions involving grades. That is, such relation models standard semantics.

The lemma states that, if an expression and environment are well-typed with a given residual
context, and (ignoring the grades) they reduce to a value and environment, then the value is
well-typed, and the environment can be12 decorated with grades to be well-typed, with the same
residual context. Note that, di�erently from Lemma 5.2, here the hypothesis of well-typedness of
the con�guration is not enough, but we need also to assume progress of standard reduction.

Lemma 5.11 (Type preservation). If Δ ⊢ e : gA and Γ ⊢ d1 ⊲ Γ̂ with Γ̂ + Δ ⪯Θ Γ and, set

d̃1 = erase(d1), e |d̃1 ⇒ v|d̃2, then Δ
′ ⊢ v : gA and Γ

′ ⊢ d2 ⊲ Γ̂
′ with Γ̂

′ + Δ
′ ⪯Θ Γ

′, for some d2 such

that erase(d2) = d̃2.

6 PROGRAMMING EXAMPLES AND DISCUSSIONS

In this section, for readability, we use the surface syntax and, moreover, assume some standard addi-
tional constructs and syntactic conventions. Notably, we generalize (tensor) product types to tuple
types, with the obvious extended syntax, and sum types to variant types, written ℓ1:T1 + . . . + ℓ= :T=
for some tags ℓ1, . . . , ℓ= , injections generalized to tagged variants ℓA e, and matching of the shape
match e with ℓ

1
x1 or . . . or ℓ=x= . We write just ℓ as an abbreviation for an addend ℓ :Unit0 in a

variant type, and also for the corresponding tagged variants ℓ0unit and patterns ℓx in a matching
construct. Moreover, we will use type and function de�nitions (that is, synonyms for function and
type expressions), and, as customary, represent (equi-)recursive types by equations. Finally, we will
omit 1 annotations as in the previous examples, and we will consider 0 as default, hence omitted,
as recursion grade (that is, functions are by default non-recursive).

12That is, as soundness, type preservation holds in the may �avour.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:20 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

Bool = true + false

Nat = zero + succ:Nat

NatList = empty + cons:(Nat ⊗ NatList)

OptNat = none + some:Nat

not: Bool -> Bool

not = \b.match b with true -> false or false -> true

even: Nat ->∞ Bool

even = rec ev.\n.match n with zero -> true or succ m -> not (ev m)

+: Nat ->∞ Nat -> Nat

+ = rec sum.\n.\m. match n with zero -> m or succ x -> succ (sum x m)

double: Nat2 -> Nat

double n = n + n

*: Nat ->∞ Nat∞ -> Nat

* = rec mult.\n.\m.match n with zero -> zero or succ x -> (mult x m) + m

length : NatList ->∞ Nat

length = rec len.

\ls.match ls with empty -> zero or cons ls1 -> match ls1 with <_,tl> -> succ (len tl)

get : NatList ->∞ Nat -> OptNat

get = rec g.

\ls.\i.match ls with empty -> none

or cons ls1 ->

match ls1 with <hd,tl> -> match i with zero -> some hd or succ j -> g j tl

Fig. 13. Examples of type and function definitions

Natural numbers and lists. The encoding of booleans, natural numbers, lists of natural numbers,
and optional natural numbers, is given at the top of Fig. 13 followed by the de�nition of some
standard functions. Assume, �rstly, the grade algebra of natural numbers with bounded usage,
Example 2.3(1), extended with∞, as in Example 2.3(7), needed as annotation of recursive functions,
as has been illustrated in Example 4.1; we discuss below what happens taking exact usage instead.

As a �rst comment, note that in types of recursive functions the recursion grade needs to be ∞,
as expected. On the other hand, most function parameters are graded 1, since they are used at most
once in each branch of the function’s body. The second parameter of multiplication, instead, needs
to be graded ∞. Indeed, it is used in the body of the function both as argument of sum, and inside

the recursive call. Hence, its grade A should satisfy the equation (1 + A) ≤ A , analogously to what
happens for the recursive grade; compare with the parameter of function double, which is used
twice as well, and can be graded 2. In the following alternative de�nitions:

double: Nat1 -> Nat

double n = n * succ succ zero

double: Nat∞ -> Nat

double n = succ succ zero * n

the parameter needs to be graded di�erently depending on how it is used in the multiplication. In
other words, the resource-aware type system captures, as expected, non-extensional properties.
Assume now the grade algebra of natural numbers with exact usage, again extended with ∞.

Interestingly enough, the functions length and get above are no longer typable.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:21

v ::= . . . | [A1v1, v2]A2 | c1v | c2v
g, f ::= . . . | T × S

(apair)
v1 |d ⇒A ·A1 v1 |d

′ v2 |d ⇒A ·A2 v2 |d
′

[A1v1, v2]A2 |d ⇒A [A1v1, v2]A2 |d′
(proj)

v |d ⇒B [A1v1, v2]A2 |d′

c8v |d ⇒A v8 |d′
8 ∈ {1, 2}
A ⪯ B ·A8

(t-apair)
Γ ⊢ v1 : g1

A1 Γ ⊢ v2 : g2
A2

A ·Γ ⊢ [A1v1, v2]A2 : (g1A1 × g2A2)
A (t-proj)

Γ ⊢ v : (gA1
1

× g
A2
2
)
A

Γ ⊢ c8v : g8A ·A8
A ≠ 0

Fig. 14. Cartesian product

In length, this is due to the fact that, when the list is non-empty, the head is unused, whereas, since
the grade of a pair is “propagated” to both the components, it should be used exactly once as the tail.
The function would be typable assuming for lists the type NatList=empty+cons:(Nat0⊗NatList),
which, however, would mean to essentially handle a list as a natural number.

Function get, analogously, cannot be typed since, in the last line, only one component of a
non-empty list (either the head or the tail) is used in a branch of the match, whereas both should
be used exactly once. Both functions could be typed, instead, grading with∞ the list parameter;
this would mean to allow an arbitrary usage in the body. These examples suggest that, in a grade
algebra with exact usage, such as that of natural numbers, or the simpler linearity grade algebra,
see Example 2.3(2), there is often no middle way between imposing severe limitations on code, to
ensure linearity (or, in general, exactness), and allowing code which is essentially non-graded.

Additive product. The product type we consider in Fig. 7 is the tensor product, also called
multiplicative, following Linear Logic terminology [Girard 1987]. In the destructor construct for
such type, both components are simultaneously extracted, each one with a grade which is (a multiple
of) that of the pair, see the semantic13 rule (match-p) in Fig. 5. Thus, as shown in the examples above,
programs which discard the use of either component cannot be typed in a non-a�ne grade algebra.
Correspondingly, the resource consumption for constructing a (multiplicative) pair is the sum of
those for constructing the two components, corresponding to a sequential evaluation, see rule (pair)
in Fig. 5. The cartesian product, instead, also called additive, formalized in Fig. 14, has one destructor
for each component, so that which is not extracted is discarded. Correspondingly, the resource
consumption for constructing an additive pair is an upper bound of those for constructing the two
components, corresponding in a sense to a non-deterministic evaluation. The get example, rewritten
using the constructs of the additive product, becomes typable even in a non-a�ne grade algebra. In
an a�ne grade algebra, programs can always be rewritten replacing the cartesian product with
the tensor, and conversely; in particular, c8v can be encoded as match v with ⟨x1, x2⟩ → x8 , even
though, as said above, resources are consumed di�erently (sum versus upper bound). An interesting
remark is that record/object calculi, where generally width subtyping is allowed, meaning that
components can be discarded at runtime, and object construction happens by sequential evaluation
of the �elds, need to be modeled by multiplicative product and a�ne grades. In future work we
plan to investigate object calculi which are linear, or, more generally, use resources in an exact way.

Terminating recursion. As anticipated, even though the type system can only derive, for recursive
functions, recursion grades which are “in�nite”, their calls which terminate in standard semantics
can terminate also in resource-aware semantics, provided that the initial amount of the function
resource is enough to cover the (�nite number of) recursive calls, as shown in Fig. 15.

13Typing rules follow the same pattern.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:22 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

(var)

ev | (1,1,z) ⇒1 even | (0,1,z)
(var)

n | (0,1,z) ⇒ z | (0,0,z)

t | (0,0,z) ⇒ t | (0,0,z)
(match-l)

if-z(z, t, sn→not(ev n)) | (0,0,z) ⇒ t | (0,0,z)
(app)

ev n | (1,1,z) ⇒ t | (0,0,z)

(var)

ev | (=,1,s=z) ⇒= even | (=−1,1,z)
(var)

n | (=−1,1,z) ⇒ z | (=−1,0,z)

not(ev n) | (=−1,1,z) ⇒ b | (0,0,z)
(match-l)

if-z(z, t, sn→not(ev n)) | (=−1,1,z) ⇒ b | (0,0,z)
(app)

ev n | (=,1,s=z) ⇒ b | (0,0,z)

Fig. 15. Example of resource-aware evaluation: terminating recursion

pub.l

priv.l pub.1

priv.10

Fig. 16. Grade algebra of

privacy levels and linearity

Result = success + failure

OptChar = none + some:Charpriv.l

fnType= Charpriv.l → (ok:Charpriv.l + error)

open: Stringpub.l → FileHandle

read: FileHandle → (OptCharpriv.l⊗ FileHandle)

write: (Charpriv.l⊗ FileHandle) → FileHandle

close: FileHandle → Unit0

Fig. 17. Types of data and filesystem interface

For brevity, we write z, s, and t for zero, succ, and true, respectively, if-z(v, e1, sx→e2) for
match v with z → e1 or sx → e2, and (A,B,v) for the environment ev : (A, even), n : (B, v). In the
top part of the �gure we show the proof tree for the evaluation of ev n in the base case, that is, in
an environment where the value of n is zero. In this case, both ev and n can be graded 1, since they
are used only once. In the bottom part, we show the proof tree in an environment where the value

of n is s=z, for = ≠ 0. Here, b stands for either true or false, and b for its complement.

Processing data from/to �les. The following example illustrates how we can simultaneously track
privacy levels, as introduced in Example 3.2, and linearity information. Linearity grades guarantee
the correct use of �les, whereas privacy levels are used to ensure that data are handled without
leaking information. We combine the two grade algebras with the smash product of Example 2.8.
So there are �ve grades: 0 (meaning unused), priv.1 and pub.1 (meaning used linearly in either priv
or pub mode), and priv.l , pub.l (meaning used an arbitrary number of times in either priv or pub
mode). The partial order is graphically shown in Fig. 16. The neutral element for multiplication is
pub.1, which therefore will be omitted.
In Fig. 17 are the types of the data, the processing function and the functions of a �lesystem

interface, assuming types Char, String, and FileHandle to be given. The type Result indicates
success or failure. The type OptChar represents the presence or absence of a Char and is used in
the function reading from a �le; fnType is the type of a function processing a private Char and
returning either a private Char or error. The signatures of the functions of the �lesystem interface
specify that �le handlers are used in a linear way. Hence, after opening a �le and doing a number
of read or write operations, the �le must be closed.
In the code of Fig. 18 we use, rather than match e1 with unit → e2, the alternative syntax

e1;e2 mentioned in Section 3. The function fileRW takes as parameters an input and an output �le
handler and a function that processes the character read from the input �le. The result indicates
whether all the characters of the input �le have been successfully processed and written in the
output �le or there was an error in processing some character.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:23

1 fileRW:FileHandle →pub.l FileHandle → fnTypepub.l → Resultpub.l =

2 rec fileRdWr.

3 \inF.\outF.\fn.

4 match (read inF) with <oC,inF1 > ->

5 match oC with none ->

6 close inF1;close outF;success

7 or (some c) ->

8 match (fn c) with (ok c1) ->

9 let outF1 = write <c1,outF > in

10 fileRdWr inF1 outF1 fn

11 or error ->

12 close inF1;close outF;failure

Fig. 18. Processing data from/to files

The function starts by reading a character from the input �le. If read returns none, then all the
characters from the input �le have been read and so both �les are closed and the function returns
success (lines 5—6). Closing the �les is necessary in order to typecheck this branch of the match. If
read returns a character (lines 7—12), then the processing function fn is applied to that character.
Then, if fn returns a character, then this result is written to the output �le using the �le handler
passed as a parameter and, �nally, the function is recursively called with the �le handlers returned
by the read and write functions as arguments. If, instead, fn returns error, then both �les are closed
and the function returns failure (lines 11—12).
Observe that, given the order of Fig. 16, we have 0 ̸⪯ pub.1. Therefore the variables of type

FileHandle, which have grade pub.1, must be used exactly once in every branch of the matches in
their scope.
A call to fileRW could be: fileRW (open "inFile") (open "outFile") (rec f.\x.x).

Note that , with

write: (Charpub.l⊗ FileHandle) → FileHandle

the function fileRW would not be well-typed, since a priv character cannot be the input of write.
On the other hand, using subsumption, we can apply fileRW to a processing function with type

Charpriv.l → (ok:Charpub.l + error)

Finally, in the type of fileRW, the grade of the �rst arrow says that the function is recursive and it
is internally used in an unrestricted way. The function could also be typed with:

FileHandle →priv.l FileHandle → fnTypepub.l → Resultpriv.l

However, in this case its �nal result would be private and therefore less usable.

7 CONCLUSION

Related work. As anticipated, the two contributions closest to this work, since they present an
instrumented semantics, are [Bianchini et al. 2023b; Choudhury et al. 2021]. In [Choudhury et al.
2021], the authors develop GraD, a graded dependent type system that includes functions, tensor
products, additive sums, and a unit type. The instrumented semantics is de�ned on typed terms,
with the only aim to show the role of the type system, whereas in [Bianchini et al. 2023b], where the
underlying language is Featherweight Java, and in this paper, the de�nition is given independently

from the type system, as is the standard approach in calculi. That is, the aim is also to provide
a simple purely semantic model which takes into account usage of resources. Di�erently from
[Bianchini et al. 2023b; Choudhury et al. 2021], here we give the semantics in big-step style, making

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:24 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

it no longer necessary to annotate subterms. Moreover, we analyze in deep resource consumption
in recursive functions, getting that they need to be typed with an “in�nite” grade.

The type system in this paper follows the same design of those in [Bianchini et al. 2022a, 2023a,b],
which, however, consider a Java-like underlying calculus. Such works also deal with two interesting
issues not considered here. The former is the de�nition of a canonical construction leading to
a unique grade algebra of heterogeneous grades from a family of grade algebras, thus allowing
di�erent notions of resource usage to coexist in the same program. The latter is providing linguistic
support to specify user-de�ned grades, for instance grade annotations could be written themselves
in Java, analogously to what happens with exceptions.
Coming more in general to resource-aware type systems, coe�ects were �rst introduced by

[Petricek et al. 2013] and further analyzed by [Petricek et al. 2014]. In particular, [Petricek et al.
2014] develops a generic coe�ect system which augments the simply-typed _-calculus with context
annotations indexed by coe�ect shapes. The proposed framework is very abstract, and the authors
focus only on two opposite instances: structural (per-variable) and �at (whole context) coe�ects,
identi�ed by speci�c choices of context shapes.
Most of the subsequent literature on coe�ects focuses on structural ones, for which there is a

clear algebraic description in terms of semirings. This was �rst noticed by [Brunel et al. 2014], who
developed a framework for structural coe�ects for a functional language. This approach is inspired
by a generalization of the exponential modality of linear logic, see, e.g., [Breuvart and Pagani 2015].
That is, the distinction between linear and unrestricted variables of linear systems is generalized to
have variables decorated by coe�ects (grades), that determine how much they can be used. In this
setting, many advances have been made to combine coe�ects with other programming features,
such as computational e�ects [Dal Lago and Gavazzo 2022; Gaboardi et al. 2016; Orchard et al.
2019], dependent types [Atkey 2018; Choudhury et al. 2021; McBride 2016], and polymorphism
[Abel and Bernardy 2020]. In all these papers, tracking usage through grades has practical bene�ts
like erasure of irrelevant terms and compiler optimizations.
McBride [2016]; Wood and Atkey [2022] observed that contexts in a structural coe�ect system

form a module over the semiring of grades, event though they restrict themselves to free modules,
that is, to structural coe�ect systems. Recently, [Bianchini et al. 2022b] shows a signi�cant non-
structural instance, namely, a coe�ect system to track sharing in the imperative paradigm.

Summary and future work. We de�ned, on top of a lambda calculus equipped with common
constructs, a resource-aware semantics and type system, parametric on an arbitrary grade algebra.
We proved resource-aware soundness, that is, that for well-typed expressions there is a computation
which is not stuck for any reason, including resource consumption. The proof provides a signi�cant,
complex application of a schema previously introduced in [Ancona et al. 2017b], in a case where
the semantics is non-deterministic, hence soundness-may needs to be proved.
As discussed in Section 1, most works on graded type systems introduce box/unbox operators

in the syntax. Hence, programs typed with the type system proposed in this paper could not
even be written in such systems. A formal comparison with a calculus/type system based on
boxing/unboxing is a challenging topic for future work. However, it is not obvious how to make
such a comparison, since works which present calculi with a similar expressive power to ours, e.g.,
[Brunel et al. 2014; Dal Lago and Gavazzo 2022], do not include an instrumented semantics, so we
should as �rst step develop such a semantics.

An interesting fact emerged from our work is that non-a�ne grade algebras are a distinguished
class; indeed, the fact that they require exact resource consumption poses a strong constraint,
making impossible to type some constructs. It would be nice to characterize the non-a�ne case at
the semantic level as well. That is, to state and prove a result asserting that, when the grade algebra

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:25

is non-a�ne, a well-typed program has a non-wasting reduction, in the sense that the initially
available resources are all exhausted at the end.

Another direction we would like to develop is an extension of the approach to the imperative case,
so to characterize as grades some properties which are of paramount importance in this context,
such as mutability/immutability or uniqueness opposed to linearity, revisiting what discussed in
[Marshall et al. 2022]. Note that, in the imperative case, a di�erent notion of resource usage could be
considered, e.g., rather than any time a variable occurrence needs to be replaced, any time memory
needs to be accessed, even possibily distinguishing read from write accesses.

Finally, some more general topics to be investigated are type inference, for which the challenging
feature are recursive functions, and combination with e�ects, as in [Dal Lago and Gavazzo 2022].

Concerning implementation, and mechanization of proofs, which of course would be bene�cial
developments as well, we just mention the Agda library at https://github.com/LcicC/inference-
systems-agda, described in [Ciccone et al. 2021], which allows one to specify (generalized) inference
systems. One of the examples provided in [Ciccone et al. 2021] is, as in this paper, a big-step
semantics including divergence.

ACKNOWLEDGMENTS

The authorswould like to thank the anonymous refereeswho provided useful and detailed comments
on a previous version of the paper. This work was partially funded by the MUR project “T-LADIES”
(PRIN 2020TL3X8X) and has the �nancial support of the University of Eastern Piedmont.

A PROOFS

Lemma A.1 (Inversion for value expressions).

(1) If Γ ⊢ x : gA then x :A ′ g ⪯ Γ and A ⪯ A ′.

(2) If Γ ⊢ rec f ._x .e : gA then A ′·Γ′ ⪯ Γ and g = gA1
1
→B g

A2
2
such that Γ′, f :B g

A1
1
→B g

A2
2
, x :A1 g1 ⊢

e : gA2
2
and A ⪯ A ′.

(3) If Γ ⊢ unit : gA then g = Unit and ∅ ⪯ Γ.

(4) If Γ ⊢ ⟨A1v1, v2 ⟩A2 : gA then A ′·(Γ1+Γ2) ⪯ Γ, g = gA1
1
⊗gA2

2
and A ⪯ A ′ such that Γ1⊢v1:g

A1
1
, Γ2⊢v2:g2

A2 .

(5) If Γ ⊢ inlA1v : gA then A ′·Γ′ ⪯ Γ, g = gA1
1
+ gA2

2
and A ⪯ A ′ such that Γ′ ⊢ v : gA1

1
.

(6) If Γ ⊢ inrA2v : gA then A ′·Γ′ ⪯ Γ, g = gA1
1
+ gA2

2
and A ⪯ A ′ such that Γ′ ⊢ v : gA2

2
.

Lemma A.2 (Canonical Forms).

(1) If Γ ⊢ v : (gA1
1
→B g

A2
2
)
A3 then v = rec f ._x .e.

(2) If Γ ⊢ v : Unit then v = unit.

(3) If Γ ⊢ v : (gA1
1
⊗ gA2

2
)
A3 then v = ⟨A1v1, v2 ⟩A2 .

(4) If Γ ⊢ v : (gA1
1
+ gA2

2
)
A
then v = inlA1v1 or v = inrA2v2.

Lemma A.3 (Renaming). If Γ, x :A1 g1 ⊢ e : g
A2
2
then Γ, x′ :A1 g1 ⊢ e[x

′/x] : gA2
2
with x′ fresh.

Proof of Lemma 4.2. By induction on the typing rules. We show only some cases.

(t-sub-v) We have Δ ⊢ v : gB
′
, Γ ⊢ v : gA , A ⪯ B′ and Δ ⪯ Γ. By induction hypothesis

B ·Δ ⊢ v : gB ·B
′
. By monotonicity B ·A ⪯ B ·B′ and B ·Δ ⪯ B ·Γ, so, by (t-sub) we get B ·Γ ⊢ e : gB ·A ,

that is, the thesis.
(t-var) By rule (t-var) we get the thesis.
(t-fun) We have Γ = A ·Γ′, v = rec f ._x .e′, g = g1

A1 →B′ g2
A2 and Γ

′, f :B′ g
A1
1

→B′ g
A2
2
, x :A1 g1 ⊢

e′ : gA2
2
. By rule (t-fun), (B ·A)·Γ′ ⊢ v : gB ·A . From (B ·A)·Γ′ = B ·(A ·Γ′) = B ·Γ we get the thesis.

(t-pair), (t-inl) and (t-inr) Similar to (t-fun).
(t-sub) We have Δ ⊢ e : gB

′
, Γ ⊢ e : gA , A ⪯ B′ and Δ ⪯ Γ. By induction hypothesis B ·Δ ⊢ e : gB ·B

′
.

By monotonicity B ·A ⪯ B ·B′ and B ·Δ ⪯ B ·Γ, so, by (t-sub) we get B ·Γ ⊢ e : gB ·A , that is, the thesis.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

https://github.com/LcicC/inference-systems-agda
https://github.com/LcicC/inference-systems-agda

267:26 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

(t-app) We have Γ1+Γ2 ⊢ v1v2 : g2
A ′ ·A2 . By induction hypothesis B ·Γ1 ⊢ v1 : (g

A1
1
→B′ g

A2
2
)
B · (A ′+A ′ ·B′)

and B ·Γ2 ⊢ v2 : g
B ·A ′ ·A1 . Since B ≠ 0 and A ′ ≠ 0 and, since the algebra is integral, B ·A ≠ 0. By

rule (t-app), B ·(Γ1 + Γ2) ⊢ v1v2 : g2
B ·A ′ ·A2 , that is, the thesis.

(t-match-p) By induction hypothesis B ·Γ1 ⊢ v : (g1
A1 ⊗ gA2

2
)
B ·B′

and B ·Γ2, x :(B ·B′) ·A1 g, y :(B ·B′) ·A2

g2 ⊢ e : gB ·A . Since B ≠ 0 and B′ ≠ 0 and, since the algebra is integral, B ·B′ ≠ 0. By rule
(t-match-p), B ·(Γ1 + Γ2) ⊢ match v with ⟨x, y⟩ → e : gB ·A , that is, the thesis.

□

Proof of Lemma 4.3. By case analysis on v. We show only some cases.

v = x By Lemma A.1(1) x :A ′ g ⪯ Γ and B ·A ⪯ A ′. Let Γ′ = x :A g . By monotonicity of · and, by
transitivity of ⪯, (B ·A)·x :1 g = B ·Γ′ ⪯ Γ. By (t-var) Γ′ ⊢ x : gA .

v = ⟨A1v1, v2 ⟩A2 By Lemma A.1(4) A ′·(Γ1 + Γ2) ⪯ Γ and B ·A ⪯ A ′ and Γ1 ⊢ v1 : g
A1
1
and Γ2 ⊢ v2 : g

A2
2
.

Let Γ′ = A ·(Γ1 + Γ2). By monotonicity of · and by transitivity of ⪯ we have B ·Γ′ ⪯ Γ. By (t-pair)

Γ
′ ⊢ v : gA .

□

We de�ne grade(x, Γ) = A if Γ = Γ
′, x :A g , otherwise grade(x, Γ) = 0.

Proof of Lemma 5.2. By induction on the syntax of v.

v = x By LemmaA.1(1) x :A ′ g ⪯ Δwith A ⪯ A ′. Since Γ̂+x :A ′ g+Θ ⪯ Γ̂+Δ+Θ ⪯ Γ and, by (t-env),
d = x1 : (A1, v1), . . . , x= : (A=, v=), Γ = x1 :A1 g1, . . . , x= :A= g= = Γ

′, x :B g , Γ8 ⊢ v8 : g
A8
8 ∀8 ∈ 1..=

and C1 + A
′ + C2 ⪯ B where grade(x, Γ̂) = C1 and grade(x,Θ) = C2. Let 9 be such that x = x9 , we

get Γ̂ = Γ̂
′ + B ·Γ9 and Γ9 ⊢ v : g1. By Lemma 4.2 A ·Γ9 ⊢ v : gA . By rule (var), x |d ′, x : (B, v) ⇒A

v|d ′, x : (C1 + C2, v). We have Γ̂′ + (C1+C2)·Γ9 +A ·Γ9 +Θ ⪯ Γ̂
′ + (C1+C2)·Γ9 +A

′·Γ9 +Θ ⪯ Γ̂+Θ. We

have grade(y, Γ̂+Θ) ⪯ grade(y, Γ′) for all y ∈ dom(Γ̂+Θ) \{x} and grade(x, Γ̂+Θ) = C1+C2,
so Γ̂ + Θ ⪯ Γ

′, x :C1+C2 g . By this relation and rule (t-env), Γ′, x :C1+C2 g ⊢ d ′ ⊲ Γ̂′ + (C1 + C2)·Γ9 .
v = ⟨A1v1, v2 ⟩A2 By Lemma A.1(4) A ′·(Δ1+Δ2) ⪯ Δ, g = gA1

1
⊗gA2

2
and A ⪯ A ′ such that Δ1 ⊢ v1 : g

A1
1
,

Δ2 ⊢ v2 : g2
A2 . By Lemma 4.2 A ·Δ1 ⊢ v1 : g1

A ·A1 and A ·Δ2 ⊢ v2 : g2
A ·A2 . We have Γ ⊢ d ⊲ Γ̂

with Γ̂ + A ·Δ1 + (A ·Δ2 + Θ) ⪯ Γ̂ + Δ + Θ ⪯ Γ. By induction hypothesis v1 |d ⇒A ·A1 v1 |d
′,

Δ
′
1
⊢ v1 : gA ·A1 and Γ

′
1
⊢ d ′

1
⊲ Γ̂

′
1
with Γ̂

′
1
+ Δ

′
1
+ (A ·Δ2 + Θ) ⪯ Γ

′
1
. Since Γ

′
1
⊢ d ′

1
⊲ Γ̂

′
1
with

Γ̂
′
1
+ A ·Δ2 + (Δ′

1
+ Θ) ⪯ Γ

′
1
by induction hypothesis v2 |d

′
1
⇒A ·A2 v2 |d

′
2
, Δ′

2
⊢ v2 : gA ·A2 and

Γ
′
2
⊢ d ′

2
⊲ Γ̂

′
2
with Γ̂

′
2
+ Δ

′
2
+ (Δ′

1
+ Θ) ⪯ Γ

′
2
. By Lemma 4.3 Δ

′′
1
⊢ v1 : gA1

1
and Δ

′′
2
⊢ v2 : gA2

2

with A ·Δ′′
1
⪯ Δ

′
1
and A ·Δ′′

2
⪯ Δ

′
2
. We have Γ̂

′
2
+ A ·(Δ′′

1
+ Δ

′′
2
) + Θ = Γ̂

′
2
+ A ·Δ′′

1
+ A ·Δ′′

2
+ Θ ⪯

Γ̂
′
2
+ Δ

′
2
+ Δ

′
1
+ Θ ⪯ Γ

′
2
. By rules (t-pair) and (t-sub-v), A ·(Δ′′

1
+ Δ

′′
2
) ⊢ ⟨A1v1, v2 ⟩A2 : (gA1

1
⊗ gA2

2
)
A
.

By rule (pair), v |d ⇒A ⟨A1v1, v2 ⟩A2 |d ′
2
.

□

Lemma A.4 (Inversion for possibly diverging expressions).

(1) If Γ ⊢ return v : gA then Γ
′ ⊢ v : gA

′
with A ⪯ A ′, Γ′ ⪯ Γ and A ′ ≠ 0.

(2) If Γ⊢let x = e1 in e2:g
A then Γ1⊢e1:g

A1
1
and Γ2, x :A1 g1⊢e2:g

A ′ and Γ1 + Γ2 ⪯ Γ and A ⪯ A ′.

(3) If Γ ⊢ v1v2 : g2
A then Γ1 + Γ2 ⪯ Γ and A ⪯ A ′·A2 such that Γ1 ⊢ v1 : (gA1

1
→B g

A2
2
)
A ′+A ′ ·B

and

Γ2 ⊢ v2 : g1
A ′ ·A1 and A ′ ≠ 0.

(4) If Γ⊢match v with unit → e:gA then Γ1+Γ2⪯Γ and A⪯C such that Γ1⊢v:Unit
A ′ and Γ2⊢e:g

C .

(5) If Γ ⊢ match v with ⟨x, y⟩ → e : gA then Γ1 + Γ2 ⪯ Γ and A ⪯ C such that Γ1 ⊢ v : (g1
A1 ⊗ g2

A2)B

and Γ2, x :B ·A1 g, y :B ·A2 g2 ⊢ e : g
C and B ≠ 0.

(6) If Γ ⊢ match v with inl x → e1 or inr x → e2 : gA then Γ1 + Γ2 ⪯ Γ and A ⪯ B such that

Γ1 ⊢ v : (g1
A1 + g2

A2)A
′

, Γ2, x :A ′ ·A1 g1 ⊢ e1 : g
B , Γ2, x :A ′ ·A2 g2 ⊢ e2 : g

B and A ′ ≠ 0.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

Resource-Aware Soundness for Big-Step Semantics 267:27

Proof of Lemma 5.11. By induction on the reduction e |d̃1 ⇒ v|d̃2.

(ret) By Lemma A.4(1) Δ′ ⊢ v : gA
′
with A ⪯ A ′, Δ′ ⪯ Δ and A ′ ≠ 0. By (t-sub-v) Δ ⊢ v : gA . By

Lemma 5.2 v |d1 ⇒A v|d
′
2
and Δ

′ ⊢ v : gA
′
and Γ

′ ⊢ d ′
2
⊲ Γ̂

′ with Γ̂
′ + Δ

′ ⪯Θ Γ
′. By rule (ret)

return v |d1 ⇒A v|d
′
2
. By return v |d1 ⇒A v|d

′
2
, we derive return v |d̃1 ⇒ v|d̃ ′

2
. Since⇒ is

deterministic, d̃ ′
2
= d̃2, that is, the thesis.

(let) By Lemma A.4(2) Δ1 ⊢ e1 : g
A1
1
and Δ2, x :A1 g1 ⊢ e2 : g

A ′ and Δ1 + Δ2 ⪯ Δ and A ⪯ A ′. We

have e1 |d̃1 ⇒ v|d̃2. We have Γ ⊢ d1 ⊲ Γ̂ with Γ̂+(Δ1+Δ2) ⪯Θ Γ̂+Δ ⪯Θ Γ. By this consideration,

Γ̂ + Δ1 ⪯Θ+Δ2
Γ. By induction hypothesis Δ′ ⊢ v : g1

A1 and Γ
′ ⊢ d2 ⊲ Γ̂

′ with Γ̂
′ + Δ

′ ⪯Θ+Δ2
Γ
′,

for some d2 such that erase(d2) = d̃2. By this relation we derive Γ̂
′ + Δ2 ⪯Θ+Δ′ Γ

′. By

Lemma 4.3 A1·Δ
′′ ⪯ Δ

′ and Δ
′′ ⊢ v : g1

1. Since x ∉ dom(Γ̂′ + Δ2) and x ∉ dom(Γ′) we
have Γ̂

′ + Δ2 + x′ :A1 g1 ⪯Θ+Δ′ Γ
′, x′ :A1 g1 and so Γ

′, x′ :A1 g1 ⊢ d2, x
′
: (A1, v) ⊲ Γ̂

′ + A1·Δ
′′.

By manipulating the previous relation we have Γ̂
′ + A1·Δ

′′ + Δ2 + x′ :A1 g1 ⪯Θ Γ
′, x′ :A1 g1.

Since Δ2, x :A1 g1 ⊢ e2 : g
A ′ we have Δ2, x

′
:A1 g1 ⊢ e2 [x

′/x] : gA
′
. By induction hypothesis on

e2 [x
′/x] |d̃2, x

′
: v ⇒ v

′ |d3 we have Δ̂ ⊢ v
′
: gA

′
and Γ

′′ ⊢ d3 ⊲ Γ̂
′′ with Γ̂

′′ + Δ̂ ⪯Θ Γ
′′, for

some d3 such that erase(d3) = d̃3, that is, the thesis.
(app) We have v1 |d̃1 ⇒ rec f ._x .e |d̃2, v2 |d̃2 ⇒ v2 |d̃3 and e[x′/x] [f ′/f] |d̃3, x

′
: v2, f

′
:

rec f ._x .e ⇒ v|d̃4 with x
′, f ′ fresh. By Lemma A.4(3) Δ1+Δ2 ⪯ Δ and A ⪯ A ′·A2 such that Δ1 ⊢

v1 : (g
A1
1
→B g

A2
2
)
A ′+A ′ ·B

and Δ2 ⊢ v2 : g1
A ′ ·A1 and A ′ ≠ 0. We have Γ̂ +Δ1 ⪯Θ+Δ2

Γ. By Lemma 5.2

and by Lemma A.2(1) v1 |d1 ⇒A ′+A ′ ·B rec f ._x .e |d2 and Δ
′
1
⊢ rec f ._x .e : (gA1

1
→B g

A2
2
)
A ′+A ′ ·B

and Γ
′ ⊢ d2 ⊲ Γ̂

′ with Γ̂
′ + Δ

′
1
⪯Θ+Δ2

Γ
′. Since v |d ⇒C v

′ |d ′ implies v |d̃ ⇒ v
′ |d̃ ′ and by

determinism of ⇒ and ⇒A we have erase(d2) = d̃2. We also have Γ̂′ + Δ2 ⪯Θ+Δ′
1
Γ
′, so, by

Lemma 5.2 v2 |d2 ⇒A ′ ·A1 v2 |d3 and Δ
′
2
⊢ v2 : g1

A ′ ·A1 and Γ
′′ ⊢ d3 ⊲ Γ̂

′′ with Γ̂
′′ + Δ

′
2
⪯Θ+Δ′

1
Γ
′′.

Since v |d ⇒C v
′ |d ′ implies v |d̃ ⇒ v

′ |d̃ ′ and by determinism of ⇒ and ⇒A we have
erase(d3) = d̃3. By Lemma A.1(2) A ′′·Δ′′

1
⪯ Δ

′
1
such that Δ′′

1
, f :B g

A1
1

→B g
A2
2
, x :A1 g1 ⊢ e : g

A2
2

and A ′ + A ′·B ⪯ A ′′. By these considerations we have (A ′ + A ′·B)·Δ′′
1
⪯ A ′′·Δ′′

1
⪯ Δ

′
1
. By rule

(t-fun) Δ′′
1
⊢ rec f ._x .e : g1

1. By Lemma A.3 and by Lemma 4.2 A ′·(Δ′′
1
, f ′ :B g

A1
1
→B g

A2
2
, x′ :A1

g1) ⊢ e[f ′/f] [x′/x] : g2
A ′ ·A2 . By Lemma 4.3 Φ2 ⊢ v2 : g2

1 with (A ′·A1)·Φ2 ⪯ Δ
′
2
. We have

Γ̂
′′ + A ′·B ·Δ′′

1
+ A ′·A1·Φ2 + A ′·(Δ′′

1
, f ′ :B gA1

1
→B gA2

2
, x′ :A1 g1) ⪯Θ Γ̂

′′ + Δ
′
2
+ Δ

′
1
+ (f ′ :A ′ ·B

gA1
1

→B gA2
2
, x′ :A ′ ·A1 g1). Since we have Γ̂

′′ + Δ
′
2
⪯Θ+Δ′

1
Γ
′′ and x′, f ′ ∉ dom(Γ′′ + Δ

′
1
+ Δ

′
2
)

and x′, f ′ ∉ dom(Γ′′) we have Γ̂′′ + Δ
′
2
+ Δ

′
1
+ (f ′ :A ′ ·B g

A1
1

→B g
A2
2
, x′ :A ′ ·A1 g1) ⪯Θ Γ

′′, x′ :A ′ ·A1
g1, f

′
:A ′ ·B (gA1

1
→B gA2

2
). By rule (t-env) Γ′′, x′ :A ′ ·A1 g1, f

′
:A ′ ·B (gA1

1
→B gA2

2
) ⊢ d3, x

′
:

(A ′·A1, v2), f
′
: (A ′·B, rec f ._x .e) ⊲ Γ̂′′ +A ′·B ·Φ1 +A

′·A1·Φ2 +A
′·(Δ′′

1
, f ′ :B g

A1
1
→B g

A2
2
, x′ :A1 g1). By

induction hypothesis on e[x′/x] [f ′/f] |d̃3, x
′
: v2, f

′
: rec f ._x .e ⇒ v|d̃4 we get the thesis.

(match-p) By Lemma A.4(5) Δ1 + Δ2 ⪯ Δ and A ⪯ C such that Δ1 ⊢ v : (g1
A1 ⊗ g2

A2)B and
Δ2, x :B ·A1 g, y :B ·A2 g2 ⊢ e : gC and B ≠ 0. By Lemma 5.2 v |d ⇒B v|d ′ and Δ

′
1
⊢ v : gA and

Γ
′ ⊢ d1 ⊲ Γ̂

′ with Γ̂
′ + Δ

′
1
+ Δ2 ⪯ Γ

′. By Lemma A.2(3) v = ⟨A1v1, v2 ⟩A2 . By Lemma A.1(4)

A ′·(Δ̂1 + Δ̂2) ⪯ Δ
′
1
and B ⪯ A ′ such that Δ̂1 ⊢ v1 : gA1

1
and Δ̂2 ⊢ v2 : gA2

2
. By Lemma 4.3

Φ1 ⊢ v1 : g1
1 and Φ2 ⊢ v2 : g2

1 with A1·Φ1 ⪯ Δ̂1 and A2·Φ2 ⪯ Δ̂2. By Lemma A.3 and rule (t-sub)

Δ2, x
′
:B ·A1 g1, y

′
:B ·A2 g2 ⊢ e[x′/x] [y′/y] : gA . We have Γ̂′ + (B ·A1)·Φ1 + (B ·A2)·Φ2 + (Δ2, x :B ·A1

g1, y :B ·A2 g2) ⪯ Γ̂
′ + B ·Δ̂′

1
+ B ·Δ̂2 + (Δ2, x :B ·A1 g1, y :B ·A2 g2) ⪯ Γ̂

′ + Δ
′
1
+ (Δ2, x :B ·A1 g1, y :B ·A2 g2).

Since x′, y′ ∉ dom(Γ̂′ + Δ
′
1
+ Δ2) and x′, y′ ∉ dom(Γ′) and Γ̂ + Δ

′
1
+ Δ2 ⪯ Γ, we have

Γ̂
′ + Δ

′
1
+ (Δ2, x :B ·A1 g1, y :B ·A2 g2) ⪯ Γ

′, x :B ·A1 g1, y :B ·A2 g2. By (t-env) Γ′, x :B ·A1 g1, y :B ·A2

g2 ⊢ d1, x
′
: (B ·A1, v1), y

′
: (B ·A2, v2) ⊲ Γ̂

′ + (B ·A1)·Φ1 + (B ·A2)·Φ2. By induction hypothesis on
e[x′/x] [y′/y] |d1, x

′
: (B ·A1, v1), y

′
: (B ·A2, v2) ⇒ v

′ |d2 we get the thesis.

□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

267:28 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

REFERENCES

Andreas Abel and Jean-Philippe Bernardy. 2020. A uni�ed view of modalities in type systems. Proceedings of ACM on

Programming Languages 4, ICFP (2020), 90:1–90:28. https://doi.org/10.1145/3408972

Davide Ancona, Francesco Dagnino, and Elena Zucca. 2017a. Generalizing Inference Systems by Coaxioms. In European

Symposium on Programming, ESOP 2017 (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer,

Berlin, 29–55. https://doi.org/10.1007/978-3-662-54434-1_2

Davide Ancona, Francesco Dagnino, and Elena Zucca. 2017b. Reasoning on Divergent Computations with Coaxioms.

Proceedings of ACM on Programming Languages 1, OOPSLA (2017), 81:1–81:26. https://doi.org/10.1145/3133905

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In IEEE Symposium on Logic in Computer Science,

LICS 2018, Anuj Dawar and Erich Grädel (Eds.). ACM Press, 56–65. https://doi.org/10.1145/3209108.3209189

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. 2022a. A Java-Like Calculus with User-De�ned

Coe�ects. In ICTCS’22 - Italian Conf. on Theoretical Computer Science, Ugo Dal Lago and Daniele Gorla (Eds.), Vol. 3284.

CEUR-WS.org, 66–78. https://ceur-ws.org/Vol-3284/8563.pdf

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. 2023a. A Java-like calculus with heterogeneous

coe�ects. Theoretical Computer Science 971 (2023), 114063. https://doi.org/10.1016/j.tcs.2023.114063

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. 2023b. Multi-Graded Featherweight Java. In

European Conference on Object-Oriented Programming, ECOOP 2023 (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 3:1–3:27. https://doi.org/10.4230/LIPIcs.ECOOP.2023.3

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca, and Marco Servetto. 2022b. Coe�ects for sharing and

mutation. Proceedings of ACM on Programming Languages 6, OOPSLA (2022), 870–898. https://doi.org/10.1145/3563319

Flavien Breuvart and Michele Pagani. 2015. Modelling Coe�ects in the Relational Semantics of Linear Logic. In 24th EACSL

Annual Conference on Computer Science Logic, CSL 2015 (LIPIcs, Vol. 41), Stephan Kreutzer (Ed.). Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 567–581. https://doi.org/10.4230/LIPIcs.CSL.2015.567

Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. 2014. A Core Quantitative Coe�ect Calculus. In

European Symposium on Programming, ESOP 2013 (Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.).

Springer, 351–370. https://doi.org/10.1007/978-3-642-54833-8_19

Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. 2021. A graded dependent type

system with a usage-aware semantics. Proceedings of ACM on Programming Languages 5, POPL (2021), 1–32. https:

//doi.org/10.1145/3434331

Luca Ciccone, Francesco Dagnino, and Elena Zucca. 2021. Flexible Coinduction in Agda. In ITP 2021 - International

Conference on Interactive Theorem Proving (LIPIcs, Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 13:1–13:19. https://doi.org/10.4230/LIPIcs.ITP.2021.13

Patrick Cousot and Radhia Cousot. 1992. Inductive De�nitions, Semantics and Abstract Interpretations. In ACM Symposium

on Principles of Programming Languages, POPL 1992, Ravi Sethi (Ed.). ACM Press, New York, 83–94. https://doi.org/10.

1145/143165.143184

Francesco Dagnino. 2019. Coaxioms: �exible coinductive de�nitions by inference systems. Logical Methods in Computer

Science 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:26)2019

Francesco Dagnino. 2022. A Meta-theory for Big-step Semantics. ACM Trans. Comput. Log. 23, 3 (2022), 20:1–20:50.

https://doi.org/10.1145/3522729

Francesco Dagnino, Viviana Bono, Elena Zucca, and Mariangiola Dezani-Ciancaglini. 2020. Soundness Conditions for

Big-Step Semantics. In European Symposium on Programming, ESOP 2020 (Lecture Notes in Computer Science, Vol. 12075),

Peter Müller (Ed.). Springer, 169–196. https://doi.org/10.1007/978-3-030-44914-8_7

Ugo Dal Lago and Francesco Gavazzo. 2022. A relational theory of e�ects and coe�ects. Proceedings of ACM on Programming

Languages 6, POPL (2022), 1–28. https://doi.org/10.1145/3498692

Rocco De Nicola and Matthew Hennessy. 1984. Testing Equivalences for Processes. Theoretical Computer Science 34, 1

(1984), 83 – 133. https://doi.org/10.1016/0304-3975(84)90113-0

Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, and Tarmo Uustalu. 2016. Combining e�ects

and coe�ects via grading. In ACM International Conference on Functional Programming, ICFP 2016, Jacques Garrigue,

Gabriele Keller, and Eijiro Sumii (Eds.). ACM Press, 476–489. https://doi.org/10.1145/2951913.2951939

Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a Resource Semiring. In European Symposium on Programming,

ESOP 2013 (Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer, 331–350. https://doi.org/10.1007/978-

3-642-54833-8_18

Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987), 1–102. https://doi.org/10.1016/0304-

3975(87)90045-4

Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Information and Computation 207, 2 (2009),

284–304. https://doi.org/10.1016/j.ic.2007.12.004

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

https://doi.org/10.1145/3408972
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1145/3133905
https://doi.org/10.1145/3209108.3209189
https://ceur-ws.org/Vol-3284/8563.pdf
https://doi.org/10.1016/j.tcs.2023.114063
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://doi.org/10.1145/3563319
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1145/3434331
https://doi.org/10.1145/3434331
https://doi.org/10.4230/LIPIcs.ITP.2021.13
https://doi.org/10.1145/143165.143184
https://doi.org/10.1145/143165.143184
https://doi.org/10.23638/LMCS-15(1:26)2019
https://doi.org/10.1145/3522729
https://doi.org/10.1007/978-3-030-44914-8_7
https://doi.org/10.1145/3498692
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/j.ic.2007.12.004

Resource-Aware Soundness for Big-Step Semantics 267:29

Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming languages.

Information and Computation 185, 2 (2003), 182–210. https://doi.org/10.1016/S0890-5401(03)00088-9

Daniel Marshall, Michael Vollmer, and Dominic Orchard. 2022. Linearity and Uniqueness: An Entente Cordiale. In European

Symposium on Programming, ESOP 2022 (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.). Springer,

346–375. https://doi.org/10.1007/978-3-030-99336-8_13

Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That Can Change the World - Essays Dedicated to Philip

Wadler on the Occasion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 9600), Sam Lindley, Conor McBride,

Philip W. Trinder, and Donald Sannella (Eds.). Springer, 207–233. https://doi.org/10.1007/978-3-319-30936-1_12

Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative program reasoning with graded modal

types. Proceedings of ACM on Programming Languages 3, ICFP (2019), 110:1–110:30. https://doi.org/10.1145/3341714

Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2013. Coe�ects: Uni�ed Static Analysis of Context-Dependence. In

Automata, Languages and Programming, ICALP 2013 (Lecture Notes in Computer Science, Vol. 7966), Fedor V. Fomin, Rusins

Freivalds,Marta Z. Kwiatkowska, andDavid Peleg (Eds.). Springer, 385–397. https://doi.org/10.1007/978-3-642-39212-2_35

Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2014. Coe�ects: a calculus of context-dependent computation. In

ACM International Conference on Functional Programming, ICFP 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.).

ACM Press, 123–135. https://doi.org/10.1145/2628136.2628160

JamesWood and Robert Atkey. 2022. A Framework for Substructural Type Systems. In European Symposium on Programming,

ESOP 2022 (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.). Springer, 376–402. https://doi.org/10.1007/978-

3-030-99336-8_14

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation

115, 1 (1994), 38–94. https://doi.org/10.1006/inco.1994.1093

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 267. Publication date: October 2023.

https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3341714
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1006/inco.1994.1093

	Abstract
	1 Introduction
	2 Algebraic preliminaries: a taxonomy of grade algebras
	3 Resource-aware semantics
	4 Resource-aware type system
	5 Type soundness
	6 Programming examples and discussions
	7 Conclusion
	Acknowledgments
	A Proofs
	References

