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Abstract  

The high volume of extremist materials on the Internet has created the need for 

intelligence gathering via the Web and real-time monitoring of potential websites for 

evidence of extremist activities. However, the manual classification for such contents is 

practically difficult and time-consuming. In response to this challenge, the work reported 

here developed several classification frameworks. Each framework provides a basis of 

text representation before being fed into machine learning algorithm. The basis of text 

representation are Sentiment-rule, Posit-textual analysis with word-level features, and an 

extension of Posit analysis, known as Extended-Posit, which adopts character-level as 

well as word-level data. Identifying some gaps in the aforementioned techniques created 

avenues for further improvements, most especially in handling larger datasets with better 

classification accuracy.  

 

Consequently, a novel basis of text representation known as the Composite-based method 

was developed. This is a computational framework that explores the combination of both 

sentiment and syntactic features of textual contents of a Web page. Subsequently, these 

techniques are applied on a dataset that had been subjected to a manual classification 

process, thereafter fed into machine learning algorithm. This is to generate a measure of 

how well each page can be classified into their appropriate classes. The classifiers 

considered are both Neural Network (RNN and MLP) and Machine Learning classifiers 

(such as J48, Random Forest and KNN). In addition, features selection and model 

optimisation were evaluated to know the cost when creating machine learning model. 

 

However, considering all the result obtained from each of the framework, the results 

indicated that composite features are preferable to solely syntactic or sentiment features 

which offer improved classification accuracy when used with machine learning 

algorithms. Furthermore, the extension of Posit analysis to include both word and 

character-level data out-performed word-level feature alone when applied on the 



 
 

xx 
 

assembled textual data. Moreover, Random Forest classifier outperformed other 

classifiers explored. Taking cost into account, feature selection improves classification 

accuracy and save time better than hyperparameter turning (model optimisation).   



 
 

1 
 

Chapter One: Introduction 

 

1. Introduction  

Radicalisation is used often in relation to Jihadism or Islamic extremism [1]. Other 

concepts of radicalisation are also seen as a component of Fascism or white supremacy 

[2]. Radicalisation is defined as a desire to rule, of which social movements and its 

actions serve as the vessels to achieving the power [3]. To this effect, radicals form a 

uniform society founded on strong, opinionated belief and doctrine. They attempt to 

create society conformists by suppressing all opposition [3]. In 1985, the earliest piece of 

investigation on violent radicalism and the Internet appeared, but the vast majority of 

investigations began after the year 2000 when digital methods of radicalisation became 

more sophisticated [4]. 

 

The spread of extremist documents on the Internet is alarming and has become a major 

concern for government and security agencies. Terrorist and extremist groups adopt 

digital method such as Web technologies for various functions including dissemination 

of information, propaganda, fundraising, recruitment and assignment of deadly missions 

[5-10]. The potential dangers of online extremism cannot be over-emphasised. For 

example, three thousand people were killed in the 9/11 terrorist attacks in the United 

States [7] while four people were killed and many injured in an extremist attack at 

Westminster, London [8] to mention a few. However, a survey from the National 

Consortium for the Study of Terrorism and Responses to Terrorism (START) [9], also 

reported 2,794 terrorist attacks from 1970 to 2016 in the United States that resulted in 

3,659 deaths. The Global Terrorism Index, GTI [9] reported that Boko-Haram in Nigeria 

was one of the world’s deadliest extremist groups in 2014 with a record of 6,700 deaths. 

Just a single terrorist attack in Nigeria was recorded among the 20 most deadly terrorist 

attacks worldwide in 2016. In 2014, nine similar attacks happened in that same country, 

Nigeria. 

 

https://www.standard.co.uk/topic/westminster-attack
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Examples of extremist Websites are jihadi Websites, far-right propaganda and bomb-

making instructional Websites. Many law enforcement and intelligence agencies are 

interested in countering the use of the Internet for extremism due to the rapid increase of 

extremist documents online, this situation has created the need for efficient automated 

systems for the classification and identification of Web pages with extremism contents. 

An automated method to classify or identify such radical documents on the internet is 

one of the counter-terrorism measures against internet cyber threats of which text 

document is the most common content type on the Web. However, manual classification 

of such content on the Internet is impractical due to the existence of billions of Web 

pages of diverse uses.  

 

The number of different text feature representation (a basis of text feature) methods to be 

considered in this research for building a classification model are sentiment analysis, 

Posit (word-level information), and Posit (both word and character-level information).  

In an attempt to further improve the textual content classification, a computational 

framework known as the composite-based classification method is proposed which is 

based on the combination of a machine learning algorithm, and the hybrid of both 

sentiment and syntactic features of the Web texts, to build a model for the automatic 

classification of extremism Web pages. A mix of sentiment and syntactic features 

derived from the textual data is regarded as composite features, a basis for text features 

representation. The rationale behind the hybrid features in the composite approach is to 

explore the richer feature set that feeds into building a classification model. Sentiment 

analysis generates sentiment features in unstructured data while Posit provides the 

quantitative syntactic features that ‘enrich’ the information given by the text corpus. 

 

The effectiveness of the classification frameworks would be analysed and tested on two 

different text corpora. The first dataset is created with Web crawlers at the International 

Cyber Crime Research Centre (ICCRC) at Simon Fraser University in Burnaby, British 

Columbia, Canada, while the second corpus is data retrieved from Nigerian Websites. 
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After collection and pre-processing, each text corpus contains three manual classes that 

cover the themes "pro-extremist," "neutral" or "anti-extremist" based on the contents of 

the data. For example, pro-extremist expresses extremism contents from "extremist and 

jihad organisation Websites”. The neutral group reflects contents from the media/news 

that impartially report terrorist events. The anti-extremist class contains items that 

express views against terrorism. The Web data retrieved from Nigerian domain sources 

would be used to test the validity of a trained dataset obtained from ICCRC. The 

assumption is that, since the Nigerian data is potentially similar to the ICCRC data, in 

the sense that we are interested in the same classification categories, if it performs well, 

this could be taken as validation for the approach since it would seem to work well 

across differently sourced data sets (for the same classification tasks). 

 

 

The objective of the thesis is to develop a robust automatic Web-content classification 

model. Therefore, the manual classification of the Terrorism and Extremism Network 

Extractor (TENE)-sourced Web pages (a Canadian ICCRC data) serves as a threshold to 

measure the success of our automated method.  The thesis explores different 

classification algorithms namely, neural networks (Multilayer Perceptron (MLP), 

Recurrent Neural Network (RNN)) and machine learning algorithms (such as, J48, 

Random Forest (RF) and K-Nearest Neighbours (KNN)) which are implemented using 

both TensorFlow and Sckit-learn API respectively. 

 

1.1 Problem Statement 

The adoption of an internet presence on such platforms as YouTube, Facebook, Twitter 

and other online forums gave extremist groups like Boko-Haram and ISIS the 

opportunity to dramatically increase their membership. Extremist’s activities include 

dissemination of information, propaganda, fundraising, recruitment and assignment of 

deadly missions. In such contexts, the Internet poses a threat to national security. One 
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form of counter-terrorism measure is the classification of such extremist documents 

(Web pages) on the Internet. 

 

The manual classification for such radical documents on the Web is practically difficult 

and time-consuming due to the existence of billions of Web pages of diverse uses. In 

response to this challenge, an automated classification system is needed for such a task. 

However, building such a classification model requires transforming text of unstructured 

data into a form that can be utilised by various machine learning algorithms, which is a 

key challenge in enhancing data classification through textual analysis. Traditional 

methods such as bag of words and vector space models [11-12] have been proposed for 

the text document representations used in a classification model. In the vector space 

model, text is extracted into word sequence and the weight for the features is computed 

as a weight vector, then a classifier is developed based upon the weight vector space. 

However, text has many features and the dimensionality of the vector space can be very 

high, which leads to time and space complexity in the classification model process. 

However, a method to extract fewer but more useful features is crucial to building 

efficient classification systems. 

 

In recent times, methods such as Sentiment [5] and Posit analysis, both at word-level 

[14] and character-level [15], to mention a few, have been widely used to characterise a 

set of text for use in a classification model. Sentiment analysis method such as [5], [13-

14] relies on the use of keywords (frequently used keywords) to obtain sentiment in each 

Webpage and reducing the number of keywords to top k-nouns (which often carry the 

sentiment) poses a challenge as the chances are certain that some Webpages in each class 

have few or none of the selected keywords. This situation results in the non-capture of 

some sentiment values from larger Web page data, thereby hindering the training process 

of useful sentiment features of the Web pages. Such data incompleteness is regarded as 

missing data which can impair the classification accuracy when machine learning 

algorithms are applied. 
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Posit, on the other hand, is designed to generate quantitative data at the level of word and 

part-of-speech content of texts. It creates data based on word-level information which 

could be a disadvantage when applied to short data such as the content of tweets, as 

many of the original features may result in zero values. 

 

To address the challenges mentioned above, this thesis proposes different imputation 

approaches to address the data incompleteness (missing data) faced by the sentiment 

analysis method (the sentiment analysis approach that utilises top-k noun keywords to 

obtain sentiment from text corpus before being fed into a machine learning). Moreover, a 

novel framework is also proposed to improve the textual content classification method 

further, the proposed framework is known as the composite-based classification method. 

The rationale behind the hybrid features in the composite approach is to explore the 

richer feature set that feeds into building a classification model. 

 

In addition to the previously observed limitation in using Posit analysis on short text 

(such as twitter text), the system has been upgraded to complement the convectional 

word-level statistics (27 default word-level features) with an extra 44 character features 

for each instance of text data [5]. The new addition include quantitative information on 

individual alphanumeric characters as well as a subset of special characters such as 

question marks, exclamation marks, asterisks, periods, dollar signs, etc. Consequently, 

each data item is represented by a set of 72 features [5]. However, Posit with the 

different data level information will be applied to non-short text data. This is to establish 

both methods’ effectiveness and improvement in building a textual classification model. 

Hence, keyword modelling in sentiment-rule based analysis and Posit-textual based 

classification models will be revisited in this thesis. The classification models to be 

considered are both neural network models and traditional machine learning algorithms. 

A GridSearchCV algorithm will be explored for hyperparameter tuning to obtain the 

optimal values for each of the machine learning models. However, the methods to be 

examined in this thesis raise some questions when classifying extremist Web data, these 

questions are presented in section 1.3. 
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1.2 Aims and Objectives of the Study 

The thesis aims to develop a Web-content classification model. The specific research 

objectives are to: 

i. Develop an enhanced textual content classification method, a composite-based 

classification method.  

ii. Evaluate different imputation methods (such as KNN, MICE and MissForest) 

applied to compensate for missing values on sentiment-based feature set. 

iii. Develop Posit (word-level) and Posit (word and character-level)-based 

classification methods. 

iv. Evaluate the performance of composite-based classification with existing 

methods namely, Sentiment-Rule, Posit-based classification and Extended Posit. 

 

1.3 Research Question 

This section presents the research questions that are focused on the frameworks to be 

considered in this thesis which include:    

 

i. Can the imputation method efficiently compensate for missing values faced by 

feature set obtained via sentiment analysis (a procedure that utilises top-k 

noun keywords to obtain sentiment values from text corpus) before being fed 

into machine learning for the classification task? 

ii. Can the composite approach (the combination of sentiment and syntactic 

features in textual content as a basis for text features) be effective to create a 

well-working machine learning model? 

 

iii. What is the cost of model optimisation (hyperparameter turning) over feature 

selection when creating a machine learning model? 
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iv. Considering the selected machine learning and neural network algorithms 

(such as RNN, MLP, KNN, J48 and Random Forest) on a pre-processed 

feature, which model produces the best classification accuracy on extremist 

Web textual data?  

v. Can a model based on the dataset used for these experiments be validated on 

another dataset of a similar domain but a different source? 

 

1.4 Overview of Research Method 

A different experiment is performed to test each research question. The experiments 

consist of different classification frameworks developed for the classification of 

extremist Web content. Each framework provides a basis of text representation before 

being fed into a machine learning algorithm. For example, the sentiment features of the 

Web pages will be generated through the sentiment analysis, where linguistic markers 

(top-k noun keywords) are used to pinpoint the sentiment of each Web page. Then, a 

lexical approach, a Sentistrength [16] resource, would then assign a sentiment value to 

each of the Web pages. Thereafter, we propose different imputation approaches to 

address the data incompleteness (missing data) faced by sentiment analysis (the method 

that relies on the use of top-k noun keywords to obtain sentiment around each Web 

page). The imputation approach maintains all situations by substituting an approximated 

value based on other available data for missing data [17]. The feature set can then be 

analysed using standard procedures for comprehensive data analysis once all missing 

values have been imputed. Syntactic features of textual contents of a Web page would be 

obtained through a textual analytic tool called Posit. Posit is a Unix-Scripting program 

that is capable of generating frequency data, as well as Part-of-Speech (POS) tagging in 

unstructured textual data. The composite features explore the combination of both 

sentiment and syntactic features of textual content of a Web page as a basis for document 

classification. The composite framework is illustrated in Figure 1.1.  
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Various machine learning algorithms that will be applied to each feature are neural 

network models (RNN and MLP) and traditional machine learning algorithms such as 

(J48, Random Forest and KNN), this is to generate a measure of how well each page can 

be classified into their appropriate classes. Then, the feature selection algorithms, both 

wrapper method type (Recursive feature elimination (RFE) and the embedded method 

will be applied to the various feature sets. Applying these feature selection algorithms to 

the classification models will allow us to explore the full range of effectiveness and the 

cost on the feature subsets performances (feature optimisation).  

 

 

Figure 1.1: The Proposed Composite Framework 

 

 

 

1.5 Overview of Research Tools 

 

Tools explored for the study are Google Colab GPU, and Python libraries (Pandas, 

Scikit-learn, TensorFlow) are used to implement the experiments and to output the 

results into files. The details of the tools will be re-visited later in this thesis. 

Sentiment features Syntactic features 

Composite Features 

Sentiment Rule-Based 
Approach 

Posit Textual Analysis 
Approach  

Classification Results 

Machine Learning Algorithms 
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1.6.1 Data Sources 

In this section, we describe the two different data sources that would be explored to test 

the effectiveness of the methods.   

i. Extremism Dataset (ICCRC) 

The Web pages that comprise the initial extremism dataset were obtained from extremist 

and associated Websites using the TENE-WebCrawler which is a software developed at 

the International Cyber Crime Research Centre (ICCRC), Simon Fraser University, 

Canada. This crawler traverses the Internet following links based on keyword searches, 

extracting Web pages and analysing each page visited [5]. One collection of such Web 

pages was initially classified manually by ICCRC workers, with each Web page 

classified as "pro-extremist," "neutral," or "anti-extremist" based on its content. The total 

number of manually classified Web pages was 7500, with 2500 Webpages in each 

category. 

 

ii. Nigerian Extremism Dataset  

A second extremism dataset was compiled from the content from Nigerian Websites. 

Websites with extremism topics were retrieved from Nigerian Websites with the aid of 

Beautiful Soup framework [18]. The compiled Nigerian dataset consisted of 70 text 

documents from different websites, classified manually based on their content, the 

Webpages were manually categorised into the three classes, pro-extremist, anti-extremist 

and neutral. The result was 70 Web text documents in each class. These data were later 

classified manually with the aid of a qualitative research tool, NVivo [19]. The details of 

the data sources are further explained in the later part of the thesis. 

1.6.2 Data Pre-Processing 

Raw data that contains noise is unclean, and thus degrades the classification result's 

quality. Pre-processing, on the other hand, aids in the processing of noisy data and 

improves the effectiveness of machine learning algorithms. Before being input into 
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machine learning, the dataset is pre-processed to improve classification accuracy. The 

pre-processing steps include noise cleansing, dealing with missing values and scaling of 

the data. The detailed process will be re-visited later in this thesis. 

 

1.7 Scope of the Study 

This research study focused on the classification of online radicalisation text contents 

(extremist Webpages). The research centred on analysing extremist content to gain 

deeper insight into which class each content of the Website belong, either neutral, anti-

extremist or pro-extremist. The neutral content reports routinely on terrorist events from 

what might arguably be a more impartial and journalistic perspective. The anti-extremist 

content reveals opposition to violence while pro-extremist content expresses extremist 

contents. Input to the analysis algorithms comprises documents containing varying 

degrees of radical and related content and the output is an analysis that details sentiment 

and syntactic characteristics of the content.  

 

On the basis of such analyses, machine learning algorithms were used for the text 

classification. The technique follows a certain trend namely, manual labelling of 

documents into categories, document representation [5, 14 and 15], training a classifier 

on seen data and evaluation on an unseen test set [20]. Various text document 

representations considered in the study include syntactic, sentiment and composite-based 

features. The classifiers explored for the study include, RNN, MLP, J48, Random Forest 

and KNN. In order to assess the performance of this classification, the metrics 

considered were Precision, Recall, F-measure and accuracy. These aspects will be 

detailed in Chapter 2. Many terrorist organisations have created Websites on the Internet 

for various purposes such as fundraising, propaganda and recruitment. Hence, Websites 

considered for this study include Weblogs (also commonly known as blogs), and online 

forums from Websites. This study considers textual content as the data type, which 

explores the structure and content of a document such as sentiment and syntactic 

features. Various types of features used to assist techniques to categorise online 
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radicalisation text on the Web are the link based and content-based features commonly 

used features in the literature [5][13][14].  

 

However, the study focused on content-based features because it often used in text 

classification techniques. The content-based features explore the structure and content of 

a document such as lexical (frequency of letters, average word length etc.), syntactic 

(frequency of function words etc.). Extremists use different languages associated with 

radicalisation. However, in this study, the language of all considered documents is 

English text. Of course, many genres of extremism or radicalisation exist on the Internet, 

including Middle Eastern extremism (a pro-caliphate Islamic political party and the 

Website of the Muslim Brotherhood), US domestic extremism and Anti-Semitism (of 

public safety agencies, or groups like the Global Counterterrorism Forum). We have 

covered these varieties of extremism in our study. 

 

1.8 Limitation of the Study 

Much of the data on terrorist organisations is For Official Use Only or Law Enforcement 

Only. Hence, extraction of the Web contents from open Web data through Web-Crawler 

software was an option explored as a source of data used. The research is based on Web 

content classification.  

 

1.9 The Contributions of the Research Work  

The thesis compares and contrasts various types of imputation approaches used to 

account for missing data in sentiment analysis (the approach that relies on the use of top-

k noun keywords to obtain sentiment around each Web page). According to the findings 

of the study, composite features are preferable to just syntactic or sentiment features in 

terms of classification accuracy when utilized with machine learning algorithms. 

Furthermore, the extension of Posit analysis to include both word and character-level 

data out-performed word-level feature alone when applied on the assembled textual data. 

Moreover, the Random Forest classifier outperformed the other classifiers that were 
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tested. Feature selection increases classification accuracy and saves time better than 

hyperparameter turning. 

 

1.10 Organisation of Thesis 

The remainder of the thesis is organised as follows. Chapter Two presents a review of 

existing literature on text classification methods. Chapter three contains a description of 

the data and the methods adopted in the thesis. Chapter Four describes the 

implementation and the results for the machine learning models, Chapter Five describes 

the implementation and the results for the Neural Network models, and Chapter Six 

describes the analysis and evaluations of the results. Conclusions and future work are 

presented in Chapter Seven.  
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Chapter Two: Related Work 

 

This chapter discusses existing concepts of the field of textual classification. Furthermore, 

related research is going to be examined to place this thesis into context. The target of this 

thesis is to analyse texts in the context of a predefined set of topics, the strengths and 

weaknesses of related research would be examined to fill the research gap.  

 

2.1 Text Classification 

Text classification is the act of labelling documents into categories with respect to their 

content. The process can be manual or automated, and used to easily sort and manage 

texts, images or videos. Lists of the textual classification methods described in this 

section include Topic Modelling, Sentiment, Posit, Bag of Word and Vector Space 

classification-based models.  

 

2.1.2 Bag of Words and Vector Space Model 

This section reviews existing studies on Bag of Words and Vector Space Model used for 

Web contents classification. 

 

Both Bag-of-Words and Vector Space models are types of representations of text 

features used in Information Retrieval and Natural Language Processing. The Bag-of-

Words describes the instances of words within a document and a sentence is represented 

as a bag of words vector (a string of numbers) [21]. In the Vector Space model, the text 

is extracted into word sequence and the weight for the features is computed as a weight 

vector, then a classifier is developed based upon the weight vector space [23]. Existing 

research work on both Bag of Words and Vector Space models is discussed below. 
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A technique for text analysis that explores the Bag of Words model for a predictive 

analysis was proposed [21]. The research was conducted with a set of unstructured data 

which were pulled together from the domain of natural language processing (NLP), in a 

bid to gain a wide scope of attraction from various researchers and on-field practitioners 

to create the right impression of forecasting and predicting insights in a simple and 

explanation fashion. The research detailed the operations of the framework for the fast 

usage of Bag of Words model for text mining processing. Short text multi-class 

classification problems in the Bags of Words model were addressed using word vector 

enrichment of flow frequency words [22]. The research was keen to explore three 

different aspects of the problem about the classification of three different domains which 

happen to be Reuter news article classification, classification of journal article titles, and 

text snippets classification. The research employed bag of words model in underpinning 

the variables from both the general and specific domains. The outcome of their study 

showed that a mix of the information in the unsupervised word vector model with a 

supervised linear model enhances classification performance when compared with other 

classifiers to address other text classification problems. The technique explored in the 

research was effective because it requests no change to the linear classifier throughout 

the training, the technique only applies to the text being classified. 

 

The analysis of a vector space model for data classification on the Internet of a thing 

(IoT) was discussed [23]. The objective of the research was to give a perception of how 

the accessibility of information could trigger an increase in the IoT. The research 

brought into the limelight the proposal of a new text classification algorithm design 

through the aid of the vector space model. The algorithm developed triggers a rise in 

feature selection and weighting method through the approach of synonym replacements 

made to the traditional text classification algorithms. The result obtained from the 

experiment showed a better performance when compared with existing algorithms. The 

vector Space model used to classify Arabic text was discussed [24].   The research 

applied KNN algorithms to explore the different variations of vector space models 

(VSMs), with the keen intention of creating new segments of the Arabic text classifier to 
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segment the Arabic text. The results obtained from the research showed that the cosine 

categories’ performed better than the dice and Jaccard algorithms.   

 

2.1.3 Topic Modelling  

This section discusses existing methods used in a topic model for classifying extremist 

Web content. 

 

A topic model is a form of statistical model for detecting the conceptual "topics" that 

appear in a group of documents. It is also a frequently used text-mining tool to unravel 

hidden semantic structures in a text document. Topic modelling and critical discourse 

analysis were combined to obtain the patterns of the representation around the keyword 

terms Islam and Muslim in a word corpus of a sizeable Swedish Internet forum ranging 

from the year 2000 to 2013 [25]. The corpus used in the course of the research was 

derived from the flashback, one of the biggest Web forums in the world. The outcome of 

the study indicates that Muslims are observed as a homogenous forum that can be 

attributable to conflicts and violent acts. 

 

A new Seed-guided Multi-label Topic Model (SMTM) was proposed [26]. SMTM 

performs multi-label classification efficiently for a group of documents without any 

labelled document with just a few words relevant to each class of the document. In the 

proposed method, a single category topic is attached to each class of document which 

gives the meaning of the class. However, in a process of operating with multi-label 

documents, the research distinctly models the class sparsity in the method by exploring 

the techniques, spike and slab prior and weak smoothing prior. SMTM automatically 

chooses the appropriate class for each document without using any threshold tuning. In 

addition, a seed-guided biased GPU sampling method to monitor the topic inference of 

SMTM was also developed for the supervision of the seed words. The effectiveness of 

the model on the two public datasets showed that the proposed method achieved good 

classification results. 
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A topic modelling algorithm such as Latent Dirichlet Allocation (LDA) has been used 

largely to design documents as a collection of topics. LDA is a generative probabilistic 

model for the gathering of discrete data [27]. Some studies have shown how it has been 

used to analyse the same Web contents to detect important topics in extremist online 

forums. For example, a study in [28] explored the Latent Dirichlet allocation (LDA) 

algorithm. The authors developed a framework to detect latent topics by analysing the 

contents of dark websites. A Web-crawler was explored to extract the Dark Web 

contents used for the analysis. Then, the Latent Dirichlet allocation (LDA) algorithm 

was applied to analyse the Web content to reveal latent topics from Websites of terrorists 

or extremists. The result of the experiment showed that LDA-based analysis allocates a 

probability to a document and covers the exchangeability of both words and documents.  

 

A new low-dimensional text representation approach for topic classification was 

developed [29]. The model was developed based on the multi-level LDA representation. 

A Latent Dirichet Allocation (LDA) model was explored to extract possible topic 

clusters in the dataset. The effectiveness of the model was implemented on two datasets. 

The first dataset was obtained from the FriendFeed social network, manually interpreted 

with ten classes, while the second was an ideal text classification benchmark, Reuters 

21578, the R8 subset (interpreted with eight classes). Eventually, the result from the 

proposed classification model gave improved results for both datasets.  

 

2.1.4 Sentiment Analysis 

The proposed method presented in this thesis is an underpinning of sentiment analysis 

that uses keywords as a linguistic marker technique to pinpoint sentiment in a Web page. 

This section details existing methods on sentiment-based classification method. 

 

Sentiment analysis tends to determine opinion or emotion in unstructured textual data. 

Methods used in sentiment analysis include machine learning and semantic orientation. 
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Sentiment analysis uses a computational approach to obtain opinionated contents and 

classifies the overall review of the topic into positive, negative and neutral. It also 

reveals users' intentions, emotions and opinion hidden in the unstructured text [30]. 

Sentiment analysis uses a computational approach to obtain opinionated content and 

classifies the overall review of the topic into positive, negative and neutral. The 

techniques used by sentiment analysis for classification include machine learning and 

lexicon-based approaches.  The studies on sentimental analysis of public opinions as 

expressed on social media in Ghana as regards government policies and decisions using 

machine learning algorithms were carried out [31]. The research used the Naïve Bayes, 

Support vector machine and random forest algorithms for analysis. It was discovered that 

the Naïve Bayes classifier was adjudged the best with an accuracy of 99%.  The use of 

sentiment analysis as a tool of supervised machine learning algorithm to classify 

Lithuanian news website contents, especially those that pertain to financial issues was 

examined [32]. The results revealed that the non-balanced dataset produced the highest 

accuracy through the Naïve Bayes algorithm with the support vector machine coming 

behind at a lower level of accuracy.  

 

The sentiment analysis of social media texts using machine learning techniques such as 

the Support Vector Machine (SVM), Naïve Bayes (NB) and the Artificial Neural 

Networks (ANN) techniques were examined. The study revealed the ANN technique had 

the best classification accuracy to the tune of 90% [33].  

 

The work explored millions of tweets from more than 25,000 common users that were 

manually tagged, reported and suspended as a result of their involvement with extremist 

movements by Twitter and another sample of tweets was obtained randomly from 25, 000 

common users who are open to extremist content. All the information was used for the 

forecasting tasks. Eventually, the performance of the framework revealed a 93% success 

rate for extremist user detection and an 80% rate for predicting content adopters. Another 

method used in sentiment analysis for the classification of a text document is semantic 

orientation. This operates by depending on a method that utilised a corpus annotated for 
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sentiment or a sentiment value derived from a dictionary of words in classifying text 

documents [34]. Many studies have explored a hybrid of both data mining algorithm and 

semantic orientation (a lexical approach) in classifying or identifying extremism on Web 

pages, such as [5]  [13]  [35].  

 

An authorship analysis framework was implemented on the linguistic features extracted 

from online messages in [35]. The result was evaluated to determine the stylistic features 

of terrorist communications. A multilingual model comprising a set of algorithms and 

related features was used to detect Arabic messages and their language's unique 

peculiarities on an Arabic and English Web forum associated with radical groups. Two 

classifiers namely, C4.5 and Support Vector Machine were used on the features. The 

results from their model indicated that SVM out-performed C4.5, and a high degree of 

success in identifying the communication pattern was produced.  

 

Twenty thousand Webpages were collected with the aid of a WebCrawler to assess 

differences in five sentiment classes namely: anti-extremist sites, radical Islamic sites, 

radical right sites, sites that did not discuss extremism and news source sites discussing 

extremism [13]. That is, pages that relate to extremism or not. 198 frequently used 

keywords were identified through the aid of POS tagging. These keywords were used to 

calculate sentiment values for each page through sentiment analysis. The result obtained 

showed that the radical Islamic text class was classified at a much higher rate of success 

than the radical right text class. A WebCrawler called TENE-WebCrawler was designed 

to make a decision on each Web page it downloaded whether the page is pro-extremist, 

anti-extremist or neutral [5]. The process was achieved through the use of frequently used 

keywords as linguistic markers to pinpoint the sentiment on each page. The method was 

achieved through the combination of semantic orientation and data mining techniques to 

produce their classification.  
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Sentiment and social analysis were combined as a technique used to survey the agenda of 

a radical group on YouTube [36]. The polarity for each topic discussed within the group 

was obtained and explored to model individuals’ behaviour.  Eventually, it was spotted 

that extremism and intolerance were prominent among female users. Hierarchical 

clustering was applied to divide extremist Web pages into politics and religion categories 

[37]. Data retrieved from the Dark Web Portal Project was used to conduct the first 

proposed method to detect cyber recruitment efforts [38]. A sentiment-based 

classification method was employed for Twitter analysis classification [39]. Web Forums 

were used for opinion classification [40]. Twenty-eight (28) different extremist religion 

forum discussions translated from Arabic to English were compiled for annotation. 

Thereafter, the authors used a set of textual features and Bayesian criteria to classify the 

corpus. An accurate result was obtained, and the most predictive terms were highlighted 

[41]. Machine learning algorithms such as Naïve Bayes and Support Vector Machine 

were used to classify positive and negative features in given data [42].  

 

The intensity of the sentiments of extremism was unraveled through sentiment analysis 

of social media multilingual textual data [43]. The research proposed a method that 

classifies textual views into four groups such as high extreme, low extreme, moderate, 

and neutral with respect to the degree of their extremism. A multilingual lexicon that was 

endorsed by domain experts which scored 88% precision was explored for the 

classification. Linear Support Vector Classifier and Multinomial Naïve Bayes algorithms 

were applied to the multilingual dataset. Eventually, Linear Support Vector Classifier 

produced better accuracy than Multinomial Naïve Bayes with an accuracy of 82%. 

 

The semantic composition problems such as negative reversing and intensification 

associated with the use of conventional methods of annotating the sentiment of 

unlabelled documents which are based on sentiment lexicons or machine learning were 

discussed [44]. The research developed a sentiment-based classification method using 

negative and intensive sentiment added information to obtain the linguistic feature of 
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negative and intensive words as well as the topic information [44]. The method was 

applied to two datasets namely, a Movie Review and Stanford Sentiment Treebank. 

Eventually, the method was able to solve the domain-specific problem without depending 

on the external sentiment lexicons 

 

Temporal sentiment analysis involves the findings of the sentiment pattern within a given 

period, a means for investigating the temporal patterns were proposed with the use of 

keywords in the comments [45]. A keyword based temporal sentiment analysis was 

developed, which comprises a sentiment classification technique and keyword clustering, 

in relating a few major events that happened during the period of investigation (19 

November –20 December 2014). The results obtained in the experiment showed that 

temporal sentiment analysis with the use of keyword clustering can be explored to create 

the changes in opinions from the public relating to situation-events in a historically major 

election campaign in a developing country. The result revealed crucial information about 

the difference in the opinions during the election campaign which is difficult to discover 

by other means. 

 

2.1.5 Posit-Based Classification Method 

The proposed method presented in this thesis is an underpinning of Posit textual analysis 

that generates syntactic features of textual content from a Web page which are useful 

input for classification models. Existing studies on the Posit method are discussed in this 

section. 

 

The Posit textual analysis toolset is a program written mainly in UNIX script and is 

capable of generating a detailed syntactic and frequency analysis of a textual corpus 

[46]. Posit outputs quantitative data from any text, including, word count, number of 

characters and sentences, number of tokens and types, n-gram frequencies and finally, 

part-of-speech tagging (POS) [47]. By default, the Posit produces data on 27 features. 

The features include noun types, possessive pronoun, personal pronouns, average 
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sentence length, determiners, adverbs values for total words (tokens), total unique words 

(types), type/token ratio, number of sentences, number of characters, average word 

length, verb types, adjective types, adverb types, preposition types, personal pronoun 

types, determiner types, types, interjection types, particle types, nouns, verbs, 

prepositions, adjectives and interjections. Posit extracts syntactic and quantitative values 

for textual data using part of speech tagging. It uses frequencies of syntactic features to 

characterise the given text. Posit textual analysis has been deployed for a diachronic 

analysis of English textbooks used in Japan. Posit was employed for the analysis and 

categorisation of a Scottish newspaper corpus [47].  

 

Two different techniques were used for the automatic classification of extremist Web 

pages were collected from the Terrorism and Extremism Network Extractor (TENE) 

Web-crawler, a custom-built piece of software that browses the World Wide Web, 

gathering a large volume of data, retrieving the pages it visits, analysing them, and 

recursively following the links out of those pages. The techniques were contrasted [14]. 

The research aimed to determine the best automated classification system among the two 

approaches that can efficiently place each Webpage into the appropriate classes. The two 

approaches are Posit-textual analysis and a Sentiment classification rule-based technique 

that utilises top-k noun keywords to obtain the sentiment around each Webpage [5]. 

These techniques were applied separately on the extremist Web pages. A classification 

model was then developed on the features generated by each technique, using the J48 

decision tree as the classifier algorithm. Eventually, the results obtained indicated that 

Posit-based classification results outperformed the results obtained from the sentiment-

based classification method. 

  

A machine learning algorithm was applied to the features which are numerical 

representation of texts generated from three different data sets through a tool known as 

Posit [48]. The tool generates features, such as parts-of-speech types and tokens 

instances and average sentence length. In addition to the aforementioned features, the bi-

gram features were also included as the proposed added features. The effectiveness of 
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the method was tested on three datasets namely, drug, extremism-related texts and 

DBpedia text data. The objective of the research was to test the classification accuracy of 

the combination of Posit and n-gram features when a machine algorithm is applied. 

Then, the classification model was conducted on the datasets including 2-gram features. 

The results from the research indicated that the proposed added features (2-gram 

features) combined with the Posit features gave a limited improvement on the overall 

classification. In addition, the DBpedia dataset revealed that classifying a text corpus 

with numerous topics is inappropriate with the feature sets produced. The study also 

showed that transforming a text corpus to its numerical information produced by Posit is 

effective for classifying big datasets when a machine learning algorithm is applied. 

 

A Posit tool was proposed that will allow agencies to separate and identify distrustful 

social network content. Posit analysis showed 99.8% precision in classifying fake news. 

Using Posit improves the possibility of achieving this aim, although it is still under 

research [49].  

 

Three million social media posts were utilised for an automated classification system 

[15]. The posts were labelled by Russia’s Internet Research Agency into fake or real 

news. TENE-WebCrawler developed at the International Cyber Crime Research Centre 

(ICCRC), Posit Toolkit, an improved version of Posit [46] and TensorFlow were the 

techniques employed for identifying hostile disinformation activities in the Cloud. The 

posts were classified with a slight increase in performance of Posit toolkits against the 

TensorFlow approach. The new Posit toolkit extends the basic word-level features to 

generate more 44 character features for each case of text data. The aforementioned 

features contain information on alphanumeric characters, and a subset of special 

characters, such as questions marks, exclamation marks, asterisks, periods and dollar 

signs. The augmentation of Posit to embrace character-level as well as word-level data 

produces the domain-neutral complexion of Posit analysis. Consequently, each data item 

(tweet) in the extended Posit analysis was represented by a set of 72 features. Each 

feature set from the techniques was fed into WEKA where J48 and Random Forest 
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classifiers were applied. The result from their study indicated that the upgraded version 

of Posit outperformed the result obtained from the TensorFlow implementation at a 

success rate of 90.1%.  

 

2.1.6 Deep Neural Network Classification Method 

 

Existing studies on the Deep Neural Network classification method are discussed in this 

section. 

  

An overview of character-level Convolutional Networks as a method for text 

classification was described [50]. In the studies, the authors developed character-level 

convolutional networks for text classification. From their experiment, it was shown that 

a convolutional network could be implemented directly to a unique set of words in the 

absence of any information on the syntactic or semantic structures of the languages. 

Different datasets were explored to show that a character-level convolutional network 

could attain competitive results. 

 

Users’ posts on Twitter were classified into extremist and non-extremist groups using 

deep learning sentiment analysis techniques to detect and combat the spreading of bad 

ideology among different social media users [51]. The research proposed long short-term 

memory with Convolutional Neural Network (CNN-LSTM) model to achieve the 

research objective. The users’ sentiments from the Twitter posts were classified based on 

their emotional affiliation such as positive or negative emotions with respect to extremist 

content. However, the proposed model lacks the automatic means of storing Twitter 

content, context-aware features, proper visual display and investigating other extremists. 

The authors recommend that using context-aware features and advanced techniques like 

an attention-based mechanism for extremist affiliation detection with multi-class labels 

will improve the performance of the system [51]. 
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An approach to detecting terrorism based on sentiment analysis of users’ posts on 

Twitter was developed [52]. According to the study, users’ sentences on the Twitter 

platform are analysed and categorised into three areas namely positive, negative and 

neutral about the sentiment opinion of users leading to an act of terrorism. To achieve 

this, the Naïve Bayes algorithm was improved and used to predict the categories in 

which any given Twitter post belonged. This is done by looking for certain keywords 

which the users have used in the post, assigning a score to it concerning terrorism, 

comparing it with the previous posts, and ranking the value obtained to know their 

influence on the subject. This however does not only provide benefits as terrorist 

detection but also helps to determine the categories of text especially in combating 

digital issues.  

 

The multiclass event classification from texts on social media about the Urdu language 

text was examined [53]. Deep learning techniques such as the convolutional neural 

network (CNN), recurrence neural network (RNN) and the deep neural network (DNN) 

were applied. However, the DNN classifier outclassed other algorithms with 84% 

accuracy in the extraction and classification of text. Sentiment analysis on the opinion of 

people expressed on Facebook as regards the COVID-19 pandemic in low-resource 

languages with a special inclination to the Albanian language was conducted [54]. Three 

neural networks including the 1D-CNN, BiLSTM and the 1D-CNN + BiLSTM models 

were deployed revealing that the optimal combination of the BiLSTM with an attention 

model yielded the best performance at 72.09%. Supervised machine learning techniques 

were compared for sentiment analysis of Covid-19 tweets [55]. The LSTM model was 

compared with the Vader sentiment analysis and the GloVe feature extraction approach 

and it was discovered that the LSTM has more accuracy than other techniques at 93% 

accuracy.  

 

A framework was developed using a Recurrent-Convolutional Neural Network, based on 

pre-trained word embedding to address the problem of the automatic classification of the 

extremist activities on Twitter, most especially the Islamic State of Iraq and al-Sham 
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(ISIS) activities [56]. The method was implemented on 15,684 ISIS propaganda tweets, a 

mix of neutral tweets, connected to ISIS, and random ones, creating imbalances up to 1%. 

The proposed method was compared with other methods such as, a character-based CNN 

model, a RCNN, merged with max-pooling (based on pre-trained FastText word 

embeddings) and SVM trained on bag-of-character and bag-of-word n-grams. The 

method was evaluated based on varying the training schemes and the test conditions. The 

result obtained from the research was able to demonstrate that the proposed framework 

attained a F1 score as high as 0.9 when trained with the same imbalance. 

 

2.2 Imputation Methods 

This section describes imputation approaches used to compensate for missing values. 

 

A critical issue in the classification task is the missing values found in some datasets. 

Missing data is defined as values or data for some variables in a dataset that is not 

recorded (or non-existent) [1]. Most classifiers cannot cope with null entries which could 

be missing data.  Missing data, in this case could impair the accuracy of data analysis or 

when classification algorithms are applied, as the value of the data has degraded. A 

classifier learns from data and misrepresentation of facts in data will lead to wrong 

information learned and hence incorrect or biased classification occurs. A better approach 

to the missing data is the imputation method. Listed below are some of the widely used 

imputation methods. 

 

2.2.1 MICE Imputation 

Multiple or Multivariate Imputation by Chained Reactions also known as MICE 

imputation is a means of handling non-response bias which occurs when certain 

respondents do not respond to a survey leading to the presence of missing data [57]. 

Therefore, the MICE or multiple imputation is a method used to replace missing data 

values in a data set given the conditions that the data is missing completely at random 

(MCAR), non-ignorable missing or missing at random (MAR) [58]. In simple terms, the 
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MICE imputation points to an approach where missing values in a dataset are replaced 

with probable data which are sourced from the distribution but modelled for each 

missing value through the use of chained equations [17].   

 

Meanwhile, the MICE imputation has been preferred by statisticians because of its 

flexibility in handling varying nature of data such as the continuous or binary data and 

other simulation studies while it also addresses intricacies emanating from bounds or 

survey skip patterns [57], [59], [60]. In other words, the algorithm can correspondingly, 

[61] noted that although there are various means of handling missing data, the complete 

case analysis though simple to adopt is not as efficient as the MICE imputation because 

it requires more missing data assumptions which may rare to come by in real life 

computations and as such lead to being biased. Furthermore, the single imputation 

method has also been discovered to fall short on the grounds of accounting for 

uncertainty which will also lead to inaccurate results [61], [62]. Therefore, the MICE 

imputation is more beneficial on the grounds of flexibility as it can be applied to a 

different range of the dataset. Also, because it multiple times fills in the missing values 

by creating multiple and seemingly complete datasets, the missing values are filled in 

premised on the observed values while it further accommodates and handles uncertainty 

by providing accurate standard errors [57].  MICE imputation model is advantageous 

because it can account for the data creation system as well as the preservation of the 

uncertainty that pertains to the dataset [61]. Furthermore, the MICE approach was 

developed to address the problems that are associated with the multivariate imputation 

approach which was noted by [17]. These problems include the circular dependence that 

can occur in the dataset as the imputed data values may lose their specific independence 

because they may indirectly depend on other values used to model them.  



 
 

27 
 

 

Fig 2.0: MICE Imputation Framework Source: [64] 

 

2.2.2 K-Nearest Neighbors (KNN) Imputation 

The KNN imputation approach seeks to fill in missing data by most similar values or the 

nearest neighbors of the instance of interest. As such, the similarity between the instance 

of interest and the missing data is determined by a distance function algorithm [65]. The 

KNN imputation has been considered advantageous because quantitative and qualitative 

values can be predicted by the approach and it does not equally have to provide a model 

to predict each missing data [65]. Also, this approach can retain the variance-covariance 

structure of the dataset as far as the k=1 condition is satisfied [66]. In addition, the 

approach is less susceptible to model misspecification due to its non-parametric nature 

which does not require models in relating datasets [67]. In precis, the KNN is good on 

the basis of simplicity, comprehensibility and scalability [68]. 

 

On the other hand, the limitations of the KNN include its high cost of computation which 

makes it difficult for it to be applied to real-time situations, high storage prerequisite and 

responsiveness to noise [68] In addition, it involves several pre-processing procedures 

like the screening or data splitting among others which is time consuming. Also, [68] 
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noted that noise tend to cause issues related to difficulties in convergence and accuracy 

of classification.  

 

2.2.3 MEAN Imputation 

The Mean imputation is a method where the missing value in a dataset is filled in by the 

mean value of the available or non-missing data values [69]. That is, it is a single 

imputation approach where some mean values of ascertained data is used to replace 

missing slots in a data set [70]. One advantage of this approach is the absence of 

complexity that is associated with its calculation. Furthermore, the approach preserves 

the mean value of the observed data especially when data is missing at random, as such 

the mean value still remains unbiased [70]. Furthermore, the use of the mean imputation 

also guarantees a complete sample size as the approach ensures that the full sample size 

is kept and as such will not lead to problem in parameter estimates [61]. However, the 

size of the covariance and correlation tends to reduce and as such tends to cause bias in 

estimation especially when the relationship between variables is to be considered [71]. 

Furthermore, this tends to reduce the standard error of the mean and consequently, the 

probability values attached to the variables under consideration will equally be reduced 

leading to another major bias in estimation [69], [72]. 

 

2.2.4 MissForest Imputation 

The MissForest imputation is a non-parametric approach premised on the random forest 

algorithm that can handle any kind of data whether they are characterized by mixed 

variables, high dimensionality or non-linear relations [73]. However, the only requisite 

for the execution of the approach is that the observation must be pairwise independent 

[73]. The approach presents an estimate of the imputation error which [73] assumes that 

it is accurate to a very large degree. MissForest imputation outperformed other 

imputation methods explored in their study [73]. The approach is centered on random 

forest-based iterations which occur after the mean/median imputation has been done to 

predict a transformed dataset to fill in the missing data [74]. Also, contrary to the 
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provisions of the KNN technique, this approach does not require pre-processing 

activities while it also efficiently handles noise and multi-collinearity in the dataset. In 

addition, the approach is not subject to the curse of dimensionality and requires no 

tuning because of its non-parametric approach [74]. However, the approach has some 

limitations which include its nature as an algorithm rather than a model object. As such, 

it cannot be stored and therefore requires fresh processing each time there is a need for 

missing data imputation which may not be comfortable in some quarters [75]. 

Furthermore, it wastes more imputation time because it increases the number of 

predictors and observations in a bid to fill missing values while it equally subjects the 

dataset to the lack of interpretability of random forests [75].  

 

2.3 Research Gaps 

This section describes the gaps in the published research. 

Textual classification methods such as Machine Learning, Semantic Orientation [34], 

Topic modelling [26-27], Posit [14 48, 49, 15], the linguistic maker (keyword) model are 

used in the Sentiment analysis 45[5, 13, 75], a bag of words [11, 21] and vector space 

model [12, 23] have been reported in the literature. However, conventional methods such 

as a bag of words and vector space model are faced with many limitations such as high 

dimensional feature vector encountered due to large size of vocabulary, the model 

disregards semantics of the word (the word ‘automobile’ and ‘car’ could be used in the 

same context) [11]. Also, highly sparse vectors occur when there is a nonzero value in the 

dimensions related to the words that appear in the sentence [11]. Moreover, a vector space 

model also suffers from synonym and polysemy. The model is semantically insensitive 

(documents with similar context but different term vocabulary cannot be connected). 

Hence, a negative match occurs. It theoretically assumes that terms are statistically 

independent. Lastly, long documents do have poor similarity values [12].  

 

In recent times, methods such as Sentiment [5] [13] and Posit analysis, both at word-

level [14] and character-level [15], to mention a few, have been explored to characterise 
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a set of text for use in a classification model which is the focus of this research because 

they are hot-trend methods useful in market and scientific research in the area of 

Machine Learning and Natural Language Processing. However, the use of the linguistic 

marker technique in some sentiment analysis (i.e. the use of frequently used keywords) 

such as [5] [13], relies on the use of keywords to obtain sentiment around each Web page 

and reducing the number of keywords to top k-nouns (which often carry the sentiment) 

will reduce the dimension and matrix sparseness, this poses another challenge as chances 

are there that a fraction of the Webpages in each class has few or none of the selected 

keywords thereby leading to non-capture of sentiment values of such Webpage, this may 

impair classification accuracy of such Webpages.  

 

However, the aforementioned are the knowledge gaps observed in the literature and the 

focus of this research is the means of analysing text to extract useful feature information 

that would enhance automated classification. 
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Chapter 3: Methodology 

 

This chapter contains the description of the data and the methods adopted in the thesis.  

 

3.1 Experimental Design 

The experiments conducted in this research are developed on the foundation or 

justification of research questions that could be evaluated to determine if the assertions 

are correct or not. Sections 1.3 detailed our research questions. However, it is important 

to sustain a consistent experimental setup to achieve valid conclusions. The effectiveness 

of the methods explored in the study is analysed and tested on ICCRC extremist data. The 

Web data retrieved from Nigerian domain sources would be used to test the validity of a 

trained dataset obtained from ICCRC. The six different text feature representations 

considered in this thesis for the various classification tasks are Sentiment (KNN, MICE 

and MissForest Imputation), Posit, Extended Posit-based analysis and the proposed 

method, a Composite-based analysis. The concepts and the design of the methods carried 

out in the study are described in Figure 3.1. The descriptions of the datasets, data 

preparation and data pre-processing phases of the model development for the experiments 

are given below.  
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Figure 3.1: The Architecture of the Research Methods 

 

3.2 DATA SOURCES 

 

In the following, two manually classified datasets are presented. The origin of each 

dataset differs and this produced a broad range of texts with similar topics. These datasets 

have been employed to test the effectiveness of the frameworks for efficient text 

classification. General descriptions of the dataset are given below: 

 

(i) Extremism dataset (referred to as ‘ICCRC dataset’): The Webpages were obtained 

from extremist Websites using the TENE-WebCrawler. The TENE-WebCrawler is a 

software developed at the International Cyber Crime Research Centre (ICCRC), Simon 
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Fraser University, Canada. This crawler follows links based upon keyword searches 

through the Internet, extracts Web pages and analyses each page visited [5]. One set of 

such Web pages was initially subjected to manual classification by ICCRC personnel, 

whereby each Webpage was grouped as "pro-extremist", "neutral" or "anti-extremist" 

based on its contents. The data retrieved for this manual classification process comprised 

7500 Web pages manually classified as indicated above.  

 

The Webpages were classified with respect to their content. For example, the neutral 

group reflects content from the media/news that reports impartially on terrorist events. In 

the neutral class, 2500 Web pages were derived from 30 Websites. The anti-extremist 

class contains Web content that reports the countering of terrorism and operations of 

intelligence agencies. The anti-extremist class consists of 2500 Webpages from 10 

Websites. Pro-extremist pages express extremist content from extremist and jihadi 

organisation Websites. Examples of such Web sources are white supremacist forums and 

America-based neo-Nazi forums. In this class, 2500 Webpages were obtained from 11 

different Websites. However, a balanced dataset in ICCRC Extremism Web-data (2500 

Web pages in each category) is used, this is to create unbiased results among each class.  

 

(ii) Nigerian Extremism Dataset: Websites with extremism topics were retrieved from 

Nigerian Websites with the aid of the Beautiful Soup framework [18]. This is a Python 

library used to download Web page content, automatically scrape HTML data from a 

Webpage and present it in a plain text format. This software was used to retrieve 

Nigerian domain Websites with extremist topics. The retrieved data comprised 210 

Webpages from ten different extremist Websites. These data were later classified 

manually with the aid of a qualitative research tool, NVivo [19] which permits future 

analysis of the data.  The Webpages are categorised based on its content into three 

classes; pro-extremist, anti-extremist and neutral, with 70 Web text documents in each 

class. Examples in the pro-extremist class include content retrieved from recognised 

extremist websites such as radio-Biafra (Website for the agitation for Biafra nation), 

Boko-Haram (website for a group of terrorists in the Northern part of Nigeria) IPOB 
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(website for a group of people in the Eastern part of Nigeria agitating for Biafra nation), 

and Niger-Delta Avengers (Websites for a group of militants in South-Southern part of 

Nigeria who feel they are being exploited). The forums consist of content discussing a 

referendum for independence, agitation for independence, war, opposition to the 

government, hate speeches, killings, vandalising of oil wells and pipelines and religious 

radicals (Boko-Haram). This category of Web page content consists of 70 Web pages 

that were obtained from 10 different Websites. The neutral content was obtained from 

media sources that could be expected to report generally on terrorist occurrences from a 

more unbiased, journalistic perspective, including sites such as lindaikeji (blog) and 

Nairaland (blog). In this neutral class, 70 Web pages were retrieved from 11 Websites. 

Finally, the anti-extremist category contains 70 Web pages obtained from 9 different 

Websites. The anti-extremist content reveals opposition to violence, for example, 

counter-terrorism Websites such as the Nigerian police, and Economic and Financial 

Crime Commission (EFCC) forums.  

 

3.2.1 The Dataset’s Complexion  

Complexion analysis unravels any discrepancies in characteristics between the data 

items to be classified. There might be a situation where a unique feature might 

excessively influence the automated classification process. However, the complexion 

analysis helps to make the subsequent examination of key attributes of the data to have 

knowledge of the likelihood of such influential factors such as number of words, number 

of characters, number of special characters, as well as maximum, minimum and average 

values for each of these features. Table 3.1 revealed different distributions within the 

features such as Total Words, Number of Sentences Type/Token Type and Average 

Sentence Length in the datasets. Posit analysis is explored to shed light on the 

complexion analysis of the datasets.  The complexion’s components are described below 

such as the data points, spread, skewness and the coefficient of variance.   
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Data points  

 

The middle of the data set is regarded as the central location which is described by mean, 

median or mode. Mean is regarded as an average value of the data points, the value in 

the dataset that appears most is regarded as a mode while  the mid number when the data 

point is placed from low to high is known as the median 

 

Spread or Dispersion 

 

The extent to which a distribution is expanded or compressed is known as dispersion, 

also known as the spread. Examples of statistical dispersion metrics are mean, variance 

and standard deviation. For example, when the variance of data in a collection is high, 

the data is well dispersed. When the variance is at modest (low), however, the data in the 

set is clustered [ 76]. 

 

Coefficient of variance 

 

A fraction of the standard deviation to the mean is regarded as the coefficient of 

variation. The coefficient of variation is a statistical measure of the dispersion of data 

points around the mean (relative standard deviation). When comparing data dispersion 

between distinct data sets, this metric is widely utilized. The coefficient of variation, 

unlike the standard deviation, which must always be assessed about the data's mean, is a 

simple and quick way to compare different data sets. [76] 

 

Skewness  

Skewness estimates the asymmetry of a real-valued random variable's probability 

distribution around its mean. Positive, zero, negative or undefined skewness are possible 

values in skewness. The tail on the left side of a unimodal distribution is indicated as 

negative skew while positive skew shows that the tail is on the right-side [77]. Skewness 

does not follow a general rule when one tail is long and the other is big. A zero value 
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indicates that the tails on both sides of the mean balance out in the overall distribution, 

for example, this is true for both symmetric and asymmetric distributions with one long 

and small tail [77]. 

 

3.2.2 Attributes of the Dataset 

 

The ICCRC Extremist data has a mean of the number of total words of 1955 in a text 

with a maximum of 75127 (illustrated in Figure 3.2). The standard deviation for 

total_words is far above the mean and above zero, making the data points spread away 

from the mean showing a lot of variation. With a skewness value of 7.28302, the 

distribution is skewed right with a tail, also showing a spread of variation towards the 

increasing positive x-axis- indicating data points/outliers that are greater than the mode, 

showing some variation. The coefficient of variation is also >1, showing high variance of 

data points. From the plotted histogram, the x-axis is the range of values while the y-axis 

is the frequency for the value ranges.  

 

 

Figure 3.2: Total words for the Extremism (ICCRC) Data 

 

The number of sentences in the ICCRC Extremist set contains 59.9. The highest number 

of sentences for the ICCRC data is 2450, but the plot shows that bulk of the data 

contains less than 408 sentences. This is shown in Figure 3.3. The standard deviation for 

number_of_sentences is above the mean and far above zero as well, making the data 
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points spread away from the mean showing a lot of variation. With a skewness value of 

8.18498, the distribution is skewed right with a tail, also showing a spread of variation 

towards the increasing positive x-axis- indicating data points/outliers that are greater 

than the mode, showing some variation. The coefficient of variation is also >1, showing 

a high variance of data points. From the plotted histogram, the x-axis is the range of 

values while the y-axis is the frequency for the value ranges. 

 

 

Figure 3.3: Number of sentences for Extremism (ICCRC) data 

 

For the ICCRC extremist data, the mean average sentence length is 48.086, and the 

maximum is 1716, both of which are doubtful to be actual sentences because the data's 

maximum is still extremely high (displayed in Figure 3.4). However, the data average 

sentence length values suggest that the datasets may contain numerous texts that are not 

structured in sentences. The ICCRC extremist data has compressed plot, with only a few 

texts around 250. The standard deviation for average sentence length is close to but still 

above the mean and far above zero as well, making the data points spread away from the 

mean showing a lot of variation. With a skewness value of 11.5183, the distribution is 

skewed right with a tail, also showing a spread of variation towards the increasing 

positive x-axis- indicating data points/outliers that are greater than the mode, showing 

some variation. Coefficient of variation is also >1, showing high variance of data points. 

From the plotted histogram, the x-axis is the range of values while the y-axis is the 

frequency for the value ranges. 
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Figure 3.4: Average sentence length for the Extremism (ICCRC) data 

 

The standard deviation for average word length (awl) is well below the mean and close 

to zero, making the data points spread towards the mean showing less variation. With a 

skewness value of 3.17162, the distribution is skewed right with a tail, also showing a 

spread of variation towards the increasing positive x-axis- indicating data points/outliers 

that are greater than the mode, showing some variation. The coefficient of variation is 

also <<<1, showing less variance of data points. From the plotted histogram, the x-axis 

is the range of values while the y-axis is the frequency for the value ranges. There is 

little variation in this column of the feature. This is shown in Figure 3.5 

 

 

Figure 3.5: Average Word Length for the Extremism (ICCRC) data 
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The standard deviation for the type/token ratio is below the mean but still above zero, 

still making the data points spread away from the mean showing a lot of variation. With 

a skewness value of 1.56646, the distribution is unimodal but has peaking outliers as 

multiple peaks, also showing a spread of variation towards both positive and negative x-

axes- showing some variation. From the plotted histogram, the x-axis is the range of 

values while the y-axis is the frequency for the value ranges. The low coefficient of 

variation (0.33667) suggests a low level of variation. This is shown in Figure 3.6. Table 

3.1 shows the summary of the complexion analysis of the Extremist (ICCRC) dataset. 

 

 

Figure 3.6: Type/Token Ratio for the Extremism (ICCRC) data 

 

 

 

 

 

 

Table 3.1: Complexion Analysis of Extremist (ICCRC) Dataset 

 

Features Min Max Mean Std Dev. 

Total Words 0 75127 1955 2672 

Number of Sentences 0 2450 59.962 95.69 

Average Sentence length 0 1716 44.086 45.717 

Type/Token Ratio 0 2 0.48 0.16 

Average Word Length 0 37 7.12 1.51 
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From this analysis, we can see a series of variances on the data’s distributions of some of 

the features in the ICCRC extremist dataset. The same situation was observed in 

Nigerian data. To avoid tautology, the discussion in Section 3.2.2 is valid for Nigerian 

data. Hence, both datasets were scaled to avoid situations in which a unique feature may 

excessively influence the automated classification process. Consequently, a version of 

each dataset was normalised and the second was standardised to know which scaling 

technique works best on individual data in each framework. The scaling techniques are 

further explained in Section 3.3. 

 

3.3 Data Preparation 

 

This section describes the process of transforming and cleaning of raw data before the 

classification process. The process improves data quality, increases efficient analysis, 

reduces error and inaccuracies that can occur to data during processing. 

 

 Data Cleaning 

 

Raw data containing noise is unclean, such data degrade the quality of the classification 

result. However, pre-processing helps to process noisy data to enhance machine learning 

algorithm’s performance. To enhance classification accuracy, dataset is pre-processed 

before being fed into machine learning. The pre-processing steps include noise 

cleansing, dealing with missing values and scaling the data. The detailed process is 

described below: 

 

Corpus linguistics entails analysis executed on a text corpus. Therefore, analysing text in 

terms of frequency distribution of keywords requires the text to be cleaned from 

unwanted information, this is an important processing step when using machine learning 

algorithms. However, the text documents retrieved from the extremist Websites were 

loaded into Python which was scanned as strings of text. Cleaning was performed with 
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the NLTK (Natural Language Toolkit) and SciKit library. NLTK and SciKit roles 

include the transforming of all words to lower case to enhance accuracy in the analysis 

and stop word deletion. Examples of stop words are “the”, “a”, and word length of one 

or two characters that contain less meaning in large texts.  

 

 A Porter Stemmer algorithm is employed to reduce all words to their stem or root. A 

stemmer converts words such as “Twitter” and “Twitting” to “twit”. Stemmer improves 

the accuracy of a linguistic analysis and helps to avoid missing potential sentiment in a 

textual corpus and helps to remove some URL’s in the textual files.  A model’s 

prediction accuracy could be drastically reduced with invalid or missing data and needs 

to be prevented. However, the data generated for Posit analysis does not return any 

missing values but returned zero or -1 values for an instance where text was not correctly 

encoded or not in the English language. However, these erroneous instances were 

amended by correcting the language and the encoding in the pre-processing stage and the 

file format explored is a csv file format. In addition to the pre-processing approach, the 

dataset was standardized and normalised. 

 

Normalisation of the Datasets  

Sklearn library is explored in this thesis which is a pre-processing library, it 

contains functions to normalize and standardize the data [78]. Data was normalised by 

importing the MinMax method and applying it to our train dataset. The method takes an 

array as an input and normalizes its values between 0 and 1. It then returns an output 

array with the same dimensions as the input.   

 

Standardization of the Datasets  

Subtracting the mean of each observation and then dividing by the standard deviation is 

the procedure of standard deviation [78]. The features are rescaled to have the attributes 

of a typical normal distribution with standard deviations: 
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μ=0 and σ=1 where x denotes the observation, σ is the standard deviation from the mean 

which is set to zero and μ is the mean set to 1. The sci-kit-learn StandardScaler library is 

explored for this task and scales the data to unit variance. Hence, all the variable values 

fall within the same range 

 

3.4 TOOLS 

 

The tools employed for concepts and the design of the methods carried out in this study 

include Google Colab GPU, and Python with its packages (Pandas, Sklearn and 

TensorFlow) were used to implement the classification models. A description of each 

tool is detailed in later Chapters of this thesis. Figure 3.7 describes the tools explored for 

the study. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: The Tools Process 
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In the setup for the Sentiment analysis experiment, one set of extremist Web pages 

obtained from ICCRC was split into three folders representing the categories anti-

extremist, pro-extremist and neutral, with 2500 Web text files in each folder. In the 

experiment, a part-of-speech (POS) tagger in Posit analysis was applied to each folder 

(pro-extremist, anti-extremist and neutral) to tag keywords in their parts of speech.  

 

3.5.1 Feature Extraction Process. 

Part-of-speech (POS) tagging in Posit analysis [8] was applied of the extremist Web text 

where top ten most occurring nouns (keywords) were chosen from each class and later 

aggregated into one list, after disregarding duplicates, symbols, stop words and non-

words, we arrived using 26 keywords across the three categories (pro-extremist, anti-

extremist and neutral). Table 3.2 presents the list of the keywords. The noun keywords 

were utilized to find terms on each page that showed a high level of sentiment. This is 

because the context around noun keywords contains more sentiment [5], [13]. 

Additionally, each page had a scope of five words on either side of each term, and the 

output was input into Sentistrength to generate each page's sentiment value, which was 

taken from Sentistrength's General Inquirer lexicon. Sentistrength has a high accuracy 

level for brief non-political Web texts in English [16], hence scope of five words was 

used.  

 

Consequently, the feature set is contained in a csv format where each page comprises 

noun keywords with their corresponding sentiment scores and the manual label. 

SentiStrength can also produce outcomes that are binary (positive/negative), trinary 

(positive/negative/neutral), or single-scale (-4 to +4) [16]. However, this study explored 

single scale (-4 to +4) results. The aforementioned approach explained how we converted 

the Web text obtained to numeric for the machine learning model. Figure 3.8 shows the 

sentiment feature extraction process. 
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1. Syria 

2. Counter 

3. terrorism 

4. Program  

5. Affairs 

6. Court  

7. Ebola  

8. Facebook  

9. Islam  

10. Jihad  

11. Military  

12. Muslim  

13. News  

14. Policy  

 

15. Politics  

16. President  

17. Press  

18. Rights  

19. Safeguards  

20. Syria  

21.Trial  

22. Twitter  

23. CNN  

24. Crime  

25. Victims  

26. War  

27. Security 

 

 

Table 3.2: Noun Keyword List 

 

Figure 3.8: Sentiment Feature Extraction Process 
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The technique considered in this sentiment analysis approach uses top-k noun keywords 

to obtain the sentiment around each Webpage. However, reducing the number of 

keywords to top k-noun keywords poses a challenge because there were some of the 

Webpages in each class have few or none of the selected keywords thereby leading to 

data sparseness and non-capture of sentiment of such webpage(s). This set of Webpages 

that have no associated sentiment value(s) are sometimes encoded as blank or NaNs 

(missing values) which cannot be denoted by 0 as zero represents neutral sentiment in 

this experiment.  

 

Consequently, we got a data missing completely at random (MCAR). Figure 3.9 displays 

the data frame of the dataset. Missing data can cause an disparity in the dataset, leading 

to poor model analysis, regardless of the type of the missingness either (the data is 

missing at random (MAR) or missing completely at random (MCAR) or missing not at 

random (MNAR). Missing not at random (MNAR) refers to a circumstance in which the 

missingness cannot be explained by the observed variables. Missing completely at 

random (MCAR) describes a condition in which the missing values are unrelated to any 

other values, whereas data missing at random (MAR) describes the opposite [17]. 
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Figure 3.9: Data Frame of the Dataset 

 

The easiest approach to a missing data problem would have been dropping the missing 

data but this is dangerous because the deleted data can be informative [60]. A better 

approach to the missing data is the imputation method. Imputation is a method for 

replacing missing data with an approximation based on other available data [17]. In the 

process of the imputation, a value according to the accessible data is calculated and later 

preceded into the substitution process [17].  

 

There is no ideal or accurate technique to make up for missing values in a dataset. For 

some datasets and missing data types, each strategy may perform better, but for others, it 

may perform substantially worse [57]. However, how to calculate value from the 

accessible data led to the different imputation methods explored in this thesis to handle 

missing data. Machine learning imputation-based techniques are adopted because of their 

better performance compared to statistical-based imputation [59],[65],[67]. Eventually, 

the implementation of imputations methods on a sentiment-based approach (the 

procedure that utilises top-k noun keywords to obtain sentiment values from text corpus 
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before being fed into machine learning) generates different three versions of ICCRC 

datasets namely; KNN, MissForest and MICE dataset. Each process is described below.  

 

3.5.2 Imputation Methods  

 

K-Nearest Neighbor Imputation 

The missing values in the ICCRC dataset were filled in using the scikit-learn class 

KNNimputer. The approach employs the core KNN algorithm which is more beneficial 

than the oversimplified approach of replacing all values with the mean or median. In the 

experiment, the K parameter, also referred to as the distance from the missing data is 

supplied. The mean of the neighbors was used to predict the missing number. The 

KNNimputer() library actualizes this and takes the following arguments: 

n_neighbors: this refers to the number of data points that should be included that are 

closest to the missing value. 

Metric: By default, nan_euclidean is used as the distance metric when finding values 

Weights: by default uniform is used to evaluate the basis on which neighboring values 

should be handled, values such as {uniform , distance, callable}. 

 

Multivariate Imputation by Chained Equation (MICE) 

One of the effective method of addressing missing data in a set of data is multiple 

imputations by chained equations. In this study, the following steps were actualised to 

obtain the MICE imputation based dataset: 

 

1. All features are imputed using a simple type of imputation, such as Mean Imputation. 

2. A feature's values are reverted to missing. 
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3. a regression analysis is implemented on the seen values from the target variable in the 

above step of the approach by exploring other variables in the imputation model 

4. The missing values in the column were replaced by regression model predictions 

(imputations). 

5. For each variable for which there are missing data, steps 2-4 are repeated. 

6. steps 2-4 were conducted simultaneously while updating the imputed values each 

time. 

5 The cycles were performed for the experiment where the optimum performance was 

reached (the coefficients in the regression models converged hence the model became 

stable). The final imputations are kept at the end of these cycles, creating a single 

imputed dataset. 

 

 

Missforest Imputation 

In the MissForest version of the dataset, the study explored the mean to impute all 

missing data, then fits a random forest on the seen portion and forecasts the missing part 

for each variable with missing values (i.e. the training set is the observed observations, 

while the prediction set is the missing values). This training and prediction approach is 

iterated until a stopping criterion is met or a user-specified maximum number of 

iterations is reached. Once all variables with missing data are filled in, one imputation 

cycle is completed. Consequently, in this experiment, the imputation process is repeated 

several times. The reason for the numerous iterations is that, beginning with iteration 2, 

the random forests that perform the imputation are trained on higher and better quality 

data that has been predictively imputed. Consequently, the optimum performance was 

achieved after 4 iterations. 
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3.6 Posit Experimental Set-up 

 

A Posit API was developed and employed in the experiment so that, when applied to the 

dataset, Posit produced data on word-level features. The Posit API is an extension of the 

actual Posit system, built using Django, Python Shell and the AWS Elastic Beanstalk 

framework. The Posit API has two endpoints: api_posit and result_name, where 

result_name is a unique id auto-generated for a particular Posit call. The api_posit 

endpoint receives an http POST request from any services with a zipped input file of key 

"file_input".  The request call triggers an inner function that performs the Posit analysis 

and returns a zipped output of the result. The result_name endpoint receives a GET 

request to download the result of a particular api_posit call.  When it receives a request 

call, it triggers an internal function that searches the AWS Linux file system for the 

result of the <result_name>. Once it finds it, it returns the zipped file back to the request 

call. The API has some language binding in Unix Shell, Ruby, Python and Java. Details 

of the implementation are presented in Appendice B1.  

 

3.6.1 Posit Textual Analysis (Word-Level Feature) 

This section describes the second text feature representation framework. In the following, 

the syntactic feature extraction process using Posit textual analytic tool is discussed.    

 

The Posit textual analysis toolset is a program written mainly in UNIX scripts and is 

capable of generating a detailed frequency-based syntactic analysis of a textual corpus 

[14]. Recently, Posit was implemented in an integrated full-featured Posit-API version 

[79]. The Posit-API version provides the full scope of the Posit application in the 

analysis of text data sets.  

 

When the Posit API was applied to the dataset, it generates quantitative data from any 

text. The output provides word-level features and associated values. The features include 

word count, number of characters and sentences, number of token and types, n-gram 
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frequencies and statistics based upon parts-of-speech (POS) [14]. By default, Posit 

produces data on 27 features. Figure 3.10 and 3.11 show the procedural role of Posit. The 

resultant feature set from Posit can be fed into a classifier for Web page classification. 

 

The output from Posit analysis produces three different levels of detail, a summary level, 

the intermediate (aggregate) part-of-speech analysis and the detailed word types together 

with the part-of-speech analysis. The summary level includes the total number of verbs, 

nouns, adverbs, etc. In addition, frequency data is produced in the intermediate level for 

the contents of the text analysed in terms of particular parts of speech. For example, it 

generates analysis of different forms of verb such as, the base type of verbs, the gerund, 

the past tense, the past participle, the 3rd person present, the present tense (non-3rd 

person) form and the 3 modal auxiliary forms. In the fine detail level, frequency data for 

each word in terms of part-of-speech type is provided, such as the number of occurrences 

of every word that are in the past participle form, etc. The three different levels of Posit 

analysis details are shown in Appendix.  

 

 

Figure 3.10 Word-level Feature Extraction Process using Posit Analysis 
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Figure 3.11 Processed Features using Posit 

 

Posit word-level features, together with the manual classification, produced 28 features 

to be fed into a classifier for Web page classification. On the basis of chosen classifiers 

and the target manual classification, this provided a measure of how many of the pages 

were successfully classified on the basis of the Posit features.  

 

3.6.2 Extended-Posit Analysis 

For this third text feature representation framework, Posit was improved to include 

character-level content. This upgraded the convectional word-level statistics to provide 

an additional 44 character-level features for each instance of text data. The extension of 

Posit to adopt character-level as well as word-level data preserves the domain-neutral 

nature of Posit analysis. This extended-Posit technique was implemented on the extremist 

The features include noun types, possessive pronoun, 

personal pronouns, average sentence length, determiners, 

adverbs values for total words (tokens), total unique words 

(types), type/token ratio, number of sentences, number of 

characters, average word length, verb types, adjective 

types, adverb types, preposition types, personal pronoun 

types, determiner types, types, interjection types, particle 
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Web pages through the API facility, to output both word-level and character-level 

features. The character-level features contain quantitative information on individual 

alphanumeric characters, and a subset of special characters, questions marks, 

exclamation marks, asterisks, periods and dollar signs. Following this analysis, each data 

item of the extremism Webpage is represented by a set of 72 features – 27 word-level, 44 

character-level features and the manual classification. Thereafter, this list of page 

features comprises 72-Posit features, including the manual classification for a direct 

entry into a classifier for Webpage classification.  

 

3.7 The Composite Analysis 

This section describes the fourth text feature representation framework (the proposed 

framework). 

 

This framework is designed to utilise the combination of sentiment and syntactic features 

in textual content as a basis for text features which are fed as input into machine learning 

algorithms to build a classification system. The proposed composite framework operates 

through a custom-written Python script that merges together sentiment features derived 

from a lexical approach in sentiment analysis and the frequency of syntactic word-level 

features obtained from Posit. The rationale behind the hybrid features in the composite 

approach is to apply the richer features of the textual corpora that could be fed into the 

classification model. Both sentiment and syntactic features have proven to be significant 

and useful input in developing a classification model [5,13,14]. Figure 3.12 below 

illustrates the composite feature extraction process. The generated output data comprises 

54 features including the manual classification for a direct entry into classifiers, this is to 

generate a measure of how well each page can be classified into their appropriate classes.  

. 
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Figure 3.12: Composite Feature Extraction Process 

The details of the classification models explored in this thesis are further explained in the 

next chapters of which include,  Machine Learning algorithms (such as, J48, Random 

Forest (RF) and KNN)) and Neural Networks, (Multilayer Perceptron (MLP) and 

Recurrent Neural Network (RNN)) which are implemented using both Scikit-learn and 

TensorFlow API respectively. 
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Chapter Four: Machine Learning  

 

This chapter describes the implementations of the Machine Learning Models and the 

results obtained on different classification frameworks explored in this thesis. As a 

reminder, the classification frameworks in question, are Sentiment (MICE, Missforest 

and KNN imputation), Posit (features on the basis of word-level information), and the 

Extended Posit (features on the basis of both word and character-level information) and 

the proposed framework, Composite-based classification method.  

 

4.1 Machine Learning  

 

Machine learning is a branch of Artificial Intelligence that provides systems the capacity 

to automatically learn from data and explore knowledge from the experience for future 

predictions without being programmed for each specific case. An algorithm builds a 

model using example input and applies the model to make decisions or predictions [20]. 

The aim is to develop models that learn without any help or human intervention. 

Machine learning builds algorithms that can learn from data in contrast to static 

programming that instructs a computer what to do in the case of specific data. In 

machine learning, the computer derives its model based on the data available. There are 

two categories of machine learning: supervised learning and unsupervised learning. The 

supervised learning algorithm learns from a function that converts input to output 

depending on the sample input-output sets [80]. It deduces a function from pre-classified 

(labelled) training data comprising a set of training instances. In supervised learning, a 

pre-classified dataset is involved. Examples of supervised machine learning algorithms 

are Support Vector Machine, Neural Network, J48, Random Forest algorithm, etc. 

Unsupervised learning is a form of machine learning that searches for previously 

unnoticed patterns in a data set without pre-classified labels and with no supervision 

such as a k-means clustering algorithm, apriori algorithm, etc. [80].  
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4.2. ALGORITHMS  

The classification algorithms employed in this thesis are J48, Random Forest Decision Tree 

algorithms, and K-Nearest Neighbours. The details are further explained below: 

 

i. J48 Decision Tree 

 

The J48 decision tree is a predictive machine-learning model that creates a classification 

or regression model in a tree-shaped structure on the attribute values of the available 

training data with the purpose of classifying a new item [80]. Whenever J48 comes 

across a training set, it spots the attributes that distinguish various instances distinctly 

(i.e. the features with the highest information gain) within the available values of these 

features, if there is no confusion, then that branch is terminated, and the target value 

obtained is allocated to it. J48 operates by determining the dependent variable, that is, 

the target value of a new sample using the various attribute values in a given data set. 

The branches between the nodes of the decision trees show the possible values of the 

attributes in a given sample; the internal nodes indicate the different attributes and the 

terminal nodes produce the final value, (i.e. the classification of the dependent variable) 

[80]. The dependent variable is the attribute to be predicted while other attributes that aid 

in predicting the worth of the dependent variable are referred to as independent variables 

in the dataset.  

 

The different types of decision tree include ID3, (CART) and C4.5 [80]. The J48 

decision tree algorithm is adopted because it gives a better understanding of how the 

algorithm makes decisions. In addition, it contains an algorithm that enhances text 

classification and a rule-building process [80]. 

 

ii. K-Nearest Neighbor   

One of the most basic machine learning algorithms is the K-Nearest Neighbour 

algorithm, which is a supervised learning method. The K-NN approach assumes that new 
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data and current instances are comparable and assigns the new instance to the category 

that is closest to the existing categories [81]. The K-NN method stores all accessible data 

and classifies a new data point based on its resemblance to the existing data [81]. Both 

regression and classification problems can be solved with the K-NN approach, but are 

commonly used for classification tasks. A kind of non-parametric algorithm is the K-NN 

algorithm, this implies that it doesn't assume anything about the data. K-NN algorithm is 

regarded as a weak learner algorithm since it doesn't instinctively learn from the training 

set; alternatively, it reserves the dataset and during the classification, it acts on the 

training set [81]. During the training stage, the KNN algorithm simply keeps the 

information, and when it receives new data, it classifies it into a category that is quite 

similar to the new data [81]. 

  

KNN method starts with determining the number of neighbors; there is no specific way 

to discover the ideal value for "K," therefore we must fine-tune the parameters to get the 

best results. It estimates the Euclidean distance between K neighbors. If the input 

variables are similar in Euclidean, Euclidean is an appropriate distance metric to utilize. 

Euclidean distance is estimated by using the square root of the sum of the squared 

differences between a new point (x) and an existing point (xi) across all input 

characteristics j.  

sqrt(sum((xj – xij)2) Distance(x, xi) = sqrt(sum((xj – xij)2) 

Thereafter, the approach takes the K nearest neighbors based on the Euclidean distance 

obtained. Then, compute the number of data points in each class among these k 

neighbors. The algorithm eventually allocates the new data points to the class with the 

greatest number of neighbors [81]. KNN algorithm is easy to set up and resistant to noisy 

training data. 

 

iii. Random Forest Algorithm 



 
 

57 
 

This algorithm starts by selecting random samples from a given dataset and then forms a 

decision tree which the algorithm then separates/ split each class in the tree using their 

features, a new random sample of features is selected for every single split, and the 

algorithm only chooses one of the random samples as the prediction. It uses entropy and 

information gain for calculation [82]. It’s also worthy of note that the random forest is a 

more advanced application of a decision tree, based on its voting and weighting functions 

between multiple decision trees, which makes it act as a stacked ensemble [82]. It 

employs ensemble learning, a method for addressing complex problems by merging 

many classifiers. 

 

4.3 MODEL METRICS 

The metrics described in this section were used consistently across all classification 

models. 

 

 

 

4.3.1 Validation 

Model validation refers to a process where a trained model is gauged with testing set in 

machine learning. The testing data set is a subset of data that is not part of the training 

set. The main function of the testing set is to determine the generalisation power of a 

training model [83]. 

 

Training a model on a subset of data and testing it on the remaining samples is a primary 

approach to validating a learning model. Dividing the data into two raises a challenge of 

what proportion should test and training set be chosen. It is substantiated that 80:20 or 

70:30 are acceptable ratios [83], while [84] suggested 75:25 as a common choice for 

some particular classification problems. However, it is necessary for both subsets to be 

represented well with a sufficient amount of data. Otherwise, the model will not have 

adequate information about a category, and testing the model using the testing set might 

not yield a good result [84]. The train set is used to make machines learn the pattern 
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and create a model for future prediction. The test dataset is used to test model 

performance such that it considers this data as unseen data. Another better option is to 

explore cross-validation. When we use cross-validation, even the train set is divided 

into N partitions to make sure that our model is not overfitting [84].  

 

Cross-validation estimates how the outcome of a statistical analysis will behave on a new 

data set. The most popular among the cross-validation type is the K-fold Cross-

Validation. Other types of cross validation include Leave-One-Out and Leave-p-Out but 

they are computationally expensive [48].  K-fold Cross-Validation is mostly used in 

machine learning for a given predictive modelling problem because it is easy to 

comprehend, and produces a result with a lower bias than other methods [85]. The 

method has one parameter known as k which describes the number of categories into 

which a given data sample is to be divided. K-fold Cross-Validation entails randomly 

splitting the set of samples into k categories, or folds of the same size [85]. The first fold 

is used as a validation set, and the method is fitted on the remaining k −1 folds. A 

specific value for k can be chosen, such as k=5 or 10. 

 

4.3.2 Evaluation Metrics 

A machine learning algorithm’s performance on a dataset could be evaluated using 

various metrics. Such metrics include root-mean-square or mean absolute error, true 

positive (TP), false negative (FN), false positive (FP), true negative (TN), accuracy, 

recall, precision, f-measure, confusion matrix etc. These metrics will be explained in 

more detail later in this chapter. In addition, there are two cases in classification which 

include the binary and multi-class categories. Binary classification deals with two 

definite categories: one positive and one negative towards an objective while the multi-

class category deals with classifying instances into one of three or more classes. Many 

performance measures can be drawn from a confusion matrix. The row of confusion 

indicates the actual classes while the columns show the predicted classes. One class is 
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indicated to be a positive class (yes) while the other is the negative class (no) for the 

other. Table 4.1 below shows a 2x2 matrix.  

 

 Predicted 

Yes                                         No 

Yes 

Class 

No 

 

True Positive (TP)         False Negative (FN) 

 

False Positive (FP)         True Negative (TN) 

 

Table 4.1: Confusion Matrix 2x2 

 

False negative means an instance predicted to be negative which is positive and false 

positive vice versa. True Positive is an instance predicted to be yes and the actual 

outcome is also yes. True Negative is an instance predicted to be no and the actual 

outcome is also no. The accuracy is defined as the proportion of the number of correct 

predictions to the total number of input samples. 

 

Accuracy = (True Positive + True Negative) / (True Positive + True Negative + False 

Positive + False Negative). 

Recall reveals a number of true positive entities recognised by the classifier out of all 

entities identified as positive while precision shows the degree of the accuracy (i.e. The 

algorithm returns most of the relevant items).  

 

Precision = True Positive / (True Positive + False Positive). 

The recall is the ratio of the total amount of relevant occurrences that were retrieved. 

 

Recall = True Positive/ (True Positive + False Negative). 
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In a perfect classification, precision and recall have a value of1. Specificity evaluates the 

number of times the negative class is actually classified as negative [86]. 

 

Specificity = True Negative / True Negative +False Positive 

 

The F-measure, also known as F1, is defined as the harmonic mean of recall and 

precision [86]. F-measure = 2*Precision*Recall / Precision + Recall  

 

4.4 Machine Learning Set-Up 

The feature sets considered in this section are (i) the ‘default’ 27 Posit features, (ii) the 

extension of Posit to include 44 character features (referred to as extended-Posit 

features), (iii) sentiment features (KNN, MF and MICE imputation) and Composite 

features (a mix of sentiment and syntactic features derived from the textual data). All of 

the features in these different sets were extracted from the three predefined categories of 

extremist Websites (with 2500 Webpages in each category). Each feature set was 

employed to determine its degree of effectiveness in classification, via three algorithms, 

the J48 decision tree, Random Forest and KNN.  After the data preprocessing and 

preparation each machine learning algorithm was implemented on each feature set. In 

addition, each model explored was tweaked to obtain optimal performance. Again, 

feature selection techniques such as embedded and wrapper methods were applied to 

obtain useful features for excellent performance. In this case, J48 and Random Forest 

algorithms were explored for feature selection operations. Further explanations are 

detailed below. 

 

4.4.1. Hyper parameter Turning  

 

The task of selecting a set of ideal hyperparameters for a machine learning algorithm is 

regarded as hyperparameter tuning. A model argument known as a hyperparameter has a 
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value established before the learning process even begins [87]. Hyperparameter tweaking 

is the cornerstone of machine learning algorithms [87]. Data is used to learn model 

parameters, and hyper-parameters are tweaked to achieve the best fit. A decision tree, for 

example, has hyperparameters such as maximum depth and the minimum number of 

observations in the leaf, whereas a KNN model has hyperparameters such as weight, 

n_neigbour and leaf size. Because finding the ideal hyper-parameter can be complex, 

search algorithms such as grid search and random search are often used. Grid search is a 

task in the model selection package of Scikit-learn. This method is useful for looping 

over predetermined hyperparameters and fitting the estimator (model) to the training 

data, then the best parameters are chosen from the hyperparameters presented [87].  

 

Grid search selects a grid of hyperparameter values and compares them all. The min and 

max values for each hyperparameter must be specified by guesswork (an assumption 

gauged as a result of the behaviour of the initially unturned baseline model) [87]. Having 

examined its behaviour, one could be informed on what feasible range the model could 

begin to better generalise. RandomsearchCV is efficient and saves a lot of time but this 

thesis, on the other hand, adopted GridSearchCV. GridSearchCV is preferred over 

RandomSearchCV because it ensures the best model results within the test values by 

testing each and every one of the variables supplied, as opposed to Randomized Search, 

which chooses combinations at random. GridsearchCV's processing time increases as the 

number of combinations increases. As a result, only a few hyperparameters were 

employed in the GridsearchCV implementation in order to improve processing speed. 

Each of the model's parameters is explained in Table 4.2 below.  

 

 

Model HyperParameters Range 

J48 Decision Tree Criterion 

max_depth 

min_samples_leaf 

entropy 

1 – 21 

2-5 
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Random Forest Criterion 

max_depth 

min_samples_leaf 

gini,entropy 

1 – 21 

2-5 

KNN Leaf_size 

'n_neighbors 

Weight 

1- 10 

1, 3, 5, 7, 9, 11, 13 

Uniform 

 

Table 4.2: The Model Parameters 

 

Hyperparameters regulate the model's over-fitting and under-fitting. Different datasets 

have different optimal hyperparameters. The following steps are taken to obtain the best 

hyperparameters: 

 

• We pick the models to be used; we check the model's parameters; we select the 

techniques for searching the hyperparameter; and finally, we instantiate the 

GridSearchCV method. 

•  An evaluation criterion for scoring the model is defined. Here we made use of 

the accuracy score 

• The concept of nested cross validation was used. 5-fold cross-validation was used 

for both the outer and inner loops.  

• Fit the search to the data (X train and y train) and run it. 

GridSearch CV uses the Cross-Validation method to test all possible combinations of the 

values supplied in the dictionary and assesses the model for each one. As a result, after 

employing this function, we can obtain the accuracy for any combination of 

hyperparameters and select the one that performs the best. 

 

Decision Tree Algorithms (J48 and Random Forest) Parameters  
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The criterion 

The criterion for measuring or evaluating the quality of each decision tree split is the 

‘entropy’. The entropy simply means that if a sample (row) is randomly selected from a 

split, what is the possibility that it would be incorrect [88]. The goal of the entropy is to 

ensure that there is near 1 entropy (i.e. near-balance of each class so that if a certain 

target variable class is picked, the probability of selecting the right class and ensuring the 

purity of that split is high).  

 

A minimum sample leaf 

A minimum sample leaf specifies the minimum number of samples that must be present 

at a leaf node before a split occurs [88]. The least number of samples necessary to be at a 

leaf node is denoted by the minimum sample leaf. In the minimum sample leaf 

parameter, a split point at any depth will only be evaluated if it leaves at least the 

minimal amount of samples in each of the left and right branches for training samples 

[88].  

 

Max_depth 

This parameter denotes the maximum depth of the tree the model should support. It 

accepts an integer as a parameter but defaults to none, which enables the nodes to 

increase until all leaves are pure or contain less than the minimum number of samples 

required [88]. 

 

 

 

K-Nearest Neighbor Algorithms Parameters  

The parameters explored are leaf_size, 'n_neighbors and weight. The leaf size is a 

parameter in a KD tree or KD ball tree algorithm in KNN that helps to partition, allocate 

or organize data points in a multi-dimension (multi-feature) space by calculating the 
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distances between each data point. So, the larger the leaf_size, the slower the 

classification of these data points and vice versa [89]. The n_neighbors are the total 

number of data points closest to a selected data point [89]. The weight function is 

utilised in predicting likely values. It is set to a default value uniform, this enables all 

points in each neighborhood to be weighted equally [89]. 

 

4.4.2 Feature Selection  

To increase classifier accuracy and save runtime in high-dimensional datasets, features 

must be reduced to an acceptable subset [48]. Choosing a subset of important features for 

use in model creation, feature selection improves accuracy and run-time. The 

fundamental goal of feature selection is to improve predictors. Filters, wrappers, and 

embedding methods are the three types of feature selection methods.  Wrappers and 

embedded methods are explored in this thesis because the filter method only provides a 

ranking of relevant features using univariate statistics and no training is involved for 

filter method while the wrapper and embedded method provide subset of feature after 

training [90].  The two methods explored are discussed below.  

Wrapper Method: 

Feature selection can impact a machine learning model’s performance by defining a 

significant feature subset for increasing the performance and identifying the variability 

[90]. The wrapper method evaluates the "usefulness" of features subject to the 

performance of the classifier [90]. The wrapper techniques evaluate a set of features 

using a machine learning algorithm that uses a systematic review to scan over the range 

of possible feature subsets, rating each subset based on the strength of the algorithm's 

performance. This algorithm is known as a greedy algorithm because it tries to discover 

the finest feasible combination of features that results in the best performance model 

[90]. Examples of the Wrapper method include Recursive Feature Elimination, 

sequential feature selection algorithms, forward and backward elimination passes, best-

first search, etc. Recursive Feature Elimination would be explored in this thesis and its 

description is detailed below. 
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Recursive Feature Elimination (RFE): This algorithm is effective for determining 

which features in a training set are essential in predicting the target variable. RFE 

generates a rating of features as well as candidate subsets, as well as the related 

accuracy. The subsets with the most accuracy are often used as the final subset [91]. 

RFE works using the supplied machine learning method, prioritizing features by 

relevance, deleting the least important features, and fitting the model again. This 

procedure is done until only a certain amount of features are left [91]. 

 

Embedded method: Embedded method investigates the connection of features in the 

same way that wrapper methods do.  It built the search for the best subset of features into 

the classifier construction [92]. To begin, this technique is used to train a machine 

learning model and then use it to calculate feature importance, a measure of how relevant 

a feature is when generating a prediction. Finally, it uses the derived feature importance 

to delete non-important characteristics [92]. The relevance features tells us which factors 

are more significant in predicting the target class accurately. The difference between 

embedded and wrapper approaches is that during learning, an internal model building 

metric is applied [92]. 

 

4.5 Classification Result  

After executing all experiments and the analysis on the available feature sets, this section 

presents the result of the experiments for each framework. Thereby, a clear position of 

each research question can be considered.  The results interpreted in this section are the 

performance of the overall Webpage classification; pro-extremist, anti-extremist and 

neutral class. Precision, recall, f-measure, and accuracy are the metrics used for the 

performance evaluation of the model, in the graph presented, y-axis is the f1-score and 

the x-axis is the parameter value and 5-fold cross validation was explored to provide a 

degree of validation. 
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4.5.1 Random Forest Classification Result 

Each feature set from Sentiment, Posit, Extended-Posit and Composite analysis were 

deployed into Scitlean API, where Random Forest was applied with GridsearchCV for 

optimum performance. The process aims to generate measures that show how the system 

assigns each page to its appropriate classes. Table 4.3 below described the parameters 

used in the Random Forest model. The details of each classification framework results 

are detailed below: 

 

 Parameter Parameter Values 

Random Forest Criterion 

max_depth 

min_samples_leaf 

Entropy 

1 – 21 

2-5 

 

Table 4.3: The Random Forest Model Parameters 

 

4.5.2 Sentiment-Based Framework using 27 features (MF Imputation)  

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation. The details are shown in Table 4.4.  

 

Folds Criterion max_depth' min_samples_leaf 

1 Entropy 19 2 

2 Entropy 17 2 

3 Entropy 19 2 

4 Entropy 18 2 

5 Entropy 18 2 

 

Table 4.4: Grid Search Best Parameters for MF Imputation 
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From the above parameters, we can see that our sentiment analysis framework (MF 

imputation) demands a maximum depth not less than 19 in order to attain the best 

performance. Max depth is simply the longest path that each tree has from its root right 

down to its last leaf. A minimum sample leaf specifies the minimum number of samples 

that must be present at a leaf node before a split occurs. A min_sample_leaf as low as 2 

means that we have simpler and less complicated tree structures within the forest, trees 

comprising of just 2 branches before arriving at a decision hence, lesser computation 

time and lesser hardware utilization are achieved.  

 

Below is the graph showing the performance of all the 5 folds in relationship to its 

maximum depth in Figure 4.1. All the training scores for each fold converged at above 

80%, and all the cross-validation scores likewise also did converge above the 80% mark 

but a notable gap could be noticed between all the training scores and their cross-

validation counterparts, but the overfitting is minimal in the model. From above Figure 

4.1, we can clearly see that as the max depth of the decision tree increases, the 

performance of the model over the training set increases continuously. From the graph, 

the y-axis is the f1-score and the x-axis is the parameter value. Fold 5 finished highest in 

overall accuracy. MF Imputation model gave 86% of extremist Webpages overall 

classification. Coming down to the final evaluation in the confusion matrix in Figure 4.2, 

the pro-extremist class had the highest cases at 94%. The results of other categories are 

shown in Table 4.5. 
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Figure 4.1: Validation Curve-MF Imputation 

 

FP Rate Precision Recall F-score  

0.056 0.894 0.946 0.92 Pro-extremist 

0.113 0.8 0.903 0.848 Anti-extremist 

0.036 0.912 0.741 0.818 Neutral 

 

Table 4.5: MF Classification Result using Random Forest 
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Figure 4.2: MF Imputation Confusion Matrix 

 

4.5.3 Sentiment-Based Framework using 27 features (KNN Imputation)  

Below are the best parameters after grid search on 5 folds within the KNN imputation 

data and the details are described in Table 4.6. 

 

Folds Criterion max_depth' min_samples_leaf 

1 Entropy 20 2 

2 Entropy 17 2 

3 Entropy 20 2 

4 Entropy 20 2 

5 Entropy 19 2 

 

Table 4.6: Gridsearch Best Parameters for KNN Imputation 

 

For the KNN data, the above parameters showed that the model required a 20 max depth 

levels to accomplish the best performance, with a constant minimum sample leaf of 2. 
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The variance between the training and validation scores in KNN imputation is lesser as 

compared to MF as shown in Figure 4.3. The classification model in KNN imputation is 

well fitted than what is obtainable in MF imputation but the accuracy is lower than the 

MF imputation. The model produced an overall classification of 85%. In KNN 

imputation, Figure 4.4 displayed the confusion matrix and Table 4.7 detailed the 

classification results of the three categories. From the confusion matrix, the pro-

extremist category was the most correctly identified case at 87%. 

 

 

Figure 4.3: Validation Curve-KNN Imputation 
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FP Rate Precision Recall F-score Class 

0.077 0.849 0.872 0.86 Pro-extremist 

0.048 0.898 0.842 0.87 Anti-extremist 

0.09 0.826 0.856 0.84 Neutral 

 

Table 4.7: KNN Classification Result using Random Forest 

 

 

Figure 4.4: KNN Imputation Confusion Matrix 

 

 

4.5.4 Sentiment-Based Framework using 27 features (Mice Imputation)  
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Below are the best parameters after grid search on 5 folds within the MICE imputation 

data and the details are shown in Table 4.8. 

 

Folds Criterion max_depth' min_samples_leaf 

1 Entropy 20 2 

2 Entropy 18 2 

3 Entropy 18 2 

4 Entropy 19 2 

5 Entropy 20 2 

 

Table 4.8: Gridsearch Best Parameters for MICE Imputation 

The best parameters for max_depth are still between 18-20, with fold 1 and fold 5 having 

the best curve as they not only turned out to be the highest but the both(training curves) 

converged at the end of the max_depth iterations. Still, we can also notice the same 

positive relationship between the score and the max_depth meaning that as its value is 

increased, the accuracy increased. Nonetheless, in the validation curve in Figure 4.5, the 

variance (difference in both the validation and training set scores) is smaller compared to 

MF Imputation but a little bigger than the KNN. None of the training or validation sets 

decreases rapidly and hence the model is a well-fit model. Random Forest gave 88% in 

classifying overall Webpages into their respective classes.  

 

The MICE imputation data has a much higher overall accuracy compared to MF and 

KNN imputation. The anti-extremist group still maintained a higher accuracy, F1-score 

and precision just like in the KNN imputation. The pro-extremist class also maintained 

the highest recall score as well. For precision, this means that for the MICE data, the 

random forest easily and more accurately predicts positively the anti-extremist group 

much more than the other classes. While for recall, in the MICE data, the model is more 

sensitive to the pro-extremist class. But coming down to the F1 score which is a 
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combination of both recall and precision, we can see that the anti-extremist group still 

has the best performance in the MICE data. This can be seen in the classification result 

and confusion matrix in Table 4.9 and Figure 4.6 respectively. 

 

FP Rate Precision Recall F-score Class 

0.069 0.864 

 

0.881 0.87 Pro-extremist 

0.037 0.921 0.877 0.89 Anti-extremist 

0.075 0.855 0.879 0.86 Neutral 

 

Table 4.9: Mice Imputation Classification Result using Random Forest 
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Figure 4.5: Validation Curve-MICE Imputation 

 

 

Figure 4.6: Mice Imputation Confusion Matrix 

4.5.5 Feature Selection: Mice Imputation Features 

 

For the MICE Imputation, the wrapper method was applied and we noticed that as the 

features were applied in measured percentages through time, we noticed that the 

performance of the model improved as the features were added meaning and the best 

performance so far was achieved when the whole features were applied. Hence, this 

means that every feature has its own level of importance within the data and must be 

included to get the best performance of the model. The best accuracy is 88.2% obtained 

at the 100 percentile of the feature subset at runtime of 3.2sec. Below is the graphic 

representation of the wrapper method in Figure 4.7. The embedded method was also 

applied and this time, it performed poorly compared to the wrapper method. So, it gave 

79.8% at the 75th percentile of the subset of relevant features but reduced to 79.4% when 

100% of the features subsets were applied. See the graphic representation below in 

Figure 4.8 
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Figure 4.7: The Wrapper Method in MICE Imputation using Random Forest  

 

Figure 4.8: The Embedded Method in MICE Imputation using Random Forest 
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4.5.6 Posit-Based Classification Framework 

Below are the best parameters after grid search on 5 folds within the Posit data and the 

details are shown in Table 4.10. 

 

Folds Criterion max_depth' min_samples_leaf 

1 Entropy 16 2 

2 Entropy 15 2 

3 Entropy 18 2 

4 Entropy 15 2 

5 Entropy 20 2 

 

Table 4.10: Gridsearch Best Parameters for Posit Data 

The grid search results for Posit indicated that the model required a range of 15-20 max 

depth levels in order to accomplish best performance, with a constant minimum sample 

leaf of 2. Figure 4.9 shows the training and validation curves. The model’s over-fitness is 

minimal as the variance in both training and the validation scores is low. Random Forest 

gave overall accuracy of 93%. From the confusion matrix in Figure 4.10, pro-extremist 

cases were mostly identified with a higher precision rate compared with other categories 

at the rate of 94% and 96% respectively. Table 4.11 details the classification results. 
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Figure 4.9: Validation Curve- Posit 

 

 

FP Rate Precision Recall F-score Class 

0.018 0.96 0.94 0.95 Pro-extremist 

0.05 0.90 0.91 0.92 Anti-extremist 

0.03 0.938 0.94 0.92 Neutral 
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Table 4.11: Posit Classification Result using Random Forest 

 

 

Figure 4.10: Posit Confusion Matrix 

 

4.5.7 Feature Selection: Posit Features 

 

As part of the model construction, wrapper and embedded are the two different filter 

algorithms employed for the subset evaluation of standard default 27-Posit features. The 

results from the model indicated that each feature of Posit data has its own level of 

importance within the data to attain better classification in the wrapper method. The 

wrapper method gave the best accuracy, at 93.9% when 100 percentile of the feature 

subset were utilized. The algorithm attained a processing speed of 9.6sec against the 

embedded method that gave 93.3% at 8.8sec. The embedded method produced its 

optimum performance at the best 45 percentile of the features. Below is the graphic 

representation of the wrapper method and embedded method in Figures 4.11 and 4.12 

respectively. 
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Figure 4.11: The Wrapper Method in Posit using Random Forest 
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Figure 4.12: The Embedded Method in Posit using Random Forest 

 

4.5.8 Extended-Posit Feature Set (71 features) Classification Framework 

 

Below are the best parameters after grid search on 5 folds within the Extended-Posit data 

and the details are shown in Table 4.12. 

 

Folds Criterion max_depth' min_samples_leaf 

1 Entropy 18 2 

2 Entropy 19 2 

3 Entropy 17 2 

4 Entropy 19 2 

5 Entropy 19 2 

 

Table 4.12: Gridsearch Best Parameters for Extended-Posit Data 
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For the Extended-Posit data, the above parameters showed that the model required a 

range of 17-19 max depth levels in order to accomplish the best performance, with a 

constant minimum sample leaf of 2. Random Forest classified the total extremist 

Webpages at the rate of 95%. This is an improved result over what was obtainable in 

Posit.  The pro-extremist category had the most identified cases and highest precision 

when compared with other categories. This is an indication that the framework is 

effective in discerning pro-extremist category. Tables 4.13 and Figure 4.14 detail the 

results. The model is healthy with a minimal overfitting rate considering the variance 

between both training and validation scores. The validation curve is displayed in Figure 

4.13 

 

 

Figure 4.13: Validation Curve-Extended Posit 
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FP Rate Precision Recall F-score Class 

0.007 0.98 0.97 0.97 Pro-extremist 

0.041 0.92 0.97 0.94 Anti-extremist 

0.018 0.96 0.92 0.94 Neutral 

 

Table 4.13: Extended- Posit Classification Result using Random Forest 

 

 

 

Figure 4.14: Extended Posit Confusion Matrix 
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4.5.9 Feature Selection: Extended-Posit Features 

For the extended-Posit, both the wrapper and embedded methods were applied to 71 

extended-Posit features. As the features were applied in measured percentages through 

time in the wrapper method, we noticed the model improved best when the 75 percentile 

of best features were applied. The method gave a 96.1% degree of accuracy. The 

execution time was 165sec. Below is the graphic representation of the wrapper method 

in Figure 4.15. The embedded feature selection was also applied, it underperformed 

when compared to the wrapper method. So, it had 95.4% at the 75th percentile of the 

features but reduced to 95.1% when 100% of the features were applied. The execution 

time was 14.5sec. See the graphic representation below in Figure 4.16. 

 

 

Figure 4.15: The Wrapper Method in Extended-Posit using Random Forest 
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Figure 4.16: The Embedded Method in Extended-Posit using Random Forest 

 

4.5.10 Composite Classification Framework 

 

Below are the best parameters after grid search on 5 folds within the Composite data and 

the details are presented in Table 4.14. 

Folds Criterion max_depth' min_samples_leaf 

1 Entropy 19 2 

2 Entropy 16 2 

3 Entropy 18 2 

4 Entropy 18 2 

5 Entropy 17 2 

 

Table 4.14: Gridsearch Best Parameters for Composite Data 

The grid search results for Composite indicated that the model required a range of 16-19 

max depth levels in order to accomplish the best performance, with a constant minimum 
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sample leaf of 2. Random Forest classified the total extremist Webpages at the rate of 

95.8%. This is an improved result over what was obtainable in all frameworks.  The pro-

extremist category had the most identified cases and highest precision when compared 

with other categories and all frameworks. This is an indication that the framework is the 

most effective in classifying the pro-extremist category. Table 4.15 and the confusion 

matrix in Figure 4.18 detail the results. The model has a minimal overfitting rate 

considering the variance between both training and validation scores. The validation 

curve is displayed in Figure 4.17. 

 

 

Figure 4.17: Validation Curve- Composite 
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FP Rate Precision Recall F-score Class 

0.011 0.97 0.97 0.97 Pro-extremist 

0.032 0.937 0.94 0.95 Anti-extremist 

0.02 0.96 0.96 0.95 Neutral 

 

Table 4.15: Composite-Based Classification Result using Random Forest 

 

 

 

Figure 4.18: Composite Confusion Matrix 

 

4.5.11 Feature Selection: Composite Features 

The feature selection algorithms explored are embedded and wrapper algorithms. The 

wrapper method outperformed the embedded method in terms of classification accuracy 
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but the embedded did well better in terms of processing speed as both almost arrived at 

almost the same accuracy. The result from the wrapper method indicated that the model 

yielded significant performance in terms of classification accuracy, at 95.9% when all 

the subset features were used with a processing time of 9.08sec. Optimum performance 

is noticed at the 45 percentile of the subset features to produce 95.1% at 8.76sec speed 

time. Both embedded and wrapper method results are detailed in Figures 4.19 and 4.20 

respectively. 

 

 

Figure 4.19: The Wrapper Method in Composite using Random Forest 
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Figure 4.20: The Embedded Method in Composite using Random Forest 

 

4.6 J48 Decision Tree Classification Results 

 

Again, each feature set from Sentiment, Posit, Extended-Posit and Composite analysis 

were deployed into Scitlean API, where the J48 decision tree algorithm was applied with 

GridsearchCV for optimum performance. We implemented our classifier, the J48 

decision tree algorithm to create a rule-building process for the automated classification 

system. The aim of this process is to generate measures that show how the system 

assigns each page to its appropriate classes. Table 4.16 below presented the parameters 

used in the J48 model. The details of each classification framework results are detailed 

below: 
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 Parameter Parameter Values 

Random Forest Criterion 

max_depth 

min_samples_leaf 

Entropy 

1 – 21 

2-5 

 

Table 4.16: The J48 Model Parameters 

 

4.6.1 Sentiment-Based Framework using 27 features (MF Imputation)  

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation for MF in Table 4.17. 

 

Folds criterion max_depth’ min_samples_leaf 

1 entropy 19 2 

2 entropy 17 3 

3 entropy 19 3 

4 entropy 20 2 

5 entropy 20 2 

 

Table 4.17: Gridsearch Best Parameters for MF Imputation 

 

The max depth for each of the 5 folds is between 17-20, and the min_sample_leaf has a 

value of 2 and 3 throughout the fold. The implication is that it takes just a minimum of 2 

samples for a leaf node to split. Though small, it’s usually preferable for a small dataset. 

An average Max depth of 19 means that the decision tree model took up to 19 splits to 

achieve best the performance and it was at the 19th split that the final class classification 

decision was taken. Hence, it took the model 19 splits to perfectly distinguish each class 

in pure splits with low impurity. So, in general, the hyperparameter demands a quite low 
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for an overall accuracy score of 83%.  . Pro-extremist category is the most identified case 

when compared with other categories at the rate of 92.3%. The results of other categories 

are presented in Table 4.18 and Figure 4.22 respectively. The data plot of both the 

validation and training scores in each of the five folds in respect to their max depth is 

presented in Figure 4.21. 

 

 

Figure 4.21: Validation Curve-MF Imputation 
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False 

Positives 

Rate 

Recall Precision F1 Class 

0.127 

0.060 

    0.066 

0.842 

0.729 

0.923 

0.768 

0.858 

0.875 

0.804 

0.788 

0.898 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.18: MF Imputation Classification Result 

 

 

Figure 4.22: MF Imputation Confusion Matrix  
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4.6.2 Sentiment-Based Framework using 27 features (KNN Imputation) 

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation for KNN in Table 4.19. 

 

Folds Criterion max_depth’ min_samples_leaf 

1 Entropy 20 2 

2 Entropy 20 2 

3 Entropy 20 2 

4 Entropy 20 2 

5 Entropy 19 3 

 

Table 4.19: Gridsearch Best Parameters for KNN Imputation 

KNN imputation has a general max_depth  range between 19-20 which is higher than the 

MF range. Here, the min_sample_leaf also has a range of 2-3. On average, the max depth 

demand 20 branches before the best score is achieved on the KNN imputation. For this 

fact, this increase has a positive effect on the overall classification accuracy to a credit of 

84.3%. The model correctly identified pro-extremist cases at 88.6%, more than other 

categories. The results are detailed in Table 4.20 and the confusion matrix in Figure 

4.24. The variance between each validation and training score indicates minimal 

overfitting. The data plot showing the performance of all the 5 folds about their 

maximum depth is presented in Figure 4.23. 
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Figure 4.23: Validation Curve-KNN Imputation 

 

False Positives 

Rate 
Recall Precision F1  

0.045 

0.818 

0.113 

0.824 

0.818 

0.8861 

0.901 

0.841 

0.797 

0.861 

0.829 

0.839 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

 

Table 4.20: KNN Imputation Classification Result 
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Figure 4.24: KNN Imputation Confusion Matrix 

 

4.6.3 Sentiment-Based Framework using 27 features (Mice Imputation)  

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation for Mice in Table 4.21. 

 

Folds criterion max_depth’ min_samples_leaf 

1 entropy 19 2 

2 entropy 19 2 

3 entropy 19 2 

4 entropy 19 2 

5 entropy 20 2 

 

Table 4.21: Gridsearch Best Parameters for Mice Imputation 

For the mice, the max depth demand increased again with the same range as KNN 

having 19-20 but a lower average of 19. The min_sample_leaf remained at a constant of 
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2. The J48 gave an overall accuracy of 86.5%. The pro-extremist category had the most 

correctly classified cases at 86.5%. The classification results were detailed in Table 4.22 

and the confusion matrix in Figure 4.26 The training and validation plot for the model is 

presented in Figure 4.25. The low variance between the curves indicated that the model 

does not overfit. 

 

 

Figure 4.25: Validation Curve-Mice Imputation 
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False 

Positives 

Rate 

Recall Precision F1 Class 

0.051 

0.081 

0.071 

0.865 

0.864 

0.865 

0.895 

0.842 

0.858 

0.88 

0.853 

0.862 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.22: Mice Imputation Classification Result 

 

 

Figure 4.26: Mice Imputation Confusion Matrix 

 

4.6.4 Feature Selection: Mice Imputation Features 

In the classification model, the wrapper method and the embedded algorithms were 

applied. The embedded method underperformed the wrapper method, it had an early 

climax where it achieved its best score of 75.8% with just 30% of the features at a speed 

of 0.21sec while the wrapper method achieved its best score using all 90% of features 
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with an accuracy of 87.0% at 0.34 sec runtime. These results are detailed in Figures 4.27 

and 4.28 respectively.  

 

Figure 4.27: Wrapper Feature Selection Method –Mice Imputation 
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Figure 4.28: Embedded Method Feature selection Mice Imputation 

 

4.6.5 Extended Posit 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation for Extended Posit in Table 4.23 below. 

 

Folds Criterion max_depth’ min_samples_leaf 

1 Entropy 15 2 

2 Entropy 18 4 

3 Entropy 20 2 

4 Entropy 17 4 

5 Entropy 16 3 

 

Table 4.23: Gridsearch Best Parameters for Extended Posit 
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In the Extended Posit case, we noticed a drastic reduction in the max depth demands to a 

range of 15-20, with an average of 17. The min_sample_leaf increased to a range of 2-4 

and an average of 3. It’s okay to say that the Extended Posit dataset places lower 

max_depth demands on the decision tree but generally increases the min_sample_leaf for 

the best performance to be achieved. Eventually, J48 gave 89.6% of correctly classified 

instances of overall Webpages. The pro-extremist category had the most correctly 

identified pages, at 92.9%. The detailed results are shown in Table 4.24 and the 

confusion matrix in Figure 4.30. Below is the graph showing the performance of all the 5 

folds in relationship to their maximum depth in Figure 4.29. 

 

 

Figure 4.29: Validation Curve-Extended POSIT Imputation 
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False 

Positives 

Rate 

Recall Precision F1 Class 

 

 

0.065 

0.062 

0.029 

 

 

0.88 

 0.879 

0.929 

0.872 

0.876 

 0.942 

0.876 

0.877 

0.936 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.24: Extended POSIT Imputation Classification Result 

 

 

Figure 4.30: Extended POSIT Imputation Confusion Matrix 
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4.6.6 Feature Selection: Extended-Posit 

Again, feature selection algorithms were implemented on Extended Posit of which the 

wrapper method slightly outperformed the embedded method by achieving a higher 

accuracy with just 45% of its feature subset and achieved an accuracy of 90% at a 

processing speed of 9.3sec while the embedded method achieved its highest accuracy of 

89.9% at 1.2sec with just 30% of its feature subsets. Unarguably based on performance 

the wrapper method had a higher accuracy but as far as cost is concerned, the embedded 

method achieved nearly the same accuracy with just 30% of its features. The results are 

presented in Figures 4.31 and 4.32 respectively. 

 

 

Figure 4.31: Wrapper Method–Extended Posit 
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Figure 4.32: Embedded Method for Extended-POSIT 

4.6.7 Posit 

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation for Posit in Table 4.25 below 

 

Folds Criterion max_depth’ min_samples_leaf 

1 Entropy 15 2 

2 Entropy 15 3 

3 Entropy 13 2 

4 Entropy 14 2 

5 Entropy 14 3 

 

Table 4.25: Gridsearch Best Parameters for Posit 
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Here in the posit, we have a lower max depth demand of 13-15 with an average of 14, 

and a min_sample_leaf of 2-3 with an average of 2. The decision tree finished with an 

overall classification accuracy of 89.4% with the pro-extremist category classified at 

91%, higher than the other three categories. The results are presented in Table 4.26 and 

the confusion matrix in Figure 4.34. Again, the validation and training curves displayed 

in Figure 4.33 indicates a low level variance and hence the model does not overfit. 

 

 

Figure 4.33: Validation Curve Posit Imputation 
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F P Rate Recall Precision F1 Class 

0.066 

0.874 

0.037 

0.898 

0.874 

0.911 

0.872 

0.886 

0.925 

0.885 

0.88 

0.918 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.26: Posit-Based Classification Result 

 

Figure 4.34: Posit Imputation Confusion Matrix 

 

4.6.8 Feature Selection: Posit 

In the Posit classification framework, the wrapper method outperforms the embedded 

with a better result of 89.6% with just 60% of the feature subsets after which the 

performance of the model began to deplete as more features were added. This is 

achieved at a speed of 9.33sec. The results of both wrapper and embedded results are 

presented in Figures 4.35 and 4.36 respectively. 
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Figure 4.35: Wrapper Method Feature Selection – Posit 

 

 

Figure 4.36: Embedded Method Feature selection Posit 
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4.6.9 Composite Based Classification Framework 

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation for Composite in Table 4.27 below. 

 

Folds Criterion max_depth’ min_samples_leaf 

1 Entropy 17 3 

2 Entropy 14 4 

3 Entropy 17 2 

4 Entropy 15 2 

5 Entropy 12 2 

 

Table 4.27: Gridsearch Best Parameters for Composite 

 

The Composite demands a max_depth range of 12-17, with an average of 15, which is a 

unit higher than the previous Posit from Table 4.34 above. The J48 decision tree 

maintained min_sample_leaf between 2-4 with an average of 3. These achieved an 

overall accuracy of 91.5% with excellent individual performances of each class with 

accuracies over 91.5%. The pro-extremist category had the highest level of correctly 

identified pages, at 93.2%. The classification result and the confusion matrix are 

presented in Tables 4.28 and Figure 4.38 below. Figure 4.37 shows the validation and 

training curves which indicate the model is well fitted. 
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Figure 4.37: Validation Curve Posit Mice Imputation 

 

F P Rate Recall Precision F1 Class 

 

0.052 

0.047 

0.028 

 

0.909 

0.906 

0.932 

0.898 

0.906 

0.943 

0.903 

0.906 

0.938 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.28: Composite-Based Classification Result 
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Figure 4.38: Composite-Based Confusion Matrix 

 

4.6.10 Feature Selection: Composite-based classification framework 

 

In the composite based classification framework, the wrapper method outperforms the 

embedded method with just 60% of its features utilized which achieved a high accuracy 

of 91.3% at 8.04sec while the embedded method achieved its highest of 89.8% with all 

90% of its feature hence making the wrapper method more cost effective. The results are 

detailed in Figures 4.39 and 4.40 respectively.   
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Figure 4.39: Wrapper Method for Composite 

 

 

Figure 4.40: Embedded Method for Composite 
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4.7 KNN CLASSIFICATION RESULTS 

 

This section presents the result of each framework using KNN. Table 4.29 below 

presented the parameters used in the KNN model across the frameworks.   

 

KNN leaf_size, 

'n_neighbors 

'weights 

1- 10 

1, 3, 5, 7, 9, 11, 13 

Uniform 

 

Table 4.29: The KNN Model Parameters 

 

4.7.1 MF Imputation 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation of MF Imputation using KNN in Table 4.30 below. 

 
 

Folds leaf_size n_neighbors weights 

1 1 1 uniform 

2 1 3 uniform 

3 4 5 uniform 

4 1 3 uniform 

5 4 3 uniform 

 

Table 4.30: Gridsearch Best Parameters for MF Imputation 
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After the application of grid search through 5-fold cross-validation, the leaf_size 

parameter which was initially set between the range of 1-10, could only iterate between 

1-4, no fold exceeded a leaf_size of 4 while the least leaf_size a fold attained is 1. This 

tells us that in general, our model is expected to perform best and best fit the MF 

imputation data if our leaf_sizes are set between 1-4. It’s also observed that for the MF 

imputation data, our best performance was found within the n_neighbors range of 1-5 

against an initial range of 1-13. The leaf size is a parameter in a KD tree or KD ball tree 

algorithm in KNN that helps to partition, allocate or organize data points in a multi-

dimension (multi-feature) space by calculating the distances between each data point. So, 

the larger the leaf_size, the slower the classification of these data points and vice versa. 

The n_neighbors are the total number of data points closest to a selected data point. We 

observed that the MF only needed an average of 3 n_neighbors to attain the best 

performance. Another key observation is how the n_neighbors keeps increasing each 

time the leaf_size increases as we go down the 5 folds except for the 5th fold. This means 

that the n_neighbors is very sensitive to the leaf_size and must be more than the 

leaf_size and with a range 1-5 if the best performance must be attained within the MF 

imputation.  

 



 
 

112 
 

 

Figure 4.41: Validation Curve-MF Imputation 

 

From Figure 4.41 above showing the training and test curves, a behavior is noticed that 

is consistent with both curves is the fact that the performance of the model reduces every 

time the n_neighbors increase. This confirms our initial findings within the grid search 

folds iterations that optimal performance for the MF imputation can only be found at 

n_neighbors ranges between 1-5. If we are to be a bit specific, the optimal performance 

can be found at an n_neighbor value of 3 because that is where most of the convergences 

between each folds occurred. In actuality, the over-fitting tendencies get to reduce 

(because both training and test folds get to converge better) as we increase the 

n_neighbors but we’d have to sacrifice performance to reduce over-fitting tendencies. 
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KNN gave an overall classification of 82.1%. The results of other categories are shown 

in Table 4.31. The model correctly identified pro-extremist cases more than other 

categories in the confusion matrix presented in Figure 4.42. 

 

False 

Positives Rate 
Recall Precision F1 Class 

0.118   

0.051 

 0.098 

0.827 

0.715 

0.922 

 0.777 

0.875 

0.824 

0.801 

0.787 

0.87 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.31: MF Imputation Classification Result using KNN 

 

 

Figure 4.42: MF Imputation Confusion Matrix 
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4.7.2 KNN Imputation 

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation of MF Imputation using KNN in Table 4.32 below. 

 

Folds leaf_size n_neighbors Weights 

1 2 9 Uniform 

2 2 11 Uniform 

3 2 7 Uniform 

4 8 9 Uniform 

5 1 9 Uniform 

 

Table 4.32: Gridsearch Best Parameters for KNN Imputation 

 

In the KNN imputation, we have a more complex scenario where the expected leaf_size 

range for optimal performance has increased to a range of 1-8 unlike MF which had 1-4, 

likewise the n_neighbors which also increased to a range of 7-11. On average, the 

optimal leaf_size is 3 and the optimal n_neighbors is 8 but this rather didn’t reflect on 

the accuracy as we rather had a little lower performance, 81% against 82% we had in the 

MF case. Again, this boils down to the uniqueness of the dataset via the method of 

imputation. In the KNN imputation, the KNN algorithms needed a higher leaf_size for 

its processing as the KNN data may be a more complex and demanding dataset such that 

the KNN algorithm finds it difficult to establish a classification or decision boundaries 

within the multi-dimensional spatial regions hence, needing more leaf_size number and 

more n_neighbors. 
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Figure 4.43: Validation Curve-KNN Imputation 

 

From the training curves above in Figure 4.43, we can see that the model is a bit 

healthier than the previous MF such that there were little or no changes in accuracy after 

n_neighbors is above 4 in the graph except for the fact that there was increased 

convergence (reduced overfitting), which explains why it was necessary for the 

algorithm to increases the n_neighbors to as high as 9 and 11 to get the best 

performance, it was trying to curb overfitting. This places the KNN imputation as a 

better candidate model than the MF imputation. The results of other categories are 
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shown in Table 4.33. The KNN model correctly identified pro-extremist cases more than 

other categories in the confusion matrix presented in Figure 4.44. 

 

 

False Positives 

Rate 
Recall Precision F1 Class 

0.059 

0.021 

0.189 

0.821 

0.689 

0.949 

0.873 

0.941 

0.715 

0.846 

0.796 

0.815 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.33: KNN Imputation Classification Result using KNN 

 

 

 

Figure 4.44: KNN Imputation Confusion Matrix 
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4.7.3 Mice Imputation 

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation of Mice Imputation using KNN in Table 4.34 below. 

 

Folds leaf_size n_neighbors weights 

1 2 9 uniform 

2 1 5 uniform 

3 4 7 uniform 

4 2 9 uniform 

5 1 7 uniform 

 

Table 4.34: Gridsearch Best Parameters for MICE Imputation 

 

In the case of the Mice, we have less demanding parameters where the leaf_size has an 

average of 2 while the n_neighbors has an average of 7. Previously in the KNN, we had 

n_neighbors reaching a max of 11 whereas in MICE we have a max of 9.  
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Figure 4.45: Validation Curve-Mice Imputation 

 

Again, looking at the training curves above in Figure 4.45, just like KNN, the model 

accuracy stopped increasing when the n_neighbors attains 3 but after which it began to 

fight overfitting by increasing the n_neighbors to 9 where it hit its optimal performance. 

For the Mice, we even had an increased overall performance of 83% which turns out to 

have outperformed both MF and KNN. So, as soon as the model reached n_neighbors 

attains 9, it stopped converging and stopped improving hence making iterations of 
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n_neighbors>9 redundant to our experimentation. The remaining results of other 

categories are detailed in Table 4.35 and the confusion matrix is presented in Figure 4.46 

 

False Positives Rate Recall Precision F1 Class 

0.062 

0.028 

0.152 

0.858 

0.704 

0.951 

0.872 

0.925 

0.758 

0.865 

0.799 

0.844} 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.35: Mice Imputation Classification Result using KNN 

 

 

Figure 4.46: Mice Imputation Confusion Matrix 
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4.7.4 Extended- Posit Classification  

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation of Extended- Posit using KNN in Table 4.36 below. 

 

Folds leaf_size n_neighbors weights 

1 1 3 uniform 

2 1 5 uniform 

3 1 3 uniform 

4 1 5 uniform 

5 1 7 uniform 

 

Table 4.36: Gridsearch Best Parameters for Extended-Posit 

 

For the Extended-Posit, we have a very interesting observation where on average 

leaf_size=1 and n_neighbors=5. This is a way less demanding set of parameters 

compared to the MF, MICE and KNN. For the Extended-Posit, the algorithm only 

needed a small leaf size to accurately establish a classification boundary within the 

spatial space. We observed that for each leaf_size=1, there is an increasing n_neighbors 

value from 3 to 7.  
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Figure 4.47: Validation Curve-Extended Posit 

 

From the training and test curves above in Figure 4.47, you would notice that the same 

habit that occurred in mice and KNN imputations happened again, where the accuracy 

stalled after an early n_neighbors value (3 in this Extended-Posit case) and then 

continued to rather increase to higher values. Here, after n_neighbors attains 3 the 

accuracy stopped increasing hence the model stopped generalizing and afterward sought 

to deal with overfitting tendencies and increased the n_neighbors to 7 where it finished 

converging hence every other iteration afterward either didn't improve performance or 
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reduce overfitting. The Extended-Posit has outperformed every other framework 

explained above so far with very much less demanding parameters and computational 

resources, having an overall accuracy of 90.3%. The most correctly identified category is 

pro-extremist, at the rate of 97%, with the highest precision rate when compared with 

other categories in the confusion matrix table shown in Figure 4.48. The details of the 

results are presented in Table 4.37. The validation curve in Figure 4.47 indicates a very 

low variance between both validation and training scores and consequently the model is 

well fitted. 

 

False Positives 

Rate 
Recall Precision F1 Class 

0.0717 

0.0377 

0.0348 

0.906 

0.848 

0.958 

0.863 

0.918 

0.932 

0.884 

0.881 

0.945 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.37: Extended Posit Classification Result using KNN 

 

Figure 4.48: Extended Posit Confusion Matrix 
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 4.7.5 Posit-Based Classification  

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation of Posit using KNN in Table 4.38 below. 

 

Folds leaf_size n_neighbors Weights 

1 1 5 Uniform 

2 1 5 Uniform 

3 1 5 Uniform 

4 1 3 Uniform 

5 1 1 Uniform 

 

Table 4.38: Gridsearch Best Parameters for Posit 

The posit dataset also maintained a similar optimal range and average for the leaf_size 

and n_neighbors where leaf_size didn’t exceed 1 but most importantly, the n_neighbors 

had a lesser range of 1-5 compared to Extended-Posit having 1-7. In general, the 

n_neighbors increased through each fold as leaf_size is 1. The small leaf_size is 

indicative of the fact that the dataset is less complicated and easily fits the KNN model 

allowing the classification boundaries to be easily established. So, if one looks at how 

the boundaries are formed, you would see a clean a contour neatly separating each class 

without much complexity. 
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Figure 4.49: Validation Curve- Posit 

 

The above curve in Figure 4.49 shows how the accuracy/performance of the training 

curve keeps reducing as the n_neighbors increases. The test curve maintained a steady 

performance and didn’t change while the training curve went ahead to deal with some 

overfitting tendencies while it reduced to 5. After n_neighbors is equal to 5, the model 

stopped learning and reached its optimal performance. The overall performance accuracy 

turned out to be lower by a few decimals than the Extended-Posit, KNN gave 89%, 

leaving it as an underperforming model compared to the Extended-Posit but better than 

the KNN, mice and MF imputation data. The details of the results are shown in Table 
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4.39 and Figure 4.50. The validation curve in Figure 4.49 indicates a very low variance 

between both validation and training scores and consequently the model is well fitted 

 

 

False Positives 

Rate 
Recall Precision F1 Class 

0.067 

0.054 

0.033 

 0.900 

0.870 

0.919 

0.869 

0.889 

0.932 

0.884 

0.880 

0.925 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.39: Posit Classification Result using KNN 

 

 

 

Figure 4.50: Posit Confusion Matrix 
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4.7.6 Composite Based Classification 

 

The application of grid search yielded the following best parameter sets for 5 separate 

folds used for the validation of Composite using KNN in Table 4.40 below. 

 

Folds leaf_size n_neighbors Weights 

1 1 3 Uniform 

2 1 5 Uniform 

3 1 5 Uniform 

4 1 3 Uniform 

5 1 5 Uniform 

 

Table 4.40: Gridsearch Best Parameters for Composite 

 

Here, the range of the leaf_size remained at 1, leaving our optimal n_neighbors range at 

3-5 and an average of 4. We had our optimal value at n_neighbors is equal to 5, where 

some of the overfitting tendencies had been removed by the model after generalization 

stopped at n_neighbors is 4. 
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Figure 4.51: Validation Curve-Composite 

 

The training and test curve above in Figure 4.51 rather confirms our initial observations, 

such that both curves seem to have different trajectories: The training curves show the 

decreasing accuracy and model performance as the n_neighbors increases while the 

test/validation accuracy shows an increasing model performance as the n_neighbors 

increases. But the scenario for the validation curve is only valid up to n_neighbors is 5 

after which the model stops improving and remains steady. The Composite, having a 

little higher n_neighbors range compared to Posit and Extended-Posit has proven to 
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outperform every other model by reaching an overall performance of 92%.  Details of 

the results are presented in Table 4.41 and Figure 4.52 respectively 

 

False Positives 

Rate 
Recall Precision F1 Class 

 0.056 

 0.036 

 0.031 

 0.916 

0.88 

0.956 

 0.891 

0.924 

0.938 

 0.904 

 0.901 

0.947 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.41: Composite-Based Classification Result using KNN 

 

 

Figure 4.52: Composite Confusion Matrix 

 

4.8 The Validation of Nigerian Extremism Dataset 

 

Each of the textual analysis technique was applied on the Nigerian extremist Webpages, 

where Posit produces a 27- item feature list for each category of Webpage, Sentiment 
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analysis generates 26, Composite produces 53 and Extended Posit produces 71 - items 

features. We used the whole ICCRC dataset as a training dataset while the Nigeria 

dataset as a validation set. We utilised sklearn’s GridSearchCV to perform an exhaustive 

search over specified parameter values for an estimator. The estimators are the classifier 

algorithms. The CV option was set to 7 for the gridsearchCV. The grid parameters used 

are presented in Table 4.42 below: 

 

              

Model HyperParameters Range 

J48 Decision Tree Criterion 

max_depth 

min_samples_leaf 

Entropy 

1 – 21 

2-10 

Random Forest Criterion 

max_depth 

min_samples_leaf 

Entropy 

1 – 21 

2-10 

 

Table 4.42: The Model Parameters 

 

ICCRC dataset was supplied as the training dataset for the fit method. The fit method is 

to perform model fitting using the set of parameters supplied. The Nigeria dataset was 

supplied for the prediction (Model validation). The prediction will use the best 

parameters from the gridsearchCV to predict the class. The classification results are 

presented below: 

 

4.9 J48 Classification Results 

 

4.9.1 Posit-Based classification Results 

The application of grid search yielded the following best parameter sets used for the 

validation of Posit using J48 ('criterion': 'entropy', 'max_depth': 16, 'min_samples_leaf': 
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2). J48 gave overall classification accuracy of 48.5%. Pro-extremist Webpages were 

correctly identified at the rate of 31%. The results of other categories are detailed in 

Table 4.43 and Figure 4.54. The data plots of the training are displayed in Figure 4.53. 

 

 

Figure 4.53: Validation Curve-Posit 

 

False Positives 

Rate 
Recall Precision F1 Class 

0.371 

0.220 

0.183 

0.529 

0.566 

0.316 

0.416 

0.627 

0.391 

0.465 

0.513 

0.350 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.43: Posit-Based Classification Result using J48 
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Figure 4.54: Posit Confusion Matrix 

 

4.9.2 Extended-Posit Based Classification  

The application of grid search yielded the following best parameter sets used for the 

validation of Posit using J48 (criterion': 'entropy', 'max_depth': 12, 'min_samples_leaf': 

3). The J48 decision tree finished with an overall classification accuracy of 49% with the 

pro-extremist category classified at 41%. The validation curve is displayed in Figure 

4.55. The results are detailed in Table 4.44 and Figure 4.56 respectively. 
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Figure 4.55: Validation Curve-Extended Posit 

 

False Positives 

Rate 
Recall Precision F1 Class 

0.158 

0.410 

0.190 

0.423 

0.652 

0.411 

0.577 

0.422 

0.536 

0.488 

0.512 

0.465 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.44: Extended Posit-Based Classification Result using J48 
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Figure 4.56: Extended-Posit Confusion Matrix 

 

4.10 Random Forest Classification Results 

 

4.10.1 Posit Classification Based Results 

The optimal performance for the Posit can only be found at (criterion': 'entropy', 

'max_depth': 17, 'min_samples_leaf': 2) with the application of gridsearchcv. Random 

forest gave 53% overall classification accuracy in validating Nigerian data. The model 

correctly identified pro-extremist cases at 41%. The results are detailed in Table 4.45 and 

the confusion matrix in Figure 4.58. The variance between each validation and training 

score indicates minimal overfitting. The data plot showing the performance is presented 

in Figure 4.57 
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Figure 4.57: Validation Curve- Posit 

 

False Positives 

Rate 
Recall Precision F1 Class 

 

0.199 

0.336 

0.170 

 

0.338 

0.836 

0.413 

0.481 

0.570 

0.510 

0.397 

0.678 

0.456 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.45: Posit-Based Classification Result using Random Forest 
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Figure 4.58: Posit Confusion Matrix 

 

4.10.2 Extended Posit-Based Classification Result  

 

The grid search results for Extended Posit-Based indicated that the model required a 

range of 17 max depth levels in order to accomplish the best performance, with a 

constant minimum sample leaf of 2. The Random forest gave 53% overall Webpages 

matching with Nigerian data. Pro-extremist cases were identified at the rate of 48.6%. 

The classification result and the confusion matrix are presented in Tables 4.46 and 

Figure 4.60 below. Figure 4.59 presented the validation and training curves which 

indicate the model is well fitted. 
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Figure 4.59: Validation Curve-Extended Posit 

 

False Positives 

Rate 
Recall Precision F1 Class 

 

0.146 

0.448 

0.101 

 

0.411 

0.716 

0.486 

0.600 

0.429 

0.708 

0.488 

0.536 

0.576 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 4.46: Extended Posit-Based Classification Result using J48 
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Figure 4.60: Extended-Posit Confusion Matrix 
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Chapter 5: Neural Networks  

This chapter details the implementation of different Neural Network models explored in 

this thesis 

 

5.1 Neural Network 

 

Neural networks are a form of a machine learning algorithm that mimics how the brain 

operates, which is regarded as artificial neural networks. Learning can be semi-

supervised, unsupervised or supervised [93]. Initially, neural networks were made up of 

three layers which consisted of input, output and hidden layers. However, once the hidden 

layer is greater than one, it becomes a deep-learning network unlike a traditional neural 

network such as the first perceptron comprising of one input and one output layer, and 

one hidden layer in between. This is a significant factor in distinguishing it from other 

single-hidden-layer neural networks [94]. Figure 5.1 shows a typical Neural Network. 

The algorithm is trained to learn and identify the pattern of features automatically by 

reconstructing samples from labelled data. In the process, the neural networks learn to 

identify correlations between specific relevant features and best results. It brings out 

relationships between feature signals and their representation. This is then applied to 

unstructured or unlabelled data, giving it access to use the same pattern on it for higher 

performance [93]. The neural network models considered in this work are Multilayer 

perceptron (MLP) and the Recurrent Neural Networks (RNN), they are explored due to 

their capabilities for complex classification tasks. 

 

https://skymind.ai/wiki/multilayer-perceptron
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Figure 5.1: A Neural Network with 2 Hidden Layers 

 

5.1.1 Multilayer perceptron (MLP) 

 

The multilayer perceptron (MLP) consists of an input layer that receives the signal, an 

output layer that decides or predicts based on the input, and any number of hidden layers 

in between that act as the MLP's true computational engine [95]. Any continuous 

function can be approximated by MLPs with one hidden layer. In supervised learning 

problems, multilayer perceptrons are widely utilised. They have the ability to predict the 

correlations (or dependencies) between the inputs and outputs after being trained on a 

collection of input-output pairings [96]. In order to reduce error, the model's parameters, 

or weights and biases, are modified over the course of training. Backpropagation is 

utilized to perform the weight and bias modifications linked to the error [97]. To reduce 

the loss, inputs are multiplied by weights before being transmitted to the activation 

function, where they are modified in back propagation. The machine-learned values from 

neural networks are used as weights [96]. They self-adjust based on the difference 

between training inputs and projected outputs. After nonlinear activation functions, 

Softmax is used as an output layer activation function [98]. 

 



 
 

140 
 

5.1.2 Recurrent Neural Network (RNN) 

Recurrent neural networks (RNNs) are a form of neural network which simulate or 

forecast time series or sequence data [99]. RNN behavior is similar to human brain 

activity. Convolutional and feedforward neural networks (CNNs), like recurrent neural 

networks (RNNs), learn from training data [99]. Recurrent networks differ from other 

types of networks in that all of their layers share the same properties. Recurrent neural 

networks use the same weight parameter in each layer, as opposed to feedforward neural 

networks, which use different weights for each node [100]. To aid reinforcement 

learning, these weights are adjusted using gradient descent and backpropagation 

techniques [100]. Backpropagation through time (BPTT) is a technique used by recurrent 

neural networks to estimate gradients because it is specialized in sequence data, and it 

differs significantly from regular backpropagation [100]. 

 

Convectional backpropagation, a technique similar to BPTT [99], is used to train the 

model by computing errors from its output unit to its input layer. Using these 

computations, we can adjust and fit the model's parameters. Whereas feedforward 

networks do not, BPTT accumulates faults at each time step in contrast to the standard 

method. RNN frequently encounter exploding gradients and vanishing gradients during 

this process. The gradient, is the slope of the loss function along the error curve, 

determines the magnitude of these challenges. When the gradient becomes too small, it 

drops even further, updating the weight parameters until they are irrelevant or zero [100]. 

Hence, the algorithm then halts learning when this happens. Exploding gradients, which 

happen when a gradient is too large, lead to an unstable model. The model weights in 

this instance grow out of control and eventually take the form of NaN. One solution to 

address these issues is to reduce the number of hidden layers in the neural network [99]. 

When the gradient values are too small, vanishing gradients occur, which causes learning 

to stop or take too long. This was a major issue in the 1990s, and it was far more difficult 

to solve than the problem of exploding gradients. 
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Fortunately, the problem is resolved by utilising the LSTM idea [100]. The information 

flow differences between an RNN and a feed-forward neural network are shown in Figure 

5.2 below.

 

Figure 5.2: Recurrent Neural Network and a Feed-Forward Neural Network [100] 

 

The Variant of RNN Architectures 

 

In this thesis, LSTMs are used as the building blocks for the layers of an RNN [100]. 

LSTMs assign data "weights" that help RNNs decide whether to accept new information, 

ignore it, or give it enough relevance to improve the output. Furthermore, the LSTM 

model exhibits significantly more volatility throughout its gradient descent than the GRU 

model [101]. This could be because there are more gates for the gradients to pass 

through after a certain number of epochs, making constant progress more difficult to 

achieve. GRU uses fewer training parameters, requiring less memory and implementing 

faster than LSTM. Contrarily, LSTM is more accurate, particularly for larger datasets 

[102]. 

 

Long Short-Term Memory (LSTM) 

The short-term memory problem in RNN models can be fixed with the use of an RNN 

architecture called LSTM. Input, forget, and output gates are the components of an 
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LSTM. These gates regulate the data flow to forecast the network's output. These gates 

determine whether additional input is allowed (input gate) if the information is removed 

(forget gate) and whether the output at the current time step is affected [102]. Figure 5.4 

below displays an RNN with its three gates in place. The LSTM's analog gates have 

sigmoidal shapes and range from zero to one. They are analog, therefore they may 

conduct backpropagation. . The problem of disappearing gradients is overcome by LSTM 

since it keeps the gradients steep enough, resulting in a fast training time and good 

accuracy [101]. 

 

Figure 5.4: An illustration of a RNN with its three gates [99] 

 

5.2 Optimisation Algorithm 

The most popular method for optimizing neural networks is gradient descent, a first-

order iterative optimization technique that identifies the parameters that minimize the 

loss function (prediction error) and uses a backpropagation of error process to update the 

weights [96]. The gradient descent algorithm tries to modify the weights to reduce the 

likelihood of an error in the evaluation that comes after (this implies that the 
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optimisation algorithm is going down the slope of error). Figure 5.5 below shows how 

the gradient descent method descends the derivative to produce the minimum. 

 

 

Figure 5.5: Gradient Descent Algorithm [103] 

 

The limitation of using gradient descent is their hyper parameters that needed to be 

specified in advance, which depend greatly on the type of model and problem. Another 

disadvantage of gradient descent is that a similar learning rate is applied to all parameter 

updates, this may affect a situation of having sparse data, where it might be important to 

update the parameters in an unusual extent instead [104]. However, adaptive gradient 

descent algorithms such as Adagrad, Adadelta, RMSprop and Adam, produce a better 

alternative to traditional gradient descent. They contain per-parameter learning rate 

techniques, which provide a heuristic method without the need for the costly task of 

tuning hyperparameters for the learning rate arranged manually. Both Adagrad and Adam 

provide better results than gradient descent, but Adam is faster than Adagrad [104]. For 

this reason, the Adaptive Moment Optimisation algorithm is discussed further below.  

 

5.2.1 ADAM 
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The Adaptive Moment Optimisation algorithm combines the methods of both Momentum 

and RMSProp [98]. The equations are stated below: 

 

Vt = β1 * Vt – 1 – (1 - β1) * gt  Equation 1 

St = β2 * St – 1 – (1 – β2) * gt
2  Equation 2 

∆ωt = –ὴ  * gt    Equation 3 

ωt+1 = ωt + ∆ωt    Equation 4 

ὴ : Initial Learning rate 

gt: Gradient at time t along ωj 

Vt : Exponential Average of gradients along ωj 

St : Exponential Average of squares of gradients along ωj 

β1, β2: Hyperparameters. 

 

From the equation stated above, the exponential average of the gradient with the squares 

of the gradient for each parameter is calculated in (Equations 1 and 2) [104]. To arrive at 

the learning step, the average of the gradient is multiplied by the learning rates and 

divided by the root mean square of the exponential average of the square of gradients in 

equation 3. Then, an update is added. The threshold for hyperparameter beta1 is 0.9 

while beta2 is at 0.99. Epsilon is generally taken to be 1e-10. 

 

 

5.3 Loss Function 

In the context of an optimization algorithm, a loss function rates the results of a machine 

learning algorithm. The loss function estimates the error for one training set while 

the cost function is the average of the loss functions for the training set [104]. Whenever 
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an optimization method is used, the value assessed by the loss function is known as 

"loss" [105]. As a result, a loss function must be selected when estimating the model's 

error throughout the optimisation phase [106]. To determine what functions to use can be 

challenging, it is expected that the function should faithfully represent the design goals. 

The maximum likelihood estimation is a widely used method in the field of machine 

learning to determine the error of a set of weights in a neural network [107]. 

 

However, under the maximum likelihood framework, the error between two probability 

distributions is computed using cross-entropy [108]. Cross-entropy is employed as the 

loss function between the training data and the model's predictions when the selected 

parametric models specify a distribution p (y|x); [36]. Cross-entropy evaluates the 

variance between estimated and predicted probability distributions in a given 

classification problem, while in regression problems, mean squared error (MSE) is used 

as the loss function [106]. The data distribution and the model distribution are frequently 

compared using cross-entropy [108]. The cross-entropy function is determined by the 

method used to describe the result. Under a framework of maximum likelihood, the 

default activation for the output layer is the softmax activation function while the lost 

function is Cross-Entropy (also referred to as Logarithmic) [108]. 

 

5.4 Activation Function 

The activation function's job is to put values back into a controllable, acceptable range as 

they are transferred to the next layer. The activation function is linked to the signal's 

forward propagation across the network [109]. 

 

The input layer node does not carry the activation function; only the hidden and output 

layer nodes do [109]. For a certain input to produce a certain output or to activate a node, 

an activation function is necessary. It helps to determine and activate the nodes that 

contribute immensely to the required outcome depending on the final summation 

assigned. There are several types of activation functions some of which include but not 

limited to linear activation function (Sigmoid and hyperbolic tangent activation 
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functions), and nonlinear activation function such as, Relu. The activation function in a 

neural network transforms the node's summed weighted input into the activation of the 

output for that input [109]. The activation function keeps the values passed on to the next 

layers within an acceptable and practical range and passes the output [110].  

 

5.5 Regularisation 

 

A model that performs exceptionally well on training data yet poorly predicts test data is 

said to be overfit. During the training of a large network which could be challenging, 

there is a particular point during training at which the model end generalising and begins 

to learn statistical noise in the training data, hence overfitting sets in and creates an 

increase generalisation errors and makes the model inefficient at making predictions on 

the new data. Underfitting occurs when machine learning algorithms are unable to 

contain a basic pattern in the data or adequately fit the data. Avoiding overfitting can 

lead to improvement in a model’s performance. Figure 5.6 below shows the structures of 

underfitting, overfitting and a good fitting in a neural network.  

 

 

 

Figure 5.6: Structure of different training sets [39] 
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Exploring a regularisation technique is one solution to this problem. Regularisation is a 

method that modifies the learning algorithm to improve the model's generalisation and 

performance on new data [111].  

5.5.1 Dropout 

This is an interesting regularisation technique that is mostly studied in the field of deep 

learning. At a learning phase of a neural network, weights of neurons usually search for 

specific features providing some specialisation. The nearest neurons rely on this 

specialisation of which if considered too far can lead to a fragile model that specialises 

excess on training data. However, dropout is applied to avoid this drawback, randomly 

chosen neurons are disregarded during learning. As a result of this, they do not 

contribution whatsoever to the activating neurons. At the first phase of the system, the 

downstream neurons will be temporarily removed whilst the weight will no longer be 

considered for an update during the backward pass. Whenever the neuron is randomly 

dropped out of the network in the course of training, other neurons take the duty of 

handling the representation needed to make predictions for the missing neurons. This 

allows the networks to learn multiple independent internal representations, be less 

sensitivity to specific neuron weights, and better generalisation that minimises the rate of 

overfit [112]. 

 

Figure 5.7: (a) Normal Neural Network   (b) After Applying Dropout [112] 
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Figure 5.7 (a) depicts a standard neural net with two hidden layers, whereas Figure (b) 

depicts a thinned net formed after applying dropout to the network. 

 

Dropout can be employed in both the input and hidden layers, as shown in the aforementioned 

diagrams. This is done by arbitrarily choosing some nodes and removing them along with their 

incoming and outgoing connections, as shown in the schematics above. This section entails a 

distinct set of nodes leading to a different set of output since the nodes were randomly chosen. 

The dropout function's hyperparameter is the likelihood of selecting the number of nodes to be 

dropped 

5.5.2 Early Stopping 

 

Early stopping is a form of the regularisation method that enables a random large 

number of training epochs to be defined and stop the training when the model 

performance degenerates on a validation dataset. A trigger could be initiated, and the 

training process will stop. The Early Stopping callback is triggered when instantiated 

through arguments. The performance of the model can be detected during training by 

setting out the evaluation metrics to be used on a choice of a dataset. It is usual practice 

to divide the dataset and utilize a subset as a validation dataset, which is not used to train 

the model but is used to evaluate the model's performance during training. This is 

achieved by using the loss on a validation dataset, which is popularly used as a metric or 

as a performance measure to monitor the performance during training. Part of the 

training procedure includes the loss of the model on the training dataset and other 

metrics can be evaluated and monitored on the training dataset. At the end of each epoch, 

the performance of the model is calculated on the validation set. The performance of the 

model on the validation set, such as loss is used to determine when a trigger is decided 

concerning when to stop training in the early stopping trigger method [113]. The Early 

Stopping callback will halt the training when activated. 
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Figure 5.8: Training Set Accuracy Source [113] 

  

5.6 Google Colaboratory 

Google Colaboratory is an open-source cloud service tool for machine learning with 

Jupyter notebook settings which requires no setup to use. Google Colaboratory allows 

sharing Jupyter notebooks without the stress of downloading, or installing anything on 

your computer, using only a browser. In addition, it comprises most of the libraries such 

as Scikit-learn, TensorFlow, Matplotlib and dependencies already installed. The 

advantage of Google Colab is its open-source GPU service. Google Colaboratory 

provides a runtime completely developed for deep learning and open access to a robust 

GPU. On a free Tesla K80 GPU, deep learning applications can be designed with Google 

Colaboratory using Tensorflow, Keras and PyTorch [114]. 

 

5.7 TensorFlow 

TensorFlow is a Python library developed and released by Google, it enhances quick 

numerical computing. It is a primary library that explores data flow graphs to develop 

deep learning models directly or by using wrapper libraries that resolve the process 

https://scikit-learn.org/
https://matplotlib.org/
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developed on top of TensorFlow [115]. TensorFlow is employed for classification, and 

the learning algorithms are designed for pattern recognition and knowledge-based 

prediction using sensory data and an artificial network structure of nodes and weights. 

The network structure is commonly constructed with an input layer, one or more hidden 

layers, and an output layer, with each layer consisting of many nodes linked together 

[116]. 

 

5.8 Validation Metric 

The error rates of the machine learning model are obtained through the validation 

technique. When setting up a classification model, over-fitting of the training set is one of 

the common problems to avoid. Over-fitting means there is a good level of accuracy in 

the training set but this drop significantly in a given new dataset. To avoid over-fitting, a 

train, test and validation split technique is used.  Hence, a split of 70% for the training set, 

30% for the test set and 33% for the test set is used to evaluate our model. This 

distribution helped to know how well the model will perform on any new given inputs, to 

avoid the model being biased. The training set refers to a sample of data used to fit the 

model and the testing set means a sample of data used to produce an unbiased judgment 

of a final model fit on the training set. A validation dataset is a portion of data kept off 

from training a model which gives an assessment of model performance while tweaking 

the model’s hyperparameters. 

 

Another approach to consider would be to apply k-folds cross-validation but it is seldom 

used for evaluation in the Neutral Network model due to its larger computational expense; 

it involves number of models to be constructed and evaluated, which substantially adds to 

the evaluation time of the model [117]. In order to assess the performance of this 

classification, the metrics considered are precision, recall, f-measure and accuracy. 
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5.9 TensorFlow Implementation 

This section describes the implementation of the experimental setup of each 

classification framework described in the previous chapter. As a reminder, the 

classification frameworks in question, are Sentiment, Posit (features on the basis of 

word-level information), Extended Posit (features on the basis of both word and 

character-level information) and the proposed framework, composite-based classification 

method. The feature sets considered in this section are (i) the ‘default’ 27 Posit features, 

(ii) the extension of Posit to include 44 character features (referred to as extended-Posit 

features), (iii) sentiment features and composite features (a mix of sentiment and 

syntactic features derived from the textual data). All of the features in these different sets 

were extracted from the three predefined categories of extremist Websites (with 2500 

Webpages in each category). Each feature set was employed to determine their degree of 

effectiveness in classification, via two Neural Network Models algorithms such as the 

MLP and RNN. 

 

In our approach, we decided to build the Neural Network model in each framework’s 

output data based on the content of the 7500 Webpages, without any further pre-

processing. TensorFlow is employed to implement the Neural Network classifiers. 

TensorFlow is a machine learning library [115]. The data set was loaded into 

TensorFlow to run Neural Network classification models and utilised each model to 

predict the category for each Webpage. A big data collection of 7500 Webpages was 

used to develop the classification models in order to build the TensorFlow model. The 

greater the amount of data collected for training a model, the higher the accuracy should 

be. The manual data sets were merged into the excel, after which a class label column 

“category” was defined, denoting whether the data represented “pro-extremist” or “anti-

extremist” or “neutral” Webpages. The model was tested for its accuracy in identifying 

class values for the “pro-extremist” or “anti-extremist” or “neutral” Webpages category.  
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However, a class of anti-extremist is labelled as 0, neutral as 1 and pro-extremist as 2. To 

make the training process well behave, the features were scaled using SciKit learn 

StandardScaler. TensorFlow was used in the experiment with various settings for the 

parameters relevant to the number of partitions, epochs, layers, learning rate, and 

regularisation. In respect to regularisation as a measure to avoid over-fitting, a dropout 

technique was employed. This is the probability of choosing number of nodes to be 

dropped in the dropout layer.  

 

Dropout is incorporated in the model to perform back propagation and regularisation 

functions. Cross-entropy was employed to calculate the loss and the ADAM for the 

optimiser used in updating the model. During the training of the model, too many epochs 

can lead to overfitting and fewer epochs can led to underfitting of the model. However, 

early stopping is a part of the regularisation method explored that permits an arbitrary 

huge number of training epochs to be specified and halt the training once the model 

performance stops improving on a validation dataset. 

 

We start by feeding a data point into the input layer using our dataset. The data is then 

routed through the hidden layer or layers, where weights and biases are added. Then the 

output layer classifies the result from the hidden layer, which eventually produces the 

output of extremist Web data. The architecture of the each model consists of  hidden 

layer, an input layer which represent the number of each framework’s features (for 

example, input shape size is 27 in Posit, 71 in Extended-Posit, 26 in sentiment and 53 in 

Composite features) and an output layer of 3, which represent anti-extremist, neutral and 

pro-extremist (the prediction class). The hidden layers transform inputs to output size 

using activation functions. Further architecture and hyperparameters of each model is 

detailed below. 

 

5.9.1 The MLP (multi-layer perceptron)  
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Our MLP comprises of 3 dense layers, with each having 512 hidden neurons each with a 

relu activation function. Each dense layer has a follow-up dropout layer with rate of 0.3 

to tackle overfitting tendencies. The final output layer is armed with a softmax activation 

function to process outputs between 0 and 1. Our final layer in the compilation layer 

which hosts the loss (categorical cross entropy) function, metric and the optimizer 

(adams).  

 

5.9.2 RNN  

The RNN is built to receive data in both sequential and vectorised format hence our data 

which was originally in a sequential format after acquisition was vectorised in the data 

pre-processing stage where text feature representation was implemented. Our RNN 

topology comprises of 2 LSTM layers, one which is the input layer with 26 nodes to 

receive the features. The other layer contains 150 hidden units for cycle/loop processing 

within the network. The tanh activation function is used to received the outputs from one 

of the LSTM layers which serves as input. The following linear activation functions are 

used for complex function mapping, they include the ‘sigmoid’ (maps inputs to outputs 

between 0.0 and 1.0) function and the hyperbolic tangent or tanh function (maps inputs 

into outputs between -1 and 1) while the ReLu maps continuous outputs as in the cases 

of regression modelling and analysis. The ‘adam’ optimizer was selected specifically for 

the sake of gradient descent and backpropagation which updates the weights and reduces 

the loss as accuracy and learning improves. Our loss choice is the ‘sparse categorical 

cross-entropy”. The tunable dropout layer is simply meant to reduce overfitting 

tendencies during modellling.  

 

5.9.3 Early Stopping  

Two different Neural Network models were used to predict the category of each 

Webpage in each of the framework. During the implementation each Neural Network 

model on each feature sets, early stopping is applied to avoid overfitting by preventing 



 
 

154 
 

many iterations. The early stopping is designed to cease the training at the point when 

validation loss starts to plateau but the initial indication of no more improvement may 

not be the perfect time to end training because the model may perhaps get worse before 

substantially getting better. However, a modification is done by setting a delay to the 

trigger for the number of epochs after which no progress is expected. This is achieved by 

setting the “patience” argument callback to 3, instructing the system not to stop till it 

reaches certain epoch threshold once a validation loss of a given test dataset degenerated 

(after three different plateau) and no point in continuing training.  “Baseline” argument 

is set up to achieve this task and the epoch threshold was set to 20. Hence, if there are no 

changes to performance after 3 runs then it will stop. Eventually, an additional callback, 

known as ModelCheckpoint takes the snapshot of the system at each epoch and saves the 

best model observed during training. The training was done on GPU using Google Colab 

platform.  

 

5.10 Classification Results 

 

This section describes the results obtained from the TensorFlow implementation on Posit, 

Extended-Posit, Sentiment and Composite feature sets of the extremist Webpages. The 

results interpreted in this section are largely focused on the overall classification and 

particularly, the pro-extremist class.  The results generated from the TensorFlow 

implementation are the different parameters for the number of partitions, epochs, layers, 

learning rate, and regularisation which were tested for optimum accuracy for each model 

and the best epoch were reported in the result classification section. The regularisation 

process envisioned with data plots is also presented. The parameters of each run and the 

corresponding results are also presented. 

 

5.11 RNN Classification Results 

This section describes the results obtained from Posit, Extended-Posit, Sentiment and 

Composite feature sets of the extremist Webpages using RNN Model 
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5.11.1 Sentiment-Based Framework (MF Imputation) 

 

One of the most important traits of a healthy training curve is convergence, we achieved 

many convergences where the model produced the best generalisation performance on 

both test and training sets at epoch 20. The data plot of the learning process of the model 

indicated that the model does not overfit as the loss in both validation and training 

decreases significantly at 0.48 and 0.45 respectively at epoch 20. Figures 5.9-5.10 

illustrate the data plots on the graphs. Overall classification of Webpages is recorded at 

79.5%. Table 5.1 details the results of other classes. From the confusion matrix in Figure 

5.11, the pro-extremist category had the highest level of correctly classified cases. The 

class produces the lowest false positive rate, at 89% and 6% respectively.  

 

Figure 5.9: Model Accuracy Curve-MF          Figure 5.10:  Model loss Curve-MF 

Imputation                                                          Imputation                                                                

False 

Positives 

Rate 

Recall Precision F1 Class 
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False 

Positives 

Rate 

Recall Precision F1 Class 

0.187 

0.062 

0.06 

0.858 

0.634 

0.89 

0.703 

0.833 

0.88 

0.773 

0.72 

0.885 

Anti-extremist 

Normal 

Pro-extremist 

 

Table 5.1: MF Imputation Classification Result using RNN 

 

 

Figure 5.11: MF Imputation Confusion Matrix 

 

5.11.2 KNN Imputation 

 

The result obtained from KNN imputation is an improvement of MF imputation as we 

achieved an early convergence on the training curve. These can be seen in Figures 5.12 

and 5.13 which are also reflected in the loss. The best performance of the model was 

recorded at epoch 20. The data plot indicated a good fit model as both validation and 

training loss decrease to 0.41 and 0.39 respectively at epoch 20. The model was able to 
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classify 81% of the extremist Webpages across the three categories. Pro-extremist had 

the highest correctly classified cases at 84% with the lowest false positive rate of 10 % 

compared to other categories in the confusion matrix, Figure 5.14. The result of applying 

this model is shown in Table 5.2 below. 

 

    

Figure 5.12: Model accuracy Curve-KNN           Figure 5.13: Model Loss Curve- 

Imputation                                                               KNN Imputation 

 

False 

Positives 

Rate 

Recall Precision F1 Class 

0.068 

0.115 

0.100 

0.780 

0.807 

0.849 

0.856 

0.775 

0.808 

0.816 

0.791 

0.828 

Anti-|Extremist 

Neutral 

Pro-extremist 

 

Table 5.2: KNN Imputation Classification Result using RNN 
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Figure 5.14: KNN Imputation Confusion Matrix 

 

5.11.3 MICE Imputation 

 

The performance of the model indicated that both the validation and training set 

performed well at epoch 20. At the aforementioned epoch, we could observe both 

validation and training loss decreases to 0.84 and 0.38 respectively. This shows that the 

model makes small errors and does not overfit. The regularisation process was visualised 

with data plots on graphs, model accuracy is detailed in Figure 5.15 while the model loss 

in Figure 5.16.  The model was able to classify 83% of the extremist Webpages across 

the three categories. The result of applying this model is presented in Table 5.3 below. 

From the confusion matrix in Figure 5.17, the classifier correctly identified pro-extremist 

Webpages with the highest rate of 85%.  
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Figure 5.15: Model accuracy Curve-MICE       Figure 5.16: Model loss Curve- 

 Imputation                                                            MICE Imputation 

         

 

False 

Positives 

Rate 

Recall Precision F1 Class 

0.049 

0.113 

0.087 

0.803 

0.851 

0.847 

0.894 

0.787 

0.828 

0.846 

0.818 

0.837 

Anti-

extremist 

Neutral 

Pro-extremist 

 

Table 5.3: MICE Imputation Classification Result using RNN 
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Figure 5.17: MICE Imputation Confusion Matrix 

 

5.11.4 Posit Classification Frameworks 

 

When Tensorflow was implemented on Posit features (27 features), the early stopping 

function was triggered based on the callback set-up to oversee the performance measure 

of the training at a point where the accuracy of the validation set degenerated to a level 

where there was no need to continue the training or when the model loss began to 

increase on the validation set. At this point, training was terminated and the 

ModelCheckpoint callback finally overwrote previously saved best models and indicated 

the optimum at epoch 20. The regularisation process was illustrated graphically using 

data plots and the performance, as visualised in Figures 5.18-5.19. The model loss error 

is shown in Figure 5.19, it clearly shows how the error decreases in validation and 

training set to 0.9 and 0.30 respectively at epoch 20. This showed that both the validation 

and training set performed well on the model and well fit. The RNN model performance 

showed that 86% of the whole set of Webpages was classified into the three categories, 

while the pro-extremist category gave the highest level of correctly classified cases and 

the lowest false positive rate at, 89% and 2.8% respectively. The classification result is 

presented in Table 5.4 and the confusion matrix in Figure 5.20 below. 
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Figure 5.18: Model Accuracy Curve-Posit     Figure 5.19: Model Loss Curve- 

Imputation                                                             Posit Imputation 

 

False 

Positives 

Rate 

Recall Precision F1 Class 

0.127 

0.046 

0.028 

0.907 

0.801 

0.891 

0.787 

0.895 

0.94 

0.843 

0.845 

0.915 

Anti-Extremist 

Neutral 

Pro-Extremist 

 

Table 5.4: Posit Classification Result using RNN 
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Figure 5.20: Posit Imputation Confusion Matrix 

 

5.11.5 Extended Posit Classification Framework 

 

In addition, the same RNN implementation was performed on a set of extended-Posit 

features (71 features). The optimum performance of the model was shown at epoch 20 

when the classifier gave 91% overall correctly classified instances. The highest correctly 

classified instance of Webpages was recorded in the pro-extremist category at 96 %, and 

this category also had the least false positive rate, at 2.3%. The regularisation processes 

are illustrated in Figures 5.21-5.22. Figure 5.22 shows how the model loss decreases 

significantly in both validation and training. At epoch 20, loss was decreased to 0.18 in 

training while 0.25 in validation. This indicates a well fit model. The classification 

results and the confusion matrix are presented in Table 5.5 and Figure 5.23 respectively. 
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Figure 5.21: Model Accuracy                             Figure 5.22: Model Loss Curve-  

Curve-Extended Posit                                         Extended Posit 

 

False 

Positives 

Rate 

Recall Precision F1 Class 

0.089 

0.019 

0.023 

0.952 

0.834 

0.955 

0.841 

0.958 

0.954 

0.893 

0.892 

0.955 

Anti-

Extremist 

Neutral 

Pro-Extremist 

 

Table 5.5: Extended Posit Imputation Classification Result using RNN 
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Figure 5.23: Extended Posit Imputation Confusion Matrix 

 

5.11.6 Composite Classification Framework 

 

The regularisation process was illustrated graphically using data plots and the 

performance, which are visualised in Figures 5.24 and 5.25. Both the validation and 

training set performed well on the model. Again, at epoch 20, the model loss error in 

both validation and training decreased significantly to 0.19 and 0.16 respectively (this 

indicates a low level of error rate), which is described in model the loss curve in Figure 

5.25. The RNN model performance showed that 92% of the whole set of Webpages was 

classified into the three categories, while the pro-extremist category gave the highest 

level of correctly classified cases and the lowest false positive rate at, 98% and 3.2% 

respectively. The classification result is presented in Table 5.6 and the confusion matrix 

in Figure 5.26. 
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Figure 5.24: Model Accuracy Curve-Composite      Figure 5.25: Model Loss Curve-  

                 Composite 

 

False 

Positives 

Rate 

Recall Precision F1  

0.056 

0.031 

0.032 

0.919  

0.862 

0.984 

0.89 

0.935 

0.938 

0.905 

0.897 

0.96 

Anti-extremist 

Neutral 

Pro-extremist 

 

Table 5.6: Composite-Based Classification (Posit-Mice) Result using RNN 
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Figure 5.26: Composite-Based (Posit MICE) Confusion Matrix 

 

5.12 MLP CLASSIFICATION RESULT 

This section presents the result of each framework using MLP. 

 

5.12.1 Sentiment-Based Framework: (MF, KNN and MICE Imputation) 

 

When the MLP model was applied to the sentiment features (MF, KNN and MICE 

Imputation sets), the model recorded an optimum performance at epoch 20 each. At 

epoch 20, the training in each feature set produced the best generalisation performance 

on both test and training sets. This process is achieved through the aid of performance 

monitoring callbacks, early stopping and ModelCheckpoint. The regularisation process 

was visualised with a data plot on the graph in each imputation set, for example MF was 

depicted in Figures 5.27 and 5.28. The model was able to classify 82% of the extremist 

Webpages across the three categories in MF. The classification result is presented in 

Table 5.7 and the confusion matrix in Figure 5.33. 
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The overall classification result obtained in KNN is 82.3%. The model accuracy and 

model loss are shown in Figure 5.29 and 5.30 respectively. The classification result is 

presented in Table 5.8. Mice Imputation produced 85.7% of the overall classification of 

extremist Webpages. The classification results are presented in Table 5.9 and confusion 

matrix in Figure 5.35. Both the model accuracy and model loss are shown in Figure 5.31 

and 5.32 respectively. The loss errors in each imputation set (sentiment-rule based 

feature) decrease significantly, this indicates a low level of error rate in each imputation 

set and hence each imputation doesn’t overfit. The classifier correctly identified pro-

extremist Webpages with the highest rate in each imputation set. For example, the pro-

extremist category in MF produced 91.9% of identified cases. In Mice imputation, the 

pro-extremist cases were correctly identified at 95.4%. This is also applicable in KNN 

imputation where the pro-extremist cases were correctly identified at 84.5 %.  

              

Figure 5.27: Model Accuracy Curve-MF          Figure 5.28: Model Loss Curve-MF 

Imputation                                                            Imputation  
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Figure 5.29: Model Accuracy Curve-KNN     Figure 5.30: Model Loss Curve-KNN  

Imputation                                                         Imputation 

 

 

Figure 5.31: Model Accuracy Curve-Mice      Figure 5.32: Model Loss Curve-MICE 

Imputation                                                           Imputation 
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False 

Positives 

Rate 

Recall Precision F1 Class 

0.079 

0.125 

0.066 

0.731 

0.803 

0.919 

0.816 

0.76 

0.881 

0.771 

0.781 

0.9 

Anti-extremist 

Neutral 

Pro-extremist 

 

Table 5.7: MF Imputation Classification Result using MLP 

 

False 

Positives 

Rate 

Recall Precision F1 Class 

0.093 

0.069 

0.105 

0.785 

0.84 

0.845 

0.813 

0.853 

0.805 

0.799 

0.846 

0.824 

Anti-extremist 

Neutral 

Pro-extremist 

 

Table 5.8: KNN Imputation Classification Result using MLP 
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False 

Positives 

Rate 

Recall Precision F1 Class 

0.032 

0.058 

0.124 

0.776 

0.843 

0.954 

0.924 

0.882 

0.789 

0.843 

0.862 

0.864 

Anti-extremist 

Neutral 

Pro-extremist 

 

Table 5.9: Mice Imputation Classification Result using MLP 

 

 

Figure 5.33: MF Imputation Confusion Matrix        Figure 5.34: KNN Imputation   

                                                                    Confusion Matrix 
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Table 5.35: Mice Imputation Confusion Matrix 

 

5.12.2 Composite-Based Classification Framework 

 

In the Composite (53 features), the MLP model classifies the category for each webpage 

and the overall classification of extremist Webpages was recorded at 95%. From the 

confusion matrix in Figure 5.38, the pro-extremist category had the highest level of 

correctly classified cases at 98.2%. The results are presented in Table 5.10. The 

performance of the model indicated that both the validation and training set performed 

well at epoch 20. Figures 5.36 and 5.37 detailed both the validation and training curves. 

Figure 5.37 shows how the model loss decreases significantly in validation and training 

at epoch 20, the loss was decreased to 0.13 in training while 0.18 in validation. This 

indicates a well-fit model.  
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Figure 5.36: Model Accuracy Curve-             Figure 5.37: Model Loss Curve- 

Composite                                                         Composite 

 

False 

Positives 

Rate 

Recall Precision F1 Class 

0.042 

0.02 

0.013 

0.948 

0.921 

0.982 

0.915 

0.96 

0.975 

0.931 

0.941 

0.978 

Anti-extremist 

Neutral 

Pro-extremist 

 

Table 5.10: The Composite Classification Result using MLP 
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Figure 5.38: Composite Confusion Matrix 

 

5.12.3 Posit-Based Classification Results 

 

When Tensorflow was implemented on Posit features (27 features), the early stopping 

function was triggered based on the callback set up to oversee the performance measure 

of the training set. Eventually, the best model indicated its optimum performance at 

epoch 20. The regularisation process was illustrated graphically using data plots and the 

performance, as visualised in Figures 5.39 and 5.40, showed that both the validation and 

training set performed well on the model. The MLP gave 88% of the whole set of 

Webpages being classified into the three categories, while the pro-extremist category 

produced the highest level of correctly classified cases at, 90.9%. The classification 

result is presented in Table 5.11 and the confusion matrix in Figure 5.41. The little 

variances between the validation and training losses score indicate that the model doesn’t 

overfit. The model error decreases from 0.86 to 0.32 in training while 0.62 to 0.29 in the 

validation set. The model loss is plotted in a graph displayed in Figure 5.40. 



 
 

174 
 

             

Figure 5.39: Model Accuracy Curve-Posit       Figure 5.40: Model Loss Curve-       

                                                                               Posit 

 

           

False 

Positives 

Rate 

Recall Precision F1 Class 

0.056 

0.072 

0.05 

0.849 

0.885 

0.909 

0.881 

0.86 

0.904 

0.865 

0.872 

0.906 

Anti-extremist 

Neutral 

Pro-extremist 

 

Table 5.11: Posit Classification Result 
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Figure 5.41: Posit Confusion Matrix 

 

5.12.4 Extended Posit Classification Results 

The implementation of MLP on Extended Posit (71 features) successfully achieved many 

convergences and gave optimum result at the 20th epoch. In addition, low loss error was 

recorded on both the validation and training set, this indicates that the model is fit.  

Figures 5.42 and5.43 illustrate the regularisation process envisioned with data plots on 

the graphs. The model classifies the category for each webpage and the overall 

classification of extremist Webpages was recorded at 93.9%. The pro-extremist category 

had the most identified cases and the lowest false positive rate, at 95.4% and 2.1% 

respectively. Table 5.12 and Figure 5.44 detailed the results. 
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False 

Positives 

Rate 

Recall Precision F1 Class 

0.033 

0.037 

0.021 

0.929 

0.934 

 0.954 

0.934 

0.925 

0.958 

0.932 

0.929 

0.956 

Anti-extremist 

Neutral 

Pro-extremist 

 

Table 5.12: Extended-Posit Classification Result  

 

 

Figure 5.42: Extended Posit Confusion Matrix 
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Chapter 6: Results Analysis and Evaluations 

 

As a reminder, the classification methods in question, are Sentiment (KNN, Missforest 

and MICE Imputation), Posit (features on the basis of word-level information), the 

Extended Posit (features on the basis of both word and character-level information) and 

the proposed framework, Composite-based classification method. The classification 

algorithms considered in this thesis are KNN, Random Forest, J48, RNN and MLP. The 

results described in this chapter reveal the classifier and classification framework that 

works best in classifying extremist content. The results also revealed the advantages of 

feature selection against hyperparameters turning on classification accuracy. 

 

6.1 Sentiment-based Classification Framework 

Research Question 1: Can the imputation method efficiently compensate for missing 

values faced by feature set obtained via sentiment analysis (a procedure that utilises top-

k noun keywords to obtain sentiment values from text corpus) before being fed into 

machine learning for the classification task? 

 

Missingness of data is inevitable in the sentiment analysis method developed in this 

thesis because utilizing top-k noun keywords to obtain sentiment values from text corpus 

will create a situation where some Webpages have few or none of the selected noun 

keywords and hence lead to missing data. However, the best approach to replace the 

missing data for the particular feature set led to many imputation techniques explored. 

Mice imputation technique was able to compensate efficiently for the missing values 

obtained in the sentiment analysis. Among the machine learning algorithms considered, 

the result showed Random Forest gave the best performance. Random Forest gave 

Missforest a classification accuracy of 86%, while 85% for KNN and MICE at 88% 

respectively. Table 6.1 shows the frameworks result comparison. However, the result 

from the classification algorithms employed showed that multivariate imputation 

approach (MICE) outperformed other imputation approaches such as, KNN and 
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Missforest. Hence, MICE imputation approach came out to be the best method to handle 

missing values in keyword-based sentiment feature set (a given data set with the 

conditions that the data is missing at random (MAR)) before being feed into machine 

learning algorithm. Multiple imputation by chain equations (MICE) approach has 

demonstrated flexibility in handling missing data nature of data better than other 

approaches. 

 

6.2. Composite-Based Classification Framework 

 

Research Question 2: Can the Composite approach (the combination of sentiment and 

syntactic features in textual content as a basis for text features) be effective to create a 

well working machine learning model? 

The essence of this research question is to test the effectiveness of the classification 

methods with their various feature sets when classifiers are applied. Out of the deployed 

models on each feature set, composite feature set (a proposed framework that deployed a 

hybrid of both sentiment and syntactic features of texts) outperformed other 

classification frameworks with Random Forest as the best performing model, at 95.8%.  

In addition, the proposed framework showed the highest proportion of correctly 

identified pages across all three classes, compared to other frameworks. This is an 

indication that the composite-based classification method is more effective in discerning 

content that expresses extremism than other frameworks. Table 6.1 shows the result 

comparison of the classification frameworks. A likely reason for the greater 

effectiveness of composite features is that they afford a wider coverage of more useful 

features, both sentiment and syntactic, in a Web text. In addition, pro-extremist category 

had the most identified cases and highest precision in composite framework when 

compared with other categories in other classification frameworks. 
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 RF J48 KNN RNN MLP 

MF 86 83 82.1 79.5 82 

KNN 85 84.3 81 81 82.3 

MICE 88 86.5 83 83 85.7 

Posit 93 89.4 89 86 88 

Ext-Posit 95 89.6 90.3 91 93 

COMPOSITE 95.8 91.5 92 92 95 

 

Table 6.1: Comparison of the Classification Methods 

 

6.3 Feature Selection vs Model Optimisation 

Research Question 3: What is the cost of model optimisation (hyperparameter turning) 

over feature selection when creating a machine learning model? 

 

Hyperparameter turning is a stopping criterion explored to achieve optimum values and 

minimize overfitting. In an attempt to minimize overfitting and enhance the optimal 

output of the model, hyperparameter tuning was employed using GridsearchCV. By fine-

tuning the models, we obtained the best parameters across the different feature sets used 

in each model which also revealed how the different parameter values affect our final 

score (performance metrics). While feature selection operates by selecting a subset of 

relevant features for use in model construction to improve accuracy and run-time most 

especially in model construction where there are numerous features and comparatively 

few samples (or data points). Enhancing the prediction performance of the predictors to 

produce efficient and effective predictors is the main objective of feature selection.  

 

However, when both wrapper method (feature selection) and the GridesearchCV method 

(model optimisation) were applied to each feature set, the results obtained from Random 

Forest, the wrapper method outperformed the GridsearchCV method in each framework. 

The same trends apply to J48. The results obtained from the J48 model indicated that the 
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Wrapper method outperformed the GridesearchCV method in all the classification 

methods except in composite where the GridesearchCV method gave better accuracy at, 

91.5% against the wrapper method which achieved 91.3%. Table 6.2 and 6.3 below 

detailed the comparison of the results between the feature selection and hyperparameter 

turning. 

 

s/n Frameworks % of 

feature 

subsets 

Runtime 

For 

Wrapper 

Method 

(sec) 

Accuracy of 

Wrapper 

Method (%) 

Grid 

searchCV 

Accuracy 

(%) 

1 Sentiment(Mice) 90 3.4   86.9 86.4 

2 Posit 60 3.54 89.4 89.4 

3 Composite 60 8.04 91.3 91.5 

4 Ext Posit 45 9.32 90 89.6 

 

Table 6.2: Result Comparison between Wrapper and GridsearchCV Methods using 

J48 

s/n Frameworks % of 

feature 

subsets 

Runtime for 

Wrapper 

Method 

(sec) 

Accuracy of 

Wrapper 

Method (%) 

Grid 

searchCV 

Accuracy 

(%) 

1 Sentiment(Mice) 100 3.2 88.2 88% 

2 Posit 100 9.6 93.9 93% 

3 Composite 100 9.08 95.9 95.8% 

4 Ext Posit 75 165 95.9 95% 

 

Table 6.3: Result Comparison between Wrapper and GridsearchCV Methods using 

Random Forest 
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The results shown from both feature selection and model optimization (hyperparameter 

turning) when creating a machine learning model showed that hyperparameter tuning 

takes time and is computationally expensive. This isn't to suggest that hyperparameter 

tuning isn't vital; rather, when it comes to increasing a model's performance, it's a top 

priority. It takes a long time to cycle different hyperparameter combinations in order to 

obtain a tiny improvement. Even worse, if you have a large amount of data and a 

complicated model, each iteration consumes a lot of resources. As a result, performing 

feature selection to represent the problem well enough for models to learn and predict 

accurately is a more intelligent approach for achieving great results with quantum leaps 

of improvement in a shorter time frame. If time allows, we can investigate tweaking 

hyperparameters after we have great features, therefore feature selection should come 

first and hyperparameter tuning should follow second. Hence, great features are still 

important in determining a model's success and cost effectiveness for machine learning 

tasks. Taking cost into account, feature selection improves classification accuracy and 

saves time better than hyperparameter turning.   

 

6.4 Machine Learning and Neural Network Algorithms 

 

Research Question 4: Considering the selected Machine Learning and Neural Network 

algorithms (such as RNN, MLP, KNN, J48 and Random Forest) on a pre-processed 

feature, which model produce the best classification accuracy on extremist Web textual 

data?  

6.4.1. Overall Classification Results  

Based upon the outcomes of the experiments, Random Forest gave the best classification 

performance on the Posit-based classification framework when compared with other 

classifiers. The model was able to classify 93% of the Webpages into their various 

categories. Again, Radom Forest earned the extension of Posit (word level data with 

character-level information) with topmost accuracy when compared with other classifiers 

explored, it enhanced Extended-Posit performance to a creditable 95% correctly classified 
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instances of the overall Webpages. Table 6.1 shows the frameworks’ results comparison. 

Clearly, the extension of Posit textual analysis to include both word and character-level 

features, outperformed word-level feature alone in the classification. Notably, the Posit 

approach to language analysis relied entirely upon the frequency of syntactic features.   

 

Taking the overall parameters into account, when deployed with RNN and MLP 

classifiers, the composite-based classification framework outperformed the other 

frameworks. The results showed that the composite features gave the best classification 

accuracy of 95% with MLP as a better model when compared with RNN. In addition, 

among all the deployed models, composite feature set (a proposed framework that 

deployed a hybrid of both sentiment and syntactic features of texts), Random Forest gave 

the best performing model, at 95.8%.  Hence, composite features are preferable to solely 

syntactic or sentiment features and can offer improved classification accuracy when used 

with machine learning algorithms. Conclusively, there was a noticeably better 

performance among the six frameworks when the Random Forest classifier was applied 

compared to the results obtained in other algorithm, at 95.8%. Table 6.1 presents the 

detailed results. 

 

6.5 Validation of Nigerian Extremism Webpages  

Research Question 5: Can a model based on the dataset used for these experiments be 

validated on another dataset of a similar domain but different source? 

 

The objective of this task is to test the efficiency of a classifier on two different set of 

data, with similar topics and predefined classification. Then, if the result provides a good 

degree of match in the classification result, the latter could be taken as a validation set 

for the other dataset. With this in mind, the two datasets considered to test this research 

question are (i) a set of Nigerian extremist Webpages and (ii) a set of extremist web 

pages previously obtained by the TENE Web-crawler [5]. Both datasets had the same 

predefined categories of Webpages such as pro-extremist, anti-extremist and neutral. 
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After applying the classifiers, Random Forest outperformed J48 to produce 53% of 

correctly classified instances of overall Webpages into their respective categories in the 

Extended-Posit based classification framework. Again, Extended-Posit outperformed 

Posit in both Random Forest and J48. In Extended-Posit, J48 produced 49% overall 

accuracy better than 48% obtained in Posit. In addition, all the five classifiers were 

applied in the experiment to ascertain the best classification model but similar trends of 

the results stated above were observed but we reported the two best performing models 

to avoid tautology following the explicit presentation of the aforementioned analysis and 

results. Sentiment and composite feature sets could not be used as validation because of 

the difference and unrelated feature each possessed. 

 

Considering, the training curves from sections 4.10-4.10.2, we could see that the training 

curves were healthy, well-fitted models. This indicates that a model based on the dataset 

used for these experiments can be validated on another dataset of a similar domain and 

different source provided that both datasets possess related features. However, the low 

overall accuracy recorded can be traced to the small dataset used for the validation 

process. 

 

6.6. Results comparison with the literature  

Our proposed approach in sentiment analysis outperformed the method explored in [5]. 

The method improved the sentiment-based classification method better than what was 

obtainable in the literature which also explore the same sentiment analysis approach and 

dataset [5]. J48 gave a classification accuracy of 86.5% unlike the 80.6% overall 

classification performance obtained in [5]. Table 6.5 below detailed the result 

comparison. 

 

Moreover, the textual content classification method was improved further with a 

composite classification framework that deployed a hybrid of both sentiment and 

syntactic features of texts, the J48 algorithm gave 91.5% correctly classified instances of 
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the Webpages using J48. The pro-extremist category had the highest degree of correctly 

identified pages, at 93.2%. The hybrid method showed the highest proportion of 

correctly identified pages across all three classes, compared to the ICCRC sentiment 

analysis method in the literature [5]. Taking into account the overall evaluation 

parameters such as precision, recall and f-score in the analysis, the results show that the 

composite method is more effective in discerning content that expresses extremism than 

the ICCRC sentiment analysis method in the literature [5]. Table 6.4 detailed the 

comparison of our results with the literature.  

6.7 Human-Verification of Manually Labelled Data 

 

We have three manual categories, anti, pro-extremist and neutral. According to how the 

pages were manually classified, all pages from extremist Websites were all gathered into 

the pro-extremist class. However, not all pages in this category might have 100% 

extremist content. Some Webpages crawled from this domain may have neutral contents 

such contact us, about us for example. This is an error that automated classification was 

able to correct by putting such content in the category where it belongs. Although this 

situation was minimal as human verification was done randomly on the manual labelled 

Classification 

Frameworks  

 

Overall 

Accuracy 

Pro Anti Neu 

Mice Imputation 

(Sentiment 

Analysis)  

86.5 86.5 86.5 86.4 

ICCRC   Method 

[5]  (Sentiment 

Analysis)                  

80.51 92.7 88 68 

Composite Method 91.5 93.2 90.9 90.6 

 

Table 6.4: Results comparison with the literature 
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data. Out of one hundred pages manually checked, only five pages were found to be 

mismatched.  

 

However, conducting our automated classification on such will not deter the efficiency 

of our models.  The mismatched cases won't affect classification accuracy significantly 

because it makes up only a minute percentage of the extracted webpages wherein the 

correctly classified cases are much more, if we factor this into a percentage, about 90% 

of the webpages were correctly classified, on which our model is trained on. In addition, 

we carried out the validation process for each hold-out dataset giving us the validation 

performance rate, metric and accuracies. We also paid further attention to the precision, 

recall and f-score. 
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Chapter Seven: Conclusions and Future Work 

 

This chapter details the conclusion of the studies carried out in the research reported in 

this thesis.  

 

7.1 Conclusions 

 

The rapid increase of extremist documents online has created the need for efficient 

automated systems for the classification and identification of such Webpages. This ability 

will assist in the triage and further investigation on the particular Web pages that are 

likely to relate to terrorism or extremism. Additionally, this will aid in countering 

extremist activities such as recruitment and radicalisation on the Internet. In this thesis, 

six different classification frameworks were developed, specifically, Sentiment-based 

(Mice, KNN and MissForest imputation), Posit-textual, Extended-Posit and Composite-

based classification frameworks. The machine learning algorithms explored are MLP, 

RNN, Random Forest, J48 and KNN.  

 

CNN is another interesting neural network algorithm but it was not explored because we 

do not necessarily need to perform convolutions on text-based datasets as they have been 

known to be inefficient in such applications but better applications are in MLP, RNN or 

LSTM wherein a better representation of words and vectors are established as well as the 

context vectors. As an approach to overcome overfitting or underfitting, we performed 

overfitting analysis using the learning curve.  This is done using hyperparameters turning 

in each model over a range of values. A plot of the test and train accuracy at each 

hyperparameter value was drawn. The curve was observed. Then, the first peak of test 

set performance was recorded as the best generalisation performance. Taking all the 

classification models and evaluation metrics into account, the standardised data produced 

better results than normalised data and we presented standardization results in the thesis 

only. The normalised data’s results were not presented to avoid unnecessary details. 

Lastly, the effectiveness of the models was compared and the conclusions were drawn.       
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7.1.2 The Contributions from the Thesis 

 

The study evaluated the application of different classification frameworks; this is to 

establish their effectiveness as a basis of text features used in building a classification 

model. The frameworks are: 

 

i. Sentiment analysis-based method. The thesis evaluated different types of imputation 

methods applied to compensate for missing values faced by the sentiment analysis 

method that relies on the use of top-k noun keywords to obtain sentiment around each 

Web page, 

 

ii. Posit (on the basis of word-level information),  

iii. Extension of Posit (with an additional 44 character features) on textual data and 

 

iv. a novel framework, a composite-based (a computational framework that explores the 

combination of both sentiment and syntactic features of textual contents as a basis for 

text features which enhances textual data classification model). The reason behind the 

hybrid features in the composite approach is to use the substantial feature set that feeds 

into building a classification model, 

 

The thesis analysed the performance of Neural Network algorithms (such as RNN and 

MLP) and traditional machine learning algorithms (such as the J48 decision tree, K-

Nearest Neighbor and Random Forest) on text corpora, extremist Web text, this is to 

determine the best model for such text content classification.  

 

The thesis also evaluated the cost of hyperparameter turning over feature selection in 

creating a machine learning model. 
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Models based on the dataset used for these experiments were validated on the Nigerian 

dataset (a dataset of a similar domain but different source) this is to check if it can be 

taken as validation for the approach since it would seem to work well across differently 

sourced data sets (for the same classification tasks). 

 

The thesis concluded by giving the summary of the outcome of each research question 

respectively. The results are given below: 

 

i. The composite features are preferable to solely syntactic or sentiment features and can 

offer improved classification accuracy when used with machine learning algorithms. 

Consequently, there was a noticeably better performance among the six frameworks 

when the Random Forest classifier was applied compared to the results obtained in other 

algorithms, at 95.8%. The extension of Posit textual analysis to include both word and 

character-level features outperformed word-level features alone in the classification.   

 

ii. Imputation approach can compensate for the missing values on a dataset when a 

machine learning algorithm is applied. Among all the imputation methods considered, 

the MICE imputation approach came out to be the best method to handle missing values 

faced by sentiment feature obtained via sentiment analysis (a sentiment analysis 

procedure that utilises top-k noun keywords to obtain sentiment values from text corpus) 

before being fed into machine learning for the classification task. The multivariate 

imputation (MICE) approach has demonstrated flexibility in handling varying nature of 

data such as the continuous or binary data better than other approaches.  

 

iii. Taking cost into account, feature selection improves classification accuracy and saves 

time better than hyperparameter turning   

vi. Considering the selected machine learning and neural network algorithms (such as 

RNN, MLP, KNN, J48 and Random Forest) on a pre-processed feature, Random Forest 

offered the best classification accuracy on extremist Web textual data. 
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v. A model based on the dataset used for these experiments can be validated on another 

dataset of a similar domain and different source provided that both datasets possess 

related features. 

 

7.2 Future Work 

 

The BERT algorithm (Bidirectional Encoder Representations from Transformers) is a 

deep learning algorithm for natural language processing. This is another algorithm that 

was considered for inclusion in this thesis but BERT is a very sophisticated algorithm 

that demands time and more hardware resources in terms of Ram and GPU which would 

be costly. Hence we decided to focus on more comfortable ML algorithms that can 

handle our data size but yet be very accurate hence eliminating heavy training costs. This 

algorithm will be considered in future work.  

 

In addition, a future study on textual analysis and classification would be projected 

toward the exploration and investigation of security threats through cyber-attacks on the 

Internet. We would be exploring the dynamics of the composite-based model that utilizes 

a vast range of sentiment and syntactic features contained within a text block. This 

would further stretch the boundaries of the composite-based model as we would be 

employing a much larger variety of datasets from various sources including job relaying 

sites, public business offer sites, social media sites and a lot more. This data would be 

based on fake job listings, false ROI for business opportunities, and fake SMS from 

fraudsters posing to represent the customer’s bank thereby asking for salient banking 

details and others. The composite-based model will be utilised for identifying text 

contents that have fraudulent motives. 
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Appendices 

 

The details of all the implementations for this thesis can be found in the following. 

 

Appendice A.1: Implementations for the Sentiment Analysis 

 

 

Numbering the Webpages 

 

Numbering the Webpages Implementation  

 

from __future__ import division 

from collections import Counter 

import nltk, re, pprint,os 

import re 

 

#regex = r"(?i)((?:\S+\s+){0,3})\bSmartphone\b((?:\S+\s+){0,3})" 
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#test_str = "Nokia Lumia 930 Smartphone, Display 5 pollici, Fotocamera 20 MP, 2GB 

RAM, Processore Quad-Core 2,2GHz, Memoria 32GB, Windows Phone 8.1, Bianco 

[Germania]" 

 

#matches = re.finditer(regex, test_str) 

 

#for matchNum, match in enumerate(matches): 

#    matchNum = matchNum + 1 

 

#    print ("Match {matchNum} was found at {start}-{end}: {match}".format(matchNum 

= matchNum, start = match.start(), end = match.end(), match = match.group())) 

 

#    for groupNum in range(0, len(match.groups())): 

#        groupNum = groupNum + 1 

 

#        print ("Group {groupNum} found at {start}-{end}: {group}".format(groupNum = 

groupNum, start = match.start(groupNum), end = match.end(groupNum), group = 

match.group(groupNum))) 

 

indir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/ICCRC' 

#usedWords = 

['war','terrorist','weapon','bomb','jihad','attacker','violence','gun','News','ridiculist','progra

m','party','Officer','security','police','nato','safeguard','council','support','cnn','celebrity','ph

oto','peace','islam','america'] 

#wordfound = [] 

#word_frequencies = [] 

#print('==========================================================

=====================================') 

i = 0 

for subdir, dirs, files in os.walk(indir): #loop sub directory in a folder 

    for file in files: #loop files in a folder 

        #print os.path.join(subdir, file) 

filepath = subdir + os.sep + file       #get the file path 

        #content = open(filepath,'rU',encoding="utf-8")           #open a file read, Universal  

        #print(filepath)                         #display the full path of the file 

i += 1 

os.rename(filepath,subdir + os.sep+"webapge{}.txt".format(i)) 

#        

print('===========================================================

====================================') 

#        for line in content:                    # loop throught the content of the file 

#            text1 = line.strip()                # get the string content of the file 

#            noofwords = nltk.word_tokenize(text1.lower())       #conver content to list of 

words 
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#             #print(nltk.pos_tag(noofwords)) 

#            print('words found')          

#            print(noofwords)                            #Display the list of words 

#            cnt = 0 

#            for word in noofwords:                      #loop through the list of words to get 

frequently used words 

#               if word  in usedWords:                   #if a word match frequently used word 

#                   wordfound += [word]                  # create a list containing the frequencies 

from each files 

 

#            for occ in wordfound:                       # loop through the frequency list  

#                print('{} position at {}'.format(occ,noofwords.index(occ))) #position of 

keyword in the content of the file 

#                #noofwords[noofwords.index(occ)] = "###" + occ + "###"       #mark the 

keyword in the content 

#                print('{} five words after at {}'.format(occ,noofwords[21:5])) 

#            #    if occ not in word_frequencies:         #get distinct word from the frequency 

list 

#            #       word_frequencies +=[occ]             #create another list containing distinct 

word from the frequency list 

#            #for Z in word_frequencies:                  #loop through the distinct frequency list 

to get the no of occurence from the frequency list 

#            #    print('{} occurs {}'.format(Z,wordfound.count(Z)))   #print the word and the 

frequency 

#            #    print('Words after {}'.format(noofwords[noofwords.index(occ):6])) 

#        print("New Words") 

#        print( " ".join(str(x) for x in noofwords)) 

#        #text_file = open(indir+"output/"+file, "w") 

#        #text_file.write(" ".join(str(x) for x in noofwords)) 

#        #text_file.close() 

#        wordfound = [] 

#        word_frequencies = [] 

#        content.close() 

 

 

Sentistrength Implementation 

from __future__ import division 

from collections import Counter 

import re, pprint,os 

import re 

indir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/ICCRC' 

outdir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/output/' 
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#usedWords = 

['dead','war','prison','violence','terrorist','security','enemies','jihad','islamic','sahaba','territo

ry','saint','civilian','counterterrorism','kingdom','taxes','science','president','weapon','cnn','i

sis','police','fighters','soldiers','politics','militants','twitter','memorandum','narcostic'] 

usedWords = 

['islam','war','muslims','news','government','politics','military','jihad','court','rights','affairs'

,'program','security','policy','press','safeguards','president','ebola','crime','twitter','family','s

yria','victims','facebook','trial','cnn'] 

wordfound = [] 

output = "" 

print('===========================================================

====================================') 

print("Program Starting...............................................................................") 

for words in usedWords: 

regex = r'(?i)((?:\S+\s+){0,5})\b'+words+r'\b((?:\S+\s+){0,5})' 

 

    for subdir, dirs, files in os.walk(indir): #loop sub directory in a folder 

        for file in files: #loop files in a folder 

        #print os.path.join(subdir, file) 

filepath = subdir + os.sep + file       #get the file path 

 

             content = open(filepath,'rU',encoding="utf-8")           #open a file read, Universal  

             print('Searching for word {}'.format(words)) 

             print(filepath)  

             

print('===========================================================

====================================') 

             for line in content:                    # loop through the content of the file 

                 text1 = line.strip()   

                 text1 = re.sub(r'[^\w]', ' ', text1) 

                 text1 = text1.replace(" ", ", ")  

 

                 #print(text1+"\n") 

 

                 #print(text1)      

                 matches = re.finditer(regex, text1.lower()) 

                 for matchNum, match in enumerate(matches): 

matchNum = matchNum + 1 

                     word = match.group().replace("," , " ").replace("  " , " ").replace("   " , " ") 

                     #wordfound.append(word) 

                     #print('{} {}'.format(filename,word)) 

text_file = open(outdir+words+".txt", "a",encoding="utf-8") 

text_file.write(file +"-"+word+"\n") 
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    #             for wrd in wordfound: 

    #                output += file + " " +wrd+"\n"    

    #text_file = open(outdir+words+".txt", "a",encoding="utf-8") 

    #text_file.write(output) 

    #         #text_file.close() 

    #wordfound = [] 

    #output = "" 

 

 

 

10 words Around Keyword to Pinpoint Sentiment Implementation 

from __future__ import division 

from collections import Counter 

import re, pprint,os 

import re 

indir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/ICCRC' 

outdir = '//ds.strath.ac.uk/hdrive/21/kqb16121/cis/windows/Desktop/output/' 

#usedWords = 

['islam','muslims','allah','war','america','right','politics','democracy','europe','cnn','isis','afri

ca','news','video','sport','asia','program','official','security','affairs','media','officer','policy','

government','politics','militants','twitter','memorandum','narcostic'] 

usedWords = ['taliban','islam','al-

rahman','abdullah','bomber','usama','president','program','govermnent','blood','radio','desi

gner','news','politics','twitter','soldier','attackers','family'] 

wordfound = [] 

output = "" 

print('===========================================================

====================================') 

print("Program Starting...............................................................................") 

for words in usedWords: 

regex = r'(?i)((?:\S+\s+){0,10})\b'+words+r'\b((?:\S+\s+){0,10})' 

 

    for subdir, dirs, files in os.walk(indir): #loop sub directory in a folder 

        for file in files: #loop files in a folder 

        #print os.path.join(subdir, file) 

filepath = subdir + os.sep + file       #get the file path 

 

             content = open(filepath,'rU',encoding="utf-8")           #open a file read, Universal  

             print('Searching for word {}'.format(words)) 

             print(filepath)  

             

print('===========================================================
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====================================') 

             for line in content:                    # loop through the content of the file 

                 text1 = line.strip()   

                 text1 = re.sub(r'[^\w]', ' ', text1) 

                 text1 = text1.replace(" ", ", ")  

 

                 #print(text1+"\n") 

 

                 #print(text1)      

                 matches = re.finditer(regex, text1.lower()) 

                 for matchNum, match in enumerate(matches): 

matchNum = matchNum + 1 

                     word = match.group().replace("," , " ").replace("  " , " ").replace("   " , " ") 

                     #wordfound.append(word) 

                     #print('{} {}'.format(filename,word)) 

text_file = open(outdir+words+".txt", "a",encoding="utf-8") 

text_file.write(file +"-"+word+"\n") 

 

    #             for wrd in wordfound: 

    #                output += file + " " +wrd+"\n"    

    #text_file = open(outdir+words+".txt", "a",encoding="utf-8") 

    #text_file.write(output) 

    #         #text_file.close() 

    #wordfound = [] 

    #output = "" 

 

 

 

 Implementation of Imputation 
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Appendice A.2: Sentiment Analysis Output 

 

 

 

A Sample of Different Level of Details of SentiStrength 
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A Sample of the Keywords List 
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A Sample of Sentiment Scores across the Keywords 

 

 

 

 

 

 

 

 

Imputation Implementation for MICE, KNN and MF 

# -*- coding: utf-8 -*- 

"""Imputations Dataset Complexion.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    

https://colab.research.google.com/drive/1ilEOqGekPqpLRe_45ZkBOCksMMZD6OCE 

""" 
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# Commented out IPython magic to ensure Python compatibility. 

from scipy.io import arff 

from scipy.io.arff import loadarff 

import pandas as pd 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

import seaborn as sns 

# %matplotlib inline 

import warnings 

warnings.filterwarnings("ignore") 

 

data1 = arff.loadarff('KNN_Imputation.arff') 

knn = pd.DataFrame(data1[0]) 

 

data2 = arff.loadarff('MF_Imputation.arff') 

mf = pd.DataFrame(data2[0]) 

 

data3 = arff.loadarff('MICE_Imputation.arff') 

mice = pd.DataFrame(data3[0]) 

 

data4 = arff.loadarff('POSIT.arff') 

posit = pd.DataFrame(data4[0]) 

 

knn.head() 

 

mf.head() 
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mice.head() 

 

posit.head() 

 

def do_hist(df, series): 

  x = df.iloc[series].to_list() 

  n = len(x) 

  r = max(x) - min(x) 

  root = math.sqrt(n) 

  b = int(root + 1) 

 

  plt.hist(x, bins = b) 

  plt.show() 

 

descriptions = [] 

num_feature_words = len(list(knn.columns))-1 

 

knn_desc = knn.describe() 

print("Statistical summary of KNN Imputation dataset", '\n') 

display(knn_desc) 

descriptions.append(knn_desc) 

 

#visualizations 

ind = 0 

for i in list(knn_desc.index.values): 

  print('\n'*2, "Histogram for ", i, " across all features in KNN Imputation dataset") 

  do_hist(knn_desc, ind) 

  print('\n'*2) 

  ind+=1 
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mf_desc = mf.describe() 

print("Statistical summary of MF Imputation dataset", '\n') 

display(mf_desc) 

descriptions.append(mf_desc) 

 

#visualizations 

ind = 0 

for i in list(mf_desc.index.values): 

  print('\n'*2, "Histogram for ", i, " across all features in MF Imputation dataset") 

  do_hist(mf_desc, ind) 

  print('\n'*2) 

  ind+=1 

 

mice_desc = mice.describe() 

print("Statistical summary of MICE Imputation dataset", '\n') 

display(mice_desc) 

descriptions.append(mice_desc) 

 

#visualizations 

ind = 0 

for i in list(mice_desc.index.values): 

  print('\n'*2, "Histogram for ", i, " across all features in MICE Imputation dataset") 

  do_hist(mice_desc, ind) 

  print('\n'*2) 

  ind+=1 

 

c_knn = descriptions[0] 

old = list(c_knn.columns) 
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new = [] 

for i in old: 

  i = "knn_" + i 

  new.append(i) 

c_knn.columns = new 

#display(c_knn) 

 

c_mf = descriptions[1] 

old = list(c_mf.columns) 

new = [] 

for i in old: 

  i = "mf_" + i 

  new.append(i) 

c_mf.columns = new 

#display(c_mf) 

 

c_mice = descriptions[2] 

old = list(c_mice.columns) 

new = [] 

for i in old: 

  i = "mice_" + i 

  new.append(i) 

c_mice.columns = new 

#display(c_mice) 

 

all_dfs = pd.concat([c_knn, c_mf, c_mice], axis = 1) 

display(all_dfs) 

 

#visualizations 
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ind = 0 

for i in list(all_dfs.index.values): 

  print('\n'*2, "Histogram for ", i, " across all features in All datasets") 

  do_hist(all_dfs, ind) 

  print('\n'*2) 

  ind+=1 

 

 

 

 

 

 

 

 

 

 

 

Appendice B1 

 

Posit Analysis Output Data 
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The Posit-API version 

 

 

Different Level of Details of Posit Analysis for Each Webpage 
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A Sample of Aggregates for a Webpage 

 

 

 

A Sample of Adjective Types for Each Webpage 
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A Sample of POS-Types for Each Webpage 

 

 

A Sample of Common Nouns for a Web page 

 

 

A Sample Pos-Tokens for a Web page 
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A Sample of POS-Totals for a Webpage 
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A Sample of Summary generated for a Web page 

 

 

A Sample of a Tagged text 
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Appendice C1 

Neural Network and Machine Learning Model Implementations 

  

K-Nearest Neighbors Implementation 

# -*- coding: utf-8 -*- 

"""KNN-StandardScaler.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1p0OzG5zQfUiLdwGh9A7LPZ6czYVj8Eeb 

""" 

 

!pip install pycm 

!pip install liac-arff 

 

from sklearn import preprocessing, svm 

import pandas as pd 

import numpy as np 

from keras.utils import np_utils 

from keras.wrappers.scikit_learn import KerasClassifier 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras.layers import Activation, Dense, Dropout 

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder 

import sklearn.datasets as skds 

from pathlib import Path 

from scipy.io import  arff 

from sklearn.preprocessing import MinMaxScaler,StandardScaler 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score 

from sklearn.model_selection import  train_test_split 

import matplotlib.pyplot as plt 

from keras.callbacks import EarlyStopping 

from sklearn.metrics import plot_confusion_matrix 

from pycm import * 

import os.path 

from sklearn.metrics import mean_squared_error 

from sklearn.neighbors import KNeighborsClassifier 
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from sklearn.model_selection import GridSearchCV 

from IPython.display import display 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

from sklearn.model_selection import validation_curve 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

DATA_DIR = "drive/MyDrive/dataset/" 

all_metric = [] 

all_features = [] 

all_accuracy = [] 

embedded_features = [] 

runtimes=[] 

embedded_runtimes =[] 

 

from numpy import mean 

from numpy import std 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.feature_selection import RFE 

from sklearn.pipeline import Pipeline 

from sklearn.feature_selection import SelectFromModel 

from time import time 

import itertools 

from sklearn.linear_model import LassoCV 

 

def splitData(FEATURES_COUNT,dt): 

        classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))} 

        dt["CLASS"] = dt["CLASS"].map(classMapping) 

 

        dt_label_class = dt['CLASS'].astype(float) 

        dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil) 

        RANDOM_SEED = 7 

        #train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class, 

test_size=0.3, shuffle=True, random_state=RANDOM_SEED) 

        scaler = StandardScaler() 

        scaler.fit(dt_features) 

        X = scaler.transform(dt_features) 

        y = dt_label_class 

        return (X,y,classMapping) 

 

def roundUp(test_dict): 
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  K = 3 

  res = dict() 

  for key in test_dict:       

    # rounding to K using round() 

    res[str(key)] = round(test_dict[key], K) 

  return res 

 

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion 

matrix'): 

    if normalize: 

        cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis] 

        print("Normalized confusion matrix") 

    else: 

        print('Confusion matrix, without normalization') 

 

    plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues')) 

    plt.title(title) 

    plt.colorbar() 

 

    tick_marks = np.arange(len(classes)) 

    plt.xticks(tick_marks, classes, rotation=45) 

    plt.yticks(tick_marks, classes) 

 

    fmt = '.2f' if normalize else 'd' 

    thresh = cnf_matrix.max() / 2. 

 

    for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])): 

        plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center", 

                 color="white" if cnf_matrix[i, j] > thresh else "black") 

 

    plt.tight_layout() 

    plt.ylabel('True label') 

    plt.xlabel('Predicted label') 

 

    return cnf_matrix 

 

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names): 

    cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list) 

    np.set_printoptions(precision=2) 

 

    # Plot non-normalized confusion matrix 

    plt.figure() 

    generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +' 

Confusion matrix') 



 
 

229 
 

    plt.show() 

 

def evaluate_model(data_x, data_y): 

    cv_outer = KFold(5, shuffle=True, random_state=7) 

    param_name = "n_neighbors" 

    predicted_targets = np.array([]) 

    actual_targets = np.array([]) 

    gridSearch = {"mean_train_score":[], "mean_test_score":[], "param_ranges": []} 

    gridSearch_df = {} 

    param_range = [i for i in range(1, 15, 2)] 

    param_grid = {  

                'n_neighbors': param_range, 

                'weights': ['uniform'], 

                'leaf_size': range(1,10), 

           } 

    index = 0 

 

    for train_ix, test_ix in cv_outer.split(data_x): 

        train_x, train_y, test_x, test_y = data_x[train_ix], data_y[train_ix], data_x[test_ix], 

data_y[test_ix] 

           # define the model 

        model = KNeighborsClassifier()       

        # configure the cross-validation procedure 

        cv_inner = KFold(3, shuffle=True, random_state=7) # execute search 

          # define search 

        search = GridSearchCV(model, param_grid, scoring='accuracy', n_jobs=-1,  

cv=cv_inner, refit=True, return_train_score=True)         

        result = search.fit(train_x, train_y) 

        # get the best performing model fit on the whole training set 

        best_model = result.best_estimator_ 

        # evaluate model on the hold out dataset 

        predicted_labels = best_model.predict(test_x) 

        #train_scores, test_scores = validation_curve(search, train_x, train_y, 

param_name="n_neighbors", param_range=param_range,scoring="accuracy", n_jobs=1) 

        #print("test_scores", train_scores, test_scores) 

         

        predicted_targets = np.append(predicted_targets, predicted_labels) 

        actual_targets = np.append(actual_targets, test_y) 

        print("Best Parameter %s :" %search.best_params_)  

        

        cv_results = search.cv_results_ 

        scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score') 

        gridSearch_df[index] = search 
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        index = index + 1 

 

    

    plot_grid_search_validation_curve(gridSearch_df, param_name) 

    plot_grid_search_validation_curve(gridSearch_df, 'leaf_size') 

    return predicted_targets, actual_targets 

 

def plot_grid_search_validation_curve(grids, param_to_vary, 

                                      title='Validation Curve', ylim=None, 

                                      xlim=None, log=None): 

    """Plots train and cross-validation scores from a GridSearchCV instance's 

    best params while varying one of those params.""" 

 

    plt.clf() 

    plt.figure(figsize=(16, 16)) 

    plot_fn = plt.plot 

    if log: 

        plot_fn = plt.semilogx 

    plt.title(title) 

    plt.xlabel(param_to_vary) 

    plt.ylabel('Score') 

 

    if (ylim is None): 

        plt.ylim(0.0, 1.1) 

    else: 

        plt.ylim(*ylim) 

 

    if (not (xlim is None)): 

        plt.xlim(*xlim) 

 

    lw = 1 

    fold = 1 

    for index in grids.keys(): 

      grid = grids[index] 

   

      df_cv_results = pd.DataFrame(grid.cv_results_) 

      train_scores_mean = df_cv_results['mean_train_score'] 

      valid_scores_mean = df_cv_results['mean_test_score'] 

      train_scores_std = df_cv_results['std_train_score'] 

      valid_scores_std = df_cv_results['std_test_score'] 

      param_cols = [c for c in df_cv_results.columns if c[:6] == 'param_'] 

      

      param_ranges = [grid.param_grid[p[6:]] for p in param_cols] 
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      param_ranges_lengths = [len(pr) for pr in param_ranges] 

 

      train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths) 

      valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths) 

      train_scores_std = np.array(train_scores_std).reshape(*param_ranges_lengths) 

      valid_scores_std = np.array(valid_scores_std).reshape(*param_ranges_lengths) 

 

      param_to_vary_idx = param_cols.index('param_{}'.format(param_to_vary)) 

      

 

      slices = [] 

      for idx, param in enumerate(grid.best_params_): 

          if (idx == param_to_vary_idx): 

              slices.append(slice(None)) 

              continue 

          best_param_val = grid.best_params_[param] 

          idx_of_best_param = 0 

          if isinstance(param_ranges[idx], np.ndarray): 

              idx_of_best_param = param_ranges[idx].tolist().index(best_param_val) 

          else: 

              idx_of_best_param = param_ranges[idx].index(best_param_val) 

          slices.append(idx_of_best_param) 

      

      train_scores_mean = train_scores_mean[tuple(slices)] 

      valid_scores_mean = valid_scores_mean[tuple(slices)] 

      train_scores_std = train_scores_std[tuple(slices)] 

      valid_scores_std = valid_scores_std[tuple(slices)] 

 

      param_range = param_ranges[param_to_vary_idx] 

      print("slices",slices, param_ranges, param_to_vary_idx ) 

      plot_fn(param_range, train_scores_mean, label= "(Fold - {} Training score 

)".format(fold),  lw=lw) 

 

      '''plt.fill_between(param_range, train_scores_mean - 

train_scores_std,train_scores_mean + train_scores_std, alpha=0.1, 

                          color='r', lw=lw)''' 

      plot_fn(param_range, valid_scores_mean, label= "(Fold - {} Cross-validation score 

)".format(fold), lw=lw) 

      '''plt.fill_between(param_range, valid_scores_mean - valid_scores_std, 

                          valid_scores_mean + valid_scores_std, alpha=0.1, 

                          color='b', lw=lw) '''      

    

      fold = fold + 1 

    '''if (not isinstance(param_range[0], numbers.Number)): 
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        param_range = [str(x) for x in param_range]''' 

 

 

    plt.legend(loc='lower right') 

 

    plt.show() 

 

def classfier(imputation, X, y, class_names): 

           print("==============================================") 

           #print(imputation) 

           #print("==============================================-----------

------------") 

           predicted_target, actual_target = evaluate_model(X, y) 

           plot_confusion_matrix(predicted_target, actual_target, imputation, class_names) 

           cm = ConfusionMatrix(actual_vector=actual_target, 

predict_vector=predicted_target) 

           test_acc = accuracy_score(actual_target, predicted_target)           

 

          # print("\n Overall Accuracy Score \t", "%.3f" %(test_acc)) 

 

           all_accuracy.append({"score": test_acc, "imputation": imputation}) 

        

           metric = [ {"Dataset": imputation, 

                        "Overall Accuracy":test_acc, 

                        "Accuracy": roundUp(cm.ACC), 

                         'F1': roundUp(cm.F1), 

                        'True Positives': cm.TP, 

                        'False Positives':cm.FP,    

                         'False Positives Rate':cm.FPR,                               

                        'Recall': roundUp(cm.TPR) , 

                        'Precision':roundUp(cm.PPV)}] 

           display(pd.DataFrame(metric)) 

           all_metric.append(metric) 

           #GridSearch_table_plot(model, "max_depth", negative=False) 

           

#print("=========================================================

===============") 

 

def plotAccuracy(all_accuracy): 

  label = [] 

  scores = [] 

   

  for accuracy in all_accuracy: 
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    label.append(accuracy.get("imputation")) 

    scores.append(round(accuracy.get("score"), 3)) 

  plt.figure(figsize=(10, 10)) 

  plt.bar(label, scores)  

  plt.title("Compare accuracy for all datasets") 

  plt.xlabel("Dataset") 

  plt.ylabel("Accuracy") 

  plt.legend() 

  plt.show() 

 

all_metric = [] 

all_accuracy = [] 

  

for subdir, dirs, files in os.walk("./"+DATA_DIR) : 

  for file in files: 

        data = arff.loadarff("./"+DATA_DIR + file) 

        dt = pd.DataFrame(data[0]) 

        percentages = values = [i/100 for i in range(15, 115, 15)]        

        if file =="MICE_Imputation.arff": 

           imputation = "Mice Imputation" 

           print("\n ===========================" + imputation+ 

"===========================")           

           FEATURES_COUNT = 26          

           X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

           classfier(imputation, X, y, classMapping)     

         

        elif file == "MF_Imputation.arff": 

          imputation = "MF Imputation" 

          print("\n===========================" + imputation+ 

"===========================") 

          FEATURES_COUNT = 26 

          X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

          classfier(imputation, X, y, classMapping)   

           

        elif file == "KNN_Imputation.arff": 

           FEATURES_COUNT = 26 

           imputation = "KNN Imputation" 

           print("\n===========================" + imputation+ 

"===========================") 

           FEATURES_COUNT = 26 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

           classfier(imputation, X, y, classMapping)  

        elif file == "combine-posit.arff": 

           FEATURES_COUNT = 53 
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           imputation = "POSIT + MICE"  

           print("\n ===========================" + imputation+ 

"===========================") 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

           classfier(imputation, X, y, classMapping)   

        elif file == "combine-postchar.arff": 

           FEATURES_COUNT = 71          

           imputation = "POSIT + CHAR"   

           print("\n ===========================" + imputation+ 

"===========================")        

           X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

           classfier(imputation, X, y, classMapping)    

        if file == "POSIT.arff": 

           FEATURES_COUNT = 27 

           imputation = "POSIT" 

           print("\n ===========================" + imputation+ 

"===========================")          

           X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

           classfier(imputation, X, y, classMapping)   

         

df = pd.DataFrame(all_metric) 

print(df.to_string()) 

plotAccuracy(all_accuracy) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random Forest Implementation  

# -*- coding: utf-8 -*- 

"""Random Forest - Standardscaler.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 
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    https://colab.research.google.com/drive/1ahv49zfuYxknj3KNLGNZ8P25xjNqmt20 

""" 

 

!pip install pycm 

!pip install liac-arff 

 

from sklearn import preprocessing, svm 

import pandas as pd 

import numpy as np 

from keras.utils import np_utils 

from keras.wrappers.scikit_learn import KerasClassifier 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras.layers import Activation, Dense, Dropout 

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder 

import sklearn.datasets as skds 

from pathlib import Path 

from scipy.io import  arff 

from sklearn.preprocessing import MinMaxScaler,StandardScaler 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score 

from sklearn.model_selection import  train_test_split 

import matplotlib.pyplot as plt 

from keras.callbacks import EarlyStopping 

from sklearn.metrics import plot_confusion_matrix 

from pycm import * 

import os.path 

from sklearn.metrics import mean_squared_error 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import GridSearchCV 

from IPython.display import display 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

 

from google.colab import drive 

drive.mount('/content/drive') 

  

DATA_DIR = "drive/MyDrive/dataset/" 

all_metric = [] 

all_features = [] 

all_accuracy = [] 

embedded_features = [] 

runtimes=[] 
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embedded_runtimes =[] 

 

from numpy import mean 

from numpy import std 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.feature_selection import RFE 

from sklearn.pipeline import Pipeline 

from sklearn.feature_selection import SelectFromModel 

from time import time 

import itertools 

from sklearn.linear_model import LassoCV 

 

def splitData(FEATURES_COUNT,dt): 

        classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))} 

        dt["CLASS"] = dt["CLASS"].map(classMapping) 

 

        dt_label_class = dt['CLASS'].astype(float) 

        dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil) 

        RANDOM_SEED = 7 

        #train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class, 

test_size=0.3, shuffle=True, random_state=RANDOM_SEED) 

        scaler = StandardScaler() 

        scaler.fit(dt_features) 

        X = scaler.transform(dt_features) 

        y = dt_label_class 

        return (X,y,classMapping) 

 

def featureSelection(imputation, percentage, X, y, noOfFeatures): 

  # X = X_train.append(X_test) 

  #y = y_train.append(y_test)   

  start = time() 

  rfe = RFE(estimator=RandomForestClassifier(), n_features_to_select=noOfFeatures) 

  model = RandomForestClassifier() 

  pipeline = Pipeline(steps=[('s',rfe),('m',model)]) 

  # evaluate model 

  cv = KFold(n_splits=5, shuffle=True, random_state=7) # execute search 

  n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1, 

error_score='raise') 

  stop = round(time() - start, 3); 

  # report performance 

  test_acc = mean(n_scores) 

  #print('MAE: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))   

  # report performance 
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  all_features.append(round(test_acc, 3)) 

  runtimes.append(stop) 

 

def EmbeddedfeatureSelection(imputation, percentage,X, y, noOfFeatures): 

  # X = X_train.append(X_test) 

  #y = y_train.append(y_test) 

  model = None 

  start = time() 

  # execute search 

  fs = SelectFromModel(RandomForestClassifier(), max_features=noOfFeatures) 

  model = RandomForestClassifier() 

  pipeline = Pipeline(steps=[('s',fs),('m',model)]) 

  # evaluate model 

  cv = KFold(n_splits=5, shuffle=True, random_state=7) # execute search 

  n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1, 

error_score='raise') 

   

  stop = round(time() - start, 3); 

  test_acc = mean(n_scores) 

  # report performance 

  embedded_features.append(test_acc) 

  embedded_runtimes.append(stop) 

 

def roundUp(test_dict): 

  K = 3 

  res = dict() 

  for key in test_dict:       

    # rounding to K using round() 

    res[str(key)] = round(test_dict[key], K) 

  return res 

 

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion 

matrix'): 

    if normalize: 

        cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis] 

        print("Normalized confusion matrix") 

    else: 

        print('Confusion matrix, without normalization') 

 

    plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues')) 

    plt.title(title) 

    plt.colorbar() 

 

    tick_marks = np.arange(len(classes)) 



 
 

238 
 

    plt.xticks(tick_marks, classes, rotation=45) 

    plt.yticks(tick_marks, classes) 

 

    fmt = '.2f' if normalize else 'd' 

    thresh = cnf_matrix.max() / 2. 

 

    for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])): 

        plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center", 

                 color="white" if cnf_matrix[i, j] > thresh else "black") 

 

    plt.tight_layout() 

    plt.ylabel('True label') 

    plt.xlabel('Predicted label') 

 

    return cnf_matrix 

 

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names): 

    cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list) 

    np.set_printoptions(precision=2) 

 

    # Plot non-normalized confusion matrix 

    plt.figure() 

    generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +' 

Confusion matrix') 

    plt.show() 

 

def evaluate_model(data_x, data_y, imputation): 

    cv_outer = KFold(5, shuffle=True, random_state=7) 

    param_name = "max_depth" 

    predicted_targets = np.array([]) 

    actual_targets = np.array([]) 

    gridSearch = {"mean_train_score":[], "mean_test_score":[], "param_ranges": []} 

    gridSearch_df = {} 

    param_grid = {  

               "criterion":["entropy"], 

               "max_depth": [i for i in  np.arange(1, 21)],               

               "min_samples_leaf": range(2,5) 

           } 

    index = 0 

    for train_ix, test_ix in cv_outer.split(data_x): 

        train_x, train_y, test_x, test_y = data_x[train_ix], data_y[train_ix], data_x[test_ix], 

data_y[test_ix] 

           # define the model 

        model = RandomForestClassifier()       
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        # configure the cross-validation procedure 

        cv_inner = KFold(3, shuffle=True, random_state=7) # execute search 

          # define search 

        search = GridSearchCV(model, param_grid, scoring='accuracy', n_jobs=1, 

cv=cv_inner, refit=True, return_train_score=True) 

        result = search.fit(train_x, train_y) 

        # get the best performing model fit on the whole training set 

        best_model = result.best_estimator_ 

        # evaluate model on the hold out dataset 

        predicted_labels = best_model.predict(test_x) 

 

        predicted_targets = np.append(predicted_targets, predicted_labels) 

        actual_targets = np.append(actual_targets, test_y) 

        print("Best Parameter %s :" %search.best_params_)  

        

        cv_results = search.cv_results_ 

        scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score') 

        gridSearch_df[index] = search 

        

        index = index + 1 

 

    

    plot_grid_search_validation_curve(gridSearch_df, param_name, title="Validation 

Curve - "+imputation) 

    return predicted_targets, actual_targets 

 

def plot_grid_search_validation_curve(grids, param_to_vary, 

                                      title='Validation Curve', ylim=None, 

                                      xlim=None, log=None): 

    """Plots train and cross-validation scores from a GridSearchCV instance's 

    best params while varying one of those params.""" 

 

    plt.clf() 

    plt.figure(figsize=(16, 16)) 

    plot_fn = plt.plot 

    if log: 

        plot_fn = plt.semilogx 

    plt.title(title) 

    plt.xlabel(param_to_vary) 

    plt.ylabel('Score') 

 

    if (ylim is None): 

        plt.ylim(0.0, 1.1) 

    else: 
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        plt.ylim(*ylim) 

 

    if (not (xlim is None)): 

        plt.xlim(*xlim) 

 

    lw = 1 

    fold = 1 

    for index in grids.keys(): 

      grid = grids[index] 

   

      df_cv_results = pd.DataFrame(grid.cv_results_) 

      train_scores_mean = df_cv_results['mean_train_score'] 

      valid_scores_mean = df_cv_results['mean_test_score'] 

      train_scores_std = df_cv_results['std_train_score'] 

      valid_scores_std = df_cv_results['std_test_score'] 

      param_cols = [c for c in df_cv_results.columns if c[:6] == 'param_'] 

      

      param_ranges = [grid.param_grid[p[6:]] for p in param_cols] 

      param_ranges_lengths = [len(pr) for pr in param_ranges] 

       

      train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths) 

      valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths) 

      train_scores_std = np.array(train_scores_std).reshape(*param_ranges_lengths) 

      valid_scores_std = np.array(valid_scores_std).reshape(*param_ranges_lengths) 

 

      param_to_vary_idx = param_cols.index('param_{}'.format(param_to_vary)) 

      

 

      slices = [] 

      for idx, param in enumerate(grid.best_params_): 

          if (idx == param_to_vary_idx): 

              slices.append(slice(None)) 

              continue 

          best_param_val = grid.best_params_[param] 

          idx_of_best_param = 0 

          if isinstance(param_ranges[idx], np.ndarray): 

              idx_of_best_param = param_ranges[idx].tolist().index(best_param_val) 

          else: 

              idx_of_best_param = param_ranges[idx].index(best_param_val) 

          slices.append(idx_of_best_param) 

           

      train_scores_mean = train_scores_mean[tuple(slices)] 

      valid_scores_mean = valid_scores_mean[tuple(slices)] 

      train_scores_std = train_scores_std[tuple(slices)] 
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      valid_scores_std = valid_scores_std[tuple(slices)] 

 

      param_range = param_ranges[param_to_vary_idx] 

           

      plot_fn(param_range, train_scores_mean, label= "(Fold - {} Training score 

)".format(fold),  lw=lw) 

 

      '''plt.fill_between(param_range, train_scores_mean - 

train_scores_std,train_scores_mean + train_scores_std, alpha=0.1, 

                          color='r', lw=lw)''' 

      plot_fn(param_range, valid_scores_mean, label= "(Fold - {} Cross-validation score 

)".format(fold), lw=lw) 

      '''plt.fill_between(param_range, valid_scores_mean - valid_scores_std, 

                          valid_scores_mean + valid_scores_std, alpha=0.1, 

                          color='b', lw=lw) '''      

    

      fold = fold + 1 

    '''if (not isinstance(param_range[0], numbers.Number)): 

        param_range = [str(x) for x in param_range]''' 

 

 

    plt.legend(loc='lower right') 

 

    plt.show() 

    #plt.savefig(title+'.eps', format='eps') 

 

def classfier(imputation, X, y, class_names): 

           print("==============================================") 

           #print(imputation) 

           #print("==============================================-----------

------------") 

           predicted_target, actual_target = evaluate_model(X, y, imputation) 

           plot_confusion_matrix(predicted_target, actual_target, imputation, class_names) 

           cm = ConfusionMatrix(actual_vector=actual_target, 

predict_vector=predicted_target) 

           test_acc = accuracy_score(actual_target, predicted_target)           

 

          # print("\n Overall Accuracy Score \t", "%.3f" %(test_acc)) 

 

           all_accuracy.append({"score": test_acc, "imputation": imputation}) 

        

           metric = [ {"Dataset": imputation, 

                        "Overall Accuracy":test_acc, 

                        "Accuracy": roundUp(cm.ACC), 
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                         'F1': roundUp(cm.F1), 

                        'True Positives': cm.TP, 

                        'False Positives':cm.FP,     

                        'False Positives Rate':roundUp(cm.FPR),                               

                        'Recall': roundUp(cm.TPR) , 

                        'Precision':roundUp(cm.PPV)}] 

           display(pd.DataFrame(metric)) 

           all_metric.append(metric) 

           #GridSearch_table_plot(model, "max_depth", negative=False) 

           

#print("=========================================================

===============") 

 

def plotAccuracy(all_accuracy): 

  label = [] 

  scores = [] 

   

  for accuracy in all_accuracy: 

     

    label.append(accuracy.get("imputation")) 

    scores.append(round(accuracy.get("score"), 3)) 

  plt.figure(figsize=(10, 10)) 

  plt.bar(label, scores)  

  plt.title("Compare accuracy for all datasets") 

  plt.xlabel("Dataset") 

  plt.ylabel("Accuracy") 

  plt.legend() 

  plt.show() 

 

def plotFeatureSelection(all_features, percentages, imputation, method, runtimes):  

            

           plt.figure(figsize=(11, 11)) 

           plt.plot(percentages, all_features, '-o', label='accuracy')   

           plt.plot(percentages, runtimes, '-o', label='time')   

           for x,y in zip(percentages,runtimes): 

 

              label = "({:.3f}, {:.3f})".format(y,x) 

 

              plt.annotate(label, # this is the text 

                          (x,y), # these are the coordinates to position the label 

                          textcoords="offset points", # how to position the text 

                          xytext=(0,10), # distance from text to points (x,y) 

                          ha='center') # horizontal alignment can be left, right or center               

           for x,y in zip(percentages,all_features): 
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              label = "({:.3f}, {:.3f})".format(y,x) 

 

              plt.annotate(label, # this is the text 

                          (x,y), # these are the coordinates to position the label 

                          textcoords="offset points", # how to position the text 

                          xytext=(0,10), # distance from text to points (x,y) 

                          ha='center') # horizontal alignment can be left, right or center   

           plt.title(method + " Feature Selection " + imputation) 

           plt.xlabel("Percentage of Features") 

           plt.ylabel("Accuracy") 

           plt.legend() 

           plt.show() 

 

all_metric = [] 

all_accuracy = [] 

  

for subdir, dirs, files in os.walk("./"+DATA_DIR) : 

  for file in files: 

        data = arff.loadarff("./"+DATA_DIR + file) 

        dt = pd.DataFrame(data[0]) 

        percentages = values = [i/100 for i in range(15, 115, 15)]        

        if file =="MICE_Imputation.arff": 

           imputation = "Mice Imputation" 

           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            

           runtimes=[] 

           embedded_runtimes =[] 

           FEATURES_COUNT = 26 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 

             nf = int(p * FEATURES_COUNT)  

  

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 

==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 
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           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping)     

         

        elif file == "MF_Imputation.arff": 

          imputation = "MF Imputation" 

          print("\n===========================" + imputation+ 

"===========================") 

          FEATURES_COUNT = 26 

          X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

          classfier(imputation, X, y, classMapping)   

           

        elif file == "KNN_Imputation.arff": 

           FEATURES_COUNT = 26 

           imputation = "KNN Imputation" 

           print("\n===========================" + imputation+ 

"===========================") 

           FEATURES_COUNT = 26 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

           classfier(imputation, X, y, classMapping)  

        elif file == "combine-posit.arff": 

           FEATURES_COUNT = 53 

           imputation = "POSIT + MICE"  

           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            

           runtimes=[] 

           embedded_runtimes =[] 

  

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 

             nf = int(p * FEATURES_COUNT)  

  

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 
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==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 

  

           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping)  

  

        elif file == "combine-postchar.arff": 

           FEATURES_COUNT = 71 

           imputation = "POSIT + CHAR"  

           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            

           runtimes=[] 

           embedded_runtimes =[] 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 

             nf = int(p * FEATURES_COUNT)   

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 

==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 

  

           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping)  

            

        if file == "POSIT.arff": 

           FEATURES_COUNT = 27 

           imputation = "POSIT" 

           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            
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           runtimes=[] 

           embedded_runtimes =[] 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 

             nf = int(p * FEATURES_COUNT)  

  

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 

==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 

  

           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping) 

            

         

df = pd.DataFrame(all_metric) 

print(df.to_string()) 

plotAccuracy(all_accuracy) 
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J48 Implementation 

 

!pip install pycm 

!pip install liac-arff 

 

from sklearn import preprocessing, svm 

import pandas as pd 

import numpy as np 

from keras.utils import np_utils 

from keras.wrappers.scikit_learn import KerasClassifier 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras.layers import Activation, Dense, Dropout 

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder 

import sklearn.datasets as skds 

from pathlib import Path 

from scipy.io import  arff 

from sklearn.preprocessing import MinMaxScaler,StandardScaler 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score 

from sklearn.model_selection import  train_test_split 

import matplotlib.pyplot as plt 

from keras.callbacks import EarlyStopping 

from sklearn.metrics import plot_confusion_matrix 

from pycm import * 

import os.path 

from sklearn.metrics import mean_squared_error 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import GridSearchCV 

from IPython.display import display 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

DATA_DIR = "drive/MyDrive/dataset/" 

all_metric = [] 

all_features = [] 

all_accuracy = [] 

embedded_features = [] 

runtimes=[] 

embedded_runtimes =[] 
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from numpy import mean 

from numpy import std 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.feature_selection import RFE 

from sklearn.pipeline import Pipeline 

from sklearn.feature_selection import SelectFromModel 

from time import time 

import itertools 

from sklearn.linear_model import LassoCV 

 

def splitData(FEATURES_COUNT,dt): 

        classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))} 

        dt["CLASS"] = dt["CLASS"].map(classMapping) 

 

        dt_label_class = dt['CLASS'].astype(float) 

        dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil) 

        RANDOM_SEED = 7 

        #train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class, 

test_size=0.3, shuffle=True, random_state=RANDOM_SEED) 

        scaler = StandardScaler() 

        scaler.fit(dt_features) 

        X = scaler.transform(dt_features) 

        y = dt_label_class 

        return (X,y,classMapping) 

 

def featureSelection(imputation, percentage, X, y, noOfFeatures): 

  # X = X_train.append(X_test) 

  #y = y_train.append(y_test)   

  start = time() 

  rfe = RFE(estimator=DecisionTreeClassifier(), n_features_to_select=noOfFeatures) 

  model = DecisionTreeClassifier() 

  pipeline = Pipeline(steps=[('s',rfe),('m',model)]) 

  # evaluate model 

  cv = KFold(n_splits=5, shuffle=True, random_state=1) # execute search 

  n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1, 

error_score='raise') 

  stop = round(time() - start, 3); 

  # report performance 

  test_acc = mean(n_scores) 

  #print('MAE: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))   

  # report performance 

  all_features.append(round(test_acc, 3)) 
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  runtimes.append(stop) 

 

def EmbeddedfeatureSelection(imputation, percentage,X, y, noOfFeatures): 

  # X = X_train.append(X_test) 

  #y = y_train.append(y_test) 

  model = None 

  start = time() 

  # execute search 

  fs = SelectFromModel(DecisionTreeClassifier(), max_features=noOfFeatures) 

  model = DecisionTreeClassifier() 

  pipeline = Pipeline(steps=[('s',fs),('m',model)]) 

  # evaluate model 

  cv = KFold(n_splits=5, shuffle=True, random_state=1) # execute search 

  n_scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1, 

error_score='raise') 

   

  stop = round(time() - start, 3); 

  test_acc = mean(n_scores) 

  # report performance 

  embedded_features.append(test_acc) 

  embedded_runtimes.append(stop) 

 

def roundUp(test_dict): 

  K = 3 

  res = dict() 

  for key in test_dict:       

    # rounding to K using round() 

    res[str(key)] = round(test_dict[key], K) 

  return res 

 

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion 

matrix'): 

    if normalize: 

        cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis] 

        print("Normalized confusion matrix") 

    else: 

        print('Confusion matrix, without normalization') 

 

    plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues')) 

    plt.title(title) 

    plt.colorbar() 

 

    tick_marks = np.arange(len(classes)) 

    plt.xticks(tick_marks, classes, rotation=45) 
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    plt.yticks(tick_marks, classes) 

 

    fmt = '.2f' if normalize else 'd' 

    thresh = cnf_matrix.max() / 2. 

 

    for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])): 

        plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center", 

                 color="white" if cnf_matrix[i, j] > thresh else "black") 

 

    plt.tight_layout() 

    plt.ylabel('True label') 

    plt.xlabel('Predicted label') 

 

    return cnf_matrix 

 

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names): 

    cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list) 

    np.set_printoptions(precision=2) 

 

    # Plot non-normalized confusion matrix 

    plt.figure() 

    generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +' 

Confusion matrix') 

    plt.show() 

 

def evaluate_model(data_x, data_y, imputation): 

    cv_outer = KFold(5, shuffle=True, random_state=7) 

    param_name = "max_depth" 

    predicted_targets = np.array([]) 

    actual_targets = np.array([]) 

    gridSearch = {"mean_train_score":[], "mean_test_score":[], "param_ranges": []} 

    gridSearch_df = {} 

    param_grid = {  

               "criterion":["entropy"], 

               "max_depth": [i for i in  np.arange(1, 21)],               

               "min_samples_leaf": range(2,5) 

           } 

    index = 0 

    for train_ix, test_ix in cv_outer.split(data_x): 

        train_x, train_y, test_x, test_y = data_x[train_ix], data_y[train_ix], data_x[test_ix], 

data_y[test_ix] 

           # define the model 

        model = DecisionTreeClassifier(random_state=7)         

        cv_inner = KFold(n_splits=3, shuffle=True, random_state=7) # execute search 
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        # define search 

        search = GridSearchCV(model, param_grid, scoring='accuracy', n_jobs=1, 

cv=cv_inner, refit=True, return_train_score=True) 

        # configure the cross-validation procedure 

        result = search.fit(train_x, train_y) 

        # get the best performing model fit on the whole training set 

        best_model = result.best_estimator_ 

        # evaluate model on the hold out dataset 

        predicted_labels = best_model.predict(test_x) 

 

        predicted_targets = np.append(predicted_targets, predicted_labels) 

        actual_targets = np.append(actual_targets, test_y) 

        print("Best Parameter %s :" %search.best_params_)  

        

        cv_results = search.cv_results_ 

        scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score') 

        gridSearch_df[index] = search 

        

        index = index + 1 

    

    plot_grid_search_validation_curve(gridSearch_df, param_name, title="Validation 

Curve - "+imputation) 

    return predicted_targets, actual_targets 

 

def plot_grid_search_validation_curve(grids, param_to_vary, 

                                      title='Validation Curve', ylim=None, 

                                      xlim=None, log=None): 

    """Plots train and cross-validation scores from a GridSearchCV instance's 

    best params while varying one of those params.""" 

  

    plt.clf() 

    plt.figure(figsize=(16, 16)) 

    plot_fn = plt.plot 

    if log: 

        plot_fn = plt.semilogx 

    plt.title(title) 

    plt.xlabel(param_to_vary) 

    plt.ylabel('Score') 

  

    if (ylim is None): 

        plt.ylim(0.0, 1.1) 

    else: 

        plt.ylim(*ylim) 
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    if (not (xlim is None)): 

        plt.xlim(*xlim) 

  

    lw = 1 

    fold = 1 

    for index in grids.keys(): 

      grid = grids[index] 

   

      df_cv_results = pd.DataFrame(grid.cv_results_) 

      train_scores_mean = df_cv_results['mean_train_score'] 

      valid_scores_mean = df_cv_results['mean_test_score'] 

      train_scores_std = df_cv_results['std_train_score'] 

      valid_scores_std = df_cv_results['std_test_score'] 

      param_cols = [c for c in df_cv_results.columns if c[:6] == 'param_'] 

       

      param_ranges = [grid.param_grid[p[6:]] for p in param_cols] 

      param_ranges_lengths = [len(pr) for pr in param_ranges] 

      train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths) 

      valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths) 

      train_scores_std = np.array(train_scores_std).reshape(*param_ranges_lengths) 

      valid_scores_std = np.array(valid_scores_std).reshape(*param_ranges_lengths) 

  

      param_to_vary_idx = param_cols.index('param_{}'.format(param_to_vary)) 

       

      slices = [] 

      for idx, param in enumerate(grid.best_params_): 

          if (idx == param_to_vary_idx): 

              slices.append(slice(None)) 

              continue 

          best_param_val = grid.best_params_[param] 

          idx_of_best_param = 0 

          if isinstance(param_ranges[idx], np.ndarray): 

              idx_of_best_param = param_ranges[idx].tolist().index(best_param_val) 

          else: 

              idx_of_best_param = param_ranges[idx].index(best_param_val) 

          slices.append(idx_of_best_param) 

           

      train_scores_mean = train_scores_mean[tuple(slices)] 

      valid_scores_mean = valid_scores_mean[tuple(slices)] 

      train_scores_std = train_scores_std[tuple(slices)] 

      valid_scores_std = valid_scores_std[tuple(slices)] 

  

      param_range = param_ranges[param_to_vary_idx] 
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      plot_fn(param_range, train_scores_mean, label= "(Fold - {} Training score 

)".format(fold),  lw=lw) 

  

      '''plt.fill_between(param_range, train_scores_mean - 

train_scores_std,train_scores_mean + train_scores_std, alpha=0.1, 

                          color='r', lw=lw)''' 

      plot_fn(param_range, valid_scores_mean, label= "(Fold - {} Cross-validation score 

)".format(fold), lw=lw) 

      '''plt.fill_between(param_range, valid_scores_mean - valid_scores_std, 

                          valid_scores_mean + valid_scores_std, alpha=0.1, 

                          color='b', lw=lw) '''      

    

      fold = fold + 1 

    '''if (not isinstance(param_range[0], numbers.Number)): 

        param_range = [str(x) for x in param_range]''' 

  

  

    plt.legend(loc='lower right') 

  

    plt.show() 

 

def classfier(imputation, X, y, class_names): 

           print("==============================================") 

           #print(imputation) 

           #print("==============================================-----------

------------") 

           predicted_target, actual_target = evaluate_model(X, y, imputation) 

           plot_confusion_matrix(predicted_target, actual_target, imputation, class_names) 

           cm = ConfusionMatrix(actual_vector=actual_target, 

predict_vector=predicted_target) 

           test_acc = accuracy_score(actual_target, predicted_target)           

 

          # print("\n Overall Accuracy Score \t", "%.3f" %(test_acc)) 

 

           all_accuracy.append({"score": test_acc, "imputation": imputation}) 

        

           metric = [ {"Dataset": imputation, 

                        "Overall Accuracy":test_acc, 

                        "Accuracy": roundUp(cm.ACC), 

                         'F1': roundUp(cm.F1), 

                        'True Positives': cm.TP, 

                        'False Positives':cm.FP,                                 

                         'False Positives Rate':cm.FPR,                               

                        'Recall': roundUp(cm.TPR) , 
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                        'Precision':roundUp(cm.PPV)}] 

           display(pd.DataFrame(metric)) 

           all_metric.append(metric) 

           #GridSearch_table_plot(model, "max_depth", negative=False) 

           

#print("=========================================================

===============") 

 

def plot_gridSearch(gridSearch, param_name): 

    plt.figure(figsize=(8, 8)) 

    plot_fn = plt.plot 

    train_scores_mean = gridSearch['mean_train_score'] 

    valid_scores_mean = gridSearch['mean_test_score'] 

    param_ranges = gridSearch['param_ranges'] 

    param_ranges_lengths = len(param_ranges) 

    train_scores_mean = np.array(train_scores_mean).reshape(*param_ranges_lengths) 

    valid_scores_mean = np.array(valid_scores_mean).reshape(*param_ranges_lengths) 

    lw = 2 

    #param_range = [i for i in  np.arange(1, 22)] 

    '''if (not isinstance(param_range[0], numbers.Number)): 

        param_range = [str(x) for x in param_range]''' 

 

    plot_fn(param_ranges, train_scores_mean, label='Training score', color='r',lw=lw) 

    plt.fill_between(param_ranges, train_scores_mean, alpha=0.1,color='r', lw=lw)   

 

    plot_fn(param_ranges, valid_scores_mean, label='Cross-validation score', color='b', 

lw=lw) 

    plt.fill_between(param_ranges, valid_scores_mean, alpha=0.1, color='b', lw=lw) 

 

    plt.legend(loc='lower right') 

 

    plt.show() 

 

def plotAccuracy(all_accuracy): 

  label = [] 

  scores = [] 

   

  for accuracy in all_accuracy: 

     

    label.append(accuracy.get("imputation")) 

    scores.append(round(accuracy.get("score"), 3)) 

  plt.figure(figsize=(10, 10)) 

  plt.bar(label, scores)  

  plt.title("Compare accuracy for all datasets") 
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  plt.xlabel("Dataset") 

  plt.ylabel("Accuracy") 

  plt.legend() 

  plt.show() 

 

def plotFeatureSelection(all_features, percentages, imputation, method, runtimes):  

            

           plt.figure(figsize=(11, 11)) 

           plt.plot(percentages, all_features, '-o', label='accuracy')   

           plt.plot(percentages, runtimes, '-o', label='time')   

           for x,y in zip(percentages,runtimes): 

 

              label = "({:.3f}, {:.3f})".format(y,x) 

 

              plt.annotate(label, # this is the text 

                          (x,y), # these are the coordinates to position the label 

                          textcoords="offset points", # how to position the text 

                          xytext=(0,10), # distance from text to points (x,y) 

                          ha='center') # horizontal alignment can be left, right or center               

           for x,y in zip(percentages,all_features): 

 

              label = "({:.3f}, {:.3f})".format(y,x) 

 

              plt.annotate(label, # this is the text 

                          (x,y), # these are the coordinates to position the label 

                          textcoords="offset points", # how to position the text 

                          xytext=(0,10), # distance from text to points (x,y) 

                          ha='center') # horizontal alignment can be left, right or center   

           plt.title(method + " Feature Selection " + imputation) 

           plt.xlabel("Percentage of Features") 

           plt.ylabel("Accuracy") 

           plt.legend() 

           plt.show() 

 

all_metric = [] 

all_accuracy = [] 

  

for subdir, dirs, files in os.walk("./"+DATA_DIR) : 

  for file in files: 

        data = arff.loadarff("./"+DATA_DIR + file) 

        dt = pd.DataFrame(data[0]) 

        percentages = values = [i/100 for i in range(15, 115, 15)]        

        if file =="MICE_Imputation.arff": 

           imputation = "Mice Imputation" 
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           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            

           runtimes=[] 

           embedded_runtimes =[] 

           FEATURES_COUNT = 26 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 

             nf = int(p * FEATURES_COUNT)  

  

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 

==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 

  

           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping)      

         

        elif file == "MF_Imputation.arff": 

          imputation = "MF Imputation" 

          print("\n===========================" + imputation+ 

"===========================") 

          FEATURES_COUNT = 26 

          X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

          classfier(imputation, X, y, classMapping)   

           

        elif file == "KNN_Imputation.arff": 

           FEATURES_COUNT = 26 

           imputation = "KNN Imputation" 

           print("\n===========================" + imputation+ 

"===========================") 

           FEATURES_COUNT = 26 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)                   

           classfier(imputation, X, y, classMapping)  

        elif file == "combine-posit.arff": 
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           FEATURES_COUNT = 53 

           imputation = "POSIT + MICE" 

  

           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            

           runtimes=[] 

           embedded_runtimes =[] 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 

             nf = int(p * FEATURES_COUNT)  

  

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 

==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 

  

           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping)  

  

        elif file == "combine-postchar.arff": 

           FEATURES_COUNT = 71 

           imputation = "POSIT + CHAR" 

  

           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            

           runtimes=[] 

           embedded_runtimes =[] 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 
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             nf = int(p * FEATURES_COUNT)  

  

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 

==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 

  

           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping)  

        if file == "POSIT.arff": 

           FEATURES_COUNT = 27 

           imputation = "POSIT" 

           print("\n ===========================" + imputation+ 

"===========================") 

           all_features = [] 

           embedded_features = []            

           runtimes=[] 

           embedded_runtimes =[] 

           X, y, classMapping = splitData(FEATURES_COUNT,dt)  

           for  index, p in enumerate(percentages): 

             if p > 1: 

               percentages[index] = 1 

               p = 1 

             nf = int(p * FEATURES_COUNT)  

  

             #print("\n===========================Wrapper Feature Selection 

==================")     

             featureSelection(imputation, p, X, y, nf) 

             #print("\n===========================Embedded Feature Selection 

==================") 

             EmbeddedfeatureSelection(imputation, p, X, y, nf) 

  

           plotFeatureSelection(all_features, percentages, imputation, "Wrapper Method", 

runtimes)   

           plotFeatureSelection(embedded_features, percentages, imputation, "Embedded 

Method", embedded_runtimes)  

           classfier(imputation, X, y, classMapping)  
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df = pd.DataFrame(all_metric) 

print(df.to_string()) 

plotAccuracy(all_accuracy) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNN Implementation  

 

# -*- coding: utf-8 -*- 

"""RNN.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1aHkvuP3PBDMGdsZwGIf-NVfHJySfZXl4 

""" 

 

!pip install pycm 

 

from google.colab import drive 

drive.mount('/content/drive') 

FEATURES_COUNT = 0 

INPUT_SHAPE = 0 

DATA_DIR = "drive/MyDrive/dataset/" 

timing = [] 

all_metric = [] 

all_accuracy = [] 
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from sklearn import preprocessing, svm 

import pandas as pd 

import numpy as np 

from keras.utils import np_utils 

from keras.wrappers.scikit_learn import KerasClassifier 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Embedding, LSTM, Lambda, 

Activation,GlobalMaxPooling1D, SpatialDropout1D 

 

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder 

import sklearn.datasets as skds 

from pathlib import Path 

from scipy.io import  arff 

from sklearn.preprocessing import MinMaxScaler,StandardScaler 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score 

from sklearn.model_selection import  train_test_split 

import matplotlib.pyplot as plt 

from keras.callbacks import EarlyStopping 

from sklearn.metrics import plot_confusion_matrix 

import keras 

import tensorflow as tf 

from time import time 

import os.path 

from pycm import * 

from sklearn.model_selection import GridSearchCV 

from IPython.display import display 

import itertools 

 

class TimingCallback(keras.callbacks.Callback): 

  def __init__(self): 

    self.logs=[] 

  def on_epoch_begin(self, epoch, logs={}): 

    self.starttime=time() 

  def on_epoch_end(self, epoch, logs={}): 

    self.logs.append(time()-self.starttime) 

 

def baseline_model(): 

  rnn_model=Sequential() 

 

  rnn_model.add(LSTM(150,return_sequences=True,input_shape=(INPUT_SHAPE,1)))   
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#input layer 

  rnn_model.add(tf.keras.layers.LSTM(units=26, activation='tanh')) 

  rnn_model.add(Dropout(0.5)) 

 

  rnn_model.add(tf.keras.layers.Dense(units=3, activation='sigmoid')) #output layer 

  rnn_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', 

metrics=['accuracy']) #compiling the model 

  rnn_model.summary() 

  return rnn_model 

 

def splitData(FEATURES_COUNT,dt): 

        classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))} 

        dt["CLASS"] = dt["CLASS"].map(classMapping) 

 

        dt_label_class = dt['CLASS'].astype(float) 

        dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil) 

        RANDOM_SEED = 7 

        train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class, 

test_size=0.3, shuffle=True, random_state=RANDOM_SEED) 

        X_train = np.array(train_x) 

        X_test = np.array(test_x) 

        y_train = np.array(y_train) 

        y_test = np.array(y_test) 

        X_train =X_train.reshape(X_train.shape[0],X_train.shape[1] , 1) 

        X_test = X_test.reshape(X_test.shape[0],X_test.shape[1] , 1) 

        return (X_train, X_test, y_test,y_train, classMapping) 

 

def GridSearch_table_plot(grid_clf, param_name, 

                          num_results=15, 

                          negative=True, 

                          graph=True, 

                          display_all_params=False): 

 

    '''Display grid search results 

 

    Arguments 

    --------- 

 

    grid_clf           the estimator resulting from a grid search 

                       for example: grid_clf = GridSearchCV( ... 

 

    param_name         a string with the name of the parameter being tested 

 

    num_results        an integer indicating the number of results to display 
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                       Default: 15 

 

    negative           boolean: should the sign of the score be reversed? 

                       scoring = 'neg_log_loss', for instance 

                       Default: True 

 

    graph              boolean: should a graph be produced? 

                       non-numeric parameters (True/False, None) don't graph well 

                       Default: True 

 

    display_all_params boolean: should we print out all of the parameters, not just the 

ones searched for? 

                       Default: True 

 

    Usage 

    ----- 

 

    GridSearch_table_plot(grid_clf, "min_samples_leaf") 

 

                          ''' 

     

 

    clf = grid_clf.best_estimator_ 

    clf_params = grid_clf.best_params_ 

    if negative: 

        clf_score = -grid_clf.best_score_ 

    else: 

        clf_score = grid_clf.best_score_ 

    clf_stdev = grid_clf.cv_results_['std_test_score'][grid_clf.best_index_] 

    cv_results = grid_clf.cv_results_ 

 

    #print("best parameters: {}".format(clf_params)) 

    #print("best score:      {:0.5f} (+/-{:0.5f})".format(clf_score, clf_stdev)) 

    if display_all_params: 

        import pprint 

        pprint.pprint(clf.get_params()) 

 

    # pick out the best results 

    # ========================= 

    scores_df = pd.DataFrame(cv_results).sort_values(by='rank_test_score') 

 

    best_row = scores_df.iloc[0, :] 

    if negative: 

        best_mean = -best_row['mean_test_score'] 
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    else: 

        best_mean = best_row['mean_test_score'] 

    best_stdev = best_row['std_test_score'] 

    best_param = best_row['param_' + param_name] 

 

    # display the top 'num_results' results 

    # ===================================== 

    

#display(pd.DataFrame(cv_results).sort_values(by='rank_test_score').head(num_results)

) 

 

    # plot the results 

    # ================ 

    scores_df = scores_df.sort_values(by='param_' + param_name) 

 

    if negative: 

        means = -scores_df['mean_test_score'] 

    else: 

        means = scores_df['mean_test_score'] 

    stds = scores_df['std_test_score'] 

    params = scores_df['param_' + param_name] 

 

    # plot 

    if graph: 

        plt.figure(figsize=(8, 8)) 

        plt.errorbar(params, means, yerr=stds) 

 

        plt.axhline(y=best_mean + best_stdev, color='red') 

        plt.axhline(y=best_mean - best_stdev, color='blue') 

        plt.plot(best_param, best_mean, 'or') 

 

        plt.title(param_name + " vs Score\nBest Score {:0.5f}".format(clf_score)) 

        plt.xlabel(param_name) 

        plt.ylabel('Score') 

        plt.show() 

 

def roundUp(test_dict): 

  K = 3 

  res = dict() 

  for key in test_dict:       

    # rounding to K using round() 

    res[str(key)] = round(test_dict[key], K) 

  return res 
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def plotAccuracy(all_accuracy): 

  label = [] 

  scores = [] 

   

  for accuracy in all_accuracy: 

     

    label.append(accuracy.get("imputation")) 

    scores.append(round(accuracy.get("score"), 3)) 

  plt.figure(figsize=(10, 10)) 

  plt.bar(label, scores)  

  plt.title("Compare accuracy for all datasets") 

  plt.xlabel("Dataset") 

  plt.ylabel("Accuracy") 

  plt.legend() 

  plt.show() 

 

def classfier(imputation, max_depth,X_train,y_train,X_test, y_test, class_names): 

           print("==============================================") 

           print(imputation) 

           print("==============================================") 

           model = None 

           cb = TimingCallback() 

           es = 

EarlyStopping(monitor="loss",min_delta=0,patience=3,verbose=1,mode="auto",baseline

=None,restore_best_weights=False) 

           estimator = KerasClassifier(build_fn=baseline_model, batch_size=5, verbose=0)    

            #history = model.fit(X_train, 

y_train,validation_split=0.33,epochs=1,verbose=1,callbacks=[cb, es]) 

            #predictions = model.predict(X_test) 

           history = estimator.fit(X_train, 

y_train,validation_split=0.33,epochs=20,verbose=1,callbacks=[cb, es]) 

           predictions = estimator.predict(X_test) 

           timing.append(cb.logs) 

              # list all data in history 

           test_acc = accuracy_score(y_test, predictions)            

           test_predictions = estimator.predict(X_test)       

           cm = ConfusionMatrix(actual_vector=y_test, predict_vector=test_predictions)  

 

           plot_confusion_matrix(predictions, y_test, imputation, class_names) 

           print("\n Overall Accuracy Score \t", "%.3f" %(test_acc)) 

           all_accuracy.append({"score": test_acc, "imputation": imputation}) 

           

           metric = [ {"Dataset": imputation, 

                        "Overall Accuracy":test_acc, 
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                        "Accuracy": roundUp(cm.ACC), 

                         'F1': roundUp(cm.F1), 

                        'True Positives': cm.TP, 

                        'False Positives':cm.FP,     

                        'False Positives Rate':roundUp(cm.FPR),                               

                        'Recall': roundUp(cm.TPR) , 

                        'Precision':roundUp(cm.PPV)}] 

           

           all_metric.append(metric)     

           display(pd.DataFrame(metric))       

           

print("==========================================================

==============")          

 

           epoch_range = range(1,len(history.history['loss']) + 1) 

           plt.plot(epoch_range, history.history['accuracy']) 

           plt.plot(epoch_range, history.history['val_accuracy']) 

           plt.title('Model_accuracy') 

           plt.ylabel('Accuracy') 

           plt.xlabel('Epoch') 

           plt.legend(['Train','val'], loc='upper left') 

           plt.show() 

 

            #plot training and validation loss values 

           plt.plot(epoch_range, history.history['loss']) 

           plt.plot(epoch_range, history.history['val_loss']) 

           plt.title('Model loss') 

           plt.ylabel('Loss') 

           plt.xlabel('Epoch') 

           plt.legend(['Train','val'], loc='upper left') 

           plt.show() 

 

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names): 

    cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list) 

    np.set_printoptions(precision=2) 

 

    # Plot non-normalized confusion matrix 

    plt.figure() 

    generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +' 

Confusion matrix') 

    plt.show() 

 

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion 

matrix'): 
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    if normalize: 

        cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis] 

        print("Normalized confusion matrix") 

    else: 

        print('Confusion matrix, without normalization') 

 

    plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues')) 

    plt.title(title) 

    plt.colorbar() 

 

    tick_marks = np.arange(len(classes)) 

    plt.xticks(tick_marks, classes, rotation=45) 

    plt.yticks(tick_marks, classes) 

 

    fmt = '.2f' if normalize else 'd' 

    thresh = cnf_matrix.max() / 2. 

 

    for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])): 

        plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center", 

                 color="white" if cnf_matrix[i, j] > thresh else "black") 

 

    plt.tight_layout() 

    plt.ylabel('True label') 

    plt.xlabel('Predicted label') 

 

    return cnf_matrix 

 

all_metric = [] 

all_accuracy = [] 

for subdir, dirs, files in os.walk("./"+DATA_DIR) : 

  for file in files: 

        data = arff.loadarff("./"+DATA_DIR + file) 

        dt = pd.DataFrame(data[0]) 

         

        if file =="MICE_Imputation.arff": 

           FEATURES_COUNT = 26 

           imputation = "Mice Imputation" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping) 

            

        elif file == "MF_Imputation.arff": 

          FEATURES_COUNT = 26 
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          imputation = "MF Imputation" 

          X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

          INPUT_SHAPE = X_train.shape[0] 

          classfier(imputation, 10, X_train,y_train, X_test, y_test,classMapping) 

          

        elif file == "KNN_Imputation.arff": 

           FEATURES_COUNT = 26 

           imputation = "KNN Imputation" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping) 

            

        elif file == "combine-postchar.arff": 

           FEATURES_COUNT = 71 

           imputation = "POSIT + MICE" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping ) 

            

        elif file == "combine-posit.arff": 

           FEATURES_COUNT = 53 

           imputation = "POSIT + CHAR" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 14, X_train,y_train, X_test, y_test,classMapping ) 

            

        elif file == "POSIT.arff": 

           FEATURES_COUNT = 27            

           imputation = "POSIT" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping ) 

           

       

       

          

 

df = pd.DataFrame(all_metric) 

print(df.to_string()) 
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plotAccuracy(all_accuracy) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MLP Implementation  

# -*- coding: utf-8 -*- 

"""MLP -Better model.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1EcN1XvG0Kj375UvVe6Q0I5AznIByz86k 

""" 

 

!pip install pycm 

!pip install keras-tuner 

!pip install -U imbalanced-learn 

 

from sklearn import preprocessing, svm 

import pandas as pd 

import numpy as np 

from keras.utils import np_utils 

from keras.wrappers.scikit_learn import KerasClassifier 

from keras.preprocessing.text import Tokenizer 

from keras.models import Sequential 

from keras.layers import Activation, Dense, Dropout 

from sklearn.preprocessing import MultiLabelBinarizer ,LabelEncoder 

import sklearn.datasets as skds 

from pathlib import Path 

from scipy.io import  arff 

from sklearn.preprocessing import MinMaxScaler,StandardScaler 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 
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from sklearn.metrics import classification_report,confusion_matrix,accuracy_score 

from sklearn.model_selection import  train_test_split 

import matplotlib.pyplot as plt 

from keras.callbacks import EarlyStopping 

from sklearn.metrics import plot_confusion_matrix 

import tensorflow as tf 

from tensorflow import keras 

from time import time 

import os.path 

from pycm import * 

import keras_tuner as kt 

from kerastuner import HyperModel 

import itertools 

from tensorflow.keras import models, layers 

from sklearn.model_selection import validation_curve 

 

"""MLP Implementation""" 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

timing = [] 

DATA_DIR = "drive/MyDrive/dataset/" 

all_metric = [] 

all_accuracy = [] 

FEATURES_COUNT = 0 

class_names={} 

 

class TimingCallback(keras.callbacks.Callback): 

  def __init__(self): 

    self.logs=[] 

  def on_epoch_begin(self, epoch, logs={}): 

    self.starttime=time() 

  def on_epoch_end(self, epoch, logs={}): 

    self.logs.append(time()-self.starttime) 

 

def baseline_model(): 

    num_labels = 3 

    input_shape = (FEATURES_COUNT,) 

    model = keras.Sequential() 

    

    model = keras.Sequential() 

    model.add(Dense(30, input_shape=(FEATURES_COUNT,))) 

    model.add(Activation('relu')) 



 
 

270 
 

    model.add(Dropout(0.2)) 

  

    model.add(Dense(20))    

    model.add(Activation('relu')) 

  

    model.add(Dropout(0.2)) 

    model.add(Dense(num_labels)) 

    model.add(Activation('softmax')) 

    #model.summary() 

    # Compile model 

    model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

    return model 

 

def splitData(FEATURES_COUNT,dt): 

        classMapping = {label: idx for idx, label in enumerate(np.unique(dt["CLASS"]))} 

        dt["CLASS"] = dt["CLASS"].map(classMapping) 

 

        dt_label_class = dt['CLASS'].astype(float) 

        dt_features = dt.iloc[:, 0:FEATURES_COUNT].apply(np.ceil) 

        train_x, test_x, y_train, y_test = train_test_split(dt_features, dt_label_class, 

test_size=0.3) 

        scaler = StandardScaler() 

        scaler.fit(train_x) 

        X_train = scaler.transform(train_x) 

        X_test = scaler.transform(test_x) 

        class_names = classMapping 

        return (X_train, X_test, y_test,y_train, classMapping) 

 

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names): 

    cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list) 

    np.set_printoptions(precision=2) 

 

    # Plot non-normalized confusion matrix 

    plt.figure() 

    generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +' 

Confusion matrix') 

    plt.show() 

 

def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title='Confusion 

matrix'): 

    if normalize: 

        cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis] 

        print("Normalized confusion matrix") 
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    else: 

        print('Confusion matrix, without normalization') 

 

    plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues')) 

    plt.title(title) 

    plt.colorbar() 

 

    tick_marks = np.arange(len(classes)) 

    plt.xticks(tick_marks, classes, rotation=45) 

    plt.yticks(tick_marks, classes) 

 

    fmt = '.2f' if normalize else 'd' 

    thresh = cnf_matrix.max() / 2. 

 

    for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])): 

        plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center", 

                 color="white" if cnf_matrix[i, j] > thresh else "black") 

 

    plt.tight_layout() 

    plt.ylabel('True label') 

    plt.xlabel('Predicted label') 

 

    return cnf_matrix 

 

def plot_confusion_matrix(predicted_labels_list, y_test_list, imputation, class_names): 

    cnf_matrix = confusion_matrix(y_test_list, predicted_labels_list) 

    np.set_printoptions(precision=2) 

 

    # Plot non-normalized confusion matrix 

    plt.figure() 

    generate_confusion_matrix(cnf_matrix, classes=class_names, title=imputation +' 

Confusion matrix') 

    plt.show() 

 

def classfier(imputation, max_depth,X_train,y_train,X_test, y_test, class_names): 

           print("==============================================-------------

----------") 

           print(imputation) 

           print("==============================================-------------

----------") 

           model = None 

           cb = TimingCallback() 

           es = 

EarlyStopping(monitor="loss",min_delta=0,patience=3,verbose=1,mode="auto",baseline
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=None,restore_best_weights=False) 

           estimator = KerasClassifier(build_fn=baseline_model, batch_size=7, verbose=0)    

            #history = model.fit(X_train, 

y_train,validation_split=0.33,epochs=1,verbose=1,callbacks=[cb, es]) 

            #predictions = model.predict(X_test) 

           history = estimator.fit(X_train, 

y_train,validation_split=0.33,epochs=20,verbose=1,callbacks=[cb, es]) 

           predictions = estimator.predict(X_test) 

           timing.append(cb.logs) 

              # list all data in history 

           test_acc = accuracy_score(y_test, predictions)            

           test_predictions = estimator.predict(X_test)      

           plot_confusion_matrix(test_predictions, y_test, imputation, class_names)  

           cm = ConfusionMatrix(actual_vector=y_test.values, 

predict_vector=test_predictions)            

           print("\n Overall Accuracy Score \t", "%.3f" %(test_acc)) 

           all_accuracy.append({"score": test_acc, "imputation": imputation}) 

           

           metric = [ {"Dataset": imputation, 

                        "Overall Accuracy":test_acc, 

                        "Accuracy": roundUp(cm.ACC), 

                         'F1': roundUp(cm.F1), 

                        'True Positives': cm.TP, 

                        'False Positives':cm.FP,     

                        'False Positives Rate':roundUp(cm.FPR),                               

                        'Recall': roundUp(cm.TPR) , 

                        'Precision':roundUp(cm.PPV)}] 

           

           all_metric.append(metric)     

           display(pd.DataFrame(metric))       

           

print("==========================================================

==============")          

 

       

           epoch_range = range(1,len(history.history['loss']) + 1) 

           plt.plot(epoch_range, history.history['accuracy']) 

           plt.plot(epoch_range, history.history['val_accuracy']) 

           plt.title('Model_accuracy') 

           plt.ylabel('Accuracy') 

           plt.xlabel('Epoch') 

           plt.legend(['Train','val'], loc='upper left') 

           plt.show() 
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            #plot training and validation loss values 

           plt.plot(epoch_range, history.history['loss']) 

           plt.plot(epoch_range, history.history['val_loss']) 

           plt.title('Model loss') 

           plt.ylabel('Loss') 

           plt.xlabel('Epoch') 

           plt.legend(['Train','val'], loc='upper left') 

           plt.show() 

 

def plotAccuracy(all_accuracy): 

  label = [] 

  scores = [] 

   

  for accuracy in all_accuracy: 

     

    label.append(accuracy.get("imputation")) 

    scores.append(round(accuracy.get("score"), 3)) 

  plt.figure(figsize=(10, 10)) 

  plt.bar(label, scores)  

  plt.title("Compare accuracy for all datasets") 

  plt.xlabel("Dataset") 

  plt.ylabel("Accuracy") 

  plt.legend() 

  plt.show() 

 

def roundUp(test_dict): 

  K = 3 

  res = dict() 

  for key in test_dict:       

    # rounding to K using round() 

    res[str(key)] = round(test_dict[key], K) 

  return res 

 

all_metric = [] 

all_accuracy = [] 

for subdir, dirs, files in os.walk("./"+DATA_DIR) : 

  for file in files: 

        data = arff.loadarff("./"+DATA_DIR + file) 

        dt = pd.DataFrame(data[0]) 

         

        if file =="MICE_Imputation.arff": 

           FEATURES_COUNT = 26 

           imputation = "Mice Imputation" 

           X_train, X_test, y_test,y_train, classMapping = 
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splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping) 

            

        elif file == "MF_Imputation.arff": 

          FEATURES_COUNT = 26 

          imputation = "MF Imputation" 

          X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

          INPUT_SHAPE = X_train.shape[0] 

          classfier(imputation, 10, X_train,y_train, X_test, y_test,classMapping) 

          

        elif file == "KNN_Imputation.arff": 

           FEATURES_COUNT = 26 

           imputation = "KNN Imputation" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test, classMapping) 

            

        elif file == "combine-postchar.arff": 

           FEATURES_COUNT = 71 

           imputation = "POSIT + MICE" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping ) 

            

        elif file == "combine-posit.arff": 

           FEATURES_COUNT = 53 

           imputation = "POSIT + CHAR" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 14, X_train,y_train, X_test, y_test,classMapping ) 

            

        elif file == "POSIT.arff": 

           FEATURES_COUNT = 27            

           imputation = "POSIT" 

           X_train, X_test, y_test,y_train, classMapping = 

splitData(FEATURES_COUNT,dt) 

           INPUT_SHAPE = X_train.shape[0] 

           classfier(imputation, 1, X_train,y_train, X_test, y_test,classMapping ) 
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df = pd.DataFrame(all_metric) 

print(df.to_string()) 

plotAccuracy(all_accuracy) 

 

 

 

 

 

 

 


