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Dynamic heterogeneity in lung ventilation is an important measure of pulmonary 
function and may be characteristic of early pulmonary disease. While standard 
indices like spirometry, body plethysmography, and blood gases have been 
utilized to assess lung function, they do not provide adequate information on 
regional ventilatory distribution nor function assessments of ventilation during 
the respiratory cycle. Emerging technologies such as xenon CT, volumetric 
CT, functional MRI and X-ray velocimetry can assess regional ventilation using 
non-invasive radiographic methods that may complement current methods of 
assessing lung function. As a supplement to current modalities of pulmonary 
function assessment, functional lung imaging has the potential to identify 
respiratory disease phenotypes with distinct natural histories. Moreover, these 
novel technologies may offer an optimal strategy to evaluate the effectiveness 
of novel therapies and therapies targeting localized small airways disease in 
preclinical and clinical research. In this review, we  aim to discuss the features 
of functional lung imaging, as well as its potential application and limitations to 
adoption in research.
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Introduction

Several pulmonary diseases can affect the lungs non-uniformly, particularly in the early 
stages of disease (1–5). This may result in heterogenous ventilation and regional ventilation 
deficits, which has been associated with deleterious respiratory health outcomes (6). Initial 
functional testing modalities, like spirometry or static computed tomography (CT) scans, are 
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unable to assess these regional differences in single-breath ventilation. 
Additionally, many existing modalities that assess ventilation 
heterogeneity require the administration of expensive radioisotopes 
and technical radiographic approaches precluding widespread use in 
clinical practice.

Spirometry, the most common test of lung function, often done 
with body plethysmography, quantifies global airflow and lung 
volumes, but is limited in detection of specific regional deficiencies 
(7–9). Alternatively, chest x-rays and CT scans are useful for 
identifying structural abnormalities of the lung, but only at a specific 
time point during the respiratory cycle (10–12). Over the past two 
decades, advances in CT image processing and magnetic resonance 
imaging (MRI), have produced the potential for extending the use of 
imaging beyond anatomic visualization to non-invasive evaluation of 
regional lung physiological function across the respiratory cycle (13–
15). Additionally, X-ray velocimetry (XV) is a non-invasive 
fluoroscopy based image processing technique that uses lung tissue 
motion to determine spatial lung ventilation (16). This article aims to 
provide a brief overview and comparison of four dynamic imaging 
modalities, recognizing their potential applications in the field and 
identifying barriers to implementation in clinical practice.

Xenon computed tomography

Xenon is an inert, noble gas that has been used as an inhalation 
contrast agent for functional lung imaging. Xenon-133 is advantageous 
because of its similar x-ray absorption characteristics as iodine, 
making it a useful inhalation contrast agent (17). Additionally, it has 
poor solubility in blood and tissue after inhalation, a longer half-life 
compared to oxygen-15 and nitrogen-13, and displays pulmonary 
function and disease better than krypton-81 (18, 19).

Xenon computed tomography was introduced in the 1980s as a 
functional imaging tool for measuring regional pulmonary ventilation. 
This imaging modality involves a wash-in phase, where the subject 
inhales a xenon and oxygen gas mixture over a short period of time. 
This is followed by a period of inhaling a high oxygen concentration 
while the radioisotope is exhaled or systemically absorbed, termed the 
washout phase. Xe CT scans can capture either at the beginning and 
end of the wash-in phase under a single-breath (static), or periodically 
over the course of multiple breaths throughout the wash-in and out 
phases (dynamic). Images are subsequently processed into a three-
dimensional distribution map whereby areas of poor ventilation can 
be qualitatively and quantitatively assessed. Many variations of this 
procedure exist, and studies continue to optimize gas mixture 
concentrations and the timing of the wash-in and washout phases to 
better visualize regional ventilation, overall pulmonary function loss, 
and dynamic changes in the lung (19–21).

4D computed tomography

Diverse methods for volumetric are described in the literature; 
however, this has broadly been described using either paired 
(inhale/exhale) breath-hold CT (BHCT) or 4-Dimensional CT 
(4DCT) and comprising three computational steps: (1) lung volume 
delineation (segmentation), (2) measurement of lung motion 
through deformable image registration (DIR) or non-DIR methods, 

and (3) algorithmic calculation of surrogate measures for 
regional ventilation.

With respect to 4DCT algorithms, the most common algorithms 
for calculating ventilation metrics were evaluation of lung volume 
changes using CT intensity or Hounsfield Unit values (CTV-HU) and 
deformation vectors (Jacobian determinant; CTV-JAC), although 
variants and other methods were also reported in the literature. These 
images are then reconstructed, pairing images from the inhalation and 
exhalation phase thereby producing measurements for lung volume 
and ventilation (21). Through equations that take into account tidal 
volumes and respiratory variation, ventilation maps are produced, 
identifying regions of varying ventilation while reducing motion 
artifact (22, 23). Global and lobar ventilation 4D CT has been 
demonstrated to agree with other imaging modalities, like ventilation-
perfusion images and 129Xe hyperpolarized MRI (24).

With respect to CTV algorithms, the most common algorithms 
for calculating ventilation metrics were evaluation of lung volume 
changes using CT intensity or Hounsfield Unit values (CTV-HU) and 
deformation vectors (Jacobian determinant; CTV-JAC), although 
variants and other methods were also reported in the literature. 
Overall, there was no clear evidence that one method was superior 
to another.

Hyperpolarized gas magnetic resonance

MRI utilizes hydrogen atoms, abundant in soft tissue throughout 
the human body, and their associated magnetic environment to generate 
images that demonstrate detailed differences between various types of 
soft tissues (25, 26). Though useful in many clinical scenarios, MRI has 
traditionally offered limited tissue signaling of the lung parenchyma and 
airspace given low proton density in the lungs (27). However, the use of 
noble gas contrasts agents (similar to Xe CT), such as helium-3 (3He) or 
xenon-129 (129Xe) can help circumvent the relative lack of proton signal 
in the airspace, better capturing images of the lung tissue (28). Gaseous 
agents like 3He and 129Xe are hyperpolarized through spin exchange 
optical pumping (SEOP) to enhance their MR signaling properties (26, 
29). When these gaseous agents are applied to MRI, the technique is 
known as hyperpolarized gas MR and offers a more robust evaluation 
of pulmonary anatomy and function, providing a dynamic look at 
ventilation of the airspace and perfusion of the parenchyma over the 
course of the respiratory cycle (27).

X-ray velocimetry

X-ray velocimetry (XV) is a functional lung imaging technology 
that provides non-invasive quantification of regional ventilation 
during the respiratory cycle. XV technology is based on the principle 
of Particle Image Velocimetry (PIV), which allows to study the motion 
of particles within a medium. In practical terms, XV involves 
acquisition of fluoroscopic images over one complete and continuous 
tidal breath, which is captured at five angles, while the same center of 
rotation is maintained. The limited angles required for image 
acquisition allow for a significantly lower radiation dose to the patient 
compared to standard CT protocols (30).

The analysis of the acquired images involves measuring tissue 
expansion over the duration of a tidal breath. Tissue expansion is then 
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used to calculate regional ventilation at every location within the lung 
with several derived parameters. The information additionally enables 
spatial detection of regional ventilation defects and correlation to 
underlying lung structure (Figure 1).

Applications of functional lung 
imaging

Early and accurate detection of respiratory disease remains an 
important goal in risk reduction and early treatment to prevent 
disease progression. Diagnosis and monitoring of lung disease relies 
primarily on functional measurements such as spirometry to assess 
the extent of functional impairment (8, 9), and imaging techniques 
such as X-rays or CT scans to identify underlying anatomic 
abnormalities (10, 11). Functional lung imaging has the potential to 
serve as a biomarker for respiratory disease in pre-clinical and clinical 
investigation over the past decade.

Preclinical studies

Xenon CT
Few studies incorporating Xenon CT in animal models have been 

conducted. A murine study was able to successfully use continuous 
CT acquisition with Xe contrast to measure regional ventilation (34). 
A canine study demonstrated the decreased need to account for 
redistribution and recirculation of xenon as confounding variables in 
ventilation measurements (35). Finally, other studies have focused on 
integrating ventilation with perfusion in a single scan. For example, 
one research group studied pig models to measure ventilation with 
Xenon inhalation contrast and perfusion with gadolinium contrast, 
using a single CT image (36).

4DCT
4DCT has been applied to evaluate ventilatory and perfusion 

defects in swine models with lung injury either from radiation for lung 
cancer or mechanical stress from mechanical ventilation. Wuschner 

FIGURE 1

Examples of radiographically derived ventilation. Panel (A) shows XV analysis of regional lung ventilation using a color scale (red represents areas with 
decreased ventilation) (31). Panel (B) represents 4D CT imaging which shows regional areas of high ventilation and areas of low ventilation (red represents 
areas with decreased ventilation). Reprinted with permission of the American Thoracic Society. Copyright © 2023 American Thoracic Society. All rights 
reserved.  The American Journal of Respiratory Cell and Molecular Biology is an official journal of the American Thoracic Society. (32). Panel (C) shows 
Xenon CT imaging with heterogenous distribution of Xenon due to this patient’s emphysematous disease. Ventilation defects are noted in the left upper 
lobe (white arrow). Adapted from the American Journal of Roentgenology, Copyright © 2014, copyright owner as specified in the American Journal of 
Roentgenology. (19). Panel (D) shows function MRI images with hyperpolarization of 3He/129Xe. Regional hypoventilation is noted by white arrows (33).
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et al. developed a specific swine model and correlated with human 
subjects to determine optimal biomarkers to monitor ventilatory 
changes after radiation therapy (37). Swine models have demonstrated 
dose dependent radiation correlating with decreased lung function 
(38). Separately, 4DCT was used to determine optimal lung-protective 
ventilation (39). Finally, Boehme et al. has used this mode in porcine 
models to quantify recruit and de-recruitment atelectasis, which 
contributes to ventilator-induced lung injury (40, 41).

Hyperpolarized gas MRI
Many pre-clinical studies have used hyperpolarized gas MRI to 

help elucidate the dynamic process by which gas diffusion and 
transport occurs and further understand the pathophysiology of 
pulmonary diseases (42). Mouse models studies have included 
hyperpolarized gas MRI to map the lungs anatomy and optimize 
quantitative measures of ventilation and diffusion (43). Similarly, 
mechanically ventilated, healthy rabbit models have utilized this 
technique with multi-breath wash-ins to describe ventilation 
heterogeneity (44). These techniques have proven useful in identifying 
ventilatory functional defects in diseased mice models, like 
emphysema (45). Additionally, hyperpolarized gas MRI has 
demonstrated longitudinal changes in the lung microenvironment in 
lung cancer models, creating a metric for treatment efficacy (46). 
Rodent models of pulmonary hypertension (PH) have been used to 
determine ventilation defects and diffusion impairments to monitor 
disease progression through non-invasive means (47). Hyperpolarized 
gas MRI has also been used in rat models for bronchopulmonary 
dysplasia to describe distal airway anatomy and in models for 
radiation lung injury to detect regional ventilation changes (48).

One limitation of prior models using hyperpolarized gas MR 
imaging is the necessity for well-controlled tidal volumes and timing 
of breaths. Although this is an approximate simulation for 
mechanically ventilated patients, these requirements limit the 
potential scope of use for hyperpolarized gas MR in free-breathing 
animal models. Recent studies have documented potential methods 
for obtaining functional lung imaging in free-breathing animal 
models. Loza et al. utilized a free-breathing murine model to assess 
imaging techniques that capture gas-phase images, measuring regional 
fractional ventilation, and dissolved-phase images, measuring gas 
uptake and distribution (26). These measurements provide a deeper 
evaluation of pulmonary function than traditional PFTs.

X ray velocimetry
As almost all lung pathologies are associated with regional 

changes in airflow throughout the lungs, it is essential to detect these 
functional changes in all locations during the entire respiratory cycle 
(32). The application of XV technology to quantify regional lung 
ventilation in animal models was first described in mice exposed to 
bleomycin, a well characterized experimental disease model that 
results in progressive lung injury (49). Regional maps of lung tissue 
motion revealed not only heterogeneity of normal lung ventilation 
but also aberrant airflow/motion as a result of bleomycin exposure 
(49). In another study, XV technology was applied to investigate 
lung dynamics in β-ENaC-overexpressing mice, a well-established 
model of lung disease (50). Overexpression of the epithelial 
Na + channel (ENaC) in the conducting airways causes airway 
surface liquid depletion and increased mucus concentration similar 
to that observed in human cystic fibrosis (CF) disease (51). Results 

of the study demonstrated marked heterogeneous lung function in 
β-ENaC transgenic mice compared to wild-type littermate 
controls (50).

Clinical studies

Xenon CT
Most clinical studies have focused on applying Xe CT to lung 

disease populations and evaluating their degree of ventilation changes. 
For example, Xenon ventilation Dual Energy CT (DECT) has been 
used to visualize and quantify significant differences in ventilation 
between COPD and asthma-COPD overlap syndrome (52). Another 
study found regional ventilation changes and pulmonary function loss 
in chronic smokers, using Xe CT (18, 53). Investigating COPD 
patients, Xe CT has demonstrated qualitative ventilation changes 
similar to PFTs (54, 55).

Other studies have shown that Xe CT may be  useful in 
diagnosing ventilation changes in other clinical contexts. One 
study identified additional ventilatory diagnostic information 
with Xe CT among mechanically ventilated patients, like 
discriminating bullae from pneumothorax, airway-to-
pneumothorax fistula, and airway-to-mediastinum fistula (56). 
Another study was able to use Xe CT to identify ventilation and 
perfusion defects in patients suspected of pulmonary embolism 
(57). Additionally, using a Xe CT with methacholine and 
salbutamol inhalation challenge helped better visualize dynamic 
airflow changes in asthmatic patients. Finally, Xe CT has been 
used to effectively evaluate pulmonary function changes in 
patients surgically treated for NSCLC (58).

4D CT and breath hold CT
Similarly to pre-clinical trials, there are limited, but ongoing, 

clinical trials that are focused on using 4D CT to preserve functional 
regions of lung ventilation for patients treated with radiation therapy 
for lung cancer. One ongoing phase 2 trial demonstrates 4D CT-guided 
ventilation as a useful clinical application in functional avoidance in 
patients with at least grade 2 radiation pneumonitis (59). Similar 
clinical trials are being conducted globally to optimize radiation 
therapy in lung cancer patients, like understanding lung ventilation 
physiology in chest radiation treatment, while still decreasing 
radiation dose administration, reducing tumor burden, and preserving 
ventilation (60, 61).

Hyperpolarized gas MRI
Hyperpolarized gas MRI is utilized in a variety of pulmonary 

pathologies, offers a more dynamic evaluation of pulmonary 
function, and lacks ionizing radiation (27). Roos et al. provides a 
review of the current and potential clinical applications of 
hyperpolarized gas MRI (62) Hyperpolarized gases through MR 
imaging have been used for the past 2 decades to detect and visualize 
abnormalities in the thoracic region. Presently, ventilation imaging 
provides helpful information about ventilation defects and diffusion-
weighted imaging that can be  utilized to calculate the apparent 
diffusion coefficient to differentiate between normal and enlarged 
airspaces. Future applications, as discussed above, include generating 
standardized, validated measurements in multi-centered trials, which 
would provide normal range values. Additionally, further information 
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is needed to interpret these measurements and define its relationship 
with the pathophysiological process of lung diseases (33).

The ability to obtain functional information with a gaseous 
agent like 129Xe about diffusion and gas exchange would provide 
more useful information about pulmonary function than what is 
obtained with current pulmonary function testing, like spirometry. 
As an example of a possible clinical application, Lin et al. found 
that parameters measured with 129Xe hyperpolarized gas MR in 
pediatric asthmatics correlated with asthma severity and 
corticosteroid use (63). Similarly, hyperpolarized gas MR 
suggested a higher sensitivity than spirometry after bronchodilator 
inhalation in asthma patients (64). As hyperpolarized gas MR 
imaging gains attention for its potential clinical usefulness, there 
will be  further understanding of the structure–function 
relationship in pulmonary diseases and their pathophysiological 
processes (65, 66). This could create a significant advantage over 
other imaging modalities in early disease detecting, monitoring, 
and phenotyping (33, 67).

XV technology
To date, no clinical studies related to XV have been published, 

though as the ventilation heterogeneity may occur over multiple 
breaths the application in clinical models could allow for breath-by-
breath analysis.

Promises and limitations of functional 
imaging

Although functional lung imaging has the potential to better 
characterize ventilatory disease and heterogeneity in ventilation within 
the lung, most of the imaging modalities have been applied within 
experimental settings and only recently have been included in clinical 
studies. Imaging modalities, such as Xe CT, 4DCT, and hyperpolarized 
gas MRI, are often cost-prohibitive for large clinical studies, requiring 
expensive isotopes and specialized equipment. Additionally, these 
studies represent different amounts of ionizing radiation exposure, 
limiting longitudinal assessments in some modalities (Table 1). More 
research needs to be done to optimize inhalation contrast delivery 
protocols and identify the utility of Xe CT, 4DCT, and hyperpolarized 

gas MRI in other acute and chronic disease processes that cause 
ventilation changes. Although XV offers a potentially lower cost 
assessment of ventilation compared to both Xe CT and hyperpolarized 
gas MRI, it is currently an experimental application with several 
limitations to adoption in clinical research. It is unclear whether 
displacement of lung tissue is truly a proxy of ventilation. 
Emphysematous areas of the lung will expand and contract with chest 
wall motion; however, these areas do not participate in gas exchange.

Ongoing clinical trials, including multi-center studies, continue 
to evaluate healthy patients and patients with various lung diseases. 
This information will help generate reference ranges for regional 
ventilation that can be  used to support clinical decision making. 
Future directions to assess the additive clinical benefit of functional 
lung imaging will require inclusion of cohort studies that further 
elucidate natural histories of disease and monitor therapeutic response 
to treatment.

Conclusion

Innovations in imaging techniques, including functional lung 
imaging, show promise and the potential to improve our current 
assessment of lung function in preclinical and clinical models, as well 
as for clinical applications. To achieve robustness and precision, it is 
likely that future pulmonary function testing will incorporate these 
modalities to detect specific regional deficiencies in addition to 
characterizing global lung function. Such an approach will generate 
clinical information that will ultimately trigger a new era of 
pulmonary disease classification, patient monitoring and improved 
personalized care. Research is now ongoing to determine the utility of 
functional lung imaging in characterizing lung function in the clinical 
setting, as well as predicting morbidity in different kinds of 
pulmonary diseases.
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TABLE 1 Adult effective dose estimated range.

Adult effective dose 
estimate range

Example examinations

0 mSv He MRI

<0.1 mSv Chest radiograph; Hand radiographs

0.1–1 mSv Pelvis radiographs, Mammography

0.2–2 mSv Chest X-ray Velocimetry

1–10 mSv Thoracic CT with IV contrast, Nuclear 

medicine bone scan

10–30 mSv Thoracic CT without and with contrast; Whole 

body PET/CT

30–100 mSv CTA chest abdomen and pelvis with contrast; 

Transjugular intrahepatic portosystemic shunt 

placement
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