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The Barents Sea is one of the Polar regions where current climate and ecosystem change is most pronounced.
Here we review the current state of knowledge of the physical, chemical and biological systems in the Barents
Sea. Physical conditions in this area are characterized by large seasonal contrasts between partial sea-ice
cover in winter and spring versus predominantly open water in summer and autumn. Observations over recent
decades show that surface air and ocean temperatures have increased, sea-ice extent has decreased, ocean
stratification has weakened, and water chemistry and ecosystem components have changed, the latter in
a direction often described as “Atlantification” or "borealisation,” with a less “Arctic” appearance. Temporal
and spatial changes in the Barents Sea have a wider relevance, both in the context of large-scale climatic (air,
water mass and sea-ice) transport processes and in comparison to other Arctic regions. These observed
changes also have socioeconomic consequences, including for fisheries and other human activities. While
several of the ongoing changes are monitored and quantified, observation and knowledge gaps remain,
especially for winter months when field observations and sample collections are still sparse. Knowledge of
the interplay of physical and biogeochemical drivers and ecosystem responses, including complex feedback
processes, needs further development.
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1. Structure and scope of this review in the scientific literature published after 2010, although in
context of climate change some cases new unpublished data and results are pre-
This interdisciplinary synthesis of status and changes in  sented. We address trends observed over the last four dec-
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Figure 1. Schematic of the Barents Sea as an integrated physical-biological system. The figure includes the main
drivers of change, placed outside, on the edge or inside the Barents Sea domain. The numbers in brackets refer to the

respective chapters or subchapters in the text.

and also look ahead over the same time period. This time
frame is most relevant for environmental management
questions. The work is part of the ongoing project “The
Nansen Legacy” (www.nansenlegacy.org), which aims to
improve and integrate our understanding of the climate
system, drivers and responses in environment and ecosys-
tem in this very rapidly changing northern ocean domain.
On top of changes driven by external drivers, there are
large short-term and long-term fluctuations in the Barents
Sea atmosphere-ice-ocean system (Figure 1) due to inter-
nal variability. These fluctuations arise from instabilities in
one component of the climate system or interactions
between different components (Sutton et al., 2015). A
good example of internal variability resulting in changes
in the Barents Sea region is the well documented
contrast between the warm and fisheries-rich years in the
1930s—1940s and the cold and relatively poor years in the
1960s (Drinkwater, 2006; Nakken, 2008; Drinkwater et al.,
2014; Drinkwater and Kristiansen, 2018).
Human-introduced greenhouse gas increases are very
likely the main driver of tropospheric warming since 1979
(Eyring et al., 2021). Global CO, emissions result in
changes in Earth's energy, freshwater and carbon budgets,
thereby forcing changes in the transport of moisture, heat
and mass towards the Arctic. These changes, in turn, affect
the energy balance within the Arctic, including in the
Barents Sea geophysical system (Figure 1). Moreover,
changes in the Arctic at large may impact lower latitudes,
for example, through outflows of sea ice (e.g., Spreen
et al., 2020) and freshwater (e.g., de Steur et al,, 2018)
and via atmospheric couplings (e.g., Siew et al., 2020).
Warming in the Arctic is occurring more rapidly than in
other regions on the planet, and processes related to
Arctic amplification (Serreze and Barry, 2011; Arctic
Monitoring and Assessment Programme [AMAP], 2021)

are subjects of recent scientific work (e.g., Pithan and
Mauritsen, 2014; Pefanis et al., 2020; Rantanen et al.,
2022). On a year-to-year basis, the varying external forcing
and the internal variability together determine Barents
Sea water temperature, light conditions, stratification,
ocean currents and other variables of importance to the
ecosystem. Global climate change also directly affects the
biogeochemistry on longer time scales (Figure 1) through
warming, freshening, and ocean acidification. The World's
oceans take up roughly 25% of man-made CO, emissions
(e.g., Watson et al., 2020), mitigating climate change on
the one hand, but with ocean acidification effects on the
other hand (e.g., AMAP, 2018; Rastrick et al., 2018). More-
over, the freshening occurring in some parts of the Arctic
Ocean leads to a decrease in nutrients, alkalinity and car-
bonate ion concentrations in the surface water, where the
latter two further contribute to ocean acidification
(e.g., Chierici and Fransson, 2009; Fransson et al.,
2015b; Fransson et al., 2016; Chierici and Fransson,
2018). Ocean currents and nutrients influence the produc-
tivity and life cycles of organisms in ecosystems (Hays et
al,, 2017; Figure 1). The large-scale changes are occurring
alongside regional and local impacts of pollution, fisheries
and other activities, which contribute significantly to var-
iability of the Barents Sea ecosystem.

This synthesis summarizes the current knowledge
regarding the coupled physical, biological and biogeo-
chemical systems in the Barents Sea, including the bound-
ary towards the Nansen Basin, along with a discussion of
future perspectives. The review is organized in chapters
and subchapters consistent with the compartments shown
in Figure 1. Scientific findings were available in a larger
number of studies for the western part of the Barents Sea
than other subregions. We summarize the results of scien-
tific process studies, mapping, and regular long-term
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monitoring programs in the Barents Sea, including phys-
ical and human impacts of observed changes. Future
knowledge needs and perspectives are addressed in
the end.

1.1. The Barents Sea region and earlier reviews

The Barents Sea is one of several shelf seas of the Arctic
Ocean, surrounded by archipelagos in the north (Svalbard
in the northwest, Franz Josef Land in the northeast),
Novaya Zemlya in the east, and northern Norway and
northwestern Russia in the south (Figure 2). The Barents
Sea is connected to other seas; in the west through the
Barents Sea Opening (BSO) to the Norwegian Sea, in the
north to the Nansen Basin, and in the east (openings north
and south of Novaya Zemlya) to the Kara Sea. It has
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a diverse bathymetry with shallow banks and deep
trenches, but its depth is limited to <300 m in most areas.

There is a large inflow of Atlantic Water (AW; temper-
ature, T > 3.0°C, and salinity, S > 35.0; see Loeng, 1991)
through the southern Barents Sea, entering the BSO and
exiting north of Novaya Zemlya after substantial modifi-
cation (Figure 2). Large heat losses occur where the AW is
in direct contact with the atmosphere (i.e., in the southern
and eastern Barents Sea), estimated at 76 TW (long-term
average from different data sources; Smedsrud et al.,
2013). There are large sea-ice inflows to the Barents Sea
from the north and east, primarily in winter through the
passages between Franz Josef Land and Novaya Zemlya,
and between Svalbard and Franz Josef Land (Ellingsen
et al.,, 2009; Kwok, 2009). Inflow variability is driven

Figure 2. Map of Barents Sea and adjacent ocean areas with main ocean and sea-ice characteristics. The
Barents Sea with adjacent ocean areas, and its setting in the Arctic (inset map). Currents are indicated with warm (red)
and cold (blue) water masses. The Polar Front (black line) is supported by more observations in the west (solid line)
than farther east (dashed line). Mean April and September sea-ice extent borders (2011-2020) from passive

microwave satellite data are indicated by thin and thick white lines, respectively, and are based on NSIDC monthly

means (Cavalieri et al., 1996). Depth contours/shadings distinguish between areas with depths less than 200 m, 200—

1000 m, 1000-2000 m, and deeper in 1000-m steps.
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primarily by atmospheric circulation, and the sea-ice
inflow affects the Barents Sea ice-cover variability (Her-
baut et al., 2015). When melting in summer the sea ice
provides freshwater, which maintains the ocean stratifica-
tion of the northern Barents Sea (Lind et al., 2018).

Climatically the Barents Sea can be divided into two
domains: a warm, well-mixed and sea-ice-free Atlantic
domain in the south; and a cold, stratified and seasonally
ice-covered Arctic domain in the north (Loeng, 1991). In
recent years our understanding of the Barents Sea and the
processes influencing its ecosystem have increased signif-
icantly (e.g., Smedsrud et al. 2013; Csapo et al., 2021). At
the same time, substantial changes are happening across
the ecosystem, complicating interpretation of mechanistic
studies against a baseline that may no longer be relevant.
To investigate this inflow shelf (Carmack and Wassmann,
2006) in the midst of fundamental changes is exciting,
but also challenging. Some key processes are still not fully
understood, and several aspects of the system are not yet
monitored.

The Barents Sea is currently experiencing rapid climate
change, manifested in the loss of sea ice (Onarheim and
Arthun, 2017; Asbjornsen et al., 2020), a warmer and
warming ocean (Barton et al., 2018; Skagseth et al.,
2020), weakening ocean stratification in its northern parts
(Lind et al., 2018) and a strengthening of stratification in
the southern parts (Hordoir et al., 2022), changes in ocean
chemistry (Skogen et al., 2014; Chierici and Fransson,
2018), a more variable and rapidly warming lower atmo-
sphere (Screen and Simmonds, 2010; Isaksen et al., 2016;
Isaksen et al., 2022), and changes in the ecosystem such as
shifts in net primary production (Dalpadado et al., 2020),
food-web characteristics (Kortsch et al., 2015) and spatial
distribution of ecologically and commercially important
fish stocks (Fossheim et al., 2015). The change is most
apparent in the northern and eastern Barents Sea (Lind
et al., 2018; Skagseth et al., 2020). While the northern
Barents Sea loses sea ice, and in the future may transition
climatically from a cold, stratified and sea-ice-covered Arc-
tic sea to a warm, well-mixed and ice-free Atlantic sea
(Lind et al., 2018), the eastern Barents Sea already has lost
most of its sea ice (Onarheim et al., 2015) and warmed
even more (Skagseth et al., 2020). These changes are part
of a larger “Atlantification” or “borealization” process that
also takes place further east in the Arctic Ocean (Polyakov
et al., 2017; Polyakov et al., 2020; Ingvaldsen et al., 2021)
and is expected to continue in the coming decades
(Arthun et al., 2019; Dorr et al., 2021).

Earlier reviews about the Barents Sea have been pub-
lished, including a book on the Barents Sea ecosystem
(Sakshaug et al., 2009) related to the “Norwegian Research
Programme for Marine Arctic Research” (ProMare, 1984—
1989). Oceanographic conditions were summarized by
Loeng (1991) and the pelagic ecosystem, by Loeng
(1989) and Sakshaug et al. (1994). Oceanographic and
biological long-term trends have been addressed by
Matishov et al. (2012) and Eriksen et al. (2017). The vari-
ability and change in air-ice-ocean processes have been
described by Smedsrud et al. (2013), who summarized the
Barents Sea contribution to the Arctic climate system.

Gerland et al: Still Arctic’—The changing Barents Sea

Work that took place in the marginal ice zone of the
Barents Sea as a part of Norwegian (Research Council of
Norway) projects focused on multidisciplinary process
studies (ICE-BAR and MARIN@K; Falk-Petersen et al.,
2000; Falk-Petersen et al., 2004) and biological forcing
of the carbon pump (CABANERA; Wassmann et al.,
2006; Wassmann et al., 2008; Reigstad et al., 2011). Other
studies with a more pan-Arctic perspective included future
prospects for the Arctic Ocean seasonal ice zones with
implications for the pelagic-benthic coupling (Wassmann
and Reigstad, 2011; Ingvaldsen et al., 2021). Studying the
ongoing changes in the northern Barents Sea and the role
of the key drivers leading to these changes is important for
understanding the mechanisms behind ecosystem pro-
cesses, and for improving predictions of a future Arctic.
We therefore find it timely to synthesize the current
knowledge regarding the coupled physical, chemical, and
biological systems in the Barents Sea, including the north-
ern border towards the Nansen Basin in the central
Arctic Ocean.

1.2. Paleorecords and historical changes
Paleorecords indicate that during the last ice age
a grounded ice sheet covered the Barents Sea (e.g., Svend-
sen et al., 2004; Dowdeswell et al., 2010). When this ice
sheet retreated between 11,000 and 7,000 years ago, AW
began to enter, accompanied by surface warming in sum-
mer and sea-ice formation in winter (e.g., Aagaard-Seren-
sen et al., 2010; Risebrobakken et al., 2010; Berben et al.,
2017).

The Arctic Front has been close to its present position
since about 7,400 years ago (Risebrobakken and Berben,
2018). AW has been present in the northern and south-
western Barents Sea, albeit with a reduced influence, since
around 7000 years ago (Lubinski et al., 2001; Smedsrud
et al., 2013). From about 8,000-5,000 years ago, Arctic
Water (ArW) took over, dominating in the NW Barents Sea
(Polyak and Solheim, 1994). Onwards from around 5,000
years ago, the NW Barents Sea again experienced
increased inflow of AW until today (Berben et al., 2017).
An increased inflow of AW is similarly indicated through
the northern boundaries around 3,500 years ago (Chau-
han et al., 2016).

Historical sea-ice conditions have been reconstructed
back to 1750 and merged with modern era satellite-
based results by Divine and Dick (2006). Their analysis
showed that interannual variability of sea ice in the Nordic
seas remained almost constant throughout this period,
whereas pronounced decadal to multidecadal variations
identified in the Barents Sea ice extent had periods of
20 to 30 years. This variability was superimposed on a con-
tinuous negative trend in sea-ice extent, associated with
a combined effect of anthropogenically induced warming
and climate recovery to a mean state after the termination
of the multicentennial cold period known as “Little Ice
Age”. These findings support conclusions from Vinje
(2001), who found evidence of persistent ice retreat since
the second half of the 19™ century. Lamb (1977, 1979,
1984, 1995) and Morner et al. (2020) reconstructed ice-
edge positions in the Barents Sea back to the late 16
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Figure 3. Schematic overview of physical processes and drivers affecting the Barents Sea system. Shown are
important physical processes and drivers related to ocean, sea ice and atmosphere, all affecting the Barents Sea
system. Figure developed by Frida Cnossen (UiT The Arctic University of Norway/The Nansen Legacy).

century. In that record, the Barents Sea ice edge has been
moving northward since about 1800, with intermediate,
less strong shifts to the south over a few decades between
1860 and 1910 and again between the 1930s and 1950s.
New studies using marine sediment proxies of sea ice and
temperature in the northernmost Barents Sea reveal con-
tinuous persistence of both seasonal sea ice and AW
inflow 10,000 to 6,000 years ago (Holocene Thermal Max-
imum), and also during warmer-than-present conditions
(Pienkowski et al., 2021). Current anthropogenic drivers of
sea ice and inflow, however, differ from those in the past.

2. Status and changes of the atmosphere,
ocean, and sea-ice systems

Prominent changes have occurred in the northern Barents
Sea physical system over the last decades in the form of
oceanic and atmospheric warming, the reduction in win-
ter sea-ice cover, and corresponding increases in winter
heat loss. The plethora of relevant variables, parameters

and processes in the atmosphere, ocean and sea ice are
illustrated in Figure 3, and will be discussed in the the-
matic sub-chapters below. Here we demonstrate these
changes using data for a subregion (Figure 4).

2.1. A complex interplay of drivers change the
Barents Sea

The loss of sea ice follows an increased transport of ocean
heat by AW into the southwestern Barents Sea through the
BSO (Arthun et al., 2012; Stroeve et al., 2014), increased
import of atmospheric heat (Woods and Caballero, 2016),
and reduced volume of sea-ice inflow (Lind et al., 2018).
Specifically, the annual variability in Barents Sea winter
sea-ice cover is mainly driven by AW inflow with a 1-
year to 2-year lag (Arthun et al., 2012). The multi-
annual/decadal sea-ice variability is characterized by large
additional warming and ice loss trends since the early
1980s (Onarheim et al., 2018). These trends are further
explained by rising air temperature and radiative
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Figure 4. Northern Barents Sea time series: ocean and air temperatures, sea-ice concentration and sensible

heat flux. (a) Time series of mean late summer—early autumn (August, September, October) subsurface (50-200 m)
ocean temperature and mean winter (December, January, February) 2-m air temperature, sea-ice concentration and
sensible heat flux from ocean to air in the Northern Barents Sea (region shown in panel b). Dashed lines indicate
statistically significant linear trends (p < 0.05). The cold (1985-1989) and warm (2012—2016) periods, as referred to in
Figures 5 and 6, are shown with grey shadings. (b) Mean sensible heat flux anomaly in winter (December, January,
February) 2018 relative to 1979-2020. Mean sea-ice edge in winter (taken as 15% concentration) is shown with the
green line. The boxes show integration areas for the atmospheric (black) and oceanic (blue) parameters shown in
panel a). Atmospheric and sea-ice parameters are based on the ERA5 atmospheric reanalysis. Ocean temperatures are
based on CTD observations from regional late summer surveys, as long-term winter observations in the region are not
available. Mean ocean temperature was calculated only when at least 80% of the ocean integration box was covered

by observations (thus not in the heavy sea-ice years of 2003 and 2014).

feedbacks due to larger open-water areas (Lee et al., 2017).
The combined effects from frequent winter storms and
enhanced heat content of AW are also crucial for explain-
ing sea-ice melting processes realistically (Duarte et al,
2020). In addition, observations of sea-ice concentration
combined with estimates of ice thickness change show
large reductions in the volume of sea-ice import to the
Barents Sea after 2005 (Lind et al., 2018). These reductions
imply that recent atmospheric forcing has had a larger
effect than oceanic forcing on sea-ice volume changes
(Ingvaldsen et al., 2021). However, this result disagrees
with analysis from Earth System Model Ensembles where
the ocean heat transport still dominates (Dorr et al., 2021).
These opposing results illustrate the needs for both obser-
vations and modelling experiments focusing on large-

scale changes and specific processes in the air, ice and
ocean systems, as well as harmonization of observations
and model outputs.

The atmospheric response to sea-ice changes in the
Barents Sea has been the focus of several recent studies.
Feedbacks between changes in ice cover and the atmo-
sphere during winter months (Strong et al., 2009; Wu and
Zhang, 2010) may operate via a delayed stratospheric
pathway (King et al., 2016). From modelling studies, the
atmospheric response to sea-ice loss appears to be rather
weak (Screen et al., 2013; Mori et al., 2014) and sensitive
to the mean state and the exact patterns of ice loss (Sun
et al,, 2015; Osborne et al., 2017). Therefore, while the sea
ice may promote certain circulation patterns that can pro-
duce, for example, cold winters in Eurasia, most studies
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indicate that this effect is small relative to the large inter-
nal variability of the atmosphere (McCusker et al., 2016;
Shepherd, 2016). However, the impacts might still be
significant on a regional level, as demonstrated by events
of extreme precipitation on the west coast of Svalbard in
recent years explained by less sea ice east of Greenland
facilitating income of southerly moist air (Miiller et al.,
2022).

Because the water under sea ice is undersaturated in
CO, fugacity (fCO,) relative to the atmospheric fCO, level,
more open-water areas can lead to increased ocean uptake
of atmospheric CO,, particularly in combination with the
effect of strong winds increasing the ocean CO, uptake
(Fransson et al., 2017; see Section 3). A weaker stratifica-
tion in the northern Barents Sea (Lind et al., 2018;
further discussed in Section 2.2.2.) allows increased
heat exchange between ocean and atmosphere (Fer,
2009), which can have substantial impact when this strat-
ification change is viewed in combination with reduced
sea-ice cover.

Extensive air-sea-ice interactions also occur in parts of
the southern and eastern Barents Sea. AW is transformed
into water masses of different density (e.g., Schauer et al.,
2002; Lien and Trofimov, 2013; Barton et al., 2018;
Schlichtholz, 2019) and leaves the Barents Sea in the east
toward the St. Anna Trough (Dmitrenko et al., 2015).
When exiting the Barents Sea, the AW has lost much of
its heat and acquired a greater density (Arthun et al., 2011;
Lien and Trofimov, 2013; Skagseth et al., 2020), but is still
warm enough to melt ice (Gammelsrod et al., 2009).

The most prominent physical changes within the
Barents Sea have occurred in these eastern and northeast-
ern regions due to northward retreat of sea ice, warming,
and changes in heat loss along the pathway of AW flow
(Arthun et al., 2012; Smedsrud et al., 2013; Barton et al.,
2018; Skagseth et al., 2020; Moore et al., 2022). A simple
chain of cause and effect for the Barents Sea was postu-
lated by Smedsrud et al. (2013). 1) A larger AW heat trans-
port leads to local ocean warming. 2) The warming leads
to an expansion of the area that does not freeze over, and
hence a reduced ice cover. 3) The larger open-water area
leads to an overall larger ocean-to-atmosphere heat loss of
the throughflowing AW, thereby buffering the tempera-
ture variability in the water exported from the Barents
Sea. Other studies have revealed substantial warming in
the northeastern Barents Sea after 2000 (Lien and Trofi-
mov, 2013; Barton et al., 2018) related to weaker heat loss
in the eastern Barents Sea. The warming implies that the
buffering effect has weakened, and that the region now
exports warmer water to the deep Arctic basins (Barton
et al., 2018; Skagseth et al., 2020). However, the present
warming in the northeastern Barents Sea may also reflect
a poleward shift of the buffering (cooling) area (Barton
et al., 2018; Moore et al., 2022), indicating that most of
the heat from the Barents Sea throughflow water is still
lost before entering the Arctic Ocean (Shu et al.,, 2021).

Over the last century, the observed changes in sea-ice
cover, ocean warming, heat loss, and CO, uptake have
been faster in the northern Barents Sea than in the rest
of the Arctic Ocean (Smedsrud et al., 2022). Some of these
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ongoing changes are demonstrated using data for a subre-
gion of the Barents Sea seasonal ice zone (Figure 4).
Ocean temperature has increased by 0.2°C per decade
over the period 1979-2020, while at the same time air
temperature increased by 2.3°C per decade (upper panels
in Figure 4a). Sea-ice concentration decreased by 14% per
decade, and sensible heat flux increased by 7% per decade
(lower panels in Figure 4a). The northern Barents Sea is
therefore a hotspot of climate change that at the same
time still retains “true Arctic” conditions. In the following
sections we explore this concept in more detail.

2.2. Atmospheric state, variability and

recent changes

2.2.1. The Barents Sea in a larger atmospheric system
The Barents Sea is located at the northeastern end of the
low-pressure area (trough) extending northeastwards from
the Icelandic low. Climatological winds are easterly in the
northern Barents Sea, with southwesterly components
dominating in the south. Mainly due to the warm AW and
small sea-ice area for its latitude, the Barents Sea experi-
ences high average surface air temperatures (SAT). The
highest SAT are found in the southwest where the warm
AW enters, whereas the lowest occur in the north, follow-
ing the mean sea-ice extent. The northern Barents Sea is
where that the greatest increases in winter SAT for the
entire Arctic have been observed (Screen and Simmonds,
2010; Figure 4a).

Climate variability in the Barents region is linked with
large-scale atmospheric processes, e.g., circulation pat-
terns and cyclone pathways (Smedsrud et al., 2013).
Hereby, the regional position and variability of the atmo-
spheric polar front that outlines the border between pref-
erentially northerly and westerly (or southwesterly) winds
are of importance. Several studies have described specific
linkages in detail (e.g., Sorteberg and Kvingedal, 2006;
Koenigk et al., 2009; Kwok et al., 2009; Herbaut et al.,
2015), but have also acknowledged that the interactive
processes are not yet fully understood. The North Atlantic
Oscillation (NAO), the leading mode of atmospheric vari-
ability in the region, previously has been correlated with
AW inflow into the Barents Sea (Dickson et al., 2000) and
the sea-ice cover (Deser and Teng, 2008). The NAO rela-
tionship with the Barents Sea appears non-stationary over
longer time scales both for the NAO forcing on the AW
inflow and sea ice (Smedsrud et al., 2013) and for the sea-
ice forcing on the NAO (Kolstad and Screen, 2019). Since
2005, the NAO has been predominantly positive, with one
exception in 2010 (Kolstad and Screen, 2019). The Barents
Oscillation (BO), which has a centre of action over the
Barents Sea, was argued by Skeie (2000) to be a better
descriptor of Barents Sea variability. He found a strong
correlation (r = 0.76) between the BO and the sensible
heat loss of the Nordic Seas. However, as pointed out by,
e.g., Tremblay (2001), the BO mode may not be robust.

2.2.2. Changes in surface air temperatures and cyclone
activities, with impacts on sea ice and water masses

SAT over the Barents Sea have been above normal since
about 2005 (Figure 4a). The largest positive anomalies
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were found in the northern Barents Sea and are consis-
tently positive for winter months. For example, recent
observed winter temperature anomalies are typically 4°C
on the west coast of Spitsbergen, and a re-analysis indi-
cates comparable values over the Barents Sea (mean tem-
perature anomaly 3°C-3.5°C during 2001-2015 versus
1971-2000; Isaksen et al., 2016). Changes in SAT over
Svalbard show similar characteristics and correlate posi-
tively with northern hemispheric sea-ice extent, and partly
with NAO (Osuch and Wawrzyniak, 2017). Osuch and
Wawrzyniak (2017) also reported that the largest temper-
ature changes occurred during the polar night, from the
end of October until the end of February, in line with
Screen and Simmonds (2010) and Isaksen et al. (2016).
Significant correlation between SAT and sea-ice presence
east and north of Spitsbergen suggests that much of the
recent atmospheric warming in Spitsbergen is related to
and driven by heat exchange from the larger contempo-
rary open-water areas in the Barents Sea and north of
Svalbard (Isaksen et al., 2016). When investigating
SAT changes during the period 2001-2020 from different
locations on Svalbard and Franz Josef Land, Isaksen et al.
(2022) found a record-high annual warming of 2.7°C per
decade, with a maximum in autumn of up to 4.0°C per
decade.

Cyclone activity in the Atlantic sector of the Arctic has
been changing, but with regional variations. Winter
extreme cyclone activity between 60 and 90°N over the
Greenland, Norwegian, and Barents seas and the entire
Arctic decreased slightly from 1979 to 2014 (Koyama
et al., 2017). Koyama et al. (2017) further showed that the
Arctic Oscillation index and the wintertime extreme
cyclone activity in these seas and the entire Arctic were
positively correlated (r = approximately 0.5), although
possibly sensitive to the study period. Focusing on the
Arctic North Atlantic, Rinke et al. (2017) found an increase
in extreme cyclone events, equal to 6 events per decade
over 1979-2015, according to data from Ny-Alesund, Sval-
bard. Moreover, Wickstrom et al. (2020) found for winter
months (December—February), in the period 1979-2016,
a decrease in cyclone densities in southeastern Barents Sea
and an increase in cyclone densities in the areas around
Svalbard and in northwestern Barents Sea.

The atmospheric influence on sea-ice concentration in
the Barents Sea is due to a combination of wind stress and
thermodynamic fluxes from weekly (Fang and Wallace,
1994) to monthly time scales (Wu and Zhang, 2010; Sor-
okina et al., 2016). Atmospheric pressure patterns control
the net ice advection between the Barents Sea, Kara Sea
and Nansen Basin, contributing significantly to the winter
sea-ice variability in the Barents Sea (Herbaut et al., 2015).
An increase in poleward moisture transport by the atmo-
sphere (Woods and Caballero, 2016) has been estimated to
contribute 30% to the observed trend (1979-2011) in
winter sea-ice loss in the Atlantic sector of the Arctic
Ocean, as well as to the interannual variability (Park
et al., 2015a). This increased atmospheric transport is con-
sistent with a lower southern Barents Sea heat loss in
recent years (Skagseth et al., 2020). In the northern
Barents Sea, in contrast, the decline in winter sea-ice
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concentration since 1979 is accompanied by higher ocean
heat loss (Asbjornsen et al., 2020; Skagseth et al.,, 2020;
Figure 4a), with the highest January mean anomalies
exceeding 120 Wm™~ in 2018 (Figure 4b). This high heat
loss is in line with findings by Screen and Simmonds (2010),
who showed that the northern Barents and Kara Seas
between 1989 and 2009 experienced the strongest
increases in surface heat losses during October—December
in the entire Arctic, alongside the greatest winter sea-ice
loss. Sea-ice features on the kilometer scale are also affect-
ing atmosphere properties and weather. Batrak and Miiller
(2018) have shown in a study from the eastern Barents Sea
and west of Svalbard that sea ice can influence weather
even several hundred kilometers from the ice edge.

The archipelagos of Svalbard and Novaya Zemlya rep-
resent obstacles to the local-to-mesoscale atmospheric
flow in the Barents Sea region. For other Arctic regions,
such as Greenland with surrounding waters, orographic
flow phenomena like downslope windstorms and tip jets
have been documented extensively and related to air-sea
interactions important, e.g., for deep-water formation
(Doyle and Shapiro, 1999; Pickart et al., 2003; Harden and
Renfrew, 2012). Orographic flows may have an impact on
the West Spitsbergen Current through elevated surface
fluxes and wind-stress curl (Skeie and Grends, 2000).
Moore (2013) studied the impact that strong downslope
wind, forming over the topography of Novaya Zemlya, has
on air-sea interactions in the eastern Barents Sea. He
found that the highest wind speeds occur along the west-
ern coastline of the archipelago—a region where dense-
water formation is observed (e.g., Midttun 1985; Arthun
et al, 2011)—and that ocean-surface heat loss doubles
during these strong wind events. Moore (2013) further
argued that these usually cold winds play an important
role in the transformation of AW as it passes through the
area on its way to the Nansen Basin.

2.3. Ocean hydrographical state, variability
and recent changes
2.3.1. Main features of the Barents Sea circulation and
hydrography
Of the two climatic domains in the Barents Sea (Figure 5a
and b), the southern (Atlantic) domain is strongly influ-
enced by the inflow of warm AW, the largest regional
oceanic heat source. The northern (Arctic) domain is dom-
inated by sea ice and Arctic waters maintaining a strong
ocean stratification. Although the changes are more pro-
minent in the northern domain (warming, sea-ice loss and
reduced stratification), they are strongly influenced by
changes in the AW inflow in the southern domain through
feedbacks and regional processes (Ingvaldsen et al., 2021).
The largest AW inflow enters through the BSO in the west
(Figure 2; Ingvaldsen et al., 2002; Ingvaldsen et al., 2004a,
2004b; Lien et al., 2013). The annual variability of heat
transport resembles the variations in volume transport,
but on longer time scales the variation in upstream North
Atlantic temperature becomes important (Skagseth et al.,
2008; Arthun et al.,, 2012; Lien et al., 2017).

The northern domain of the Barents Sea is stratified,
where sea-ice formation and melt influence the
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Mean temperature 1985-1989 (°C)

Mean temperature 2012-2016 (°C)

Temperature difference (2012-2016) — (1985-1989) (°C)

Figure 5. Ocean temperature maps for the cold (1985-1989) and warm (2012-2016) periods with the
temperature differences. Mean temperatures between 50 m and 200 m depths in late summer (August,
September, October) during the years (a) 1985-1989 and (b) 2012—-2016 based on observations from regional
surveys. Solid lines show the 0°C (black) and 3°C (red) isotherms. The dashed line in (a) marks the section from
Varde (Norway) in the south to the Nansen Basin in the north (see Figure 6). (c) Temperature difference between the
two periods.

hydrography substantially. The upper layer consists of rel-  2000; Lind and Ingvaldsen, 2012). The northern Barents
atively fresh surface water, overlying an intermediate cold Sea is exposed to intermittent inflow of modified but still
and relatively fresh Arctic layer, with warm AW and cold warm AW from the north (water masses that reach the
dense water towards the bottom (Falk-Petersen et al., Barents Sea after moving clockwise around the NW part
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of Svalbard), following the trenches cutting the northern
continental slope (Lind and Ingvaldsen, 2012; Pérez-Her-
nandez et al., 2017), in addition to possible AW influx
from the south. The salinity of the Arctic layer determines
the density difference between it and the deeper AW,
which in turn largely controls the amount of vertical mix-
ing between the two layers. This mixing impacts the AW
temperature of the northern Barents Sea with a one-year
lag (Lind et al., 2016). The stratification and presence of
the Arctic layer depends on a freshwater content that is
drained continuously by vertical mixing with the deeper
AW. Thus, a freshwater input is needed to sustain the
stratification. A strong co-variability between sea-ice
inflows from the Arctic Ocean and the Arctic layer fresh-
water content reveals that melted, imported sea ice is
a major freshwater source for this region (Lind et al.,
2018). Inter-annual variability in sea-ice inflow from the
north, and thus the volume of ice available for melting,
depends more on regional atmospheric anomalies than on
varying heat content available for melting ice in the AW
boundary current following the northern continental
slope (Lundesgaard et al., 2021). However, the freshwater
input and stratification balance can also be partly main-
tained by varying advection of ArW into the region. The
circulation of neither AW nor ArW in the northern Barents
Sea is yet completely understood.

The northern part of the Barents Sea undergoes large
seasonality in near-surface stratification. In winter, the
water column becomes less stratified and more mixed due
to cooling from heat loss to the atmosphere and brine
release from ice formation. In summer, local ice melt,
inflowing melt water, potentially meltwater from advected
sea ice from outside the Barents Sea, and solar heating
(later in the season) create a shallow (10-25 m thick) low-
density surface layer (Sundfjord et al., 2007; Smedsrud
et al., 2010). The strong seasonal stratification reduces the
vertical extent of wind-driven mixing. However, over the
shallower banks and around islands, strong tidal currents
efficiently homogenize the water column even in summer
(Sundfjord et al., 2008; Fer and Drinkwater, 2014). These
shallow areas also facilitate convection driven by surface
cooling and brine release in winter (Arthun et al., 2011).
The spatial and seasonal variations of stratification may
set up pressure gradients favoring lateral exchange, both
within the northern Barents Sea and with the neighboring
regions, which in turn could facilitate redistribution of
water masses. However, this scenario is not yet adequately
understood and merits further study.

The oceanic Polar Front separates the warm southern
domain from the colder northern domain (Figure 2). This
thermohaline “front” is rather a series of frontal structures
extending from southwest of Svalbard towards Novaya
Zemlya, but varying temporally and spatially in strength,
width, and position. The Polar Front is controlled topo-
graphically, being largely stationary in the west, but less so
in the east due to less steep bathymetric slopes (Oziel
et al,, 2016). In the west, the front is aligned along-flow
and separates AW in the south from the colder and less
saline (thus less dense) ArW in the north. However, smaller
portions of AW flow “below” the front and into the
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northern Barents Sea across the sill in the northern part
of Hopendjupet (Figure 2). The salinity gradient and,
more notably, temperature differences diminish eastward,
contributing to a less well-defined front (e.g., Oziel et al.,
2016). Therefore, in the east, the Polar Front also has an
across-flow component as much of the AW is transformed
to Barents Sea water (e.g., Lien and Trofimov, 2013; Barton
et al., 2018). The reduced winter sea-ice cover in the cen-
tral and eastern Barents Sea (Onarheim et al., 2015; Lien
et al., 2017) eases access and makes winter observations
more feasible today than in the past, but the lack of earlier
winter observations hinders evaluation of changes in
hydrography of the Polar Front during winter.

At the Barents Sea northern shelf break, AW and heat
coming from Fram Strait are transported eastwards, fur-
ther along the upper continental slope in the Atlantic
Water Boundary Current (Renner et al., 2018). With the
exception of wind-influenced near-surface waters and out-
flow of dense cold near-bottom water (Arthun et al., 2011),
this boundary current limits exchange between the north-
ern Barents Sea and the adjacent Nansen Basin. Further-
more, this current can feed heat into the northern Barents
Sea through the channels between Nordaustlandet, Kvi-
toya, Victoria Island and Franz Josef Land (Matishov et al.,
2009; Lind and Ingvaldsen, 2012). Few direct observations
of this inflow exist (e.g., Aagaard et al., 1983). The few
recent campaigns targeting the westernmost of these pos-
sible northern inflow pathways show large recirculation in
the Kviteya Trough leading into the Barents Sea (Pérez-
Hernandez et al., 2017), but also intensified inflow of the
warmer and saltier AW water during autumn and early
winter through both the Kviteya Trough and a site
impacted by the Franz Josef Trough (Lundesgaard et al.,
2022); here, the relative density and positioning of this
water may be critical for the northern Barents Sea ice
conditions. This available information calls for better
understanding of the inter-annual variability.

2.3.2. Recent oceanographic changes in the

Barents Sea

The temperature in the Barents Sea is closely related to
progression of AW temperature and volume anomalies,
with AW inflow exhibiting strong variability on timescales
ranging from years to decades (Furevik, 2001; Schlichtholz
and Houssais, 2011; Yashayaev and Seidov, 2015; Arthun
and Eldevik, 2016; Asbjornsen et al., 2019). An increasing
number of warm pulses, in combination with an overall
warming trend, has gradually warmed the Barents Sea.
Moreover, since 2000, reduced heat loss (Skagseth et al.,
2020), possibly in combination with pulses of increased
AW transport, has caused a poleward amplification of the
AW warming (Ingvaldsen et al., 2021).

The measured volume flux of AW into the Barents Sea
varies over periods of several years, but shows no signifi-
cant trend over the period between 2004 and 2018 (Skag-
seth et al., 2020; see also Smedsrud et al., 2022). Over the
longer time scale, simulations show large variability in AW
heat transport of typically +10 TW over a few years, and
a long-term increase in heat transport to the Barents Sea
from around 40 TW to 60 TW over the last century
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Figure 6. Barents Sea ocean temperature transect for 1985-1989 and 2012-2016 with the temperature
differences. Mean temperature along a latitudinal section between 30°E and 34°E (see Figure 5a) in late summer
(August, September, October) during the years (a) 1985-1989 and (b) 2012-2016 based on observations from
a repeated transect from Varde (Norway) in the south to the Nansen Basin in the north. Solid lines show the 0°C
(black) and 3°C (red) isotherms. (c) Temperature difference between the two periods.

(Muilwijk et al., 2018). A significant increase of poleward
heat transport of 21 TW in the form of warmer water
being transported since 2001 has also been reported (Tsu-
bouchi et al., 2020).

The Barents Sea warming (Figures 5 and 6) has gen-
erally created a northward shift of isotherms of a given
temperature over time. This northward shift varies along
the Polar Front, but is for example about 1°N or 100 km
over the last 30 years in the surface layer along the 30°E
transect (Figure 6). A larger northward shift (or amplified
warming) is apparent for the deeper layers, with about
twice the magnitude at 150-200 m (Figure 6). In the
eastern Barents Sea, the surface 0°C isotherm has moved
from 74°N to 78°N, while the 3°C isotherm has been
displaced downstream along the AW flow along southern
Novaya Zemlya (Figure 5). Earlier studies have shown that
east of 32°E the Polar Front splits into two branches:
a northern front associated with strong salinity gradients
and a southern front with temperature gradients (Oziel

et al,, 2016). Since the 1990s, the southern front in the
eastern Barents Sea has shifted northwards (Oziel et al.,
2016), while the northern front has remained relatively
stable and is now the southern limit of the winter sea-
ice extent (Barton et al., 2018). Previously, when some sea
ice drifted across the Polar Front and melted directly on
top of AW on the Atlantic side, the AW was cooled and
freshened in this way, whereas now this cooling and fresh-
ening does not occur (Barton et al., 2018). Therefore, the
AW can keep a higher salinity and temperature on its
passage through the eastern Barents Sea. However, the
rate of salinification or freshening in the eastern Barents
Sea also varies with the AW inflow (Arthun et al,, 2011;
Lien et al., 2013; Barton et al., 2018; Skagseth et al., 2020),
the freshwater input from the Norwegian Coastal Current
(Rudels et al., 2015; Shu et al., 2018), and mixing in the
region (Lien et al., 2013; Schauer et al., 2002). Although
the exported water has increased in salinity, but not in
density due to the concomitant reduction in cooling after

€202 JoquianoN €z uo Jasn AemIoN Jo Asseaiun ool 8yL 11N Aq jpd'88000°220Z eIULWSIS/61.5762/88000/L/ | LAPd-8loiHE/BIUSWSIS/NPa"SsaIdoN Bul|uo//:dRY WOl papeojumoq



Art. 11(1) page 12 of 62

2000, the export waters within a few years may freshen
substantially due to an observed freshening of the
upstream AW (Skagseth et al., 2020).

Significant salinity changes have occurred during sum-
mer for the surface and Arctic layers in the northern
Barents Sea. There has been a 40% freshwater loss in the
upper 100 m of this region between the periods 1970-
1999 and 2010-2016 (Lind et al., 2018). The decreasing
freshwater content and the associated weakened stratifi-
cation enhance the heat and salt flux from the AW layer
below, causing a positive feedback and further increasing
the warming and the reduction in stratification (Lind
et al,, 2016). Such a process would resemble the recent
observations of decreasing stratification and a shallowing
of the AW occurring in the eastern Nansen Basin (Polyakov
et al., 2017). We note, however, that the northern Barents
Sea ice cover has returned to more normal conditions in
the very recent time (Aaboe et al., 2021), thus likely facil-
itating an increase in freshwater content relative to the
record-low 2012-2016 period. Regional sources might
also contribute to increased freshwater input, such as
meltwater from Svalbard's Austfonna icecap (Morris
et al., 2020) and mass loss from other Svalbard glaciers
(Geyman et al., 2022). However, how this freshwater forc-
ing compares to that from sea-ice inflow and subsequent
melt is not known. How the observed summer changes
translate into the winter situation is only poorly known. A
recent modelling study confirmed strong changes in sum-
mer stratification in the northern Barents Sea after 2000,
while the changes during winter were characterized by
only modest changes in stratification but a significantly
shallower mixed layer depth (Hordoir et al., 2022). Winter
data from the northern Barents Sea are clearly needed to
address these issues; progress towards this goal is devel-
oping (e.g., Lundesgaard et al., 2022).

The ArW has warmed since the 1980s by about 1°C,
with the main change occurring after 2004 (Dalpadado
et al., 2012; Johannesen et al., 2012; Lind et al.,, 2018).
Similar changes have been observed in the AW tempera-
tures in the northern Barents Sea (Lind and Ingvaldsen,
2012), reflecting the AW temperature trend further south.
The warming appears to be fed both from the north and
south, leaving only a small volume of cold Arctic Water in
the northwestern part of the Barents Sea (Figure 6).

2.4. Status and changes in the Barents Sea ice cover
2.4.1. Long-term decline in sea-ice extent

Beyond seasonal variations in sea-ice extent, with maxima
in April and minima in September months (Figure 2), the
sea-ice extent in the Barents Sea has decreased over time:
—9.8% and —17.7% per decade in April and September,
respectively (1979-2021; Norwegian Polar Institute,
2022a, 2022b). Because the absolute sea-ice area in Sep-
tember is relatively small, the percentage change appear
to be the highest; however, in absolute area the changes in
April are the highest (see below). The recent (three dec-
ades, 1988-2017) loss of Arctic winter sea ice, with most
rapid losses occurring in the northeastern Barents Sea, is
unprecedented in the observational record (Onarheim and
Arthun, 2017). The disproportionate contribution of sea-
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ice loss in the Barents Sea to the overall northern hemi-
sphere sea-ice loss is exemplified by the fact that the
Barents Sea covers roughly 4% of the northern hemi-
sphere ice-covered area, but contributes 24% of the
observed winter sea-ice area loss (Onarheim and Arthun,
2017). Between 1979 and 2016, the Barents Sea lost ice
throughout the year (Onarheim et al., 2018), but mostly
during winter and spring (November—June). The loss has
been smallest in September (typical month of minimum
extent) and large in April (maximum extent, with a loss of
478,000 km?), but largest in May and June (Onarheim
et al., 2018). The small absolute numbers for September
sea-ice loss can be explained by the presence of very little
ice in the region at that time of the year. The decline in
winter (January—April) sea-ice area has been as large as 23%
per decade from 1979 to 2015 (King et al., 2017). Notably,
within the Arctic, the winter sea-ice loss in the Barents Sea
between 1979 and 2019 is the strongest among all Arctic
regions with sea ice (Fox-Kemper et al., 2021).

King et al. (2017) demonstrated that the reduction in
atmospheric freezing-degree days in the Barents Sea alone
is insufficient to explain all the recent sea-ice cover
changes. The observed reduction in sea ice should there-
fore be considered in the context of other local and
regional changes (forcing factors), such as increased heat
inflow via the BSO (Section 2.3.) and/or sea-ice transport
from adjacent regions in the north and east (Hop and
Pavlova, 2008; Kwok, 2009). Lind et al. (2018) estimated
from satellite data a 40% + 20% decline (2010-2015
mean versus 1979-2009 mean) in the sea-ice area
imported to the Barents Sea, with sea-ice inflow primarily
through the Franz Josef Land-Novaya Zemlya passage in
winter. However, newer data (Ingvaldsen et al., 2021) show
a slight increase again of sea-ice import into the northern
Barents Sea in most recent years to similar levels as earlier;
they showed that the relative portion of imported sea ice
increased since about year 2000, because the total sea-ice
area decreased. A recent investigation of the variability in
interannual sea-ice extent over the last 40 years found
a dominant mode in the areal change of sea ice in the
northeastern Barents Sea, resulting from a combined
effect of AW meeting winter sea ice, northerly winds and
related sea-ice import from the north (Efstathiou et al.,
2022). Winds and sea-ice import were further found to
be the causes for spatial redistribution of the Barents Sea
ice cover, i.e., change in distribution without change in
total area, including a “dipole mode” with increase of sea-
ice concentration south of Svalbard and decrease south-
west of Novaya Zemlya (and vice versa).

2.4.2. Thinner sea ice and longer open-water seasons

Few observational data sets of sea-ice thickness exist for
the recent years in the Barents Sea (King et al., 2017). Data
from moored upward-looking sonar recordings between
1994 and 1996 indicate substantial interannual variability
of ice thickness in the NW Barents Sea, with a range of up
to 1 m (Abrahamsen et al., 2006). King et al. (2017) com-
pared airborne measurements of sea-ice thickness in the
NW Barents Sea from surveys in 2003 and 2014. In 2003,
the dominant sea-ice class was older than 2 years, with
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a modal thickness in the range 0.6 m to 1.4 m, while in
2014 the ice was formed locally as first-year ice with
a modal thickness in the range 0.5 m to 0.8 m. Earlier
long-term observations from coastal sea ice at Hopen,
Svalbard, indicate a decrease in ice thickness (Gerland
et al., 2008). Ice thickness is controlled by external forcing,
the time of onset of freezing in the region, and possible
sea-ice advection from the neighboring areas such as the
Nansen Basin (e.g., King et al., 2017) and the Kara Sea. In
regions bordering the Barents Sea, indications for
a decrease of sea-ice thickness have also been observed:
during the N-ICE2015 expedition (Granskog et al., 2016;
Granskog et al., 2018) over the Nansen Basin and Yermak
Plateau just north of the Barents Sea, Rosel et al. (2018)
found modal total (ice + snow) thicknesses of 1.6 m
(ground-based electromagnetics) and 1.7 m (airborne elec-
tromagnetics) from observations between April and June
2015, which is lower than historical observations (1.8 m to
2.7 m) in the same region and time of year.

Emerging techniques for ice-thickness detection
through satellite-based remote sensing, such as the com-
binations of satellite-based altimeters (CryoSat-2 and
SMOS satellite; Ricker et al., 2017), a combination of
satellite-based altimeter and synthetic aperture radar
(SAR) data (Karvonen et al., 2022), or thermal satellite
imagery from MODIS (Rudjord et al., 2022), can be used
to investigate recent changes in ice thickness, but the
spatial resolution of such datasets is often coarse, and
time series are too short to give an indication of recent
trends. However, first results from remote sensing-based
measurements are promising and timely. Ricker et al.
(2017) showed an exceptionally low number of freezing-
degree days in the Barents Sea for the winter 2015-2016
relative to the years 2011-2015 and compared with the
rest of the Arctic. The relative sparseness of quantitative
information about sea-ice thickness in the Barents Sea
combined with indications of changes highlights the need
for better ice thickness data in the Barents Sea region.

Corresponding with the diminishing sea-ice cover in
the northern Barents Sea (Figure 4a, third panel), the
length of the open-water season has increased dramati-
cally in the Barents Sea, by >5 days year ' in the 1998-
2012 period (Park et al., 2015a), which is at least twice as
fast as the Arctic average (Arrigo and van Dijken, 2015).
This increase is especially evident in the region where the
ice edge has retreated (Figure 7). From the 1980s to 2016,
a substantial ice loss occurred in June and July, along with
later freeze-up and loss of ice in October (Onarheim et al.,
2018). This loss has important consequences for albedo,
and thus solar heat input (Perovich et al., 2007; Perovich
et al., 2011; Stroeve et al., 2014; Stroeve et al., 2021), for
the overall surface energy balance, as well as for availabil-
ity of light and length of season for primary production
(Arrigo and van Dijken, 2015). A potential biological feed-
back is the increased heat absorption by phytoplankton in
the absence of sea ice and with increased primary produc-
tion (Park et al., 2015b), as the Barents Sea has very low
absorption by colored dissolved organic matter (DOM)
compared to other Arctic marginal seas (Petit et al.,
2022). However, phytoplankton likely only affect the
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vertical distribution of solar heating, and do not increase
the amount of solar heating. The most rapid increase in
days of open water during the coming decades in the
Arctic is expected to occur in the Barents Sea region (Barn-
hart et al., 2016).

Information on the snow cover on sea ice in the
Barents Sea is also sparse, but Forsstrom et al. (2011)
found a mean spring snow thickness for Barents Sea
first-year sea ice (1999) combined with Svalbard's land-
fast sea ice (2003-2008) to be 0.13 m, which is lower
than snow thickness on sea ice further west, in Fram
Strait, during the springs of 2005, 2007 and 2008. Snow
thickness on sea ice north of Svalbard was 0.53 m from
April to early June 2015, which is 73% above the average
value of 0.30 m from historical and recent observations
in this region (Rosel et al., 2018). Available regional
snow-on-sea-ice data are not sufficient yet to derive
trends or changes over time or to discern real change
from interannual variability.

3. Ocean biogeochemistry

Physical characteristics such as stratification, mixing of
water masses, and sea-ice production and melt influence
the dynamics of nutrients and carbon in the Barents Sea
(Chierici and Fransson, 2018). Stratification affects the
availability of nutrients for primary production in the
euphotic zone and the exchange of carbon from surface
to the deep ocean. CO, dissolution and carbon seques-
tration in the Arctic Ocean are influenced by the ocean
temperature (enhanced dissolution under cooling) and
sea-ice related processes, such as brine formation and
deep-water formation, e.g., in the Nansen Basin and the
continental slope north of Svalbard and Storfjorden
(Anderson et al., 2004; Chierici and Fransson, 2018).
Moreover, the cooling of the warm AW subducts CO,-rich
surface water to depth and transports anthropogenic CO,
into the deeper Barents Sea and the Arctic Basin (Frans-
son et al., 2001: Olsen et al., 2010; Smedsrud et al., 2013;
Chierici and Fransson, 2018). This transport of CO, also
affects the process of ocean acidification (Omar et al.,
2007; Lauvset et al., 2013).

3.1. Nutrient variability and biological CO, uptake
The nutrient conditions along the shelf break and in the
Nansen Basin are impacted by the horizontal advection of
AW, which contains considerable amounts of both nutri-
ents and plankton (Wassmann et al., 2015). Studies of the
relative impact of turbulence-induced nutrient flux during
the productive season versus the seasonal supply resulting
from winter convection show that the latter is by far the
more important process in providing nitrate in the region
north of Spitsbergen (Randelhoff et al., 2016).

The seasonal nutrient conditions in the Barents Sea
reflect the combined impacts of water-mass distribution
and the seasonal primary production. Contrary to many
Arctic shelf seas, the Barents Sea is well mixed during the
winter season with uniform nutrient concentrations
throughout the water column (Reigstad et al., 2002;
Codispoti et al., 2013). For the ice-free BSO, the range of
winter concentrations of nitrate in the AW surface waters

€202 JoquianoN €z uo Jasn AemIoN Jo Asseaiun ool 8yL 11N Aq jpd'88000°220Z eIULWSIS/61.5762/88000/L/ | LAPd-8loiHE/BIUSWSIS/NPa"SsaIdoN Bul|uo//:dRY WOl papeojumoq



Art. 11(1) page 14 of 62 Gerland et al: Still Arctic’—The changing Barents Sea

| | o N
© N =
<} o

Difference of annual days of 100% sea-ice cover equivalent

|
S
o

|
[}
o

-100

-120

|
[ur
B
o

70°N

~
o

°
=2

-160

-180

N
o

| | o
I N
o o

|
o)
[

|
e
o

—100

|
fu
N
o

|
=
s
o

70°N

~
o

°
=z

o
3
Difference of days of 100% sea-ice cover equivalent (22.3-22.6)

-180

Figure 7. Annual and spring maps showing sea-ice cover changes in Barents Sea from 1985-1989 to 2011-
2015. Change in number of days with 100% sea-ice cover equivalent between 1985-1989 and 2011-2015 for (a) full
annual mean and (b) spring—summer season only (March 22 to June 22). The 100% equivalent represents the length
of time in a given period when a given surface area was entirely ice-covered, calculated by converting sea-ice cover
fraction to fraction of days with 100% cover. Based on the National Snow and Ice Data Center monthly means
(Fetterer et al., 2017).

is 10-12 uM, with the onset of nitrate decrease from May— (at an approximate depth of 20 m) in March, with the
June at 73°N-74°N (Olsen et al., 2003; Ibrahim et al., largest decrease in June (Randelhoff et al., 2015). Nitrate
2014; Tuerena et al.,, 2021). A full-year cycle of the nitrate maxima in March to late April were also observed on the
dynamics on the shelf break north of Svalbard (81.3°N) in  northern Barents Sea shelf in 2017-2018, but with the
2012-2013 revealed a surface nitrate maximum of 10 uM  strongest nitrate decrease reflecting production onset in
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early May for an ice-free as well as an ice-covered mooring
site (Henley et al., 2020). This synchronised onset of
nitrate decreases differed between ice-covered and ice-
free sites in the northern Barents Sea, with a slower nitrate
decrease in open water (Henley et al., 2020). The timing of
the nitrate decrease matches observations from the south-
ern part of the marginal ice zone from the early 1990s
(Kristiansen et al., 1994). The spatial pattern of nutrient
decreases due to primary production (developed further in
Section 4) does not necessarily follow a strict south—north
progression, as it is related to light conditions regulated by
stratification or vertical mixing in the south and by the ice
dynamics in the north (Sakshaug and Skjoldal, 1989). Max-
imum nitrate decreases in May—June on the shelf north of
Svalbard during the 6-month N-ICE2015 study (Granskog
et al., 2016; Granskog et al., 2018) coincided with the
largest concentrations of dissolved inorganic carbon (DIC)
and decreases in CO, (Assmy et al., 2017; Fransson et al.,
2017).

A study analysing a 30-year time series revealed
a decreasing trend in integrated winter nitrate concentra-
tions (0—200 m) of —0.07 pumol L~" year™' in the BSO,
resulting in a decrease from 12 uM to 10 uM in the period
1980-2010 (Oziel et al., 2017). This decreasing trend cor-
relates with a 16% decrease in silicate concentration in
the AW inflow into the Barents Sea between 1990 and
2010 (Rey, 2012), explained as a result of changes in the
thermohaline circulation in the North Atlantic (see also
Hatun et al.,, 2017). The decreasing trend in nutrients can-
not be explained by increased stratification; on the con-
trary, the study by Oziel et al. (2017) identified
a decreasing trend in stratification (difference between the
surface density and the density at 100 m) of —0.015 kg
m— year~ ! during the summer period and an increase in
the mixed layer depth in August-September with 15 cm
year' from 1980-2012 along the BSO.

The spatial pattern of the nutrient distribution going
from the AW-influenced southern Barents Sea to the more
Arctic-characterised northern Barents Sea shelf and into
the AW-influenced shelf break shows high nutrient con-
centrations matching the high-salinity regions of AW ori-
gin (Figure 8). In summer, the surface nutrients, including
nitrate, phosphate and silicate, are depleted down to
a depth of approximately 50 m (Figure 8). The potential
of mixing-induced nutrient supply was indicated around
74°N in 2012, where increased surface nutrient concentra-
tions suggested recent mixing facilitated by the hydrogra-
phical conditions (Figure 8). Such episodic mixing in
more weakly stratified AW has been suggested by Sak-
shaug and Slagstad (1991) to explain the high productivity
in the southern Barents Sea and demonstrated in more
recent studies (Fer and Drinkwater, 2014; Wiedmann et al.,
2017). The depletion in nutrients was stronger farthest
north (Figure 8).

The highest nutrient concentrations in the Barents Sea
are found in the bottom water, with NO5 concentrations
>13 uM confined to deeper parts (Figure 8c) and likely
reflecting high remineralisation rates of organic matter in
the Barents Sea sediments (Freitas et al., 2020). Despite
being a relatively deep Arctic shelf sea, the pelagic-benthic
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coupling is relatively strong, but denitrification, promi-
nent on other Arctic shelves, does not seem important
in the Barents Sea (Tuerena et al., 2021). Using stable
isotopes, Tuerena et al. (2021) found that the AW inflow
provides the most important supply of nitrate in the
south, reflected in a spatial gradient of proportional
regeneration through seasonal nitrification of organic
matter to NO5 from less than 10% near the Polar Front
to more than 80% in the Arctic waters in the northern
Barents Sea.

3.2. Carbonate chemistry, air-sea CO, exchange

and ocean acidification

3.2.1. Main carbonate chemistry features

The carbonate chemistry in the Barents Sea is influenced
by air-sea CO, exchange and by physical, biological and
chemical processes, as well as sea-ice processes (Fransson
et al., 2001; Chierici and Fransson, 2018). The formation of
sea ice and consequent release of CO,-rich brine on the
shallow shelves result in sinking of dense water recently in
contact with the atmosphere. Some of this dense CO,-rich
water reaches the deeper basin, thus providing an efficient
mechanism for carbon transport from the shelf break and
northern Barents Sea to the deep waters in the Arctic
Ocean (Chierici and Fransson, 2018; Rogge et al., 2022).
CO, is also removed from surface waters by the release of
ikaite crystals (CaCOs3) during ice melt (Nomura et al.,
2013). When sea ice is formed, ikaite precipitates (Dieck-
mann et al,, 2010), releasing CO, to the brine (Rysgaard
et al., 2009; Rysgaard et al., 2012; Fransson et al., 2013;
Fransson et al., 2017). At the time of sea-ice melt as well as
during ice aging, some of the ikaite crystals escape from
the ice to the underlying water where they dissolve,
removing CO, in the process.

Biological processes play a major role in the Arctic
carbon cycle and ocean CO, uptake (Chierici et al.,
2011). High pH and low pCO, in surface water in sum-
mer are mainly due to CO, uptake by primary produ-
cers (Chierici and Fransson, 2018; Jones et al., 2021).
About 70% of the oceanic CO, uptake in the Barents
Sea is caused by biological CO, uptake (Fransson et al.,
2001).

In the Barents Sea, variability in surface water (upper
50 m) DIC, pH and pCO, depends mainly on freshening
and primary production (biological CO, consumption).
The lowest surface DIC, total alkalinity (Ar) and pCO2
values and the highest pH (9.3) values were observed
north of 80°N (Figure 8f-h). The surface water pCO, is
generally undersaturated (Figure 8g) relative to the atmo-
spheric pCO, (about 400 patm), as also found in other
parts of the Barents Sea (Chierici and Fransson, 2018;
Jones et al., 2018). This pCO, undersaturation indicates
the potential for the Barents Sea to act as an oceanic
CO, sink (e.g., Fransson et al., 2001; Omar et al., 2007
Lauvset et al., 2013). The annual mean uptake of atmo-
spheric CO, in the region has been estimated to be 44 g C
m~? by Fransson et al. (2001), 51 + 8 g C m~? by Omar
et al. (2007) and 48 + 5 g C m 2 by Lauvset et al. (2013).
The highest DIC (>2200 umol kg "), highest pCO,, and
lowest pH values (<7.97; Figure 8g, h) were found at the
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Figure 8. South-to-north distribution of physical and chemical water properties in the Barents Sea.
Distribution of (a) salinity, (b) temperature (°C), (c) nitrate (NO3, uM), (d) phosphate (PO4, uM), (e) silicate (Si(OH)4,
uM), (f) total dissolved inorganic carbon (CT, umol kg™'), (g) partial pressure of CO, (pCO,, patm), (h) pH, (i) total
alkalinity (AT, umol kg~'), and (j) aragonite saturation, along the section from Vardo (Norway) in the south to the
Nansen Basin in the north (see Figure 5a), from observations in September 2012. Locations where data were

collected are indicated by dots in the diagrams.

bottom and in trenches in the seasonally ice-covered area
(sea-ice edges in Figure 2). These findings are likely due to
a combined effect of accumulation and remineralisation
of organic matter producing CO, and the downward trans-
ported CO, by brine from sea-ice formation in winter
(Fransson et al., 2013; Chierici and Fransson, 2018).

Calcium carbonate saturation of aragonite (€24) is com-
monly used to define the ocean acidification state because
it is a measure of the dissolution potential of aragonite
shells and skeletons. The seasonally ice-covered waters in
the northern Barents Sea have a large range of Q values in
the water column (Chierici and Fransson, 2018). The entire
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water column is supersaturated regarding aragonite
(Qa > 1; Figure 8e). However, in the deep waters in the
northern part with seasonal ice cover, low Qa values of
about 1.2 are observed. A Q4 value of 1.4 can be critical for
some aragonite-forming organisms (e.g., the pteropod
Limacina helicina) by negatively impacting their calcifica-
tion of shell (e.g., Comeau et al., 2009; 2010; Bednarsek
et al., 2012; Bednarsek et al., 2014; Manno et al., 2017).

Total alkalinity depends mainly on salinity changes
related to water masses and mixing, but also on the dis-
solution and formation of calcium carbonate, such as
formed from calcifying organisms and sea-ice ikaite (Chier-
ici and Fransson, 2018; Figure 8i). At the shelf break, At
(Figure 8i) increases similarly to nitrate (Figure 8c) and
phosphate (Figure 8d), which may be caused by recent
mixing transporting nutrients and Ar upwards in the water
column to the surface.

On young sea ice, frost flowers may develop, due to
upward-transported brine and in combination with cold
and calm atmospheric conditions (Fransson et al., 2015a;
Chierici and Fransson, 2018; Nomura et al., 2018). Frost
flowers generally occur on top of newly formed sea ice in
spring or in open cracks (e.g., leads) in winter (Fransson
et al., 2013; Fransson et al.,, 2017; Nomura et al., 2018).
The large surface area of the frost flowers enables efficient
transfer of chemical substances, gases and particles, such
as bacteria and sea-salts (e.g., Barber et al., 2014; Fransson
et al., 2015a). Because the brine is rich in CO,, frost flow-
ers facilitate loss of CO, from the ice to the atmosphere
(Fransson et al., 2015a).

3.2.2, Carbonate chemistry trends and variability in
the Barents Sea
The carbonate chemistry in the Barents Sea is seasonally
variable (Lauvset et al., 2013), but shows a decreasing
trend in pH and an increasing trend in fCO,. These trends
were confirmed by Ericson et al. (2023) who found that
the surface water fCO, increase was up to 4 times faster
than the atmospheric CO, increase rate in the areas with
greatest sea ice loss in the northern Barents Sea. Becker
et al. (2021) estimated an increased trend in the surface
water pH of 0.001 year ' for the period 1998-2016 in the
southern Barents Sea. A larger pH decrease of —0.006
year ' was estimated (1998-2016) specifically for Storfjor-
den (Becker et al., 2021), where the uptake and vertical
transport of atmospheric CO, is facilitated by brine release
and deep-water formation (Anderson et al., 2004). For the
northern and eastern parts of the Barents Sea increased
data coverage in pH and surface water fCO, has been
obtained only recently. More observations, especially in
autumn and winter, are required to identify and quantify
anthropogenic CO, changes or other processes affecting
ocean acidification (Jones et al., 2018; Ericson et al., 2023).
A seasonal study from January to June in the area north
of Svalbard and the Nansen Basin showed the develop-
ment of pCO, undersaturation in the surface water below
the sea ice (Fransson et al., 2017). This condition was
present mainly due to sea-ice processes such as brine
rejection, ikaite dissolution from January to June, and
biological CO, consumption in May—June. The observed
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under-ice pCO; in that study ranged between 315 patm in
winter and 153 patm in spring. Openings in the ice cover
(i.e., leads) due to large storms promoted uptake of atmo-
spheric CO, (Fransson et al., 2017). The CO, sink varied
between 0.3 mmol C m 2 d ' and 8 mmol C m~2d~},
depending on the open-water fractions and storm events
(Fransson et al., 2017). Moreover, Chierici et al. (2019)
found that the entire region west and north of Svalbard
was a CO, sink for atmospheric CO,, which was mainly
driven by primary production and stratification due to
meltwater in spring. A recent study using 27 Earth system
models (Orr et al., 2022) highlights that the seasonal tim-
ing of pCO, might change in the Arctic Ocean in future,
and by that change increase summer ocean acidification.

4, Status and changes of the ecosystem

The present climate and ecosystem of the productive
southern Barents Sea are relatively well surveyed and
understood (Sakshaug et al., 2009; Jakobsen and Ozhigin,
2011, Eriksen et al., 2018). This understanding has been
further elaborated with regard to climate (Smedsrud et al.,
2013), biomass and productivity (Dalpadado et al., 2014;
Eriksen et al., 2017), ecosystem and carbon fluxes (Wass-
mann et al., 2006; Wassmann et al., 2015), and the impact
of sea-ice change on biology and human activity (Meier
et al., 2014). The situation is different for the winter ice-
covered northern Barents Sea shelf and adjacent deep
Nansen Basin, where ecosystems function fundamentally
differently (Bluhm et al., 2015; Wassmann, 2015; Figure
9). The impacts of changing physical conditions on pro-
ductivity, ecosystem function, and distribution of species
in these northern regions have been explored only
recently (Reigstad et al., 2011; Solan et al., 2020a; Solan
et al., 2020b; Frainer et al., 2021).

The northern Barents Sea and adjacent slope to the
Nansen Basin have become one of the most discussed
areas of the Arctic Ocean because of observed and pre-
dicted rapid climatic change and linked biological conse-
quences (Haug et al., 2017a). An approach to identify
ecosystem responses to changes in ice cover and other
environmental changes in this region could include
a space-for-time strategy (Pickett, 1989). The approach
assumes that investigations over a physical gradient
mimic a temporal climatic gradient and provide insight
into a future changing climate, in this case farther north
or east. This approach is applied with a seasonal perspec-
tive in the Norwegian project “The Nansen Legacy” (www.
nansenlegacy.org) by sampling along transects from the
southern Barents Sea northwards into the Nansen Basin
(Figure 9). In the Barents Sea, space-for-time reflects that
going north may be equivalent to going back in time into
Arctic conditions where seasonal sea ice still prevails,
while going south reflects going forward in time towards
warmer and ice-free conditions. A likely effect of global
warming in the Barents Sea is a northward displacement
of the Polar Front position (e.g., Oziel et al., 2016). How-
ever, confounding factors such as different radiative forc-
ing and water masses with increasing latitude also need to
be considered. Statistical analyses of satellite-derived chlo-
rophyll data have shown that differences in bloom timing
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Figure 9. South-to-north schematic of the marine ecosystem in the Barents Sea. The marine ecosystem in the
Barents Sea, from south to north, and the space-for-time concept: the possibility to study a temporal change by
studying a spatial gradient; for the Barents Sea, by moving from south to north, back in time (see Section 4). Figure
developed by Rudi Caeyers (UiT The Arctic University of Norway/The Nansen Legacy).

and magnitude along spatial climate gradients in the
northern Barents Sea resemble differences between years
with different climate conditions (Dong et al., 2020). This
resemblance is probably linked to the strong connection
between phytoplankton blooms and sea-ice retreat in the
region (e.g., Dalpadado et al., 2020). Another space-for-
time aspect is the timing of processes in the Barents Sea
relative to those in Arctic shelf seas farther east. The
Barents Sea inflow shelf might be a sentinel for those
interior Arctic shelf seas, as they are exposed earlier to
some of the changes and forcings, such as AW influence.

4.1. Main ecosystem components of the northern
Barents Sea

The northern Barents Sea is a region with strong environ-
mental gradients in water masses and sea ice. These gra-
dients are largely responsible for regional differences
observed in the distribution of boreal versus Arctic spe-
cies, vital rates, food web transfers and pelagic-benthic
coupling.

4.1.1. Microbes

The microbial food web of the euphotic zone serves as an
interface between ocean chemistry (dissolved mineral
nutrients and carbon) and the food web, directing energy
in form of particulate organic material to harvestable
resources or to the ocean interior via the biological carbon
pump. Data on Arctic pelagic microbial community com-
position, diversity and food-web traits originate largely
from studies in the Laptev Sea, the Canadian Arctic, the
Beaufort Sea and the Chukchi Sea (Kellogg and Deming,
2009; Lovejoy et al., 2011; Li et al., 2013; Pedrés-Alié et al.,

2015; Dickinson et al., 2016). A few recent studies have
reported on changes and seasonality in microbial commu-
nity composition and dynamics in Arctic waters around
Svalbard. The cyanobacterium Synechococcus has likely
become a more important member of the picophytoplank-
ton with increasing inflow of AW to the Arctic Ocean
(Paulsen et al., 2016). Phytoplankton-associated Gamma-
proteobacteria and Flavobacteria dominate surface waters
in summer, while Thaumarchaeota and Chloroflexi-types
predominate under low light conditions, i.e., in winter and
in deeper waters (Wilson et al., 2017). The most profound
community changes occur in spring, with Gammaproteo-
bacteria interactions dominating in the pre-bloom phase
and Flavobacteria interactions during phytoplankton-
bloom conditions (Miiller et al., 2021). Experimental stud-
ies on Arctic microbial food webs suggest that altered
trophic cascades from copepods through ciliates and fla-
gellates affect bacterial growth rates, abundance and com-
munity composition via competition for mineral nutrients
and predation (Tsagaraki et al., 2018). In a recent seasonal
study about the region north of Svalbard, however, preda-
tion was found to affect bacterial community composition
only in late summer, whereas substrate quality and quan-
tity were otherwise more important than any other single
factor (Miiller et al., 2021). Substrate in this context is
generally dissolved organic matter (DOM), which varies
in quality depending on its source. For example, DOM
from Phaeocystis blooms may be very abundant but of
inferior quality for bacteria due to low nitrogen content
(Olli et al., 2019). Thus, variability in top-down (predation)
and bottom-up (availability and quality of DOM and inor-
ganic nutrients) control leads to bacterial communities
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with different competition and defense properties and
may affect the overall carbon and nutrient flow in the
system (Sandaa et al., 2017; Tsagaraki et al., 2018; Thing-
stad et al.,, 2020).

4.1.2. Phytoplankton and ice algae

Microscopic algae living in sea ice (ice algae) and the under-
lying water column (phytoplankton) constitute the primary
producers in the Arctic marine ecosystem (Sereide et al.,
2010; Leu et al., 2015). Dominant species in communities
vary seasonally, and ice-algal communities also vary with
sea-ice location (e.g., landfast versus pack ice; van Leeuwe
et al,, 2018) and between first-year and multi-year ice (CAFF,
2017; Hop et al., 2020). The northern Barents Sea is dom-
inated by annual pack ice, and ice-algal production has
been estimated to be 5 g C m~? year !, corresponding to
20% of the total annual primary production in the region
(Hegseth, 1998). The main ice-algal growth period is mid-
March to mid- or late June when melting becomes impor-
tant (Hegseth and von Quillfeldt, 2022). Ice-algal blooms
tend to be dominated by diatoms, though hundreds of taxa
including flagellates, dinoflagellates, and ciliates contribute
as well, and phenology varies through bloom stages (Leu
et al., 2015; CAFF, 2017; Kauko et al., 2018). In the Barents
Sea pack ice, ice algae form a loosely attached sub-ice algal
layer, with Nitzschia frigida dominating medium thick ice,
while other pennate diatoms N. promare and Fossulaphycus
arcticus dominate thinner sea ice (Hegseth and von Quill-
feldt, 2022).

No time series of phytoplankton communities exists
for the Barents Sea region, but scattered studies provide
information on seasonal patterns. Blooms in open water
are generally dominated by centric diatoms (e.g., Chaeto-
ceros spp. and Thalassiosira spp.) in the early part of the
season, but flagellates and the prymnesiophyte Phaeocys-
tis pouchetii also play important roles in the Barents Sea
(Hegseth, 1998; Wassmann et al., 2005; Wassmann et al.,
2006; Degerlund and Eilertsen, 2010; Vodopyanova et al.,
2020). Pico- and nanoflagellates (<20 pm) dominate the
phytoplankton community in March and late summer,
with more heterotrophic flagellates and dinoflagellates
in late summer (Ratkova and Wassmann, 2002).

Seasonal sea-ice melt along the ice edge enhances the
primary production during spring through stratification of
the water column (Babin et al., 2015; Renault et al., 2018),
and remote sensing reveals earlier onset of spring blooms
by nearly a month (from mid-June to mid-May) in the
northern Barents Sea due to earlier melt of sea-ice cover
(Dalpadado et al., 2020). The timing of ice-algal and phy-
toplankton blooms and their relative contribution to total
Arctic primary production determine the amount of
energy available to sympagic (sea-ice-associated) and
pelagic ecosystems (Falk-Petersen et al., 1998; Leu et al.,
2011; Leu et al., 2015; Brown et al., 2017; Kauko et al.,
2018; Kauko et al., 2019; Ehrlich et al., 2021). As the ice
algae melt out of the ice during spring, they contribute
significantly to the vertical flux of organic matter and
represent a seasonal source of high-quality carbon for the
benthos (Tamelander et al., 2008; Tamelander et al., 2009;
Carroll et al., 2014).
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Openings in the form of leads in the pack ice, as well as
ice and snow thickness, affect the onset and magnitude of
the planktonic blooms, which may also occur below the
ice if the light is sufficient early in the season; such
blooms may involve diatoms or Phaeocystis pouchetii
(Arrigo et al., 2012; Arrigo et al., 2017; Assmy et al.,
2017). Under-ice phytoplankton blooms can be produced
locally (Arrigo et al., 2012; Arrigo et al., 2017) or advected
from open waters (Johnsen et al., 2018). The blooms will
be sustained as long as sufficient nutrients are available
and tend to follow the receding marginal ice zone north-
wards (Wassmann et al., 2006; Wassmann and Reigstad,
2011). For the shelf break region north of the Barents Sea,
advection of phytoplankton exceeds the local production
by up to 50 times and underlines the importance of advec-
tion for regional biomass values (Vernet et al., 2019). The
average total primary production in the Barents Sea is
around 90 g C m~* year ', but can vary between 20 g C
m % year ' and 200 g C m * year !, with 30% higher
values in years with little sea ice (Sakshaug, 2004). The
annual gross primary production (simulated 1995-2007)
is higher in the ice-free south (106-134 g C m~* year ')
compared to the seasonally ice-covered northern Barents
Sea (54-67 g C m ™% year '; Reigstad et al., 2011).

Macroalgae are common primary producers along
hard-bottom Arctic coasts, and the biomass of large brown
algae has increased in shallow waters (<5 m depth)
because of less sea ice (Kortsch et al., 2012; Krause-
Jensen and Duarte, 2014; Bartsch et al., 2016; Al-
Habahbeh et al., 2020; Krause-Jensen et al., 2020). Few
regional estimates of primary production by macroalgae
exist (Dunton et al., 1982; Borum et al., 2002), and none
for the Barents Sea region.

4.1.3. Key zooplankton and sea-ice fauna

The Barents Sea holds a diverse zooplankton community
with the most prominent differences across the area
expressed in species abundances and biomass rather than
in taxonomic composition (e.g., Daase et al., 2021); how-
ever, here we give a brief taxonomic overview. Small cope-
pods (<2.5 mm total length as adults) are dominated by
Oithona spp., which are typically most abundant in the
upper part of the water column (Svensen et al., 2011; Hop
et al., 2021b). Other abundant small copepods belong to
the genera Pseudocalanus and Microcalanus. Microzoo-
plankton biomass is lower north of the Polar Front than
in AW south of the front, where mixotrophic ciliates may
be important for energy transfer (Franze and Lavrentyev,
2017). Mesozooplankton biomass is dominated by Cala-
nus copepods (Aarflot et al., 2017), but euphausiids, chae-
tognaths and pelagic, hyperiid amphipods are also
important contributors (Sereide et al., 2003; van Engeland
et al., 2023). Boreal species, such as Calanus finmarchicus,
krill (Thysanoessa inermis, T. longicaudata and Meganycti-
phanes norvegica), and the amphipod Themisto abyssorum
are typically associated with AW (Skjoldal, 2021). Farther
north in Arctic water masses, larger copepod species
(C. glacialis, C. hyperboreus) constitute much of the bio-
mass together with the amphipod Themisto libellula (Dal-
padado and Skjoldal, 1996; Sereide et al., 2003; van
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Engeland et al., 2023). Other characteristic zooplankton
groups associated with Arctic water masses include pter-
opods (Limacina helicina and Clione limacina) and cteno-
phores (Mertensia ovum and Beroé cucumis; Sereide et al.,
2003; Blachowiak-Samolyk et al., 2008a; Blachowiak-
Samolyk et al., 2008b). Ctenophores are important preda-
tors on zooplankton, and in the Barents Sea M. ovum has
been estimated to be able to consume daily up to 9% of
the copepod biomass during times of high ctenophore
abundance (Swanberg and Bamstedt, 1991). The larger B.
cucumis preys on M. ovum as well as zooplankton (Falk-
Petersen et al., 2002).

The mesozooplankton biomass in the Barents Sea has
been variable, from <3 g m~* to >10 g m~2 dry mass in
the period 1990-2010, with 50% of the interannual var-
iability explained by predation from pelagic fishes (Dalpa-
dado et al., 2012; Stige et al., 2014), though it has been
relatively stable since the mid-2000s (Dalpadado et al.,
2020). Advection of large quantities (i.e., 4 times the
locally produced biomass) of boreal zooplankton through
the BSO (Edvardsen et al., 2003a; Edvardsen et al., 2003b;
Dalpadado et al., 2012; Dalpadado et al., 2014) tends to
stabilize zooplankton populations in the Atlantic part of
the Barents Sea. Similarly, the area north of Svalbard is
supplied by these boreal advective inputs (Basedow et al.,
2018). Zooplankton biomass is controlled by both bottom-
up and top-down processes (Soreide et al., 2013; Dalpa-
dado et al., 2014; Stige et al., 2018; Stige et al.,, 2019;
Dalpadado et al., 2020). Bottom-up processes are linked
intrinsically to seasonal variations in primary production,
temperature, ice cover and advection (Mueter et al., 2009;
Reigstad et al., 2011; Dalpadado et al., 2014) through their
influence on both habitat and food sources. Dietary tro-
phic markers of some key zooplankton show a relatively
weak relation to sea-ice algae during both summer and
winter, likely reflecting the low abundance and quality of
ice-associated carbon during summer and the inaccessibil-
ity or absence of algae inside the ice during winter (Kohl-
bach et al., 2021a; Kohlbach et al., 2021b). In spring,
however, estimated ice-algal carbon production and con-
sumption plays a substantially larger role (Sereide et al.,
2013; Ehrlich et al., 2021). More data are needed from the
ice-covered spring period to reveal the full importance of
ice algae for the Barents Sea ecosystem. Top-down pro-
cesses affecting zooplankton relate to predation by pelagic
fish stocks such as capelin (Gjoseeter et al., 2002; Dalpa-
dado and Bogstad, 2004; Stige et al., 2014; Stige et al.,
2019; Dalpadado et al., 2020) and seabirds (Hovinen et al.,
2014a; Vihtakari et al., 2018), particularly in shallow
waters (Aarflot et al., 2020).

Sea-ice fauna in the northern Barents Sea and north of
Svalbard is dominated by ciliates in the small size fraction
and by larger copepod nauplii and harpacticoid copepods
(Ehrlich et al., 2020; Timchenko et al., 2021). Taxa such as
nematodes that are common elsewhere in sea ice are rare
in the present decade, with a potential decline hypothe-
sized to be linked to changes in ice transport from Siberia
via the Transpolar Drift (Ehrlich et al., 2020). Under-ice
fauna includes pelagic taxa immediately under the ice,
as well as sympagic amphipods (Lenne and Gulliksen
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1991); of the latter, the gammarid Gammarus wilkitzkii
has declined in the Atlantic Arctic sector due to the loss
of multi-year ice (Hop et al., 2021a).

4.1.4. Fish, marine mammals and seabirds

Capelin (Mallotus villosus) is the main forage fish species
in the boreal community of the Barents Sea, whereas the
polar cod (Boreogadus saida; e.g., Aune et al., 2021) func-
tions similarly in the Arctic community (Hop and Gjosze-
ter, 2013). Both species respond to increasing ocean
temperatures and decreasing sea ice, but while capelin
responds by expanding its distribution northwards
(Ingvaldsen and Gjesaeter, 2013), polar cod responds with
restricted distribution and poorer recruitment (Huserbra-
ten et al., 2019; Gjosaeter et al., 2020). Moreover, the
individual growth of both species increases with temper-
ature at age 1, although the influence of abiotic factors
weakens with increasing age (Solvang et al., 2017; Dupont
et al., 2021). The pelagic compartment in the Barents Sea
also has large contributions from juvenile fishes (Eriksen
et al., 2011). The total pelagic biomass in the Barents Sea is
on average about 17 million tonnes, of which about 10
million tonnes are in the southern part (Figure 10). How-
ever, this biomass includes both fish larvae/juveniles and
macroplankton (Eriksen et al., 2016; Eriksen et al., 2017).

The most abundant demersal fish species in the Barents
Sea are the Atlantic cod (Gadus morhua), haddock (Mela-
nogrammus aeglefinus), beaked redfish (Sebastes mentella),
Greenland halibut (Reinhardtius hippoglossoides) and long
rough dab (Hippoglossoides platessoides) (Johannesen
et al., 2012). Of these, Atlantic cod is the most abundant,
and Atlantic cod and Greenland halibut are the species
with the most northern and northeastern limits of their
distributions. These boreal species are also found along
the west coast of Spitsbergen up to 81°N and along the
western part of the northern coast of Spitsbergen. In addi-
tion, the Arctic fish community consists of many less
abundant and often much smaller demersal species, such
as sculpins, eelpouts and snailfishes (Fossheim et al., 2015;
Mecklenburg et al., 2018).

Some key endemic marine mammals, including ringed
seals (Pusa hispida), white whales (Delphinapterus leucas),
narwhals (Monodon monoceros) and bowhead whales
(Balaena mysticetus), have adapted to life at high latitudes
and spend their whole life within the region (Vacquié-
Garcia et al.,, 2017; Lone et al., 2019). Other species, such
as harp seals (Pagophilus groenlandicus) and the whales in
the rorqual family (Balaenopteridae) migrate into the
northern waters to forage in the productive waters, but
spend the rest of the year in their largely temperate dis-
tributional ranges (Haug et al., 2017a). Harp seals and
minke whales (Balaenoptera acutorostrata) are the most
abundant marine mammal species. In the North Atlantic
Arctic and adjacent shelf seas, they often forage on zoo-
plankton and pelagic fishes at ocean fronts and other
areas where upwelling stimulates high productivity
(Kovacs and Lydersen, 2008). While distributional overlap
is seasonally large, trophic partitioning among dominant
marine mammals has been documented (MacKenzie et al.,
2022). The role of ice-derived carbon in marine mammal

€202 JoquianoN €z uo Jasn AemIoN Jo Asseaiun ool 8yL 11N Aq jpd'88000°220Z eIULWSIS/61.5762/88000/L/ | LAPd-8loiHE/BIUSWSIS/NPa"SsaIdoN Bul|uo//:dRY WOl papeojumoq



Gerland et al: Still Arctic’—The changing Barents Sea

Art. 11(1) page 21 of 62

a) s
B Pelagic fish stocks Northern area
= 20 B 0-group fish
‘é Macroplankton
v 15
©
£
.8
0
2 10
‘o0
©
Ko)
& 5
0
D> OO PO O DDA PHS AN DO O DA D
Y M I % S e Y e I I S S M S I S I I S S I A SN N
TR RDT DT RN AR AR AR AR AR AR AR AT AR AR AR ADT AR AD
Year
b) 25
) . Southern area
B Pelagic fish stocks
20 B 0-group fish
= Macroplankton
o)
= 15
(%)
(%]
©
€
92 10
o]
O
‘o0
K
o 5
[a W
0
D> D O N DO OO HS AN DO O DD D
D S L LCEFLELLSFPEDIIN
TR RDTRDT DT RDT R AR AT AR AR AR AR AR AR AR AR AT AR DT AR

Year

Figure 10. Diagrams of estimated fish and macroplankton biomasses in southern and northern Barents Sea
1993-2013. Estimated pelagic biomasses of pelagic fish stocks, 0-group fishes and macroplankton (mainly krill) in
the (a) northern and (b) southern Barents Sea for the period 1993-2013. For further description of the data series see

Eriksen et al. (2017).

nutrition is poorly constrained, but first estimates suggest
substantial contributions to seasonally ice-associated spe-
cies (Kunisch et al., 2021).

Polar bears (Ursus maritimus) utilize the marginal ice
zone in the Barents Sea and den on the islands in the
western Barents Sea (Lone et al., 2018b; Merkel et al.,
2020). The number of bears has been estimated to be
about 1,000, of which 700 resided in the pack ice of the
marginal ice zone (Aars et al., 2017, 2018). Their main prey
are ice-associated seals, such as ringed seals, but they can

also prey on harp seals when they haul out and rest on the
pack ice (Smith and Stirling, 2019). Reductions in sea ice
are a major threat to the species and may force them to
spend more of their time and energy in water while trav-
elling on the ice (Lone et al., 2018a).

Large numbers of seabirds (3.5 million breeding pairs)
nest on the islands around Barents Sea (i.e., Svalbard,
Franz Josef Land, and Novaya Zemlya). The most impor-
tant seabirds with regard to abundance are little auk
(Alle alle), Briinnich's guillemot (Uria lomvia), Northern
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fulmar (Fulmarus glacialis), black-legged kittiwake (Rissa
tridactyla) and common guillemot (Uria aalge) (Anker-
Nilssen et al., 2000). They feed on different pelagic compo-
nents of the Barents Sea ecosystem, including both zoo-
plankton and fishes. Because seabirds depend on rather
specific prey in the marine system, they function as envi-
ronmental indicators for changes in the Barents Sea
ecosystem.

4.1.5. Benthos

Benthos plays a major role in the overall energy flow on
Arctic shelves. In fact, benthic invertebrates provide one of
the four main energy flow pathways through this ecosys-
tem (Pedersen et al., 2021). Regionally, different benthic
assemblages are responsible for these energy flows. The
Barents Sea can be divided into four main megafaunal
regions related to depth, temperature, salinity, and num-
ber of ice-days (Jergensen et al., 2015a). In the southwest,
the megabenthos is dominated by filter-feeders (sponges)
in the inflow area of warm AW, while the deeper trenches
had primarily a detritivorous fauna (echinoderms). In the
southeastern and western areas, predators (sea stars, ane-
mones and the snow crab Chinoecetes opilio) prevailed
together with filtrating species (sea cucumber and
bivalves) within a mosaic of banks and slopes (Zakharov
et al., 2021). Suspension-feeding brittle stars were com-
mon in the northwestern and northeastern regions, where
snow crab is also increasing. The Polar Front, which sepa-
rates hydrographic and ice regimes, also separates boreal
and Arctic benthic macrofauna and the relative rates of
their bioturbation activity (Cochrane et al., 2009; Solan
et al., 2020a). The meroplanktonic (benthic larval) assem-
blages also vary on either side of the Polar Front (Desco-
teaux et al,, 2021). These regional patterns in faunal
composition are mirrored in dissimilar food web charac-
teristics, such as more predator-prey links and higher
levels of both omnivory and connectance in the boreal
parts of the Barents Sea seafloor (Kortsch et al., 2015;
Kortsch et al., 2019). Notably, benthic secondary produc-
tion of the communities in the seasonally ice-covered
northeastern region is higher than in the permanently
ice-free southwestern and central area (Degen et al.,
2016). Along the continental slope, densities drop dramat-
ically and community structure shifts towards deep-sea
communities with high north-Atlantic affinities
(Wlodarska-Kowalczuk et al., 2004; Bluhm et al., 2020).
Overall, carbon storage in the form of seafloor biota is
thought to be high in the Barents Sea (Souster et al.,
2020), leading to the suggestion that this and other Arctic
shelf seafloor systems should be included in global blue
carbon estimates (Solan et al., 2020b).

Arctic benthic ecosystems are often assumed to be
highly vulnerable to ongoing climate change and are
expected to undergo wholesale shifts in structure and
function. Shifts in seafloor biota are documented in
coastal assemblage and functional structure (Al-
Habahbeh et al., 2020) as well as food web properties
(Kortsch et al., 2015; Kortsch et al., 2019), yet species-
distribution modeling has projected only small overall
benthic habitat changes among Arctic, boreal, or Arcto-
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boreal groups, or between calcifying and non-calcifying
groups. Some taxa, however, including several that are char-
acteristic and/or habitat-forming fauna on some Arctic
shelves, have shown dramatic changes, suggesting a poten-
tial for significant ecosystem impacts (Renaud et al.,, 2019).
Clearly, other pressures such as bottom trawling also
change benthic communities in the Barents Sea, for exam-
ple through depressing species richness (Kedra et al., 2017).

In the last decade, the role of previously unstudied
habitats and sub-regions in the (northern) Barents Sea
has begun to emerge. Cold seeps, where methane and
other reduced compounds emerge at the seabed, are now
recognized as commonly occurring in the Barents Sea
where they form chemosynthetic habitats supporting
unique but highly-variable seafloor communities. Such
seep communities support high densities of chemosym-
biotic worms (Siboglinidae and Frenulata polychaetes)
and bivalves (Mendicula cf. pygmaea; Sen et al., 2018;
Astrom et al.,, 2019; Karaseva et al., 2021). Aggregations
of heterotrophic macrofauna and megafauna were asso-
ciated with characteristic seep features such as microbial
mats, carbonate outcrops and chemosymbiotic worm-
tufts (Astr('jm et al., 2019; Astrém et al., 2020). In addi-
tion, communities of opportunistic polychaete species
and bivalves, known to inhabit oxygen-depleted environ-
ments and organic-enriched sediments, are found in
sediments of the Kveithola Trough, also thought to be
related to methane seepage in the neighboring Storfjor-
den Trough (Caridi et al., 2019). First evidence suggests
that chemosynthesis-derived carbon from these seeps
enters the Barents Sea food web, at least locally (Astrom
et al,, 2019).

4.1.6. Vertical linkages in ice-covered and ice-free
regions

Latitudinal gradients in hydrography and sea-ice cover,
and related changes in productivity regime and commu-
nity composition, result in variations in the sympagic-
pelagic-benthic coupling in different parts of the Barents
Sea (Olli et al., 2002; Tamelander et al., 2006; Wassmann
et al.,, 2006; Reigstad et al., 2008; Reigstad et al., 2011;
Ehrlich et al.,, 2021). Seasonal sea-ice melt in the marginal
ice zone produces a stratified euphotic zone, where ice-
algal blooms sink out partially ungrazed, resulting in tight
sympagic-pelagic-benthic coupling (Olli et al., 2002; Tame-
lander et al., 2006; Soreide et al., 2006, 2007; Reigstad
et al., 2008; Soreide et al., 2013, Figure 9). The entire
sympagic community is released when the sea ice melts
(with the exception of occasional multi-year ice floes),
including microbes, meiofauna, and macrofauna (Hop and
Pavlova, 2008; Bluhm et al., 2018), and may then sink to
the bottom or enter the pelagic food web. Ice amphipods
and polar cod can use the pelagic area as habitat for part
of their life cycles (Berge et al,, 2012; Hop and Gjosaeter,
2013; Kunisch et al., 2020) and may serve as vectors for
sympagic production to top predators. In contrast to ice-
associated production, the majority of the production
from the open-water phytoplankton blooms will enter the
pelagic food web if zooplankton grazers are present,
although a temporal mismatch with grazers results in
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a seasonally high vertical flux to the seafloor. When
pelagic grazers are abundant, their faecal pellets also con-
tribute carbon to the benthos (Wexels Riser et al., 2007;
Renaud et al., 2008). Variation in the vertical flux patterns
in the region, partially related to sea-ice extent in a given
year (e.g., Wassmann and Reigstad, 2011), leads to spatial
variability in ecological patterns at the seafloor, including
benthic community structure, carbon cycling and parti-
tioning of food resources among seafloor faunal compo-
nents (Piepenburg et al., 1995; Carroll et al., 2008; Renaud
et al., 2008; Solan et al., 2020b). Standing stocks of zoo-
benthos were investigated recently and yielded the high-
est carbon levels in the northern Barents Sea (Souster
et al., 2020).

Even though annual primary production is comparably
low in the northern Barents Sea, significantly higher
megabenthic secondary production occurs at the seafloor
in the northeastern, seasonally ice-covered regions of the
Barents Sea (Degen et al., 2016). Large predatory or filter-
feeding benthic invertebrates populating the seafloor sug-
gest tight sympagic-pelagic-benthic coupling, often in
combination with high abundance of zooplankton in the
near-bottom layer and low predation pressure from large
fishes (Soreide et al., 2013; Jorgensen et al., 2015a).

4.2. Long-term changes in the Barents

Sea ecosystem

Some of the most rapid and substantial climate-driven
changes in marine ecosystems are expected at high lati-
tudes. In regions within or bordering the Arctic, rates of
warming (surface air temperature increase) are 2—4 times
higher than the global average (Overland et al., 2016;
Rantanen et al., 2022) and, for the northern Barents Sea,
5-7 times higher (Isaksen et al., 2022). The Barents Sea
has experienced significant warming and sea-ice retreat
over the last few decades, which in turn has affected the
distribution and biomass of marine species (Figure 11),
reorganizing ecological communities and influencing
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ecosystem functions (Dalpadado et al., 2012; Johannesen
et al., 2012; Wiedmann et al., 2014; Kortsch et al., 2015;
Kortsch et al., 2019; Eriksen et al., 2017; Frainer et al.,
2017).

Substantial changes in production have occurred at the
base of the food web in marginal Arctic seas. The produc-
tive season has been prolonged (Arrigo and van Dijken,
2015), and both early pelagic under-ice blooms (Assmy
et al., 2017; Ardyna et al., 2020) and advected blooms
under sea ice (Johnsen et al., 2018) have been observed.
The occurrence of autumn blooms has increased substan-
tially in Arctic marginal seas during the last decade
(Ardyna et al., 2014). The steepest increase in chloro-
phyll-a concentrations over the years 2003-2016 for the
entire Arctic has occurred during May in areas of the ice-
free western Barents Sea, with an overall positive trend
averaging 0.79 mg m > year ' (Frey et al., 2021). Oziel et
al. (2022), using ocean color satellite remote sensing data,
found a chlorophyll-a increase of 85% between 1979 and
2016 for the Barents Sea. The annual net primary produc-
tion for the Barents Sea, as estimated from remote sensing
data, has increased substantially, with estimates varying
between 110% over the 1998-2017 period (Dalpadado
et al., 2020) and 88% over the 1998-2018 period (Lewis
et al,, 2020). In addition, recent poleward intrusions of the
coccolithophore Emiliana huxleyi, a tracer for temperate
ecosystems, have been observed (Hovland et al., 2013;
Oziel et al,, 2020), and Phaeocystis bloom frequency has
likely increased over the past two decades (Orkney et al.,
2020).

The ongoing warming and sea-ice reductions have
expanded the favourable thermal habitat for boreal zoo-
plankton, such as Calanus finmarchicus, krill, and the jel-
lyfish Periphylla periphylla (Geoffroy et al., 2018), whereas
Arctic zooplankton (e.g., Themisto libellula) have retreated
farther north (Zhukova et al., 2009; Orlova et al., 2015;
Eriksen et al., 2017). In the western Barents Sea, indica-
tions of ongoing borealization of the zooplankton
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Figure 11. Diagram covering Barents Sea phytoplankton, zooplankton, and fish development from 1980 to
2019. Barents Sea ecosystem time series from late summer to early autumn 1980-2019. The data cover the biomass
of phytoplankton and zooplankton (green font) and of pelagic fishes (orange font) and demersal fishes (blue font). The
variables were sorted by trend. Cells with values of the average (1980-2019) are shown in grey, cells with values above
the average in pink to red, and cells with values below the average in aqua to blue. White cells indicate no data
available. Time series were standardized to zero mean and unit variance. For further description of data series see
Eriksen et al. (2017) and doi.org/10.21335/NMDC-1069717541.
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community have been evident, with decreasing proportions
of the Arctic C. glacialis over the past 20 years occurring
simultaneously as C. finmarchicus has increased (Aarflot
et al., 2017). The warming has also been associated with
redistribution of species and increasing biomass of 0-group
fishes, krill and jellyfish (Eriksen et al., 2020). During the
last 3 decades, the total biomass of the pelagic compart-
ment increased from 6 million tons to 30 million tons and
doubled from the 1990s to the 2000s (Figure 10). Seabirds
feed on different pelagic components of the Barents Sea
ecosystem, including both zooplankton and fishes. Seabird
monitoring has shown that some species, such as the Briin-
nich’s guillemot, have declined since the early 1990s,
whereas the common guillemot has increased in some
locations, such as Bjerneya (Anker-Nilssen et al., 2017).

The recent warming has also caused northern expan-
sion of boreal pelagic species such as mackerel (Scomber
scombrus) and capelin (Berge et al., 2015b; Haug et al.,
2017a). On the other hand, Arctic fishes such as the polar
cod declined in distribution and biomass from about 1.5
million tonnes to <0.5 million tonnes in 2017-2019 (Hop
and Gjoseeter, 2013; Eriksen et al., 2015); this despite that
growth conditions, reflected in length-at-age, improve
with reduced sea ice (Dupont et al., 2020). After 2019,
recruitment has improved and the stock increased to 1.7
million tonnes in 2020 (ICES, 2021b), possibly in combi-
nation with the slight cooling observed during recent
years. Variability and change in sea-ice cover negatively
affect the population dynamics of this keystone species
of the ice-associated food web (Huserbraten et al., 2019;
Gjosaeter et al., 2020). Ongoing decreases in other unex-
ploited Arctic species are also reported (Frainer et al.,
2021).

Boreal demersal commercial fish species like Atlantic
cod, haddock, and redfish (Sebastes spp.) have shown pos-
itive trends in biomass with expanded distributions in the
2010s (Haug et al., 2017a). The total stock biomass of
Atlantic cod reached an unprecedented high (4.4 million
tons) in 2013, a level not seen since the 1940s, and the
expansion of the stock can be related to increasing seawa-
ter temperatures with less sea ice in the Barents Sea, as
well as effective stock management (Kjesbu et al., 2014).
Warm climate and high cod-stock size are associated with
high capelin-cod overlap in the northern Barents Sea, with
consequences for predator-prey dynamics and harvesting
(Howell and Filin, 2014; Fall et al., 2018). The cod biomass
has decreased since the peak in 2013 but is still widely
distributed and above the long-term mean (ICES, 2021a,
2021b).

Expansion of boreal demersal species into the northern
area has resulted in reductions in the Arctic demersal fish
community, community-wide distributional shifts and
functional changes in the food web (Kortsch et al., 2015;
Frainer et al., 2017; Kortsch et al., 2019). Moreover, the
northern regions have experienced both an increase in
benthic warm-water species (Jorgensen et al., 2019) and
the invasion of snow crab (Araya-Schmidt et al., 2019). The
northward expansion of commercial fish species and west-
ward expansion of snow crab increase the exposure of
benthic species to capture by fishery activity and of small
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prey species to crab predation (Jergensen et al., 2019).
Snow crab is also a prey item for cod, increasing in pro-
portion over time (Holt et al., 2021). The presence of non-
indigenous species has also been confirmed in both the
adult and meroplankton communities, though the sources
remain unclear (Descoteaux et al., 2021; van den Heuvel-
Greve et al., 2021).

Disentangling the effect of climate variability and
change from fisheries activity is indeed challenging.
Recent progress based on “Chance and Necessity” model-
ling principles (Planque and Mullon, 2019) revealed that
trophic control in the Barents Sea tends to fluctuate
between bottom-up and top-down control over time
rather than being persistent over long periods (Sivel
et al., 2021). Thus, the cumulative impacts of climate and
fisheries on ecosystem properties, such as ecosystem sta-
bility, trophic control, productivity and harvest potential,
are not yet fully resolved. A recent study from the Barents
Sea revealed that knowledge of a species’ distribution and
the number and nature of environmental factors defining
its habitat could determine the predictability of that
species persisting under environmental change (Husson
et al., 2020).

4.3. Winter and polar night conditions

Especially in the marine environment, winter and polar
night are not synonymous. While the former is most often
defined based on temperature, the latter is defined based
on astronomical conditions affecting solar angle and, thus,
availability of sunlight (Berge et al., 2020b). The coldest
months in the marine environment are often late in the
winter and close to the spring equinox (Cottier and Porter,
2020). In contrast, due to the combination of low sun
angles or polar night and the attenuation of light from
ice and snow cover, light levels in the water column
already begin in October or November to be very low, and
remain low for most of the (thermally defined) winter at
high latitudes (Johnsen et al., 2020).

In the Barents Sea and at high latitudes in general, the
primary production regime is highly seasonal. Life-history
traits, such as accumulation of lipids and extensive sea-
sonal vertical migrations of herbivorous zooplankton,
have evolved in response to the short productive seasons
(Conover and Huntley, 1991; Falk-Petersen et al., 2009;
Wassmann et al.,, 2011; Dalpadado et al., 2014). During
winter, the irradiance at sea surface in the visible part of
the light spectrum, i.e., photosynthetically active radiation
(400-700 nm), is extremely low, typically in the range of 5
x 1077 to 1.5 x 107> pmol photons m~%s~' (Batnes et al.,
2015; Cohen et al., 2015; Ludvigsen et al., 2018), resulting
in primary production rates close to zero (Leu et al., 2011,
Johnsen et al., 2020). Low irradiance also reduces feeding
by some predators, including zooplankton, fishes, and sea-
birds (Kaartvedt, 2008; Varpe, 2012; Ludvigsen et al.,
2018), whereas tactile predators, such as jellyfish, can
maintain their feeding (Geoffroy et al., 2018). Low winter
food supply in a presumably bottom-up driven system
(Hessen and Kaartvedt, 2014) may cause inactivity during
the polar night (Smetacek and Nicol, 2005). However,
recent ecological studies during the polar night have
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indicated that activity levels and biological interactions
across most trophic levels and phyla remain elevated dur-
ing winter, which is important for system functioning
throughout the year (Berge et al., 2015a). Berge et al.
(2020a) have also demonstrated that light pollution dur-
ing the darkest part of the polar night may strongly affect
natural processes and ecosystem function.

Continuous monitoring of downwelling irradiance at
79°N (Ny-Alesund, Svalbard) has been established
(ArcLight observatory) in 2017, providing hourly data in
the PAR range (Johnsen et al., 2021), and absorbed quanta
for diatoms in the red, green, and blue parts of the spec-
trum (Grant et al., 2023). Finally, a light model for the
Barents Sea, based on radiative transfer theory, was vali-
dated to provide similar results as the ArcLight irradiance
data (Connan-McGinty et al., 2022).

5. Human impacts

Anthropogenic climate change transforms Arctic ecosys-
tems, but may also amplify other human impacts on the
ecosystems. With a warmer climate, large parts of the
Arctic previously covered by sea ice year-round are becom-
ing increasingly accessible to humans. Together with tech-
nological developments, this increased accessibility opens
the region to fisheries, petroleum activities, deep-sea min-
ing, shipping, and tourism. The Arctic is also exposed to
other human influences, including ocean acidification
caused by anthropogenic CO, emissions, and local as well
as long-distance transported pollutants, the effects of
which may interact with the effects of climate change.
Here we review the main human impacts on the ecosys-
tem in the northern Barents Sea and adjacent slope areas
of the Arctic Ocean.

5.1. Fisheries

5.1.1. Trends in fish abundance and fisheries

Arctic peoples depend on the ocean for the provision of
food, and commercial fisheries constitute important parts
of the (sub-)Arctic economy (Mikkelsen and Hoel, 2011).
The term “fisheries” refers in this context to harvesting of
living marine resources, both fish and crustaceans, such as
shrimp and crabs, and marine mammals (seals and
whales). The development of catches in the Barents Sea
and along the Norwegian coast north of 62°N is relevant
in this context, as the commercial species found in our
focal area of the Barents Sea migrate over larger areas.
Noteworthy is that commercial finfish fisheries, unlike
crustacean fisheries, are essentially of boreal fishes (that
partly expand into the Arctic) and not true Arctic-origin
fishes. Catches in this area have shown considerable
decadal-scale fluctuations during the last 50 years driven
by a combination of climate and fishing (Figure 12). Har-
vest rates have decreased in the 2000s following the intro-
duction of harvest-control rules for Atlantic cod, haddock
and capelin (for cod, see, e.g., Kjesbu et al., 2014). The
latest fishery to develop is that for the invasive snow crab,
which started at a low level in 2013 but is currently
between 15,000 and 20,000 tonnes annually. The snow
crab is a benthic predator (Manushin et al., 2016) that can
impact benthic prey (Jorgensen et al., 2015b), threaten
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biodiversity (Hansen, 2016), and compete with other
bottom-feeding species. Shrimp catches have also
increased considerably from 2017 to 2019, but are still
well below the recommended quota level in the 2010s.
Polar cod has been fished commercially, mainly by Russia,
with catches >100,000 tons in some years in the 1970s
(Aune et al., 2021), although catches in the last decade
have been very low.

Fish stocks in the Barents Sea have moved northwards
and eastwards in recent years (e.g., Landa et al., 2014; Fos-
sheim et al., 2015), causing increasing catches in the Sval-
bard fisheries protection zone (Misund et al., 2016),
although the trend seems to have been halted and even
slightly reversed recently (ICES, 2021a). Spawning areas of
the commercial stocks have varied (e.g., Carscadden et al,,
2013; Opdal and Jergensen, 2015; Sundby, 2015; Langan-
gen et al,, 2018), but no new major spawning areas have
been observed. The fisheries follow the fish to some extent,
and increasing parts of the summer and autumn fisheries
have taken place in northern and eastern parts of the
Barents Sea in recent years. However, a large proportion
of the catches of commercially important species such as
cod and capelin are taken close to the spawning areas on
the Norwegian coast in winter—early spring. The exclusive
economic zones also affect the geographical distribution of
the fisheries, as Russian fishers have allocated quotas in the
Norwegian zone, where there are more large cod than in
the Russian zone. Young fish that are below the minimum
landing size are generally found farther east, which has
probably limited eastwards movement of the fisheries.

5.1.2. Species interactions affecting fisheries

The Barents Sea is one of relatively few areas where eco-
system processes are included in tactical fisheries manage-
ment (Skern-Mauritzen et al., 2015). Two of the dominant
species in the fisheries are capelin and cod, with capelin
being a major prey of cod. When the annual fishing quota
for capelin is set by the Joint Norwegian—Russian Fisheries
Commission, capelin consumption by cod is considered in
order to reduce the risk of capelin-stock decline and
adverse feeding conditions for cod. However, the capelin
stock fluctuates and has collapsed 4 times during the last
4 decades. The first three collapses were likely driven by
recruitment failure mainly caused by predation from
young herring (Clupea harengus) on capelin larvae (Gjo-
seeter et al., 2016). During each of these collapses, the
fishery was closed for a period of 4-5 years. The reason
for the fourth, minor collapse, which caused the fishery to
be closed in 2016-2017, is uncertain, but is possibly
linked to high predation from cod. The capelin fishery was
reopened in 2018 and closed again in 2019-2021, but was
opened again in 2022 (ICES, 2020b). To sustainably man-
age the fisheries on the tightly interlinked fish popula-
tions in the Barents Sea, a better understanding is
needed on how fishing, in combination with climate,
affects the target species as well as their predators, com-
petitors and prey. Other harvesting strategies including
species at lower trophic levels that are not commercially
exploited today may increase the total yield substantially,
with limited impacts on fish stocks (Nilsen et al., 2020).
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Figure 12. Time series of catch, stock size, and harvest rate for main Barents Sea fish stocks. Time series of (a)
catch, (b) stock size, and (c) and harvest rate (catch divided by stock) for the three main fish stocks in the Barents Sea,
cod, capelin and haddock, for the period 1965-2020. Catches of four other important stocks combined (redfish,
Greenland halibut, polar cod and shrimp) are also shown. In total, these seven stocks account for more than 95% of

the catches in the Barents Sea.

5.1.3. Effects of trawling on Barents Sea benthic
habitats

Declines in biomass have been recorded for benthic
megafauna from untrawled to trawled areas, suggesting
that trawling affects the biomass of most respective spe-
cies negatively (Jorgensen et al., 2015a). Detrimental

effects of trawling were inferred from negative relation-
ships of bottom trawling intensity with densities of most
common epibenthic species in the Barents Sea (Buhl-
Mortensen et al., 2016) and epibenthic species richness
and from altered epibenthic community composition
(Kedra et al., 2017).
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Bottom habitats in Norwegian waters are protected
against trawling through a host of measures, e.g., a ban
on trawling at depths >1000 m, and 12 nautical mile
reserves around most of the Svalbard archipelago (Jergensen
et al., 2020). Pelagic trawling for cod was banned in the
1970s, as such catches often comprised large numbers of
undersized fish or damaged fish. The most recent prelimi-
nary closures to trawl fisheries in the Northern Barents Sea,
covering an area of 442,022 km?, entered into force in 2019
and are based on detailed seafloor surveys over a decade
(Jorgensen et al., 2020). However, new technological devel-
opments with better size selectivity of the trawls may make
it feasible to re-introduce pelagic trawling for cod.

5.2. Pollution

5.2.1. Why pollution in the Arctic?

Despite the long distance from the primary sources of
anthropogenic contaminants, pollutants have been pres-
ent in the Arctic for decades, with the initial discovery of
organic hazardous substances in seabirds and mammals in
the early 1970s (AMAP, 1998). In addition to long-range
transport, sources of current and increasing local pollution
within the Arctic have been identified (AMAP, 2017b) due
to increased human activity (AMAP, 2017a). Despite global
bans and the phasing out of many compounds, legacy
pollutants such as polychlorinated biphenyls (PCBs) still
dominate in Arctic wildlife (Dietz et al., 2015). Another
recent challenge is marine litter, mainly plastics, which are
observed in both surface and deeper waters of the Barents
Sea (Cbzar, et al., 2017; Grosvik et al., 2018; von Friesen
et al., 2020). Although the focus on global occurrence of
microplastics is increasing (e.g., Barnes et al., 2009), there
is still sparse information on the presence of microplastics
in the Arctic and its biota (e.g., Lusher et al., 2015; Grosvik
et al., 2018; Hallanger and Gabrielsen, 2018; Yakushev
et al., 2021; Bergmann et al., 2022), and even less on
potential biological effects of microplastics.

5.2.2. Accumulation and effects of pollution

High latitude ecosystems are adapted to a high depen-
dency on lipids as an energy source in periods of low
food availability (Conover and Huntley, 1991; Falk-
Petersen et al., 2007). Lipids are important with respect
to contaminants, as many of the contaminants in ques-
tion are highly organic and lipophilic. Lipids are thus
important as a biological “sink” of contaminants in
organisms, and also as a source, as mobilization of lipids
results in a remobilization of contaminants to the blood
stream making them available to reach target organs
susceptible to their effects (Bustnes et al., 2010). Lipids
are also important in the generational transfer of energy
(and contaminants) from mother to offspring (Borgd
et al., 2004). Lipid-associated contaminants, such as
PCBs, are more efficiently transferred maternally than
protein-associated substances like per- and polyfluor-
oalkyl substances (PFAS) and heavy metals such as
mercury (Hitchcock et al., 2017). Seasonality of bioaccu-
mulation and food-web magnification of contaminants
in the Arctic pelagic marine ecosystem have been
observed in coastal fjord systems (Hargrave et al., 2000;
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Hallanger et al., 2011), but information from the shelf seas
is still sparse. For the southern Barents Sea, the seasonal
bioaccumulation has been modelled (De Laender et al.,
2010) and to some extent validated, showing lower bioac-
cumulation factors for cod, capelin and herring in summer
compared with other seasons. The coverage of contami-
nants in the seawater reported through the European
Union Water framework directive and the Marine Strategy
Framework Directive is poor for the Barents Sea, whereas
the data status is moderate to good for selected biota (Euro-
pean Environment Agency, 2018). There, samples of
selected fish species and benthos were collected tri-
annually for monitoring of pollutant levels in biota (e.g.,
McBride et al., 2016; van der Meeren and Prozorkevich,
2019). In addition, polar bears (Ursus maritimus) and
selected other species are studied either annually or more
sporadically (e.g., Lucia et al., 2017; Routti et al., 2018; Tartu
et al., 2018; Lippold et al., 2019; Blévin et al., 2020),
whereas comprehensive studies of pollutant movement
through the Barents Sea food web, from zooplankton
through fish to seabirds and marine mammals, have been
scarce during the past two decades (e.g., Borga et al., 2001,
Borga et al., 2004; Haukas et al., 2007).

5.2.3. Responses to oil components exposed via food
and water

The development of early life stages of Arctic calanoid
copepods is affected by oil components such as polycyclic
aromatic hydrocarbons (PAH), whereas adults showed no
physiological effects (Toxveerd et al., 2018a). Other studies
of different copepod endpoints, however, show reduced
feeding and reduced winter survival and lipid mobiliza-
tion (e.g., Norregaard et al., 2014; Toxveerd et al., 2018b,
2019). The polar cod have been exposed experimentally to
oil contaminants in both food and water and have shown
enzymatic effects and genotoxicity even at low PAH con-
centrations (<15 pg L', Nahrgang et al., 2010a). Nahr-
gang et al. (2019) also found a negative impact of crude oil
exposure on growth performance of adult polar cod with
low condition in the early spring. Oil-contaminated food
reduces growth rates and energy reserves, whereas oil in
water can depress their metabolism (Christiansen and
George, 1995; Christiansen et al., 2010; Nahrgang et al.,
2010a; Nahrgang et al., 2010b; Nahrgang et al., 2019).
However, the most severe effects on growth and survival
of polar cod are on their larval stages (Bender, 2020;
Bender et al., 2021).

5.2.4. Multiple drivers and stressors—The interaction
A major challenge in describing current change or project-
ing future ecosystem state is that multiple drivers interact
with each other (Carlsson et al., 2016; Tartu et al., 2017), as
well as with the diverse array of contaminants present in
the system. Organisms are exposed simultaneously to
a wide variety of varying drivers, which singly or in com-
bination can be stressors. Multiple stressors can interact in
a variety of manners: they can cancel each other out
(antagonistic), show a combined effect (additive) or rein-
force each other (synergistic). In calanoid copepods, the
combined effects of increased temperature and pyrene
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concentration were species-dependent (Hjort and Nielsen,
2011), illustrating the complexity of stressor interactions.
In combination with other stressors and drivers, the
potential population effect of contaminants is predicted
to be more severe than exposure to each stressor sepa-
rately (Bustnes et al., 2015; Bardsen et al., 2018). Climate
change is expected to cause alterations in bioaccumula-
tion of organic contaminants in Arctic marine food webs
(Borga et al., 2010). Growth rates of phytoplankton can be
affected my multiple drivers, as experiments studying
interaction of pCO, with temperature, light and nutrients
have shown (Seifert et al., 2020).

5.3. Effects of ocean acidification

As mentioned above, increased sea ice and glacial melt-
water cause freshening of surface and coastal waters, lead-
ing to increased ocean acidification (Chierici and
Fransson, 2009; see also Section 3). The Arctic Ocean is
already undersaturated with regard to aragonite in shelf
regions influenced by freshwater (Chierici and Fransson,
2009).

Ocean acidification has negative effects on egg produc-
tion, growth, ingestion, metabolic expenses, and larval
development of numerous invertebrate species, including
the Arctic copepod Calanus glacialis (e.g., Thor et al., 2018)
and the cold-water pteropod Limacina helicina (Lischka
et al,, 2011; Manno et al,, 2017). Some studies have sug-
gested that populations or certain life stages of, e.g., cope-
pods and cold-water corals are sensitive to ocean
acidification (e.g., Weydmann et al., 2012; Lewis et al.,
2013). However, there are also some indications that Arc-
tic copepods may be robust against ocean acidification
(Bailey et al., 2017) and that organisms that are adapted
to variable environmental conditions will be able to
counter future changes (Reusch, 2014), as exemplified
by Arctic phytoplankton and ice algae (Torstensson
et al., 2021). Even though teleost fishes are generally resil-
ient against ocean acidification (Portner, 2008; Melzner
et al., 2009a; Melzner et al., 2009b), eggs and early life
stages tend to be more sensitive to changes in environmen-
tal CO, levels (Frommel et al., 2012; Stiasny et al., 2016).
Fish populations within the Arctic ecosystem may also be
affected by ocean acidification through indirect effects via
their invertebrate prey. Experiments on ocean acidification
and warming on Atlantic cod and polar cod have shown
that changes in temperature have an overriding effect, and,
thus, the combined effect of future changes in these factors
in the Barents Sea may be positive for boreal species and
negative for Arctic species (Kunz et al., 2016).

5.4. Other human impacts
Since 2010, petroleum activities, shipping, and aquaculture
have increased with potential effects on the wildlife (ICES,
2017, 2020a). Transported oil and gas volumes are also
expected to increase along with traffic along the Northern
Sea Route (Skjoldal et al., 2013; Henderson and Loe, 2014).
Environmental risks have been evaluated to manage
the potential for harmful effects of maritime activities
(Hauge et al., 2014; Bambulyak et al., 2015). Increased
seismic investigations and sound from ship engines and
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thrusters are expected to increase the under-water noise
level (e.g., Stanley et al., 2017).

Tourism to the Arctic has increased during the recent
decade (Stephen, 2018; Runge et al., 2020), and the acces-
sibility and scenery of the Barents Sea marginal ice zone
represent a potential for increasing tourism activity. How-
ever, overcrowding (Bystrowska, 2019) and climate change
that alters the expected tourist experiences (Kajan, 2014;
Nicholls and Amelung, 2015; Bystrowska, 2019) may
become negative for tourism over time.

Noise levels in the sea may have negative impacts on
the communication between conspecifics, as well as nav-
igation for fish and marine mammal stocks (e.g., Stanley
et al., 2017). While several ice-associated whale species are
increasing (Vacquié-Garcia et al., 2017), many seabird
populations are in decline (Anker-Nilssen et al., 2017).
Although food limitation and predators are natural stres-
sors for seabirds (Fredriksen et al., 2013), they are also
vulnerable to oil spills (Haney et al., 2017). However, attri-
bution of population declines to specific stressors is not
straightforward.

6. Discussion: Is the Barents Sea becoming less
"Arctic"?

Although marine ecosystems throughout the world are
structured and function based on similar physical, biogeo-
chemical, and ecological principles, there are, arguably,
characteristics of a system that make it “Arctic”. Extreme
seasonality in solar radiation, low air and sea tempera-
tures, seasonal or persistent sea-ice cover, and water col-
umn stratification determined largely by salinity
differences are examples of characteristics that alone and
in combination describe Arctic marine systems. These
physical factors strongly influence ecosystem processes
ranging from atmospheric fallout of contaminants and
CO, flux between the atmosphere and ocean to timing
and intensity of primary production, the biological carbon
pump, and composition of seasonal and resident biologi-
cal communities.

Ecological factors that are enhanced in Arctic systems
include relatively few species compared with temperate
and tropical regions, the elevated importance of lipid-
driven food webs, and generally low levels of human
impact (disturbance, contamination, species introduc-
tions). Biomes unique to polar ecosystems, such as sea-
ice communities, and the extensive seasonal feeding and
breeding migrations of fish, birds, and marine mammals
to the region also can define marine systems as Arctic.

Clearly this list is not exhaustive, but the combined
impacts of these physical, biogeochemical, and ecological
characteristics produce much of what makes a marine
ecosystem Arctic. We use this list to evaluate whether the
Barents Sea is still of Arctic nature after the recent and
rapid climate change we have observed over the past 3—4
decades, and to what extent the Arctic status of the region
may change in the next decades.

6.1. Still Arctic?
Despite its location well above the Arctic Circle, guaran-
teeing high-Arctic seasonality in solar radiation, the
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southern Barents Sea can be described as more of a boreal
ecosystem. Lack of sea ice and a strong influence of Atlan-
tic Water lead to thermally regulated stratification. Pri-
mary productivity is generally high, and wind-driven
mixing can produce secondary blooms in autumn (Ardyna
et al., 2014). Further, most of the fish (Fossheim et al.,
2015) and benthic (Cochrane et al., 2009; Jorgensen
et al., 2015a) communities have boreal affinities, and zoo-
plankton communities are increasingly dominated (in bio-
mass) by boreal copepods (Calanus finmarchicus), krill
(Thysanoessa inermis and Meganyctyphanes norvegica), and
jellies (Cyanea capillata; Orlova et al., 2015; Eriksen, 2016;
Aarflot et al., 2017). Atlantification of the southern
Barents Sea in terms of physical, biogeochemical, and eco-
logical parameters is in an advanced state (Ingvaldsen
et al., 2021). In addition, this southern region of the
Barents Sea is the most impacted by human activities such
as trawling, shipping and petroleum production, although
there have been few documented pollution events. Thus,
the southern Barents Sea lacks many of the characteristics
by which we define marine ecosystems as Arctic.

We argue, however, that despite some trends associated
with climatic change, the northern Barents Sea ecosystem
should still be classified as “Arctic”. Sections 2—4 provide
considerable detail on the individual components and
their current status, but here we highlight evidence from
integrated impacts on ecosystem structure and function.

The northern Barents Sea is warming and exhibiting loss
of winter sea ice (e.g., Arthun et al., 2012). Less ice through-
out the Arctic has led to greater ice mobility such that ice
imported to the northern Barents Sea from the Laptev Sea
is the largest driver of interannual variability in sea ice
(Ingvaldsen et al., 2021). So, whereas sea ice is now thinner,
more mobile, and present for a shorter period of the year, it
is still sufficient to support sea-ice biota, including ice-algal
production. Ice melt dominates water column stratification,
and the mixed-layer depth has increased (Oziel et al., 2017).
Primary productivity exhibits high interannual variability
both in quantity and timing due to the variability in ice
cover and timing of melt (Kohlbach et al., 2023). Thus,
despite trends in some physical drivers, processes behind
bloom initiation remain “Arctic”.

The pelagic food web of the northern Barents Sea
remains dominated in biomass by the high lipid-content
copepod Calanus glacialis, which continues to have sea-
sonal vertical migrations to surface waters during phyto-
plankton bloom periods. Copepods concentrate energy
produced by microalgae and make it available to lipid-
rich fish such as capelin and polar cod, thus playing a key
role in nutrition of resident and seasonally migrating fish,
seabirds, and marine mammals. In some years, boreal fish
appear to displace Arctic species in the northeastern
Barents Sea (Fossheim et al., 2015), but there is consider-
able annual variation in this potential trend (Frainer et al.,
2017). Food-web structure has been resilient to both
heavy fishing pressure and climatic change, and the role
of krill in energy transfer has increased since the early
2000s (Pedersen et al., 2021). Although poorly con-
strained, there is no evidence for significant changes in
the biological carbon pump or vertical flux patterns of the
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northern Barents Sea (Dybwad et al., 2022). These pro-
cesses are tightly linked to potential changes in CO,
uptake and carbon subsidies to benthic communities in
the region.

Thus, despite the Barents Sea undergoing significant
changes in sea-ice cover and both atmospheric and water
temperatures, it appears to remain Arctic in structure and
functioning. Indeed, a recent analysis indicated weak evi-
dence for change in the northern Barents Sea relative to
baseline levels in a variety of parameters ranging from
temperature to distribution of biomass across trophic
levels (Siwertsson et al., 2023). Current trajectories and
recent model results, however, suggest that this region
may soon function differently than it currently does: its
Arctic status may be changing.

6.2. Beyond 2030: A New Arctic

The Barents Sea is warming and will continue to do so in
the future (Arthun et al., 2019; Drinkwater et al., 2021;
Shu et al., 2021). The volume of the AW inflow is predicted
to become somewhat reduced, but with increased overall
heat transport (Arthun et al., 2019). This future increase in
Atlantic heat transport is reflected in a northward pene-
tration of warm water into the Arctic Ocean (Dorr et al.,
2021). Although pronounced internal climate variability
(Ar’thun et al., 2019; Olonscheck et al., 2019; Dorr et al.,
2021; Madonna and Sande, 2021; Rieke et al., 2023) leads
to large uncertainty in future projections of temperature
and sea-ice cover (Bonan et al., 2021), some modelling
studies show absence of winter sea-ice cover in the Barents
region by 2050 (Onarheim and Arthun, 2017; Rieke et al.,
2023). Regarding biogeochemistry, models indicate that
aragonite will reach undersaturation during parts of the
year in the bottom waters on the continental shelf in the
northern Barents Sea already by 2030 (Popova et al., 2014;
Wallhead et al., 2017), and future scenarios suggest a drop
of up to 0.35 units in the surface pH by 2065 (Skogen
et al., 2014). In the worst case all waters will be undersat-
urated with respect to aragonite (Fransner et al., 2022).
This process is ongoing, and despite inherent inertia in the
ecological system, an expectation that the northern
Barents Sea will become less Arctic as its main physical
and biogeochemical drivers change is reasonable.

Recent studies show that the northern Barents Sea acts
as a net sink for atmospheric CO, and that the main
seasonal drivers are meltwater inputs and biological CO,
uptake during photosynthesis (Jones et al., 2023). Long-
term fCO, trend estimates showed a rapid rise of fCO, in
the surface waters in the Barents Sea and north and east of
Svalbard of 4.2-5.5 patm year™' over the winter to sum-
mer seasons (Ericson et al., 2023). This rise is twice as fast
as the atmospheric CO,-increase rate in the period 1997
to 2020 and coincided with the area of largest sea-ice loss
(more open areas; Ericson et al., 2023). Fransson et al.
(2017) also found substantial ocean-CO, uptake in leads
and openings during winter. Consequently, with expand-
ing open areas and continued sea-ice loss, the Barents Sea
will likely become an even stronger CO, sink in the future,
where the largest change will likely be during winter and
in the seasonally ice-covered area. A stronger CO, sink will
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speed up ocean acidification in this area. As this area still
has large data gaps especially in winter and spring, the
fCO, measurements in this period are crucial to make
estimates of the ongoing trend and future effect of
increasing fCO, in the water column.

Thinner ice cover and earlier sea-ice retreat in the
Barents Sea will lead to a shift in the timing of the ice-
algal bloom, or its disappearance altogether, and likely
result in an earlier phytoplankton bloom (Wassmann and
Reigstad, 2011; Ji et al., 2013; Ardyna and Arrigo, 2020). In
recent years, the highest increase in primary production
has occurred in the northern Barents Sea in today’s mar-
ginal ice zone (Wassmann and Reigstad, 2011; Renaut
et al., 2018; Dalpadado et al., 2020). There is considerable
uncertainty in modelling studies as to whether primary
production will increase, decrease, or remain the same in
the next 30-80 years (Slagstad et al., 2011; Skaret et al.,
2014; Sando et al., 2021). This uncertainty in future pri-
mary production is important to resolve as, together with
bloom timing, it can have consequences for secondary
production and vertical flux (Wexels Riser et al., 2007;
Soreide et al., 2010; Varpe, 2012) in the region. One pre-
dicted result of global climate change is an increase in
pelagic bacterial abundance (Sarmento et al., 2010).
Changes in bacterial communities can be expected to alter
both viral abundance and diversity, with effects on the
overall carbon and nutrient flow in the system (Sandaa
et al., 2017; Tsagaraki et al., 2018). Thus, the manifold
changes in the pelagic ecosystem caused by warming and
ice loss can reduce the efficiency of the biological carbon
pump, thought to be quite strong in the northern Barents
Sea now (e.g., Reigstad et al., 2011; Buesseler et al., 2020).

Future warming may cause the Arctic copepod Calanus
glacialis to be displaced from the northern Barents Sea
shelf to the continental slopes and basins of the Arctic
Ocean (Slagstad et al., 2011; Ershova et al., 2021), while
the boreal C. finmarchicus will expand into the northern
Barents Sea (Slagstad et al., 2011) and into the Arctic
Ocean (Wassmann et al., 2015; Tarling et al., 2022).
Replacement of Arctic with boreal zooplankton species
on the Barents Sea shelf may cause structural and func-
tional changes in the marine food web (Gluchowska et al.,
2017), partly because the boreal species are generally
smaller and less lipid-rich than the Arctic congeners
(Falk-Petersen et al., 2009). This difference impacts
plankton-eating fishes and seabirds that selectively con-
sume the larger zooplankton to build seasonal lipid
reserves (Wold et al., 2011). Because lipids are rapidly
transferred up the food web, changes in the energy flow
can have negative consequences for marine mammals and
seabirds that rely on lipid stores for insulation, mainte-
nance energy, and reproduction (Falk-Petersen et al., 2007;
Wold et al., 2011; Hovinen et al., 2014b; Haug et al.,
2017b). However, these consequences may be compen-
sated by more efficient transfer of energy from primary
producers to higher predators because of shorter genera-
tion time and higher population turnover rate for zoo-
plankton in a warmer Arctic (Renaud et al., 2018).

Reorganization of regional biodiversity is expected
throughout the food web. Warming bottom waters and
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potentially altered food supplies increasingly may allow
more boreal benthic invertebrate taxa to become estab-
lished in both the southern and northern Barents Sea
(Renaud et al., 2015). Similarly, the rapid addition of
boreal species will increase the biodiversity of fishes in
the northern Barents Sea initially, but this phase is likely
transitory and may be followed by a decline driven by
Arctic species loss (Pecuchet et al., 2020; Frainer et al.,
2021). Fish stocks predicted to do poorly include polar
cod, along with a number of non-commercial Arctic fish
stocks already challenged by predation and competition
from expanding boreal species (Fossheim et al., 2015;
Kjesbu et al., 2021). Predictability of rate and direction
of change is indeed challenged by the pulsed character
of warming, including heat waves, triggering sudden
bursts of ecological responses (Husson et al., 2022).

Future fisheries are expected to approximately average
harvesting levels in the last decade, as most commercial
species are harvested close to sustainable levels. Climate
warming will determine the future spread of the snow
crab in the Barents Sea (Pavlov and Sokolov, 2003; Baka-
nev, 2015), and the snow crab fishery is expected to
expand into the areas around Svalbard (Hansen, 2016).
Increased warming may increase the spreading of the
Kamchatka red king crab (Paralithodes camtschaticus)
northwards in the Barents Sea from its current distribu-
tion near the Norwegian-Russian mainland coasts (Chris-
tiansen et al., 2015). Some commercial species such as cod
and haddock are unlikely to expand in distribution
beyond the continental shelf break (Ingvaldsen et al.,
2017), while others, such as capelin, redfish and Green-
land halibut may be less restricted (Hollowed et al., 2013a;
Hollowed et al., 2013b). Continued northward expansion
of mackerel into the southern Barents Sea in summer
(Nottestad et al., 2016; Haug et al., 2017a) could lead to
development of a regional fishery for this species as
recently observed in Icelandic and Greenlandic waters, but
the consequence of large mackerel stocks on food-web
interactions is unexplored.

Current northward range expansions by boreal marine
mammals will likely lead to increased competition with
endemic Arctic species, as well as putting these Arctic
species at greater risk of predation, disease, and parasite
infections (Moore and Huntington, 2008; Kovacs et al.,
2011; Skern-Mauritzen et al., 2011; Laidre et al., 2015;
Haug et al., 2017a; Vacquié-Garcia et al., 2017; Hamilton
et al.,, 2019; Moore et al., 2019). Competition for food with
the currently large Atlantic cod stock may also affect body
conditions of marine mammals (@igard et al., 2013; Bog-
stad et al., 2015; Solvang et al., 2021). Loss of sea ice is
already affecting species such as white whales and ringed
seals (Kovacs et al., 2011; Stenson et al., 2020), and ice
retraction from the shallow (100-350 m) shelf to the deep
polar basin reduces access to bottom-associated prey spe-
cies for harp seals (Haug et al., 2021) and walrus. In the
longer term, foraging success, fertility rates, mortality
rates and pup survival can be expected to be impacted for
several populations of endemic Arctic marine mammals
(Laidre et al., 2008; Kovacs et al., 2011; Hamilton et al.,
2015).
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Continuing warming and sea-ice loss in the northern
Barents Sea will likely result in weaker pelagic-benthic
coupling and higher retention in a more complex pelagic
food web (Wassmann et al., 2006). Thus, the food supply
to the benthos is expected to be reduced, particularly
during late spring and early summer when ice algae usu-
ally constitute a high-quality food source (Tamelander
et al., 2006). A relative increase in importance of advected
sources of carbon has been suggested (Hunt et al., 2016;
Vernet et al., 2019). Current climatic trends also suggest
a distinct decline of benthic secondary production in the
northeastern Barents Sea in the future (Degen et al.,
2016), and possibly reduced carbon sequestration at the
seafloor, which is currently thought to be higher in the
sea-ice-covered region (Faust et al., 2020). However, find-
ings of increased pelagic-benthic coupling during a period
of sea-ice decline in Baffin Bay (Olivier et al., 2020) suggest
that even the direction in which pelagic-benthic coupling
may develop is unclear. Resolving these uncertainties is
important, as the role of the Barents Sea seafloor for both
nutrient cycling and carbon sequestration is thought to
have been underestimated (Marz et al., 2022), and this
role has bearing on whether the region will be a net
source or sink of atmospheric CO,.

Fundamental changes in seasonality, biogeochemical
cycling, metabolic rates and partitioning of productivity
are expected to occur in the northern part of the Barents
Sea as warming continues (Reigstad et al., 2011; Holding
et al., 2015; Tremblay et al., 2015; Mesa et al., 2017). These
changes, combined with altered species distributions, will
likely alter ecosystem vulnerability as indicated by studies
of functional diversity, redundancy and food-web modu-
larity (Wiedmann et al., 2014; Kortsch et al., 2015; Pecu-
chet et al.,, 2020). Taken together, current understanding
suggests that the northern Barents Sea in a few decades
will no longer be fully “Arctic”. Instead, a “New Arctic”
ecosystem, one with Arctic light and stratification regimes,
but mixed boreal and Arctic species pools, lack of sea-ice
algae, and (potentially) strongly altered biological carbon
pump, will characterize the region.

7. Conclusions: Management, knowledge gaps,
and outlook
An ecosystem in transition presents many challenges for
management of harvestable resources, as well as the eco-
system as a whole. Continued ocean warming will most
likely lead to fisheries expanding further northwards and
to increases in the length of the fishing season due to
broader stock distributions and increased access (Stocker
et al., 2020). Changes in the location of spawning areas
may require longer feeding migrations for some species
like capelin (Huse and Ellingsen, 2008). Shifts in spawning
locations from one jurisdiction to another, e.g., like a shift
in cod spawning site locations from the Lofoten Islands
and into the Barents Sea as far east as Murmansk by the
2070s (Sando et al., 2020), present fisheries-management
challenges as well as regional and international gover-
nance issues.

A framework for managing the marine ecosystem and
all human activities (oil and gas industry, fishing and
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shipping) in the Norwegian sector of the Barents Sea has
been formalized in the form of an integrated management
plan, issued by the Norwegian government in 2006 and
updated several times since then (Olsen et al., 2007; KLD,
2020). Following new CMIP6 projections and regardless of
emission scenario, the summer sea ice will be lost in all
the Arctic shelf seas within several decades. However, the
Barents Sea is the only Arctic shelf sea for which ice-free
conditions in winter are projected before the end of this
century (Arthun et al., 2021). Changes discussed in this
review, hence, have substantial implications for human
activity. One consequence is that new management mea-
sures for commercial fisheries have now been developed
(Jorgensen et al., 2020), paying attention specifically to
changes related to global warming. Human activity, in
turn, will continue to affect the biological and physical
systems of the Barents Sea. Longer ice-free seasons and
easier accessibility increase the importance of research,
monitoring, observing systems and environmental man-
agement to secure sustainable resource use. Furthermore,
addressing ecological surprises, i.e., low-probability but
high-impact events, when addressing future changes can
increase readiness, such that managers can respond to
limit the impact of potential disruptions (Mueter et al.,
2021).

Whereas management systems are already in place and
well developed, we lack the knowledge needed to reduce
uncertainty in projections for the future state of the
Barents Sea. Many specific knowledge gaps have been
detailed in the text above, but generally these gaps
include themes like: (i) understanding of the coupling
between atmosphere, sea ice and ocean to identify drivers
impacting the sea-ice zone; (i) improved understanding of
the coupling processes between the physical and biologi-
cal systems; and (iii) improved models of the Polar Front
zone and the seasonal ice zone of the Barents Sea (Faglig
forum for norske havomrader, 2019). Regional monitoring
and research have become and will need increasingly to
become integral parts of pan-Arctic observation and fore-
cast systems (e.g., Lee et al., 2019), and climate and eco-
system models that integrate new data in near-real time
need to be improved.

One area that offers hope for rapidly filling knowledge
gaps is the recent development of new instrument-
carrying platforms (remotely operated vehicles, autono-
mous underwater vehicles, unmanned surface vehicles,
drones, buoys and satellites) and improved physical and
biological sensors (temperature/salinity, acoustic, optical,
and turbulence; e.g., Engelsen et al., 2002, 2004; Fossum
et al., 2018; Johnsen et al., 2018; Ludvigsen et al., 2018;
Kolas et al., 2022). Such instrument-carrying robots can
provide high-resolution data in time and space, filling
observational gaps and adding to ongoing long-term mon-
itoring (e.g., Arneberg et al., 2020). New satellite-based
sensors can help to fill in information on sea-ice thickness
and volume changes where no in situ observations exist,
e.g., the coming Copernicus Polar Ice and Snow Topogra-
phy Altimeter CRISTAL (Kern et al., 2020). Ice-tethered
platforms allow in situ long-term observations from
within the ice-covered habitat, providing much needed
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data that help close seasonal and spatial gaps where there
is still hesitation to deploy mobile advanced technology
under sea ice (Berge et al., 2016). These new tools can
complement existing instrumentation to improve sam-
pling on finer scales, at times and in places where
human-based sampling is challenging (under ice, polar
night), and contextualize data by combining sensors and
sampling scales.

This review of recent scientific results from the Barents
Sea shows that the physical, biogeochemical, and ecolog-
ical systems have changed over the past two decades.
Scientists are challenged not only to quantify the changes,
but also to identify new processes and scenarios that have
not been observed in this region earlier. Our review shows
that substantial advances in understanding status, trends,
processes, and inherent system linkages have been
achieved in the past decades as a result of large and
small-scale research efforts from multiple nations, individ-
ually and collaboratively. However, some challenges and
gaps in knowledge and observations remain. Among those
gaps are few in situ data from winter (e.g., Berge et al.,
2020) and early spring, as is also the case on a pan-Arctic
scale (Gerland et al., 2019). A second gap is the lack of
high-resolution spatial information from both observa-
tions and model outputs, in both lateral and vertical
dimensions. Finally, the Barents Sea cannot be viewed in
isolation from the rest of the Arctic (e.g., Carmack and
Wassmann, 2006; Burgass et al., 2019). Attempts to view
the region in a larger conceptual context have begun
(Wassmann et al., 2020), and comparative studies, both
in terms of physical processes (atmosphere-ice-ocean
interaction; Graham et al., 2017) and ecosystem properties
(e.g., Hunt et al,, 2013; CAFF, 2017; Ardyna and Arrigo,
2020; Nothig et al., 2020), have yielded significant
insights into different modes of ecosystem functioning.
Results of recent observational and experimental studies
in the northern Barents Sea (The Nansen Legacy) and the
wider Arctic (Distributed Biological Observatory, e.g., Greb-
meier et al., 2019; Multidisciplinary drifting Observatory
for the Study of Arctic Climate: MOSAIC, e.g., Nicolaus
et al., 2022) have come far to connect findings from dif-
ferent regions of the Arctic. If we can further integrate
knowledge from across the pan-Arctic and fill the knowl-
edge and technological gaps presented here, we will be in
a good position to face the challenges for understanding
and managing the marine ecosystem of the New Arctic.
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flagship project “A-TWAIN" (https://www.npolar.no/
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