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Abstract: Learning Management Systems provide teachers with many functionalities to offer materi-
als to students, interact with them and manage their courses. Recognizing teachers’ instructing styles
from their course designs would allow recommendations and best practices to be made. We propose
a method that determines teaching style in an unsupervised way from the course structure and use
patterns. We define a course classification approach based on deep learning and clustering. We first
use an autoencoder to reduce the dimensionality of the input data, while extracting the most impor-
tant characteristics; thus, we obtain a latent representation of the courses. We then apply clustering
techniques to the latent data to group courses based on their use patterns. The results show that this
technique improves the clustering performance while avoiding the manual data pre-processing work.
Furthermore, the obtained model defines seven course typologies that are clearly related to different
use patterns of Learning Management Systems.

Keywords: autoencoders; clustering; deep learning; educational data mining; learning management
system; unsupervised learning

1. Introduction

Learning Management Systems (LMS) are increasingly being integrated into tradi-
tional universities as a complement to face-to-face teaching. These systems provide teachers
with many resources and utilities to offer materials to students, interact with them, and
manage their courses. In the same way that some researchers have aimed to detect students’
learning profiles from their behavior to provide appropriate recommendations and improve
academic achievement [1,2], detecting teachers’ instructing styles from their course designs
would allow for recommendations and best practices to be provided. However, a literature
review suggests that a research gap exists in the fields of learning analytics and educational
data mining from the perspective of teachers [3–5].

With the assistance of an intelligent LMS that analyses teaching style from course
structure and LMS use patterns, teachers could improve the design of their courses [5]. This
improvement is expected to directly impact the learning process and students’ outcomes
and satisfaction [6]. On the other hand, many national teacher accreditation systems
are based on teaching quality programs that evaluate competence in technology-based
learning. Therefore, universities need to certify the use of LMSs by teachers. Currently,
this task is carried out manually by experts or with overly basic metrics based on the
presence or absence of LMS activity. It would be interesting to be able to automatize this
certification process.

We see the process of defining teaching styles from LMS data as an unsupervised prob-
lem. Supervised methods require a significant quantity of well-labeled training datasets
created by significant manual feature engineering efforts [7]. It is very hard to obtain
labeled data in this context. In addition, as there is not a generally accepted model of
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online teaching styles [8,9], it is unfeasible for experts to assign meaningful labels to online
courses [10]. Even unsupervised methods require some important manual data engineering
in the phase of data pre-processing and transformation. In our previous work on LMS
course clustering [11], we lost information in the processes of reducing the dimensional-
ity and discretizing the input features into only three bins (low, medium and high). We
grouped in the same bin values that could have fuzzy limits. In the process of reducing
dimensionality, the discarding of some dimensions inevitably led to the loss of informa-
tion. Thus, the primary problem to be solved is how to obtain a low-dimensional model
while keeping the most important characteristics of the original data. Motivated by these
limitations, as well as by recent work on deep learning techniques, we propose a course
classification approach based on deep learning and clustering.

Deep neural networks outperform linear models in many tasks. For unsupervised
learning, one recent approach is the use of autoencoders, which provides an informative
representation of the data that can be used, for example, for effective clustering [7,12].

Autoencoders are a type of neural network where the input is the same as the out-
put [13]. They are an unsupervised learning technique. Thus, they can be trained with
unlabeled data. The autoencoders have two main components: an encoder and a decoder
(see Figure 1). The output of the encoder is a latent (or semantic) representation of the
input, usually of a lower dimension. The decoder can reconstruct the input using that
lower-dimensional representation. Then, autoencoders allow for the dimensions of the
input data to be reduced, while extracting their main characteristics.
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Typical applications of autoencoders include dimensionality reduction [13] and feature
extraction [12,14]. Traditional ways to reduce the dimensionality of large datasets are
removing variables with a high correlation and/or a high number of missing values, as
well as using PCA (Principal Components Analysis). Autoencoders have been shown to be
better than PCA as a tool for dimensionality reduction [15–17], although they may involve
more computation time and resources than PCA [18]. In fact, autoencoders have also been
shown to be better than PCA as a tool for capturing the natural data structure in clustering
and obtaining well-defined clustering structures [19]. Other studies have also shown that
dimensionality reduction through deep neural networks allows the use of more scalable
classification systems while maintaining or improving the accuracy [20,21].

Autoencoders are being used in different fields. For example, Deep Convolutional
Autoencoders are used for the unsupervised clustering of seismic data [7], obtaining pre-
cisions comparable to those achieved by supervised methods but without the need for
labeled data, manual feature engineering and large training sets. In addition, variational
autoencoders are used to learn a latent data representation that captures the natural cluster-
ing of bank customers’ data according to creditworthiness [19]. In addition, autoencoders
are successfully used for dimensionality reduction prior to applying k-means clustering to
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functional magnetic resonance imaging data [22]. In the literature, there are many other
examples of a successful unsupervised approach with autoencoders [23–26].

In the field of learning analytics, neural networks have mainly been used in supervised
problems for predicting students’ performance, dropout rates and mood [27–33], as well as
for classifying students according to a well-known learning style model [1,34]. However,
to the best of our knowledge, there is no previous work on latent representations of LMS
courses using autoencoders or any other deep learning architecture.

We first use an autoencoder that learns the latent representation of LMS courses
(defined as the course structure together with the users’ interactions). We then apply the
latent data to clustering techniques to group courses based on their use patterns. That is, the
autoencoder extracts features automatically from input course data and reduces the features’
dimensions. The new dimension-reduced data are used for clustering instead of the original
data, with the hypothesis of improving clustering performance compared to that obtained
with manual preprocessing [11]. Therefore, in the problem of modelling course typologies
according to LMS use, we aim to answer to the following research questions:

• RQ1: Is it possible to avoid the manual data pre-processing work?
• RQ2: Is it possible to improve the clustering performance by reducing dimensionality

using deep learning instead of manually transforming data?
• RQ3: Do we obtain a well-defined clustering structure when we start from the la-

tent space?

The remainder of this paper is organized as follows. In the next section, we describe
the context and the data mining process implemented in this study, along with the methods
used. Next, the results of this study and their analyses are presented. Finally, the last
section contains the outcomes and insights regarding future work.

2. Materials and Methods

This section contains a description of the methodology used in this research.
A flow diagram of the proposed methodology is shown in Figure 2. It consists of the

following steps:

• Logs acquisition;
• Data preprocessing;
• Dimensionality reduction;
• Classification.
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We used a MySQL database engine for data collection from the educational environ-
ment. In addition, we chose R for data processing and as a data mining tool, since we
have used it in our previous tasks, and it also offers a wide variety of packages for deep
learning [35]. We built the autoencoder using the Keras API in R [36].

2.1. Logs Acquisition

A preliminary phase in the data mining process is data collection. Data were collected
from the Moodle LMS corresponding to the virtual campus of a face-to-face university
for the 2015–2016 academic year. These data included approximately 2 million records of
log-data. For each course, we registered actions and resources about teaching and learning
activities of all participants (teachers and students). We used SQL scripts to create a
summary table of courses with aggregated information about users and activity indicators.

2.2. Data Preprocessing

We collected data about all official face-to-face courses that have corresponding virtual
courses in Moodle. An LMS is used as optional support in face-to-face classes. Each teacher
decides how to use the virtual campus, resulting in a variety of uses.

In the first preprocessing stage, courses without students and empty courses were
eliminated, leaving a total of 3303 pre-selected courses. Then, we identified the cases with
interesting information to maximize efficiency and validity [37]. We selected all cases that
met a predetermined criterion of importance, including courses with at least five students
enrolled (since this is the minimum number of students required for an optional course
to be taught, according to the Academic Management Regulation of the target university).
Finally, 3046 courses were selected. We decided to leave in courses with very low use of
the LMS to check if the analysis itself could detect them, which is different from other
studies [38,39]. The described preprocessing is common to our previous study [11].

In addition to course filtering, we transformed and selected the variables to conduct a
sound analysis of Moodle usage patterns. A Moodle course can integrate and configure
resources (such as files, links, labels), activities (such as forums, assignments, quizzes,
glossaries, workshops, wikis) as well as management tools (such as the event calendar
and the gradebook) [40]. From these data, 17 numerical variables were selected to count
resources, activities and actions, as indicated in Table 1. All variables about students’
interactions were normalized to the number of students enrolled in the course. The role
of the actor for the recorded data is also shown. For example, resources and activities are
uploaded and created by teachers, while students are responsible for submissions and
views. We grouped together data on resources and some activities of very limited use, as
detailed in our previous study [11].

Table 1. Description of numerical variables.

Variable Name Counted Data Role

Resources Resources (html, pdf documents) Teacher
ResourceViews Resource views or downloads Student

Forums Discussion forums Teacher
ForumNews Teachers’ forum posts Teacher

ForumInteractions Students’ forum views and posts Student
Assigns Assignments Teacher

AssignSubmissions Assignment submissions Student
Quizzes Quizzes Teacher

QuizSubmissions Quiz submissions Student
AdvActivities Advanced activities Teacher

AdvActivitySubmissions Advanced activity submissions Student
GradeItems Gradebook items Teacher

GradeFeedbacks Feedbacks of gradebooks Teacher
GradeAdvanced Manual or calculated gradebook items Teacher
BasicInteractions Entries (glossary, database, chat) Student

Feedbacks Feedback activities (surveys) Teacher
CalendarEvents Manual calendar events Teacher
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2.3. Dimensionality Reduction

From the course summary table with the 17 variables that describe the activity of the
courses, we used autoencoders to reduce the dimensionality and facilitate the analysis.
This is where we tried to improve the methods used in our previous study, where we
had to pre-process data by (1) pre-selecting the features of interest, avoiding correlations
and low-variance features across samples, and (2) discretizing data using K-means cluster-
ing [11]. These techniques reduce the complexity of the data and make the analysis easier
to understand; however, they suffer from a significant loss of information.

With autoencoders, when we select a number of bottleneck layer nodes that is smaller
than the number of original input nodes, we obtain a compressed representation of the
input. Therefore, we obtain the desired effect of dimensionality reduction [41]. Thus, the
dimension of the latent representation (bottleneck layer, see Figure 1) is one of the main
parameters to be set for autoencoders in dimensionality reduction. For clustering, lower
dimensionality can lead to a lower clustering accuracy due to a higher reconstruction error.
There is not a rule for the choice, so empirical approaches are typically used [7].

To build the autoencoder, other parameters that must be defined are the number
of layers or depth for the encoder and decoder, the number of nodes per layer and the
loss function (or distance between the compressed representation of the data and the
decompressed representation). We must choose these parameters carefully so that the
model does not become overfitted; that is, the dimension of the latent representation should
be low enough to let the autoencoder learn useful and meaningful characteristics of the
input data.

We implemented a fully connected symmetric autoencoder with 4 dense layers (see
Figure 3). The number of nodes in each layer, as well as the activation function, were
chosen to minimize reconstruction errors. We found the best option to be 11 nodes for the
first hidden layer and 6 nodes for the low-dimensional layer (latent space). Moreover, the
encoder and decoder used Rectified Linear Units (ReLU) as the activation function and
were trained using the Mean Squared Error as the loss function.
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2.4. Clustering

To obtain knowledge from the data and to classify courses, we applied clustering
using the K-means algorithm, chosen because of its simplicity, fast convergence and its
ease of understanding and visualization [42]. Moreover, it is not necessary to discretize the
input values with the consequent loss of information as in other methods, such as LCA
(Latent Class Analysis) [43].
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The first step to build clusters is to choose the K-value or the number of classes. The sil-
houette coefficient, gap statistic, elbow method and Canopy are good methods to determine
the optimal number of clusters for K-means and provide good results [44]. Subsequently,
we measured the performance of the clusters through the following two measures: homo-
geneity and heterogeneity. The objective is to obtain clusters with low variability within
clusters (homogeneity) and a high degree of separation between them (heterogeneity). We
used the average distance between clusters as a measure of heterogeneity and the average
distance within clusters as a measure of homogeneity [45].

2.5. Research Ethics

In learning analytics, the main ethical issues are related to data ownership and student
privacy [46], with the protection of privacy being one of the fundamental values and rights
on which ethical artificial intelligence is based [47]. In this study, all human participants’
data were fully anonymized before we accessed them. However, in some cases, course
identifiers could reveal information about the identity of teachers and students. Therefore,
course identifiers were re-codified to minimize possible ethical issues. Since the unit of
analysis was the course, there was no potential problem of student identification in this
study. In any case, student anonymity was always preserved by removing all personal iden-
tifiers from the data. In addition, we did not collect any sensitive data such as racial origin,
religious beliefs or health data (according to the Spanish Law of Personal Data Protection).

3. Results and Discussion

As expected, when reducing dimensionality, smaller sizes led to higher reconstruction
errors. We empirically found an optimal value for the bottleneck layer that is lower than the
dimension obtained from manual data transformation [11]. The autoencoder reduced the
input dimension to six features in the latent space, while our previous hand-transformed
set consisted of nine variables. As previously mentioned, the defined encoder contains
dense layers and the leaky ReLU activation function, and its output layer defines a latent
vector size with six nodes. We trained the model for 5000 epochs and calculated the loss
and accuracy for each epoch to confirm that it converged. Figure 4 shows loss and accuracy
vs. epoch. We can observe that the model converged and how well the autoencoder could
reconstruct its input.

From the six latent features, we applied K-means to obtain the different clusters. For
this, we determined the optimal number of classes. We calculated the silhouette coefficient
and gap statistic, obtaining seven as the optimal number of clusters with both methods.
Figure 5 shows the seven different clusters after applying K-means from the six latent
(hidden) features in a 2D space.

Once the seven clusters were obtained, we analyzed them to interpretate the obtained
results. For this purpose, we studied these seven classes in relation to the users’ activity
variables described in Table 1, and we checked if it was possible to define a course typology
based on these results. Figures 6 and 7 show the normalized mean value of the variables
associated with the teachers’ and students’ activity, respectively. From these results, seven
different course typologies were established. Class 2 corresponds to courses with low use
of Moodle or inactive courses (type I or Inactive). Class 6 corresponds to courses whose
main activities are students viewing content and teachers sending announcements to the
forum. In these courses, teachers use the platform as an informative medium or a Web
repository (type R or Repository).

Classes 3, 4 and 7 are courses with static content and the use of evaluation based
on task assignments. The main difference is that Class 3 matches courses that also have
a high use of discussion forums and teacher–student communication, showing a more
communicative profile (type C or Communicative). Class 4 has a greater use of assignments
and evaluative elements such as manual gradebook items (type E or Evaluative). Class 7, in
turn, has a high number of entries in the calendar and in the gradebook; this suggests that
the teachers use Moodle as an organizing element and class planner (type P or Planner).
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On the other hand, Class 1 corresponds to courses with a mixed use of Moodle tools;
these are courses with large amounts of content, forums and assignments, combined with
quizzes and evaluative elements (type B or Balanced). Finally, Class 5 consists of courses
with very high and wide use of all types of activities on Moodle, including advanced
activities (type V or adVanced).

Table 2 shows a summary of the seven course typologies described previously, indicat-
ing their main features.

At first, we can observe that these seven classes are similar to the six typologies defined
in our previous study [11], although some types have disappeared (like Submission -S) and
there are new types. Our aim is to see if there is any connection between them. Figure 8
represents a mosaic plot, where we can visually compare the different groups and obtain
a general idea of how they are related to each other. We can observe that the adVanced
courses were previously classified as B because the variable associated with advanced
activities had been eliminated in the preprocessing of the data, since it was zero in most
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courses. Something similar occurs with the Planner courses, which were not present in the
previous study when removing the CalendarEvents variable and were spread out across
different classes. On the other hand, the Inactive class mainly corresponds to Inactive
courses in the previous work, although it also includes some courses previously classified
as Submission. The classes Repository, Evaluative, Communicative and Balanced had a
more diffuse relationship with the previous classification. Analyzing some of these courses,
we observed that some of the variables were near the thresholds separating one class from
the other.
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In our previous study [11], we removed features with a high correlation and/or low
variability of values. We discarded information and lost classes, such as the typology
described as “Planner course”. Moreover, we discretized the variables in three levels (low,
medium, high). That is, we lost information about the real values. This led to some values
not being properly considered when being on the threshold between one level and another.
Some of these shortcomings may be overcome with this new analysis technique.
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Table 2. Description of course typologies.

Typology Description

Inactive—I Low use of Moodle
Repository—R Content and news

Communicative—C Content, assignments and teacher–student interactions
Evaluative—E Content, assignments and evaluative elements

Planner—P Content, assignments and very high use of calendar events
Balanced—B Heavy and balanced use of Moodle tools
adVanced—V High and wide use of Moodle tools, including advanced tools
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To validate the new analysis, we measured the homogeneity and heterogeneity (as
the average distance within clusters and between clusters [45], respectively) to analyze the
performance of clusters in relation to the previous work [11].

Table 3 shows the results obtained. We can observe how K-means with autoencoders
provides the best value for both homogeneity (the lowest value is the best) and heterogene-
ity (the highest value is the best). That is, it offers the most homogeneous clusters, and it is
the most effective in separating clusters.

Table 3. Analysis of cluster performance: autoencoder vs. manual preprocessing. Adapted from Ref. [11].

Method Homogeneity Heterogeneity

K-means + Autoencoders 0.5354 2.2339
K-means + Manual Preprocessing 0.6548 2.0887

LCA + Manual Preprocessing 0.8097 2.2049

4. Conclusions and Future Work

This paper proposes a method to infer a typology model of courses out of the use
of the LMS by teachers and students. We have used an autoencoder to obtain a latent
representation of LMS courses and perform clustering in the latent space instead of the
input data space, avoiding the complex manual data pre-processing (answering RQ1)
and improving clustering performance (answering RQ2), with more homogeneous and
differenced clusters than those obtained with manual pre-processing. Moreover, we have
obtained seven typologies of courses that fit the following seven well-defined usage pat-
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terns: Inactive, Repository, Communicative, Evaluative, Planner, Balanced and adVanced
(answering RQ3).

A limitation of this work is that we used empirical approaches to select the different
parameters of autoencoders (activation function, loss function, number of hidden lay-
ers, etc.). The use of metaheuristic hyperparameter optimizers may improve the results.
In a future work, we plan to iteratively fine-tune the deep network parameters for latent
space optimization and an improvement of the clustering effectiveness [7]. We also plan to
include in the autoencoder constraints about the distance between latent data and cluster
centers to obtain a more stable and compact representation, which is more suitable for clus-
tering, as suggested by some authors [7,41]. In addition, we could compare the efficiency
of different types of autoencoders, such as denoising autoencoders [48,49], contractive
autoencoders [12] or sparse autoencoders [50,51].

Finally, we would like to exploit the potential of multimodal data [52], as suggested
from a systematic review [3], for example, by including teachers’ psychological and context
data, as well as self-reported data, to provide feedback to the classification system. In
addition to enriching the deep learning system, we will try to engage teachers in the
learning analytics process. This is one of the last challenges identified by the learning
analytics research community [53].

Author Contributions: Conceptualization, M.J.V., L.M.R., J.P.d.C. and E.V.; Data curation, M.J.V.,
L.M.R., J.P.d.C. and E.V.; Formal analysis, M.J.V., L.M.R., J.P.d.C. and E.V.; Investigation, M.J.V.,
L.M.R., J.P.d.C. and E.V.; Resources, E.V.; Software, M.J.V., L.M.R., J.P.d.C. and E.V.; Validation, M.J.V.,
L.M.R., J.P.d.C. and E.V.; Visualization, M.J.V., L.M.R. and J.P.d.C.; Writing—original draft, M.J.V.,
L.M.R., J.P.d.C. and E.V.; Writing—review and editing, M.J.V., L.M.R., J.P.d.C. and E.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data cannot be shared publicly because of privacy restrictions. Some
data, models, or code that support the findings of this study are available from the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Muhammad, B.A.; Qi, C.; Wu, Z.; Ahmad, H.K. GRL-LS: A Learning Style Detection in Online Education Using Graph

Representation Learning. Expert Syst. Appl. 2022, 201, 117138. [CrossRef]
2. Rincon-Flores, E.G.; Lopez-Camacho, E.; Mena, J.; Olmos, O. Teaching through Learning Analytics: Predicting Student Learning

Profiles in a Physics Course at a Higher Education Institution. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 82–89. [CrossRef]
3. Celik, I.; Dindar, M.; Muukkonen, H.; Järvelä, S. The Promises and Challenges of Artificial Intelligence for Teachers: A Systematic

Review of Research. TechTrends 2022, 66, 616–630. [CrossRef]
4. Manhiça, R.; Santos, A.; Cravino, J. The Use of Artificial Intelligence in Learning Management Systems in the Context of Higher

Education: Systematic Literature Review. In Proceedings of the 2022 17th Iberian Conference on Information Systems and
Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6.

5. Bennacer, I.; Venant, R.; Iksal, S. A Behavioral Model to Support Teachers’ Self-Assessment and Improve Their LMS Mastery. In
Proceedings of the 22nd IEEE International Conference on Advanced Learning Technologies, Bucharest, Romania, 1–4 July 2022.

6. D’Mello, S.K. Emotional Learning Analytics. In Handbook of Learning Analytics; Society for Learning Analytics Research: Edmonton,
AB, Canada, 2017; pp. 115–127. ISBN 978-0-9952408-0-3.

7. Mousavi, S.M.; Zhu, W.; Ellsworth, W.; Beroza, G. Unsupervised Clustering of Seismic Signals Using Deep Convolutional
Autoencoders. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1693–1697. [CrossRef]

8. Rodríguez, A.L.; Fahara, M.F.; Tecnológico, C.; León, N. Online Teaching Styles: A Study in Distance Education. Int. J. Univ. Teach.
Fac. Dev. 2010, 1, 1–14.

9. Vikas, S.; Mathur, A. An Empirical Study of Student Perception towards Pedagogy, Teaching Style and Effectiveness of Online
Classes. Educ. Inf. Technol. 2022, 27, 589–610. [CrossRef] [PubMed]

10. Regueras, L.M.; Verdú, M.J.; de Castro, J.-P. A Rule-Based Expert System for Teachers’ Certification in the Use of Learning
Management Systems. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 75–81. [CrossRef]

https://doi.org/10.1016/j.eswa.2022.117138
https://doi.org/10.9781/ijimai.2022.01.005
https://doi.org/10.1007/s11528-022-00715-y
https://doi.org/10.1109/LGRS.2019.2909218
https://doi.org/10.1007/s10639-021-10793-9
https://www.ncbi.nlm.nih.gov/pubmed/34720659
https://doi.org/10.9781/ijimai.2022.11.004


Appl. Sci. 2023, 13, 7334 11 of 12

11. Regueras, L.M.; Verdú, M.J.; Castro, J.D.; Verdú, E. Clustering Analysis for Automatic Certification of LMS Strategies in a
University Virtual Campus. IEEE Access 2019, 7, 137680–137690. [CrossRef]

12. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2021, arXiv:2003.05991.
13. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
14. Ardelean, E.-R.; Coporîie, A.; Ichim, A.-M.; Dîns, oreanu, M.; Mures, an, R.C. A Study of Autoencoders as a Feature Extraction

Technique for Spike Sorting. PLoS ONE 2023, 18, e0282810. [CrossRef]
15. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.

[CrossRef]
16. Casella, M.; Dolce, P.; Ponticorvo, M.; Marocco, D. Autoencoders as an Alternative Approach to Principal Component Analysis

for Dimensionality Reduction. An Application on Simulated Data from Psychometric Models. In Proceedings of the Third
Symposium on Psychology-Based Technologies (PSYCHOBIT2021), Naples, Italy, 4–5 October 2021; Volume 3100.

17. Mantripragada, K.; Dao, P.D.; He, Y.; Qureshi, F.Z. The Effects of Spectral Dimensionality Reduction on Hyperspectral Pixel
Classification: A Case Study. PLoS ONE 2022, 17, e0269174. [CrossRef] [PubMed]

18. Fournier, Q.; Aloise, D. Empirical Comparison between Autoencoders and Traditional Dimensionality Reduction Methods. In
Proceedings of the 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE),
Sardinia, Italy, 3–5 June 2019; pp. 211–214.

19. Mancisidor, R.A.; Kampffmeyer, M.; Aas, K.; Jenssen, R. Learning Latent Representations of Bank Customers with the Variational
Autoencoder. Expert Syst. Appl. 2021, 164, 114020. [CrossRef]

20. Bobadilla, J.; Ortega, F.; Gutiérrez, A.; Alonso, S. Classification-Based Deep Neural Network Architecture for Collaborative
Filtering Recommender Systems. Int. J. Interact. Multimed. Artif. Intell. 2020, 6, 68. [CrossRef]

21. Wen, T.; Zhang, Z. Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals.
IEEE Access 2018, 6, 25399–25410. [CrossRef]

22. Spencer, A.P.C.; Goodfellow, M. Using Deep Clustering to Improve FMRI Dynamic Functional Connectivity Analysis. NeuroImage
2022, 257, 119288. [CrossRef]

23. Amrutha, E.; Arivazhagan, S.; Jebarani, W.S.L. Deep Clustering Network for Steganographer Detection Using Latent Features
Extracted from a Novel Convolutional Autoencoder. Neural Process. Lett. 2022. [CrossRef]

24. Shinde, K.; Itier, V.; Mennesson, J.; Vasiukov, D.; Shakoor, M. Dimensionality Reduction through Convolutional Autoencoders for
Fracture Patterns Prediction. Appl. Math. Model. 2023, 114, 94–113. [CrossRef]

25. Hurtado, S.; García-Nieto, J.; Popov, A.; Navas-Delgado, I. Human Activity Recognition From Sensorised Patient’s Data in
Healthcare: A Streaming Deep Learning-Based Approach. Int. J. Interact. Multimed. Artif. Intell. 2023, 8, 23–37. [CrossRef]

26. De Oliveira, H.; Martin, P.; Ludovic, L.; Vincent, A.; Xiaolan, X. Explaining Predictive Factors in Patient Pathways Using
Autoencoders. PLoS ONE 2022, 17, e0277135. [CrossRef] [PubMed]

27. Basnet, R.B.; Johnson, C.; Doleck, T. Dropout Prediction in Moocs Using Deep Learning and Machine Learning. Educ. Inf. Technol.
2022, 27, 11499–11513. [CrossRef]

28. Liu, S.; Liu, S.; Liu, Z.; Peng, X.; Yang, Z. Automated Detection of Emotional and Cognitive Engagement in MOOC Discussions to
Predict Learning Achievement. Comput. Educ. 2022, 181, 104461. [CrossRef]

29. Moridis, C.N.; Economides, A.A. Prediction of Student’s Mood during an Online Test Using Formula-Based and Neural Network-
Based Method. Comput. Educ. 2009, 53, 644–652. [CrossRef]

30. Tomasevic, N.; Gvozdenovic, N.; Vranes, S. An Overview and Comparison of Supervised Data Mining Techniques for Student
Exam Performance Prediction. Comput. Educ. 2020, 143, 103676. [CrossRef]

31. Sarwat, S.; Ullah, N.; Sadiq, S.; Saleem, R.; Umer, M.; Eshmawi, A.A.; Mohamed, A.; Ashraf, I. Predicting Students’ Academic
Performance with Conditional Generative Adversarial Network and Deep SVM. Sensors 2022, 22, 4834. [CrossRef]

32. Tao, T.; Sun, C.; Wu, Z.; Yang, J.; Wang, J. Deep Neural Network-Based Prediction and Early Warning of Student Grades and
Recommendations for Similar Learning Approaches. Appl. Sci. 2022, 12, 7733. [CrossRef]

33. Aljaloud, A.S.; Uliyan, D.M.; Alkhalil, A.; Elrhman, M.A.; Alogali, A.F.M.; Altameemi, Y.M.; Altamimi, M.; Kwan, P. A Deep
Learning Model to Predict Student Learning Outcomes in LMS Using CNN and LSTM. IEEE Access 2022, 10, 85255–85265.
[CrossRef]

34. Zhang, H.; Huang, T.; Liu, S.; Yin, H.; Li, J.; Yang, H.; Xia, Y. A Learning Style Classification Approach Based on Deep Belief
Network for Large-Scale Online Education. J. Cloud Comput. 2020, 9, 26. [CrossRef]

35. Ghatak, A. Deep Learning with R; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-981-13-5849-4.
36. Allaire, J.; Chollet, F. Keras: R Interface to “Keras”; R Package Version 2.8.0.9000. 2022. Available online: https://tensorflow.

rstudio.com/ (accessed on 18 June 2023).
37. Palinkas, L.A.; Horwitz, S.M.; Green, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K. Purposeful Sampling for Qualitative Data

Collection and Analysis in Mixed Method Implementation Research. Adm. Policy Ment. Health Ment. Health Serv. Res. 2015, 42,
533–544. [CrossRef] [PubMed]

38. Whitmer, J.; Nuñez, N.; Harfield, T.; Forteza, D. Patterns in Blackboard Learn Tool Use: Five Course Design Archetypes; Blackboard:
Washington, DC, USA, 2016; Available online: https://www.blackboard.com/sites/default/files/resource/pdf/Bb_Patterns_
LMS_Course_Design_r5_tcm136-42998.pdf (accessed on 18 June 2023).

https://doi.org/10.1109/ACCESS.2019.2943212
https://doi.org/10.1371/journal.pone.0282810
https://doi.org/10.1126/science.1127647
https://doi.org/10.1371/journal.pone.0269174
https://www.ncbi.nlm.nih.gov/pubmed/35834472
https://doi.org/10.1016/j.eswa.2020.114020
https://doi.org/10.9781/ijimai.2020.02.006
https://doi.org/10.1109/ACCESS.2018.2833746
https://doi.org/10.1016/j.neuroimage.2022.119288
https://doi.org/10.1007/s11063-022-10992-6
https://doi.org/10.1016/j.apm.2022.09.034
https://doi.org/10.9781/ijimai.2022.05.004
https://doi.org/10.1371/journal.pone.0277135
https://www.ncbi.nlm.nih.gov/pubmed/36355757
https://doi.org/10.1007/s10639-022-11068-7
https://doi.org/10.1016/j.compedu.2022.104461
https://doi.org/10.1016/j.compedu.2009.04.002
https://doi.org/10.1016/j.compedu.2019.103676
https://doi.org/10.3390/s22134834
https://doi.org/10.3390/app12157733
https://doi.org/10.1109/ACCESS.2022.3196784
https://doi.org/10.1186/s13677-020-00165-y
https://tensorflow.rstudio.com/
https://tensorflow.rstudio.com/
https://doi.org/10.1007/s10488-013-0528-y
https://www.ncbi.nlm.nih.gov/pubmed/24193818
https://www.blackboard.com/sites/default/files/resource/pdf/Bb_Patterns_LMS_Course_Design_r5_tcm136-42998.pdf
https://www.blackboard.com/sites/default/files/resource/pdf/Bb_Patterns_LMS_Course_Design_r5_tcm136-42998.pdf


Appl. Sci. 2023, 13, 7334 12 of 12

39. Park, Y.; Yu, J.H.; Jo, I.-H. Clustering Blended Learning Courses by Online Behavior Data: A Case Study in a Korean Higher
Education Institute. Internet High. Educ. 2016, 29, 1–11. [CrossRef]

40. Cole, J.; Foster, H. Using Moodle—Teaching with the Popular Open Source Course Management System, 2nd ed.; O’Reilly: Beijing,
China, 2007.

41. Song, C.; Liu, F.; Huang, Y.; Wang, L.; Tan, T. Auto-Encoder Based Data Clustering. In Proceedings of the Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, Havana, Cuba, 20–13 November 2013; Ruiz-Shulcloper, J.,
Sanniti di Baja, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–124.

42. Jo, I.-H.; Park, Y.; Lee, H.; Song, J.; Kang, S. Clustering Analysis of Academic Courses Based on LMS Usage Levels and Patterns:
Gaussian Mixture Model, K-Means Clustering and Hierarchical Clustering. In Proceedings of the Fourth International Conference
on Data Analytics, Nice, France, 19–24 July 2015; pp. 130–137.

43. Rindskopf, D. Latent Class Analysis. In The Sage Handbook of Quantitative Methods in Psychology; Sage Publications Ltd.: Thousand,
CA, USA, 2009; pp. 199–215. ISBN 978-1-4129-3091-8.

44. Yuan, C.; Yang, H. Research on K-Value Selection Method of K-Means Clustering Algorithm. Multidiscip. Sci. J. 2019, 2, 226–235.
[CrossRef]

45. Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a
Data Set. J. Stat. Softw. 2014, 61, 1–36. [CrossRef]

46. Slade, S.; Prinsloo, P. Learning Analytics: Ethical Issues and Dilemmas. Am. Behav. Sci. 2013, 57, 1509–1528. [CrossRef]
47. Rivero, A.J.L.; Beato, M.E.; Martínez, C.M.; Vázquez, P.G.C. Empirical Analysis of Ethical Principles Applied to Different AI Uses

Cases. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 105.
48. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and Composing Robust Features with Denoising Autoencoders.

In Proceedings of the 25th International Conference on Machine Learning, New York, NY, USA, 5 July 2008; Association for
Computing Machinery: New York, NY, USA; pp. 1096–1103.

49. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked Denoising Autoencoders: Learning Useful Representa-
tions in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

50. Makhzani, A.; Frey, B. K-Sparse Autoencoders. arXiv 2014, arXiv:1312.5663.
51. Zeng, N.; Zhang, H.; Song, B.; Liu, W.; Li, Y.; Dobaie, A.M. Facial Expression Recognition via Learning Deep Sparse Autoencoders.

Neurocomputing 2018, 273, 643–649. [CrossRef]
52. Chango, W.; Lara, J.A.; Cerezo, R.; Romero, C. A Review on Data Fusion in Multimodal Learning Analytics and Educational Data

Mining. WIREs Data Min. Knowl. Discov. 2022, 12, e1458. [CrossRef]
53. Kollom, K.; Tammets, K.; Scheffel, M.; Tsai, Y.-S.; Jivet, I.; Muñoz-Merino, P.J.; Moreno-Marcos, P.M.; Whitelock-Wainwright, A.;

Calleja, A.R.; Gasevic, D.; et al. A Four-Country Cross-Case Analysis of Academic Staff Expectations about Learning Analytics in
Higher Education. Internet High. Educ. 2021, 49, 100788. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.iheduc.2015.11.001
https://doi.org/10.3390/j2020016
https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.1177/0002764213479366
https://doi.org/10.1016/j.neucom.2017.08.043
https://doi.org/10.1002/widm.1458
https://doi.org/10.1016/j.iheduc.2020.100788

	Introduction 
	Materials and Methods 
	Logs Acquisition 
	Data Preprocessing 
	Dimensionality Reduction 
	Clustering 
	Research Ethics 

	Results and Discussion 
	Conclusions and Future Work 
	References

